JP2022067072A - Culture vessel - Google Patents
Culture vessel Download PDFInfo
- Publication number
- JP2022067072A JP2022067072A JP2021166802A JP2021166802A JP2022067072A JP 2022067072 A JP2022067072 A JP 2022067072A JP 2021166802 A JP2021166802 A JP 2021166802A JP 2021166802 A JP2021166802 A JP 2021166802A JP 2022067072 A JP2022067072 A JP 2022067072A
- Authority
- JP
- Japan
- Prior art keywords
- fine
- well
- fine well
- culture vessel
- wells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 230000003287 optical effect Effects 0.000 abstract description 9
- 210000004027 cell Anatomy 0.000 description 55
- 230000021164 cell adhesion Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 230000001788 irregular Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 229920005990 polystyrene resin Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- ZSZRUEAFVQITHH-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CC(=C)C(=O)OCCOP([O-])(=O)OCC[N+](C)(C)C ZSZRUEAFVQITHH-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000005345 chemically strengthened glass Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本発明は、培養容器に関する。 The present invention relates to a culture vessel.
生命現象を解明するための基礎研究や、創薬研究等においては、培養細胞が広く利用されている。特に3次元培養で得られる細胞が凝集した3次元細胞塊(スフェロイド)は、生体内と同様に立体的な構造を有しているため、2次元培養で得た細胞に比べてより生体内に近い生物活性を有していることが期待されている。3次元培養としては、例えば、マイクロプレートの各ウェルの底面や、ディッシュの底面等に孔径100~1,000μmの微細ウェル(マイクロウェル)が多数形成された培養容器(微細加工容器)を用いた培養方法が知られている(特許文献1)。微細加工容器に細胞を播くと、各微細ウェルの中で細胞が会合し、細胞塊が形成される。 Cultured cells are widely used in basic research for elucidating life phenomena and drug discovery research. In particular, the three-dimensional cell mass (spheroid) in which the cells obtained by the three-dimensional culture are aggregated has a three-dimensional structure similar to that in the living body, so that the cells obtained by the two-dimensional culture are more in vivo than the cells obtained by the two-dimensional culture. It is expected to have similar biological activity. As the three-dimensional culture, for example, a culture container (microprocessed container) in which a large number of fine wells (microwells) having a pore diameter of 100 to 1,000 μm were formed on the bottom surface of each well of the microplate, the bottom surface of the dish, or the like was used. A culture method is known (Patent Document 1). When cells are sown in a microfabrication container, the cells associate in each microwell to form a cell mass.
細胞の生存率や細胞内の酵素の働きなどの生物活性を測定する場合、細胞や酵素と反応して発光するか、又は蛍光を発する試薬を用い、プレートリーダーやセルイメージャーによって発光量又は蛍光量を測定したり、その局在を測定したりする。微細加工容器で培養した細胞塊を、そのまま微細ウェル内で光学的に測定する方法は、一度に複数個の細胞塊を測定できる利点がある。 When measuring biological activities such as cell viability and the action of enzymes in cells, the amount of light emitted or fluorescence is measured by a plate reader or cell imager using a reagent that emits light in response to cells or enzymes or emits fluorescence. Measure the amount and measure its localization. The method of optically measuring a cell mass cultured in a microfabrication container as it is in a microwell has an advantage that a plurality of cell masses can be measured at one time.
しかし、特許文献1のような従来の微細加工容器では、微細ウェル内の細胞塊や反応液を光学的に測定する場合、二次的で不要な像が写り込みやすいため、発光量や蛍光量の測定精度が低く、局在の解析も困難である。
However, in the conventional microprocessed container as in
本発明は、各微細ウェルで形成した細胞塊の光学的測定において、複数個の細胞塊を効率良く測定でき、かつ二次的な像の写り込みが低減される培養容器を提供することを目的とする。 It is an object of the present invention to provide a culture vessel capable of efficiently measuring a plurality of cell masses and reducing secondary image reflection in the optical measurement of cell masses formed in each fine well. And.
本発明は、以下の態様を有する。
[1]複数の微細ウェルを有する培養容器であって、
微細ウェルの開口形状に対し、JIS B0621に規定された真円度測定の最小領域中心法で求められる同心二円の半径をそれぞれR1、r1(ただし、R1>r1である。)としたとき、r1/R1が0.75~0.95である非正円形状の微細ウェルを含む、培養容器。
[2]非正円形状の前記微細ウェルにおける、前記微細ウェルの深さに対する前記微細ウェルの底からの深さ方向の距離の比が0.5となる位置の平面視形状に対し、前記最小領域中心法で求められる同心二円の半径をそれぞれR2、r2(ただし、R2>r2である。)としたとき、r2/R2が0.80~0.95であるか、
もしくは、非正円形状の前記微細ウェルの底からの深さ方向の距離が100ミクロンとなる位置の平面視形状に対し、前記最小領域中心法で求められる同心二円の半径をそれぞれR3、r3(ただし、R3>r3である。)としたとき、r3/R3が0.80~0.95である、[1]の培養容器。
[3]非正円形状の前記微細ウェルの開口形状が、前記最小領域中心法で求められた同心二円の中心を通る直線に対して線対称でない形状である、[1]又は[2]の培養容器。
[4]非正円形状の前記微細ウェルの開口形状が、前記最小領域中心法で求められた同心二円の中心に対して点対称でない形状である、[1]~[3]のいずれかの培養容器。
The present invention has the following aspects.
[1] A culture vessel having a plurality of fine wells.
For the opening shape of the fine well, the radii of the concentric two circles obtained by the minimum region center method of roundness measurement specified in JIS B0621 are R 1 , r 1 (however, R 1 > r 1 ), respectively. A culture vessel containing a non-circular fine well having r 1 / R 1 of 0.75 to 0.95.
[2] The minimum of the non-circular shape of the fine well with respect to the plan view shape at the position where the ratio of the distance in the depth direction from the bottom of the fine well to the depth of the fine well is 0.5. When the radii of the concentric two circles obtained by the region center method are R 2 and r 2 (where R 2 > r 2 ), respectively, is r 2 / R 2 0.80 to 0.95? ,
Alternatively, the radius of the concentric two circles obtained by the minimum region center method is R3 , respectively, for the plan view shape at the position where the distance in the depth direction from the bottom of the non-perfect circular shape is 100 microns. The culture vessel of [1], wherein r 3 / R 3 is 0.80 to 0.95 when r 3 (where R 3 > r 3 ).
[3] The non-circular shape of the opening of the fine well is not line-symmetrical with respect to a straight line passing through the center of the concentric two circles obtained by the minimum region center method, [1] or [2]. Culture container.
[4] Any of [1] to [3], wherein the opening shape of the fine well having an irregular circular shape is not point-symmetrical with respect to the center of the concentric two circles obtained by the minimum region center method. Culture container.
本発明によれば、各微細ウェルで形成した細胞塊の光学的測定において、複数個の細胞塊を効率良く測定でき、かつ二次的な像の写り込みが低減される培養容器を提供できる。 According to the present invention, it is possible to provide a culture vessel capable of efficiently measuring a plurality of cell masses and reducing secondary image reflection in the optical measurement of the cell mass formed in each fine well.
本明細書における用語の意味及び定義は以下である。
「~」で表される数値範囲は、~の前後の数値を下限値及び上限値とする数値範囲を意味する。
「微細ウェル」は、底部と、前記底部よりも大きい傾斜角度(水平方向に対する角度)で立ち上がる側壁部と、前記側壁部よりも小さい傾斜角度で広がる上部から構成される。底部、側壁部、上部はそれぞれ、深さ方向の断面において、表面の傾斜角度が一定である態様、表面が一定の曲率半径を持つ態様、傾斜角度や曲率半径が緩やかに変化する態様を含む。
「微細ウェルの開口端」とは、微細ウェルの側壁部から上部へ変化する点を基準の高さとした水平方向の面を、第1基準面として、第1基準面上で微細ウェルの表面を全周にわたって周回する境界線である。なお、「側壁部から上部へ変化する点」とは、微細ウェルの最深部を通る深さ方向の断面において、側面部から上部へ向かって表面の傾斜角度(水平方向を0°としたときの傾斜)が65°以上から65°以下に変化する点(表面に対する接線の傾斜角度が65°である点、なお急激に傾斜角度が変化する場合は必ずしも65°の接線が引けない)とする。微細ウェルの開口の周方向において、側壁部から上部へ変化する点が一定の高さでない場合は、微細ウェルの側壁部から上部へ変化する点の内で一番低い点を基準の高さとする。微細ウェルを形成する面としては、フラスコ、ディッシュ等の形態の培養容器では容器の底面、マイクロプレートの形態の培養容器ではウェルの底面を例示できる。
「微細ウェルの開口形状」とは、微細ウェルの第1基準面での開口の平面視形状である。
「微細ウェルの開口の直径」とは、微細ウェルの第1基準面上における開口の直径であり、開口形状が正円でない場合はその開口形状に対する外接円の直径とする。
「微細ウェルの開口面積」とは、微細ウェルの第1基準面上での開口の面積である。
「微細ウェルの深さ」は、微細ウェルの最深部と第1基準面との距離である。
The meanings and definitions of the terms used herein are as follows.
The numerical range represented by "-" means a numerical range in which the numerical values before and after "-" are the lower limit value and the upper limit value.
The "fine well" is composed of a bottom portion, a side wall portion that rises at an inclination angle (angle with respect to the horizontal direction) larger than the bottom portion, and an upper portion that extends at an inclination angle smaller than the side wall portion. Each of the bottom portion, the side wall portion, and the upper portion includes an embodiment in which the inclination angle of the surface is constant, an embodiment in which the surface has a constant radius of curvature, and an embodiment in which the inclination angle and the radius of curvature gradually change in the cross section in the depth direction.
The "open end of the fine well" is the surface of the fine well on the first reference plane, with the horizontal surface whose reference height is the point where the side wall of the fine well changes to the upper part. It is a boundary line that goes around the entire circumference. The "point that changes from the side wall to the upper part" is the angle of inclination of the surface from the side surface to the upper part (when the horizontal direction is 0 °) in the cross section in the depth direction passing through the deepest part of the fine well. It is assumed that the point at which the inclination) changes from 65 ° or more to 65 ° or less (the inclination angle of the tangent to the surface is 65 °, and if the inclination angle changes suddenly, the tangent of 65 ° cannot always be drawn). If the point of change from the side wall to the upper part is not a constant height in the circumferential direction of the opening of the fine well, the lowest point among the points of change from the side wall of the fine well to the upper part is taken as the reference height. .. As the surface forming the fine well, the bottom surface of the container can be exemplified in the culture container in the form of a flask, a dish, etc., and the bottom surface of the well can be exemplified in the culture container in the form of a microplate.
The "opening shape of the fine well" is a plan view shape of the opening of the fine well on the first reference plane.
The "diameter of the opening of the fine well" is the diameter of the opening on the first reference plane of the fine well, and if the opening shape is not a perfect circle, it is the diameter of the circumscribed circle with respect to the opening shape.
The "opening area of the fine well" is the area of the opening of the fine well on the first reference plane.
The "depth of the fine well" is the distance between the deepest part of the fine well and the first reference plane.
以下、本発明の培養容器の実施形態の一例を示し、図面に基づいて説明する。なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, an example of an embodiment of the culture vessel of the present invention will be shown and described with reference to the drawings. It should be noted that the dimensions and the like of the figures exemplified in the following description are examples, and the present invention is not necessarily limited to them, and the present invention can be appropriately modified without changing the gist thereof. ..
図1~3に示すように、本実施形態の培養容器1は、円板状の底壁部10と、底壁部10の周縁から垂直に立ち上がる周壁部12と、を備えている。培養容器1は、底壁部10の上側の底面10aに複数の微細ウェル20を有している。すなわち、培養容器1は複数の微細ウェル20を有する微細加工容器である。
As shown in FIGS. 1 to 3, the
培養容器1は、下記の条件1を満たす非正円形状の微細ウェル20を含む。
条件1:微細ウェル20の開口形状に対し、JIS B0621に規定された真円度測定の最小領域中心法で求められる同心二円の半径をそれぞれR1、r1(ただし、R1>r1である。)としたとき、r1/R1が0.75~0.95である。
The
Condition 1: For the opening shape of the
条件1におけるr1及びR1の求め方をより具体的に説明する。最小領域中心法(MZC)を用い、第1基準面k(図3)上で、微細ウェル20の開口形状を挟む2つの同心円として、半径差が最も小さくなる二円を求める。そして、その同心の二円のうち半径が大きい方の円の半径をR1、半径が小さい方の円の半径をr1とする。
The method of obtaining r 1 and R 1 under
条件1を満たす非正円形状の微細ウェル20では、微細ウェル20内で形成された細胞塊の光学的測定を行う際、細胞塊から発せられた光の微細ウェル20の表面での反射や、反射光の干渉による強め合いが低減される。これにより、細胞塊の光学的測定において、二次的な(不要な)光の映り込みが低減される。そのため、発光量や蛍光量の測定精度が高くなり、また局在の解析も容易になる。
In the non-circular fine well 20 satisfying the
r1/R1は、0.75~0.95であり、0.83~0.92が好ましく、0.85~0.90がより好ましい。r1/R1が前記範囲の上限値以下であれば、光学的測定において微細ウェル表面での反射や干渉による強め合いに起因する二次的な光の映り込みが低減される。r1/R1が前記範囲の下限値以上であれば、微細ウェル20内に十分なスペースが確保されるため、十分なサイズの細胞塊を効率良く形成できる。
r 1 / R 1 is 0.75 to 0.95, preferably 0.83 to 0.92, and more preferably 0.85 to 0.90. When r 1 / R 1 is not more than the upper limit of the above range, the reflection of secondary light due to the intensification due to reflection and interference on the surface of the fine well in the optical measurement is reduced. When r 1 / R 1 is equal to or higher than the lower limit of the above range, a sufficient space is secured in the
R1は、120~1000μmが好ましく、200~600μmがより好ましく、260~450μmがさらに好ましい。R1が前記範囲の下限値以上であれば、充分なサイズの細胞塊を育て易い。R1が前記範囲の上限値以下であれば、微細ウェル中の細胞塊が一定に留まり易い。 R 1 is preferably 120 to 1000 μm, more preferably 200 to 600 μm, and even more preferably 260 to 450 μm. When R 1 is equal to or higher than the lower limit of the above range, it is easy to grow a cell mass of sufficient size. When R 1 is not more than the upper limit of the above range, the cell mass in the fine well tends to stay constant.
r1は、85~850μmが好ましく、110~605μmがより好ましく、230~380μmがさらに好ましい。r1が前記範囲の下限値以上であれば、充分なサイズの細胞塊を育て易い。r1が前記範囲の上限値以下であれば、微細ウェル中の細胞塊が一定に留まり易い。 r 1 is preferably 85 to 850 μm, more preferably 110 to 605 μm, and even more preferably 230 to 380 μm. When r 1 is not more than the lower limit of the above range, it is easy to grow a cell mass of sufficient size. When r 1 is not more than the upper limit of the above range, the cell mass in the fine well tends to stay constant.
培養容器1が有する複数の微細ウェルは、すべてが条件1を満たす非正円形状の微細ウェル20であってもよく、一部が条件1を満たす非正円形状の微細ウェル20で、残部が条件1を満たさない微細ウェル20であってもよい。培養容器1が有する微細ウェル20の総数に対する条件1を満たす微細ウェル20の数の割合は、80~100%が好ましく、85~100%がより好ましく、90~100%がさらに好ましく、100%が特に好ましい。
The plurality of fine wells included in the
微細ウェル20の深さに対する微細ウェル20の底からの深さ方向の距離の比が0.5となる位置の平面視形状に対し、JIS B0621に規定された真円度測定の最小領域中心法で求められる同心二円の半径をそれぞれR2、r2(ただし、R2>r2である。)とする。また、微細ウェル20の底からの深さ方向の距離が100ミクロンとなる位置の平面視形状に対し、前記最小領域中心法で求められる同心二円の半径をそれぞれR3、r3(ただし、R3>r3である。)とする。条件1を満たす非正円形状の微細ウェル20は、さらに下記の条件2を満たしていることが好ましい。
条件2:r2/R2が0.80~0.95であるか、もしくはr3/R3が0.80~0.95である。
The minimum region center method for roundness measurement specified in JIS B0621 for the plan view shape at the position where the ratio of the distance in the depth direction from the bottom of the fine well 20 to the depth of the
Condition 2: r 2 / R 2 is 0.80 to 0.95, or r 3 / R 3 is 0.80 to 0.95.
条件2におけるr2及びR2の求め方についてより具体的に説明する。図3に示すように、微細ウェル20の深さをHとしたとき、深さ方向における微細ウェル20の底(最深部)との距離hがh=0.5×Hとなる位置で、第1基準面kと平行な面を第2基準面mとする。第2基準面m上で微細ウェル20の表面を全周にわたって周回する閉じた線形状に対し、最小領域中心法を用い、第2基準面m上で当該線形状を挟む2つの同心円として、半径差が最も小さくなる二円を求める。そして、その同心の二円のうち半径が大きい方の円の半径をR2、半径が小さい方の円の半径をr2とする。
r3及びR3は、第2基準面の代わりに、深さ方向における微細ウェル20の底(最深部)との距離が100ミクロンとなる位置で、第1基準面kと平行な面を第3基準面とする以外は、r2及びR2と同様の方法で求める。
The method of obtaining r 2 and R 2 under the condition 2 will be described more specifically. As shown in FIG. 3, when the depth of the
Instead of the second reference plane , r3 and R3 have a plane parallel to the first reference plane k at a position where the distance from the bottom (deepest part) of the fine well 20 in the depth direction is 100 microns. 3 Obtained by the same method as r2 and R2 except that the reference plane is used.
非正円形状の微細ウェル20が条件1に加えてさらに条件2を満たすことで、細胞塊の光学的測定において、細胞塊から発せられた光の微細ウェル20の表面での反射や、反射光の干渉による強め合いがさらに低減され、二次的な光の映り込みがさらに抑制される。
When the non-circular fine well 20 further satisfies the condition 2 in addition to the
r2/R2は、0.80~0.95であり、0.83~0.92が好ましく、0.85~0.90がより好ましい。r2/R2が前記範囲の上限値以下であれば、光学的測定において微細ウェル表面での反射や干渉による強め合いに起因する二次的な光の映り込みがさらに低減される。r2/R2が前記範囲の下限値以上であれば、微細ウェル20内に十分なスペースが確保されやすいため、十分なサイズの細胞塊を効率良く形成できる。
r2 / R2 is 0.80 to 0.95, preferably 0.83 to 0.92, and more preferably 0.85 to 0.90. When r 2 / R 2 is not more than the upper limit of the above range, the reflection of secondary light due to the intensification due to reflection or interference on the surface of the fine well in the optical measurement is further reduced. When r 2 / R 2 is equal to or greater than the lower limit of the above range, sufficient space is likely to be secured in the
R2は、100~800μmが好ましく、150~500μmがより好ましく、180~400μmがさらに好ましい。R2が前記範囲の下限値以上であれば、充分なサイズの細胞塊を育て易い。R2が前記範囲の上限値以下であれば、微細ウェル中の細胞塊が一定に留まり易い。 R2 is preferably 100 to 800 μm, more preferably 150 to 500 μm, and even more preferably 180 to 400 μm. When R 2 is equal to or higher than the lower limit of the above range, it is easy to grow a cell mass of sufficient size. When R 2 is not more than the upper limit of the above range, the cell mass in the fine well tends to stay constant.
r2は、50~800μmが好ましく、100~460μmがより好ましく、120~300μmがさらに好ましい。r2が前記範囲の下限値以上であれば、充分なサイズの細胞塊を育て易い。r2が前記範囲の上限値以下であれば、微細ウェル中の細胞塊が一定に留まり易い。 r2 is preferably 50 to 800 μm, more preferably 100 to 460 μm, and even more preferably 120 to 300 μm. When r 2 is not more than the lower limit of the above range, it is easy to grow a cell mass of sufficient size. When r 2 is not more than the upper limit of the above range, the cell mass in the fine well tends to stay constant.
培養容器の底面10aには、サイズが均一な細胞塊が得られやすい点から、サイズが均一な複数の微細ウェル20が形成されていることが好ましい。
微細ウェル20の開口の平均直径Dは、100~2000μmが好ましく、200~1400μmがより好ましく、400~800μmがさらに好ましい。微細ウェル20の開口の平均直径Dが前記範囲の下限値以上であれば、細胞塊のサイズが小さくなり過ぎることを抑制しやすい。微細ウェル20の開口の平均直径Dが前記範囲の上限値以下であれば、微細ウェルと微細ウェルの隙間を小さくできる。その結果、形成される細胞塊の数が多くなる。なお、微細ウェルの開口の平均直径Dは、任意の2個の微細ウェルの直径を測定して平均した値である。微細ウェルの開口の直径の測定は、レーザー顕微鏡による3次元観察によって実施できる。
It is preferable that a plurality of
The average diameter D of the openings of the
微細ウェル20の開口面積は、6600~2700000μm2が好ましく、100000~960000μm2がより好ましく、200000~500000μm2がさらに好ましい。微細ウェル20の開口面積が前記範囲の下限値以上であれば、充分なサイズの細胞塊を育て易い。微細ウェル20の開口面積が前記範囲の上限値以下であれば、微細ウェル中の細胞塊が一定に留まり易い。
The opening area of the
微細ウェル20の平均深さH(図3)は、120~800μmが好ましく、150~650μmがより好ましく、180~500μmがさらに好ましい。微細ウェル20の平均深さHが前記範囲の下限値以上であれば、微細ウェル中の細胞塊が一定に留まり易い。微細ウェル20の平均深さHが前記範囲の上限値以下であれば、培地などの溶液を入れたときの泡抜けがよい。なお、微細ウェルの平均深さHは、任意の2個の微細ウェルについて、微細ウェルの深さ(第1基準面と微細ウェルの最深部との距離)を測定して平均した値である。微細ウェルの深さの測定は、レーザー顕微鏡による3次元観察や、微細ウェルの最深部を通る様に容器の底壁部を高さ方向に割り、その断面を顕微鏡で観察することによって実施できる。
The average depth H (FIG. 3) of the
微細ウェル20の配置パターンは、特に限定されず、規則的なパターンで形成してもよく、不規則に形成してもよく、規則的な部分と不規則な部分が混在していてもよい。規則的な配置パターンとしては、例えば、隙間なく並べた正方形の各頂点に微細ウェルを配置するパターン、隙間なく並べた正六角形の各頂点と中央に微細ウェルを配置するパターン、千鳥状のパターンを例示できる。
The arrangement pattern of the
微細ウェル20の開口形状は、特に限定されず、例えば、円形、楕円形、多角形、ドーナツ型、不規則な形状を例示できる。条件1を満たす微細ウェル20の開口形状は、平面視で、最小領域中心法で求められた同心二円の中心を通る直線に対して線対称でない形状であることが好ましい。また、条件1を満たす微細ウェル20の開口形状は、平面視で、最小領域中心法で求められた同心二円の中心に対して点対称でない形状であることも好ましい。条件1を満たす微細ウェル20の開口形状がこのように対称因子を持たない不規則な形状であれば、微細ウェル20の表面での光の反射や干渉による強め合いがさらに起きにくくなるため、光学的測定における二次的な光の映り込みがさらに低減される。
The opening shape of the
培養容器1が有する微細ウェル20の数は、単位面積あたり、10個/cm2以上が好ましく、10~10000個/cm2がより好ましく、15~5000個/cm2がさらに好ましく、20~1000個/cm2が特に好ましい。
The number of
培養容器1の材質としては、合成樹脂またはガラスを例示できる。
合成樹脂としては、ポリスチレン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート(PET)、ポリ塩化ビニル、高密度ポリエチレン、ポリエーテルサルファン、PET共重合体、パーマノックス(サーモフィッシャーサイエンティフィック商標)、シクロオレフィンポリマー樹脂、サイトップ(AGC商標)、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂を例示できる。なかでも、成形及び微細加工の容易さの点から、ポリスチレン樹脂もしくはシリコーン樹脂が好ましい。培養容器1を構成する合成樹脂は、1種でもよく、2種以上でもよい。
Examples of the material of the
Synthetic resins include polystyrene resin, polyester resin, polyethylene resin, polypropylene resin, polyethylene terephthalate (PET), polyvinyl chloride, high density polyethylene, polyether sulfan, PET copolymer, and Permanox (Thermofisher Scientific trademark). ), Cycloolefin polymer resin, Cytop (AGC trademark), acrylic resin, polycarbonate resin, silicone resin, and examples thereof. Of these, polystyrene resin or silicone resin is preferable from the viewpoint of ease of molding and microfabrication. The synthetic resin constituting the
ガラスとしては、石英ガラス、ホウケイ酸ガラス、リン酸ガラス、化学強化ガラス等を例示できる。マイクロプレート1を構成するガラスは、1種でもよく、2種以上でもよい。
Examples of the glass include quartz glass, borosilicate glass, phosphoric acid glass, and chemically strengthened glass. The glass constituting the
培養容器1の周壁部12は透明でも不透明でもよい。周壁部12を不透明とする場合、色調としては黒や白など、光を通しづらい色味がより好ましい。周壁部12を不透明にすることによって、顕微鏡での観察時に光の反射による観察しづらさを軽減することができる。周壁部12を不透明にする方法としては、特に限定されず、例えば、微粒子を添加する方法、顔料等の着色料を添加する方法等を用いることができる。黒の場合はカーボン等、白の場合は酸化チタン等を用いることができる。
The
培養容器1の製造方法は、特に限定されず、例えば、射出成形法によって成形できる。 微細ウェル20を形成する方法としては、例えば、レーザ照射を例示できる。樹脂製の培養容器1の底面10aにレーザ光が照射されると、底面10aを構成する合成樹脂が溶解及び気化して、非常に滑らかな表面を持つ微細ウェル20が形成される。微細ウェル20の開口周辺には、溶解した合成樹脂が盛り上がって土手部が形成されてもよい。
The method for producing the
レーザ光源としては、特に限定されず、CO2レーザを例示できる。微細ウェル20の配置及びサイズは、レーザ光の照射位置や出力等の照射条件を調節することによって調節できる。レーザ出力及びレーザ照射時間を変えずにレーザ照射を行うことで、各微細ウェル20のサイズを均一にできる。
The laser light source is not particularly limited, and a CO 2 laser can be exemplified. The arrangement and size of the
微細ウェル20の表面には、細胞の接着を抑制する低接着コート膜や、細胞を接着させる易接着コート膜を形成してもよい。易接着コート膜としては、例えば、コラーゲンやゼラチンが使用される。低接着コート膜が形成されることで、微細ウェル20から細胞塊を取り出しやすくなる。
On the surface of the
低接着コート膜は、例えば、細胞接着抑制剤を塗布することによって形成できる。細胞接着抑制剤としては、リン脂質ポリマー(2-メタクリロイルオキシエチルホスホリルコリン等)、ポリヒドロキシエチルメタアクリレート、フッ素含有化合物、ポリエチレングリコールを例示できる。細胞接着抑制剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。 The low adhesion coat film can be formed, for example, by applying a cell adhesion inhibitor. Examples of the cell adhesion inhibitor include phospholipid polymers (2-methacryloyloxyethyl phosphorylcholine and the like), polyhydroxyethyl methacrylates, fluorine-containing compounds, and polyethylene glycol. As the cell adhesion inhibitor, one type may be used alone, or two or more types may be used in combination.
なお、培養容器1のうち少なくとも底壁部10をシリコーン樹脂等の細胞接着抑制効果のある樹脂や、前記細胞接着抑制剤を配合した合成樹脂等で成形すれば、低接着コート膜を形成しなくても微細ウェルの表面に細胞が接着することを抑制できる。
If at least the
以下、培養容器1の作用効果について説明する。微細ウェルの開口形状が正円に近いほど、光学的測定において、細胞塊からの発光や蛍光が微細ウェル20の表面で反射し、干渉して強め合うため、二次的で不要な像が写り込みやすい。これに対して、培養容器1は開口形状が条件1を満たす非正円形状の微細ウェル20を有するため、微細ウェル20の表面での光の反射及び干渉による強め合いが抑えられ、二次的な像の写り込みが低減される。また、微細ウェル内で十分なサイズの均一な細胞塊を効率良く形成できるため、一度に複数個の細胞塊の測定が可能になる。
Hereinafter, the action and effect of the
なお、本発明の培養容器は、前記した培養容器1には限定されない。例えば、本発明の培養容器は、例えば、フラスコ状であってもよく、複数のウェルの底面に複数の微細ウェルが形成されたマイクロプレートであってもよい。その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
The culture vessel of the present invention is not limited to the
以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.
[実施例1]
ポリスチレン樹脂を用い、射出成形によって図1に例示したマイクロプレートの培養容器を成形した。次いで、レーザ照射装置を用いてCO2レーザを照射し、非正円形状の微細ウェルを複数形成した。次いで、培養面に細胞低接着コートを施した。形成された微細ウェルのr1/R1は0.77、r2/R2は0.85、平均直径Dは570μm、開口面積は255000μm2、平均深さHは190μmであった。
[Example 1]
Using polystyrene resin, the culture container of the microplate illustrated in FIG. 1 was molded by injection molding. Next, a CO 2 laser was irradiated using a laser irradiation device to form a plurality of non-circular fine wells. The culture surface was then coated with a low cell adhesion coat. The formed fine wells had r 1 / R 1 of 0.77, r 2 / R 2 of 0.85, an average diameter D of 570 μm, an opening area of 255000 μm 2 , and an average depth of 190 μm.
[比較例1]
開口形状が正円の微細ウェルを形成した以外は、実施例1と同様にして培養容器を作製した。形成された微細ウェルのr1/R1は1、r2/R2は1、平均直径Dは560μm、開口面積は246000μm2、平均深さHは360μmであった。
[Comparative Example 1]
A culture vessel was prepared in the same manner as in Example 1 except that fine wells having a perfect circular opening were formed. The formed fine wells had r 1 / R 1 of 1, r 2 / R 2 of 1, an average diameter D of 560 μm, an opening area of 246000 μm 2 , and an average depth H of 360 μm.
[細胞塊の光学的測定]
各例で得たマイクロプレートを用い、各ウェルにPanc-1細胞(ヒト膵臓腺癌細胞、ATCCより入手)を、植えるあたりの細胞数が9,600個となるように播種し、DMEM(ダルベッコ改変-イーグル培地、Thermo Fisher Scientific社製)に10%KSR(KnockOut Serum Replacement、Thermo Fisher Scientific社製)、0.1% CellTrackerTM Orange(Thermo Fisher Scientific社製)を含む培地で、37℃、5%CO2雰囲気下の条件で2日間培養した。その後、蛍光顕微鏡IX73(オリンパス社製)により、微細ウェル内の細胞塊の光学的測定(励起光540nm、蛍光発光580nm)を実施し、二次的な像の映り込みを以下の基準で評価した。結果を図4及び表1に示す。
(評価基準)
○:微細ウェルのどこでも蛍光の反射が見えない。
×:開口部もしくは微細ウェルの全体に蛍光の反射が見える。
[Optical measurement of cell mass]
Using the microplates obtained in each example, Panc-1 cells (human pancreatic adenocarcinoma cells, obtained from ATCC) were seeded in each well so that the number of cells per planting was 9,600, and DMEM (Dalbeco) was used. Modified-Eagle's medium (made by Thermo Fisher Scientific) containing 10% KSR (KnockOut Serum Replacement, manufactured by Thermo Fisher Scientific) and 0.1% CellTracker TM Orange (manufactured by Thermo Fisher Scientific) at 37 ° C., 5 The cells were cultured for 2 days under the condition of% CO 2 atmosphere. After that, the cell mass in the fine well was optically measured (excitation light 540 nm, fluorescence emission 580 nm) using a fluorescence microscope IX73 (manufactured by Olympus Corporation), and the reflection of the secondary image was evaluated according to the following criteria. .. The results are shown in FIG. 4 and Table 1.
(Evaluation criteria)
◯: Fluorescence reflection cannot be seen anywhere in the fine well.
X: Fluorescence reflection can be seen in the entire opening or fine well.
図4(a)は実施例1の結果、図4(b)は比較例1の結果を示す。細胞が蛍光を発し、白く光って表示されている。実施例1においては細胞塊のみが蛍光を発しており、微細ウェル壁面等からの蛍光の反射は見られないため、二次的な像の映り込みはないことが確認できる。しかし、比較例1においては細胞塊だけでなく、ウェルの壁面も白く光っており、細胞塊から発された蛍光が微細ウェル壁面で反射して、二次的な像の映り込みが確認できる。以上より、比較例1の構成では観察性が好ましくなく、実施例1の方が観察性の点で優れているといえる。 FIG. 4A shows the result of Example 1, and FIG. 4B shows the result of Comparative Example 1. The cells fluoresce and appear glowing white. In Example 1, only the cell mass emits fluorescence, and the reflection of fluorescence from the wall surface of the fine well or the like is not observed, so that it can be confirmed that there is no reflection of the secondary image. However, in Comparative Example 1, not only the cell mass but also the wall surface of the well glows white, and the fluorescence emitted from the cell mass is reflected by the wall surface of the fine well, and the reflection of the secondary image can be confirmed. From the above, it can be said that the configuration of Comparative Example 1 is not preferable in terms of observability, and Example 1 is superior in terms of observability.
1…培養容器、10…底壁部、10a…底面、12…周壁部、20…微細ウェル。 1 ... culture vessel, 10 ... bottom wall, 10a ... bottom, 12 ... peripheral wall, 20 ... fine well.
Claims (4)
微細ウェルの開口形状に対し、JIS B0621に規定された真円度測定の最小領域中心法で求められる同心二円の半径をそれぞれR1、r1(ただし、R1>r1である。)としたとき、r1/R1が0.75~0.95である非正円形状の微細ウェルを含む、培養容器。 A culture vessel with multiple microwells,
For the opening shape of the fine well, the radii of the concentric two circles obtained by the minimum region center method of roundness measurement specified in JIS B0621 are R 1 , r 1 (however, R 1 > r 1 ), respectively. A culture vessel containing a non-circular fine well having r 1 / R 1 of 0.75 to 0.95.
もしくは、非正円形状の前記微細ウェルの底からの深さ方向の距離が100ミクロンとなる位置の平面視形状に対し、前記最小領域中心法で求められる同心二円の半径をそれぞれR3、r3(ただし、R3>r3である。)としたとき、r3/R3が0.80~0.95である、請求項1に記載の培養容器。 The minimum region center method with respect to the plan view shape of the non-circular shape of the fine well at a position where the ratio of the distance in the depth direction from the bottom of the fine well to the depth of the fine well is 0.5. When the radii of the concentric two circles obtained in (1) are R 2 and r 2 (where R 2 > r 2 ), respectively, is r 2 / R 2 0.80 to 0.95?
Alternatively, the radius of the concentric two circles obtained by the minimum region center method is R3 , respectively, for the plan view shape at the position where the distance in the depth direction from the bottom of the non-perfect circular shape is 100 microns. The culture vessel according to claim 1, wherein r 3 / R 3 is 0.80 to 0.95 when r 3 (where R 3 > r 3 ).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020175454 | 2020-10-19 | ||
JP2020175454 | 2020-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022067072A true JP2022067072A (en) | 2022-05-02 |
Family
ID=81389877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021166802A Pending JP2022067072A (en) | 2020-10-19 | 2021-10-11 | Culture vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022067072A (en) |
-
2021
- 2021-10-11 JP JP2021166802A patent/JP2022067072A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5921437B2 (en) | Culture substrate | |
CN108026499B (en) | Device for propagating micro-tissue | |
Fang et al. | Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning | |
JP6767375B2 (en) | Cell culture vessel | |
JP6313043B2 (en) | Method for culturing adherent cells | |
JP6185816B2 (en) | Cell culture vessel | |
JPWO2007126127A1 (en) | Cell culture container and method for producing the same | |
KR20100020524A (en) | Cell culture container and cell culture method | |
WO2018123663A1 (en) | Cell culture substrate and method for producing same | |
EP3652289A1 (en) | Handling features for microcavity cell culture vessel | |
JPWO2008130025A1 (en) | Hepatocyte culture vessel and hepatocyte culture method | |
JP6021802B2 (en) | Culture method and drug screening method | |
Fendler et al. | Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailor‐Made Neuronal Networks | |
WO2016052078A1 (en) | Plastic container | |
JP6123963B1 (en) | Cell processing container | |
US9290735B2 (en) | Mammary gland epithelial cell culture | |
JP3214876U (en) | Culture substrate | |
JP2022067072A (en) | Culture vessel | |
JP3215918U (en) | Culture substrate | |
JP6521432B2 (en) | Cell incubator and cell culture method | |
JP2022095001A (en) | Microplate | |
JP6405752B2 (en) | Cell culture vessel | |
JP2022071581A (en) | Microplate | |
JP2022042503A (en) | Culture vessel and method for producing cultured cell | |
JP2022078638A (en) | Microplate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240917 |