WO2018123663A1 - Cell culture substrate and method for producing same - Google Patents

Cell culture substrate and method for producing same Download PDF

Info

Publication number
WO2018123663A1
WO2018123663A1 PCT/JP2017/045153 JP2017045153W WO2018123663A1 WO 2018123663 A1 WO2018123663 A1 WO 2018123663A1 JP 2017045153 W JP2017045153 W JP 2017045153W WO 2018123663 A1 WO2018123663 A1 WO 2018123663A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
culture
culture substrate
opening
diameter
Prior art date
Application number
PCT/JP2017/045153
Other languages
French (fr)
Japanese (ja)
Inventor
増田 秀樹
Original Assignee
Agcテクノグラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcテクノグラス株式会社 filed Critical Agcテクノグラス株式会社
Publication of WO2018123663A1 publication Critical patent/WO2018123663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates

Definitions

  • the present invention relates to a cell culture substrate for culturing a culture object such as a cell to obtain a spheroid (cell aggregate) and a method for producing the same.
  • Spheroid culture in which cells derived from humans or animals are artificially cultured in a culture vessel or the like and aggregated three-dimensionally is well known.
  • the cell population forms a three-dimensional structure, and the cells interact with each other, so it is thought that it can be cultured or maintained in a state that is closer to the three-dimensional structure in vivo. It is known to show superior properties compared to planar adhesion culture.
  • spheroid culture is often used for anticancer drug screening using cancer cells and proliferation and differentiation of pluripotent stem cells.
  • a recess for containing cells and culture solution is provided at the bottom of the container body.
  • the side surface of the concave portion is formed by an inclined surface so that the opening area is expanded as it approaches the open end (see Patent Document 1).
  • a cell culture container in which spheroids and cells are difficult to move to other wells during medium replacement by providing an inclination in a plurality of microwells provided on the culture surface and increasing the depth thereof ( Patent Document 2).
  • Patent Document 2 in order to solve the movement of spheroids from within the well, an inclination (1 to 20 °) is formed, or the depth of the well is made deeper than before (Examples and comparisons in Patent Document 2) See example).
  • the well is formed deeply with respect to the thickness of the bottom, so that the strength of the bottom is reduced, and there is a risk of breakage, cracking, etc. is there.
  • the migration of spheroids from the microwells is suppressed without increasing the depth of the microwells, and the size is uniform.
  • a cell culture substrate capable of forming a spheroid and a method for producing the same are provided.
  • the present invention is a culture substrate having a culture surface for culturing cells, wherein the culture surface has a plurality of microwells, and the microwell has a first well having an inclined surface and the first well.
  • a second well existing in the well, and a protrusion at a boundary between the first well and the second well, and the culture surface is a low cell adhesion surface It is characterized by being.
  • the culture surface preferably has an inclined wall on its outer peripheral surface.
  • the first well is preferably arranged densely on the culture surface.
  • the diameter of the opening of the second well is preferably 0.05 mm to 3 mm.
  • the first well has an inclined surface inside, and the inclination angle of the inclined surface is more than 0 ° and less than 90 °.
  • the depth of the second well is preferably 0.1 to 2 times the diameter of the opening.
  • the diameter of the opening of the first well is preferably 1.5 to 5 times the diameter of the opening of the second well.
  • the depth of the first well is preferably 0.1 to 3 times the diameter of the opening.
  • the combined depth of the first well and the second well is preferably 0.1 to 0.9 times the thickness of the culture surface.
  • the method for producing a culture substrate of the present invention is a method for producing a culture substrate having a culture surface for culturing cells, the first well having an inclined surface, and being present in the first well.
  • a plurality of microwells are formed on the culture surface so as to have a protrusion at the boundary between the first well and the second well.
  • the method for producing a culture substrate it is preferable to form the second well after forming the first well.
  • the first well is preferably formed simultaneously with the culture substrate.
  • a second well is formed in the first well by a laser.
  • the protrusions are preferably formed by a laser.
  • a low cell adhesion treatment is performed on the culture surface after the formation of the microwell.
  • the present invention even if a plurality of microwells for forming spheroids are formed on the culture surface of a conventional culture substrate, the movement of cells and spheroids between wells due to the flow of the culture medium (culture solution) is reduced.
  • the culture medium culture solution
  • An example of the top view of the culture substrate of the present invention is shown.
  • An example of the AA ′ cross-sectional view of the culture substrate of the present invention is shown.
  • An example of the top view of the microwell in the culture base material of this invention is shown.
  • An example of the sectional view of the microwell in the culture substrate of the present invention is shown.
  • An example of the enlarged view of the microprotrusion in the microwell in the culture base material of this invention is shown.
  • An example of the variation of the opening shape of the 1st well in the culture base material of this invention is shown.
  • An example of sectional drawing of the 1st well (before 2nd well formation) in the culture substrate of the present invention is shown.
  • An example of the variation of the opening shape of the 2nd well in the culture base material of this invention is shown.
  • An example of a variation of the BB ′ cross-sectional view of the second well in the culture substrate of the present invention is shown.
  • the culture substrate 1 of the present invention has a culture surface on which at least one surface of the substrate can obtain spheroids in which cells are three-dimensionally aggregated during the culture process, and the culture surface has a plurality of microwells.
  • Examples of the shape of the culture substrate 1 include petri dishes, flasks, multilayer flasks, microplates, sheets, inserts, and the like, but the shape is not particularly limited. After forming a microwell on a sheet-like member, it may be used by placing it on a container such as a petri dish. In the present specification and drawings, an example in which a microwell 3 is provided on a culture surface 2 of a petri dish will be described.
  • one culture substrate 1 of the embodiment of the present invention mainly includes a bottom portion and a peripheral wall portion.
  • the bottom is configured in a disc shape and has a culture surface 2 with a plurality of microwells 3.
  • the culture surface 2 is formed at the bottom.
  • the peripheral wall rises from the peripheral edge of the bottom.
  • the shape of the peripheral wall portion is a state in which the peripheral edge portion is erected.
  • the disk-shaped bottom part is formed with a diameter of, for example, 85 mm and a thickness of, for example, 1 mm.
  • the height of the peripheral wall portion is, for example, 20 mm with respect to the bottom portion.
  • the bottom part and the surrounding wall part are comprised by the integral component.
  • the cell culture substrate 1 may include a lid for covering the opening.
  • the culture surface 2 in the culture substrate 1 of the present invention is preferably a surface to which cells do not adhere or are difficult to adhere (hereinafter referred to as cell low adhesion surface) in order to form spheroids.
  • cell low adhesion surface a surface to which cells do not adhere or are difficult to adhere
  • the culture surface 2 is treated with low cell adhesion (hereinafter referred to as cell low adhesion treatment), or the container itself is formed of a low cell adhesion resin. May be.
  • Examples of the low cell adhesion treatment include coating with a phospholipid polymer (polymer such as 2-methacryloyloxyethyl phosphorylcholine), poly (hydroxyethyl methacrylate), a fluorine-containing compound, or polyethylene glycol, plasma treatment, Surface treatment such as corona discharge and UV ozone treatment may be performed.
  • Examples of the low cell adhesion resin include silicone resin and resin mixed with a cell low adhesion coating component. Note that the low cell adhesion treatment is not limited to the culture surface 2, and the same treatment may be applied to the peripheral wall portion of the culture surface and the like.
  • the culture substrate 1 of the present invention includes a plurality of microwells 3 on a culture surface 2. Spheroids are cultured in each microwell 3. It is preferable that the microwells 3 are densely arranged on the culture surface 2 and that there is no flat surface between the microwells 3 (a non-flat surface). For example, by setting a non-flat surface between the microwells 3, the seeded cells always fall into the microwell 3, so that the cells can be prevented from staying outside the microwell 3. Thereby, it becomes possible to suppress that a cell does not become a spheroid.
  • “non-flat” in the present specification refers to not being horizontal with respect to the bottom surface of the culture surface 2 (the bottom surface of the culture substrate).
  • “Dense” means that the microwells 3 are formed densely and there is no flat surface between the wells.
  • “cells do not become spheroids” means that the cultured cells are spheroid-like in monolayer culture, single cell suspension culture, non-spherical layered culture, or adhesion culture in which cells adhere to the culture surface 2 and are cultured. It means not to be.
  • the microwell 3 includes a first well 31 and a second well 32.
  • the first well 31 and the second well 32 may be formed integrally, or the second well 32 may be formed after the first well 31 is formed.
  • the case where the second well 32 is formed after the first well 31 is formed will be described.
  • the first well 31 is indicated by the opening diameter 311 and the depth 312
  • the second well 32 is indicated by the opening diameter 321 and the depth 322
  • the microwell 3 is indicated by the depth 30.
  • the second well 32 is formed at the bottom of the first well 31.
  • the second well 32 is formed by opening the bottom of the first well 31 and has the bottom of the opening (hereinafter referred to as the second opening).
  • the second opening refers to the point where the tilt angle of the first well has changed.
  • As the opening shape of the second well 32 as in the example shown in FIG. 8, there are a plurality of openings (circle (a), polygons (b) (c) (e) (f), donut shape (d)). It can be suitably selected from the shape (g) and the like.
  • the shape of the second well 32 can be appropriately selected from a conical shape, a prismatic shape, a U-bottom shape, a V-bottom shape, and the like.
  • the shape does not have a flat portion, for example, a U-bottom shape. It is preferable because cells that have fallen into the well are easily collected and a uniform sphere is easily formed.
  • An example of the cross-sectional shape of the second well is shown in FIG.
  • the diameter 321 of the second opening is preferably 0.05 mm to 3 mm. If the diameter 321 of the second opening is less than 0.05 mm, it may be difficult to take out the spheroids. Moreover, when the diameter 321 of the second opening is more than 3 mm, the spheroids may be likely to jump out of the well.
  • the diameter 321 of the second opening is more preferably 0.1 mm to 2.5 mm, and still more preferably 0.15 mm to 2.0 mm.
  • the depth 322 of the second well is preferably 0.1 to 2 times the diameter 321 of the second opening. If the depth 322 of the second well is less than 0.1 times the diameter of the second opening, there is a problem that spheroids are easily spilled. In addition, if the depth 322 of the second well is more than twice the diameter 321 of the second opening, it becomes difficult to take out spheroids and the bottom surface strength is lowered.
  • the depth 322 of the second well is more preferably 0.2 to 1.8 times the diameter 321 of the second well, and still more preferably 0.3 to 1.7 times. Note that the depth 322 of the second well indicates the value of the longest portion of the height from the second opening to the bottom.
  • the first well 31 has an opening (hereinafter referred to as a first opening) and an inclined surface toward the bottom.
  • the shape seen from the upper surface of the 1st opening part can be suitably selected from a honeycomb type, a lattice type
  • the honeycomb type is preferable because the distance between adjacent wells becomes equal, so that the same amount of medium can easily enter each well and spheroids can be formed under more uniform conditions.
  • the diameter 311 of the first opening is preferably 1.5 to 5 times the diameter 321 of the second well.
  • the diameter 311 of the first opening is more preferably 1.8 to 4.5 times the diameter 321 of the second opening, and even more preferably 2 to 3.5 times.
  • the depth 312 of the first well is preferably 0.1 to 3 times the diameter 311 of the first opening. If it is less than 0.1 times, depending on the viscosity of the medium, the surface tension of the medium may be lost and the slope may be insufficient. If it exceeds 3 times, the second well cannot be deepened depending on the thickness 21 of the culture surface.
  • the depth 312 of the first well is more preferably 0.13 to 2.5 times the diameter 311 of the first opening, and even more preferably 0.15 to 2 times.
  • the diameter 311 and depth 312 of the first opening can be appropriately adjusted according to the size of the cells to be cultured and the desired spheroid.
  • the inclined surface of the first well preferably has an inclination angle 313 ( ⁇ ) of more than 0 ° and less than 90 °.
  • 0 ° (flat surface)
  • the medium does not flow to the second well due to the influence of the surface tension, and the spheroid size tends to vary.
  • the inclination angle 313 ( ⁇ ) is 90 ° or more, the spheroids are likely to be difficult to take out because the shape tends to be deep.
  • the inclination angle 313 ( ⁇ ) is more preferably 5 ° to 80 °, and still more preferably 8 ° to 70 °. Since the optimum angle varies depending on the viscosity of the medium, it can be adjusted as appropriate within the above range.
  • the first well 31 and the second well 32 are connected to each other.
  • the combined depth 30 of the first well and the second well (that is, the depth of the microwell 3) is 0.1 to 0.9 times the thickness 21 of the culture surface of the culture substrate 1. preferable. If the ratio is less than 0.1 times, a well having a sufficient depth cannot be formed. If the ratio exceeds 0.9 times, the strength of the culture surface 2 of the culture substrate 1 may decrease. It is preferably 0.3 to 0.8 times, and more preferably 0.4 to 0.7 times.
  • a protrusion 5 as shown in FIG. 3 and FIG. 4 between the first well 31 and the second well 32 (bonded portion, hereinafter referred to as a boundary portion).
  • the protrusion 5 is for suppressing the cells that have fallen into the second well 32 and the spheroids formed in the second well 32 from moving outside the second well 32. Due to the presence of the protrusions 5, when the culture substrate 1 is tilted at the time of medium exchange or the like, spheroids and cells are blocked by the protrusions 5 and can be retained in the second well 32. It is preferable that the protrusion 5 has a shape protruding at the boundary portion into the second opening.
  • the protrusion 5 protrudes into the second opening as long as the cells fall into the second well 32 through the second opening and the spheroids formed in the second well 43 can be taken out. May be.
  • the protrusion 5 is preferably about 2 ⁇ m to 5 ⁇ m.
  • the shape of the protrusion 5 is not particularly limited, but the point where the cell or spheroid contacts has a sharp corner so as not to damage the cell or spheroid or leave the cell on the protrusion 5. It is preferable that it is a non-flat surface which does not have.
  • Microwell 3 in culture substrate 1 of the present invention per unit area of the culture surface 2, 10 pieces / cm 2 ⁇ 10000 pieces / cm 2, is preferably formed.
  • the number of microwells 3 is less than 10 / cm 2 , the number of microwells 3 decreases, and the number of spheroids that can be formed at one time decreases, so that the culture efficiency may decrease.
  • microwell 3 is 10,000 / cm 2, greater than that greater number of microwells 3, since the increase in the number of spheroids formed at one time, medium exchange frequency is increased by a medium consumption increases There is a risk that labor may occur during the culture, or the cells may not be sufficiently fed with nutrients.
  • the number of microwells 3 can be appropriately adjusted depending on the size of the culture substrate 1 to be used and the size and number of desired spheroids.
  • the microwell 3 preferably has a uniform well size in order to make the size of the obtained spheroid uniform. Since the size of the spheroid depends on the size of the well, if the size of the well is different, the size of the formed spheroid is not uniform, which is not preferable.
  • the culture substrate 1 for example, in the case of a petri dish, there may be a surface that is not wide enough to form a microwell 3 having the same size as the other microwells 3 in the vicinity of the peripheral wall.
  • the surface on which the microwell 3 cannot be formed is left as a flat surface, the cells may fall, and the cells may not become spheroids. Therefore, when the surface where the microwell 3 cannot be formed remains, it is preferable to make the surface non-flat.
  • the inclined wall 4 is formed as shown in FIG. 2 (a), the peripheral wall is thickened as shown in FIG. 2 (b), a part forming a non-flat surface is placed, and a partition is attached. Good.
  • the above-mentioned correspondence is not limited to use when the microwell 3 having a uniform size cannot be formed.
  • the microwell 3 is formed only on a part of the culture surface 2 and the number of microwells 3 is specified. It is also possible to use it when desired.
  • a partition may be provided.
  • the partition may be joined to the culture surface 2, may be placed, or may be one that does not contact the culture surface 2 (for example, a drop lid shape).
  • the material of the partition is not particularly limited, but may be the same material as the culture substrate 1 or may be a different material, or may be made of a membrane-like material that passes only the medium without passing through the cells.
  • the center portion of the first well 31 and the center portion of the second well 32 may or may not match. By making them coincide, the length of the inclined surface of the first well 31 becomes uniform, so that the cells easily fall uniformly. Moreover, by not matching, the well opening has a tilted shape, and the cells can be prevented from popping out when the container is tilted.
  • a method for producing the culture substrate 1 of the present invention will be described.
  • a manufacturing method can be suitably changed with the raw material of a base material to be used, a desired shape, a magnitude
  • the culture substrate 1 main body (the state before formation of the microwell) may be manufactured by a method suitable for the material and size of the substrate.
  • the material of the substrate can be appropriately selected from resin, glass, metal, or a combination thereof.
  • resin for example, in addition to acrylic resin, polystyrene resin, polyester resin, polycarbonate resin, polypropylene resin, etc., a mixture of the above-mentioned substances with low cell adhesion, or a colorant (for example, titanium oxide, carbon, etc.)
  • a mixture or the like can be used.
  • the culture substrate can be suitably selected from, for example, injection molding, press molding, vacuum molding, blow molding and the like.
  • the first well 31 and the second well 32 may be formed at a time, and the second well 32 may be formed after the first well 31 is formed.
  • the method for forming the microwell include a mold (molded together when the base body is manufactured), laser (CO 2 laser, YAG laser, excimer laser, etc.), nanoimprint, press and the like.
  • the second well 32 is formed after the first well 31 is formed, the first well 31 is formed in advance with a mold, and then the second well 32 is formed with a laser. It becomes easy to standardize.
  • the resin when the second well is formed on the resin base material with a CO 2 laser, the resin is dissolved and vaporized, so that the surface becomes a smooth surface, so that it becomes easy to form a beautiful spherical spheroid.
  • the smooth protrusion 5 is formed at the boundary portion, the spheroid is hardly damaged and a preferable form is obtained.
  • the intensity of the laser light is preferably 5 to 500 W.
  • the irradiation spot is preferably circular, but the shape is not particularly limited as long as a well capable of aggregating cells can be formed.
  • the diameter of the irradiation spot is suitably 20 ⁇ m to 1500 ⁇ m.
  • the laser irradiation position can also be adjusted as appropriate according to the desired well shape. Further, the strength may be appropriately adjusted depending on the material of the culture substrate 1. For example, 5-30 W is preferable for polystyrene, and 80-200 W is preferable for glass.
  • the culture surface 2 of the culture substrate 1 is not a low cell adhesion surface (not molded from a low cell adhesion material), it is necessary to separately perform a cell low adhesion treatment.
  • a low adhesion treatment method the culture surface 2 is immersed in a liquid containing a low adhesion substance and fixed to the culture surface 2, or the low adhesion substance is mixed with a UV curable resin and fixed by UV irradiation. And a method of attaching a sheet containing a substance that has low adhesion. Even when the culture substrate 1 is formed of a material having low cell adhesion, the low adhesion treatment may be performed together.
  • 1 culture substrate
  • 2 culture surface
  • 21 thickness of culture surface
  • 3 microwell
  • 30 depth of whole microwell
  • 31 first well
  • 311 diameter of first well
  • 312 Depth of first well
  • 313 inclination angle of first well
  • 32 second well
  • 321 diameter of second well
  • 322 depth of second well
  • 4 inclined wall
  • 5 Projection

Abstract

Provided is a cell culture substrate having multiple microwells formed on one culturing surface thereof, whereby it becomes possible to prevent the migration of spheroids from the microwells to form spheroids having uniform sizes without the need to form the microwells too deeply. A culture substrate having a culturing surface on which cells are to be cultured, said culture substrate being characterized in that the culturing surface has multiple microwells formed thereon, each of the microwells has a first well having an inclined surface and a second well formed in the first well, a protrusion is formed on the boundary between the first well and the second well, and the culturing surface is a poorly cell-adhesive surface.

Description

細胞培養基材及びその製造方法Cell culture substrate and method for producing the same
 本発明は、細胞などの被培養物を培養してスフェロイド(細胞凝集塊)を得るための細胞培養基材及びその製造方法に関する。 The present invention relates to a cell culture substrate for culturing a culture object such as a cell to obtain a spheroid (cell aggregate) and a method for producing the same.
 ヒトや動物など由来の細胞を培養容器などで人工的に培養して三次元的に凝集させるスフェロイド培養がよく知られている。スフェロイド培養では、細胞集団が立体的な構造を形成し、細胞同士が相互作用しているため、生体内での三次元構造により近い状態で培養または維持できると考えられており、それが通常の平面接着培養と比べ優れた特性を示すことが知られている。実際に、がん細胞を用いた抗がん剤スクリーニングや、多能性幹細胞などの増殖や分化などにスフェロイド培養がよく利用されている。 Spheroid culture in which cells derived from humans or animals are artificially cultured in a culture vessel or the like and aggregated three-dimensionally is well known. In spheroid culture, the cell population forms a three-dimensional structure, and the cells interact with each other, so it is thought that it can be cultured or maintained in a state that is closer to the three-dimensional structure in vivo. It is known to show superior properties compared to planar adhesion culture. Actually, spheroid culture is often used for anticancer drug screening using cancer cells and proliferation and differentiation of pluripotent stem cells.
 また、容器本体の底部に、細胞及び培養液を収容するための凹部を備え、この凹部の底部には、細胞を重力によって集合させるための複数のマイクロウェルが設けた細胞培養容器において、この凹部の開口端へ近付くにつれて開口面積が広がるように凹部の側面を傾斜面で構成したものも知られている(特許文献1参照)。 In addition, in the cell culture container provided with a plurality of microwells for collecting cells by gravity at the bottom of the recess, a recess for containing cells and culture solution is provided at the bottom of the container body. There is also known one in which the side surface of the concave portion is formed by an inclined surface so that the opening area is expanded as it approaches the open end (see Patent Document 1).
 また、培養面に設けた複数のマイクロウェル内に傾斜を設け、且つ深さを深くすることで、培地交換時にスフェロイドや細胞が他のウェルに移動しづらくする細胞培養容器も知られている(特許文献2参照)。 In addition, a cell culture container is also known in which spheroids and cells are difficult to move to other wells during medium replacement by providing an inclination in a plurality of microwells provided on the culture surface and increasing the depth thereof ( Patent Document 2).
特開2015-029431号公報Japanese Patent Laying-Open No. 2015-029431 国際公開第2014/196204号公報International Publication No. 2014/196204
 しかしながら、特許文献1のような細胞培養容器は、一度に多量の培養を可能とする多数のウェルが形成されたものを適用する場合、容器の移動時や培地交換による吸引、添加時に培養容器内の培地が大きく流動するおそれがある。これにより、ウェル内から細胞や、形成したスフェロイドが飛び出して、別のウェル内に移動することなどがあり、この結果、スフェロイドの形成効率が下がったり、均一な大きさのスフェロイドを得ることが難しくなったりするなどの問題が生じる。 However, in the case of applying a cell culture container such as Patent Document 1 in which a large number of wells capable of culturing in large quantities are applied at the same time, the inside of the culture container is moved when the container is moved or when suction or addition is performed by medium exchange. There is a risk that the culture medium of the above will flow greatly. As a result, cells and formed spheroids may jump out of the well and move into another well. As a result, the formation efficiency of spheroids is reduced, and it is difficult to obtain spheroids of uniform size. Problems such as becoming.
 特許文献2では、ウェル内からのスフェロイドの移動を解決するために、傾斜(1~20°)を形成したり、ウェルの深さを従来より深くしたりする(特許文献2の実施例及び比較例参照)ことが記載されている。しかし、従来から使用されているシャーレ状の培養容器を用いた場合、底部の厚みに対して深くウェルを形成することになるため、底部の強度が低くなり、破損やクラック等が発生するおそれがある。 In Patent Document 2, in order to solve the movement of spheroids from within the well, an inclination (1 to 20 °) is formed, or the depth of the well is made deeper than before (Examples and comparisons in Patent Document 2) See example). However, when using a petri dish-shaped culture container that has been used conventionally, the well is formed deeply with respect to the thickness of the bottom, so that the strength of the bottom is reduced, and there is a risk of breakage, cracking, etc. is there.
 そこで、本発明においては、1つの培養面に複数のマイクロウェルが形成された培養基材において、マイクロウェルの深さを深くしすぎることなく、マイクロウェルからのスフェロイドの移動を抑制し均一な大きさのスフェロイドを形成することが可能な細胞培養基材及びその製造方法を提供する。 Therefore, in the present invention, in a culture substrate in which a plurality of microwells are formed on one culture surface, the migration of spheroids from the microwells is suppressed without increasing the depth of the microwells, and the size is uniform. A cell culture substrate capable of forming a spheroid and a method for producing the same are provided.
 本発明は、細胞を培養するための培養面を有する培養基材であって、前記培養面は複数のマイクロウェルを有し、前記マイクロウェルは、傾斜面を有する第1のウェルと該第1のウェル内に存在する第2のウェルとを有し、かつ、前記第1のウェルと第2のウェルとの間の境界部に突起を有し、前記培養面は細胞低接着面となっていることを特徴とする。 The present invention is a culture substrate having a culture surface for culturing cells, wherein the culture surface has a plurality of microwells, and the microwell has a first well having an inclined surface and the first well. A second well existing in the well, and a protrusion at a boundary between the first well and the second well, and the culture surface is a low cell adhesion surface It is characterized by being.
 前記培養面は、その外周面に傾斜壁を有することが好ましい。
 前記第1のウェルは、培養面に稠密に配置されていることが好ましい。
 前記第2のウェルの開口部の径は、0.05mm~3mmであることが好ましい。
 前記第1のウェルはその内部に傾斜面を有し、傾斜面の傾斜角度は0°超~90°未満であることが好ましい。
The culture surface preferably has an inclined wall on its outer peripheral surface.
The first well is preferably arranged densely on the culture surface.
The diameter of the opening of the second well is preferably 0.05 mm to 3 mm.
Preferably, the first well has an inclined surface inside, and the inclination angle of the inclined surface is more than 0 ° and less than 90 °.
 前記第2のウェルの深さは、その開口部の径の0.1~2倍であることが好ましい。
 前記第1のウェルの開口部の径は、第2のウェルの開口部の径の1.5~5倍であることが好ましい。
 第1のウェルの深さは、その開口部の径の0.1~3倍であることが好ましい。
 前記第1のウェルと第2のウェルとを合せた深さは、培養面の厚みの0.1~0.9倍であることが好ましい。
The depth of the second well is preferably 0.1 to 2 times the diameter of the opening.
The diameter of the opening of the first well is preferably 1.5 to 5 times the diameter of the opening of the second well.
The depth of the first well is preferably 0.1 to 3 times the diameter of the opening.
The combined depth of the first well and the second well is preferably 0.1 to 0.9 times the thickness of the culture surface.
 本発明の培養基材の製造方法は、細胞を培養するための培養面を有する培養基材の製造方法であって、傾斜面を有する第1のウェルと、該第1のウェル内に存在する第2のウェルとを有し、かつ前記第1のウェルと第2のウェルとの間の境界部に突起があるように、複数のマイクロウェルを培養面に形成することを特徴とする。
 前記培養基材の製造方法において、第1のウェルを形成後、第2のウェルを形成することが好ましい。
 前記培養基材の製造方法において、培養基材と同時に前記第1のウェルを形成することが好ましい。
 前記培養基材の製造方法において、第1のウェルを形成後、第1のウェル内に第2のウェルをレーザで形成されることが好ましい。
 前記培養基材の製造方法において、前記突起をレーザによって形成することが好ましい。
 前記培養基材の製造方法において、前記マイクロウェル形成後に、前記培養面に細胞低接着処理を行うことが好ましい。
The method for producing a culture substrate of the present invention is a method for producing a culture substrate having a culture surface for culturing cells, the first well having an inclined surface, and being present in the first well. A plurality of microwells are formed on the culture surface so as to have a protrusion at the boundary between the first well and the second well.
In the method for producing a culture substrate, it is preferable to form the second well after forming the first well.
In the method for producing a culture substrate, the first well is preferably formed simultaneously with the culture substrate.
In the method for producing a culture substrate, it is preferable that after forming the first well, a second well is formed in the first well by a laser.
In the method for producing a culture substrate, the protrusions are preferably formed by a laser.
In the method for producing a culture substrate, it is preferable that a low cell adhesion treatment is performed on the culture surface after the formation of the microwell.
 本発明によれば、従来の培養基材の培養面にスフェロイドを形成するための複数のマイクロウェルを形成したとしても、培地(培養液)の流動による細胞やスフェロイドのウェル間での移動を低減できると共に、大きさが均一なスフェロイドを大量に培養できる細胞培養基材を提供することが可能である。 According to the present invention, even if a plurality of microwells for forming spheroids are formed on the culture surface of a conventional culture substrate, the movement of cells and spheroids between wells due to the flow of the culture medium (culture solution) is reduced. In addition, it is possible to provide a cell culture substrate capable of culturing a large amount of spheroids having a uniform size.
本発明の培養基材の上面図の一例を示す。An example of the top view of the culture substrate of the present invention is shown. 本発明の培養基材のA-A´断面図の一例を示す。An example of the AA ′ cross-sectional view of the culture substrate of the present invention is shown. 本発明の培養基材におけるマイクロウェルの上面図の一例を示す。An example of the top view of the microwell in the culture base material of this invention is shown. 本発明の培養基材におけるマイクロウェルの断面図の一例を示す。An example of the sectional view of the microwell in the culture substrate of the present invention is shown. 本発明の培養基材におけるマイクロウェルにおける微細突起の拡大図の一例を示す。An example of the enlarged view of the microprotrusion in the microwell in the culture base material of this invention is shown. 本発明の培養基材における第1のウェルの開口形状のバリエーションの一例を示す。An example of the variation of the opening shape of the 1st well in the culture base material of this invention is shown. 本発明の培養基材における第1のウェル(第2のウェル形成前)の断面図の一例を示す。An example of sectional drawing of the 1st well (before 2nd well formation) in the culture substrate of the present invention is shown. 本発明の培養基材における第2のウェルの開口形状のバリエーションの一例を示す。An example of the variation of the opening shape of the 2nd well in the culture base material of this invention is shown. 本発明の培養基材における第2のウェルのB-B´断面図のバリエーションの一例を示す。An example of a variation of the BB ′ cross-sectional view of the second well in the culture substrate of the present invention is shown.
 以下、実施形態について、図面に基づき説明する。なお、本発明は以下に記載する実施形態に限られるものでなく、適宜変更可能である。 Hereinafter, embodiments will be described with reference to the drawings. In addition, this invention is not restricted to embodiment described below, It can change suitably.
 本発明の培養基材1は基材の少なくとも1面に培養の過程で細胞を三次元的に凝集させたスフェロイドを得ることができる培養面を有し、その培養面は複数のマイクロウェルを有する。培養基材1の形状は例えば、シャーレ、フラスコ、多層フラスコ、マイクロプレート、シート、インサート等があげられるが特に形状は限定しない。シート状の部材にマイクロウェルを形成後、シャーレ等の容器に載置して使用してもよい。本明細書及び図面においては、シャーレの培養面2にマイクロウェル3を有するものを例に説明する。 The culture substrate 1 of the present invention has a culture surface on which at least one surface of the substrate can obtain spheroids in which cells are three-dimensionally aggregated during the culture process, and the culture surface has a plurality of microwells. . Examples of the shape of the culture substrate 1 include petri dishes, flasks, multilayer flasks, microplates, sheets, inserts, and the like, but the shape is not particularly limited. After forming a microwell on a sheet-like member, it may be used by placing it on a container such as a petri dish. In the present specification and drawings, an example in which a microwell 3 is provided on a culture surface 2 of a petri dish will be described.
 図1に示すように、本発明の実施形態の1つの培養基材1は底部、周壁部を主に備えている。底部は円板状に構成されており、複数のマイクロウェル3がある培養面2を有する。培養面2は底部に形成されている。 As shown in FIG. 1, one culture substrate 1 of the embodiment of the present invention mainly includes a bottom portion and a peripheral wall portion. The bottom is configured in a disc shape and has a culture surface 2 with a plurality of microwells 3. The culture surface 2 is formed at the bottom.
 周壁部は底部の周縁部から立ち上がっている。周壁部の形状は周縁部分を起立させた状態である。円板状の底部は、直径が例えば85mm、厚みが例えば1mmで形成されている。周壁部の高さは、底部を基準として例えば20mmで形成されている。なお、底部と周壁部とは一体の部品によって構成されている。また、細胞培養基材1は、開口部を覆うための蓋体などを備えていてもよい。 The peripheral wall rises from the peripheral edge of the bottom. The shape of the peripheral wall portion is a state in which the peripheral edge portion is erected. The disk-shaped bottom part is formed with a diameter of, for example, 85 mm and a thickness of, for example, 1 mm. The height of the peripheral wall portion is, for example, 20 mm with respect to the bottom portion. In addition, the bottom part and the surrounding wall part are comprised by the integral component. Further, the cell culture substrate 1 may include a lid for covering the opening.
 本発明の培養基材1における培養面2は、スフェロイドを形成するために、細胞が接着しない又は接着しづらい面(以下、細胞低接着面という)であることが好ましい。培養面2に接着すると細胞低接着面とするために、培養面2に細胞低接着となる処理(以下、細胞低接着処理という)をしたり、容器自体を細胞低接着の樹脂で形成したりしてもよい。細胞低接着処理としては例えば、リン脂質ポリマー(2-メタクリロイルオキシエチルホスホリルコリン等のポリマー)、ポリ(ヒドロキシエチルメタアクリレート)、フッ素含有化合物、あるいはポリエチレングリコール等を用いたコートを行ったり、プラズマ処理、コロナ放電、UVオゾン処理等の表面処理を行ったりしてもよい。また、細胞低接着の樹脂としては例えば、シリコーン樹脂や、細胞低接着コート用の成分を混入した樹脂等を用いることなどがあげられる。なお、細胞低接着処理は培養面2に限らず、培養面の周壁部等にも同等の処理を施してもよい。 The culture surface 2 in the culture substrate 1 of the present invention is preferably a surface to which cells do not adhere or are difficult to adhere (hereinafter referred to as cell low adhesion surface) in order to form spheroids. In order to form a low cell adhesion surface when adhered to the culture surface 2, the culture surface 2 is treated with low cell adhesion (hereinafter referred to as cell low adhesion treatment), or the container itself is formed of a low cell adhesion resin. May be. Examples of the low cell adhesion treatment include coating with a phospholipid polymer (polymer such as 2-methacryloyloxyethyl phosphorylcholine), poly (hydroxyethyl methacrylate), a fluorine-containing compound, or polyethylene glycol, plasma treatment, Surface treatment such as corona discharge and UV ozone treatment may be performed. Examples of the low cell adhesion resin include silicone resin and resin mixed with a cell low adhesion coating component. Note that the low cell adhesion treatment is not limited to the culture surface 2, and the same treatment may be applied to the peripheral wall portion of the culture surface and the like.
 図1及び図2に示すように、本発明の培養基材1は培養面2上に複数のマイクロウェル3を備える。各マイクロウェル3内でスフェロイドが培養される。マイクロウェル3は培養面2に稠密に配置され、マイクロウェル3同士の間には平坦面がない(非平坦面とする)ことが好ましい。例えば、マイクロウェル3同士の間を非平坦面とすることで、播種した細胞がマイクロウェル3内に必ず落ち込むため、マイクロウェル3外に細胞が留まることを防止できる。これにより、細胞がスフェロイドにならないことを抑制することが可能となる。ここで、本明細書における「非平坦」とは、培養面2の底面(培養基材の底面)に対して水平ではないことを指す。また、「稠密」とは、マイクロウェル3が密に形成され、そのウェルとウェルの間に平坦面がないことを指す。また、「細胞がスフェロイドにならない」とは、単層培養や単細胞浮遊培養、球状とならない積層培養、細胞が培養面2に接着して培養される接着培養等の培養において、培養細胞がスフェロイド状にならないことを意味する。 As shown in FIGS. 1 and 2, the culture substrate 1 of the present invention includes a plurality of microwells 3 on a culture surface 2. Spheroids are cultured in each microwell 3. It is preferable that the microwells 3 are densely arranged on the culture surface 2 and that there is no flat surface between the microwells 3 (a non-flat surface). For example, by setting a non-flat surface between the microwells 3, the seeded cells always fall into the microwell 3, so that the cells can be prevented from staying outside the microwell 3. Thereby, it becomes possible to suppress that a cell does not become a spheroid. Here, “non-flat” in the present specification refers to not being horizontal with respect to the bottom surface of the culture surface 2 (the bottom surface of the culture substrate). “Dense” means that the microwells 3 are formed densely and there is no flat surface between the wells. In addition, “cells do not become spheroids” means that the cultured cells are spheroid-like in monolayer culture, single cell suspension culture, non-spherical layered culture, or adhesion culture in which cells adhere to the culture surface 2 and are cultured. It means not to be.
 マイクロウェル3は、図1に示すように、第1のウェル31と第2のウェル32からなる。第1のウェル31と第2のウェル32は一体として成形してもよく、第1のウェル31を形成後、第2のウェル32を形成してもよい。本明細書においては、第1のウェル31を形成後に第2のウェル32を形成した場合について説明する。
 また、図3では、開口部の径311と深さ312により第1のウェル31を、開口部の径321と深さ322により第2のウェル32を、深さ30によりマイクロウェル3を示す。
As shown in FIG. 1, the microwell 3 includes a first well 31 and a second well 32. The first well 31 and the second well 32 may be formed integrally, or the second well 32 may be formed after the first well 31 is formed. In this specification, the case where the second well 32 is formed after the first well 31 is formed will be described.
In FIG. 3, the first well 31 is indicated by the opening diameter 311 and the depth 312, the second well 32 is indicated by the opening diameter 321 and the depth 322, and the microwell 3 is indicated by the depth 30.
 第2のウェル32は、第1のウェル31の底部に形成される。第2のウェル32は第1のウェル31の底部を開口させたものであり、その開口部(以下、第2の開口部という)の底部を有する。第2の開口部は第1のウェルの傾斜角度が変化した点を指す。第2のウェル32の開口形状としては、図8示した一例のように、円形(a)、多角形(b)(c)(e)(f)、ドーナツ型(d)、開口が複数ある形状(g)などから適宜選択できる。第2のウェル32の形状としては、円錐型、角柱型、U底型、V底型等から適宜選択できるが、特に、その内部に平坦部を有していない形状、例えばU底であればウェルに落ち込んだ細胞がまとまりやすく、且つ均一な球体を形成しやすいため好ましい。第2のウェルの断面形状の一例を図9に示す。 The second well 32 is formed at the bottom of the first well 31. The second well 32 is formed by opening the bottom of the first well 31 and has the bottom of the opening (hereinafter referred to as the second opening). The second opening refers to the point where the tilt angle of the first well has changed. As the opening shape of the second well 32, as in the example shown in FIG. 8, there are a plurality of openings (circle (a), polygons (b) (c) (e) (f), donut shape (d)). It can be suitably selected from the shape (g) and the like. The shape of the second well 32 can be appropriately selected from a conical shape, a prismatic shape, a U-bottom shape, a V-bottom shape, and the like. In particular, if the shape does not have a flat portion, for example, a U-bottom shape. It is preferable because cells that have fallen into the well are easily collected and a uniform sphere is easily formed. An example of the cross-sectional shape of the second well is shown in FIG.
 第2の開口部の径321は、0.05mm~3mmであることが好ましい。第2の開口部の径321が0.05mm未満であると、スフェロイドが取り出しにくくなるおそれがある。また第2の開口部の径321が3mm超であると、スフェロイドがウェルから飛び出しやすくなるおそれがある。第2の開口部の径321は0.1mm~2.5mmであることがより好ましく、0.15mm~2.0mmであることがより一層好ましい。 The diameter 321 of the second opening is preferably 0.05 mm to 3 mm. If the diameter 321 of the second opening is less than 0.05 mm, it may be difficult to take out the spheroids. Moreover, when the diameter 321 of the second opening is more than 3 mm, the spheroids may be likely to jump out of the well. The diameter 321 of the second opening is more preferably 0.1 mm to 2.5 mm, and still more preferably 0.15 mm to 2.0 mm.
 また第2のウェルの深さ322は第2の開口部の径321の0.1~2倍であることが好ましい。第2のウェルの深さ322が第2の開口部の径の0.1倍未満であるとスフェロイドがこぼれやすくなることが問題となる。また、第2のウェルの深さ322が第2の開口部の径321の2倍超であるとスフェロイドが取り出しづらくなること、底面強度が低くなることなどが問題となる。第2のウェルの深さ322は第2のウェルの径321の0.2~1.8倍であることがより好ましく、0.3~1.7倍であることがより一層好ましい。なお、第2のウェルの深さ322は第2の開口部から底部の高さのうち、最も長い箇所の値を指す。 The depth 322 of the second well is preferably 0.1 to 2 times the diameter 321 of the second opening. If the depth 322 of the second well is less than 0.1 times the diameter of the second opening, there is a problem that spheroids are easily spilled. In addition, if the depth 322 of the second well is more than twice the diameter 321 of the second opening, it becomes difficult to take out spheroids and the bottom surface strength is lowered. The depth 322 of the second well is more preferably 0.2 to 1.8 times the diameter 321 of the second well, and still more preferably 0.3 to 1.7 times. Note that the depth 322 of the second well indicates the value of the longest portion of the height from the second opening to the bottom.
 第1のウェル31は開口部(以下、第1の開口部という)と底部に向かう傾斜面を有する。また、第1の開口部の上面からみた形状は、図6に示すように、ハニカム型、格子型、円形等から適宜選択できる。例えば、ハニカム型であれば、隣接するウェル同士の距離が等しくなるので、各ウェルに同量の培地が入りやすく、より均一な条件でスフェロイド形成が可能となるため好ましい。第1の開口部の径311は、第2のウェルの径321の1.5~5倍であることが好ましい。1.5倍未満であると、突起5が形成しづらくなる、また、第2のウェル32の比率が大きくなることによって、1つのマイクロウェル3内で形成されるスフェロイドの大きさが大きくなるため、培地消費量が増加することにより培地交換頻度が増加し、培養時に手間が生じたり、細胞に十分に栄養が行き渡らなかったりするおそれがある。5倍超であると、第2のウェル32の比率が小さくなることによって、1つのマイクロウェル3内で形成されるスフェロイドの大きさが小さくなるので培養効率が低下するおそれがある。第1の開口部の径311は第2の開口部の径321の1.8~4.5倍あることがより好ましく、2~3.5倍であることがより一層好ましい。
 また第1のウェルの深さ312は第1の開口部の径311の0.1~3倍であることが好ましい。0.1倍未満であると、培地の粘度によっては、培地の表面張力に負け傾斜が不十分となるおそれがある。3倍超であると、培養面の厚み21によっては第2のウェルを深くできなくなる。第1のウェルの深さ312は第1の開口部の径311の0.13~2.5倍であることがより好ましく、0.15~2倍であることがより一層好ましい。第1の開口部の径311及び深さ312については、培養する細胞や所望のスフェロイドの大きさによって適宜調整することができる。
The first well 31 has an opening (hereinafter referred to as a first opening) and an inclined surface toward the bottom. Moreover, the shape seen from the upper surface of the 1st opening part can be suitably selected from a honeycomb type, a lattice type | mold, a circle | round | yen, etc. as shown in FIG. For example, the honeycomb type is preferable because the distance between adjacent wells becomes equal, so that the same amount of medium can easily enter each well and spheroids can be formed under more uniform conditions. The diameter 311 of the first opening is preferably 1.5 to 5 times the diameter 321 of the second well. If the ratio is less than 1.5 times, it becomes difficult to form the protrusions 5 and the ratio of the second wells 32 is increased, so that the size of the spheroids formed in one microwell 3 is increased. If the medium consumption increases, the medium replacement frequency increases, and there is a possibility that troubles may occur during the culture, or nutrients may not be sufficiently distributed to the cells. If the ratio is more than 5 times, the ratio of the second well 32 becomes small, and the size of the spheroid formed in one microwell 3 becomes small, so that the culture efficiency may be lowered. The diameter 311 of the first opening is more preferably 1.8 to 4.5 times the diameter 321 of the second opening, and even more preferably 2 to 3.5 times.
The depth 312 of the first well is preferably 0.1 to 3 times the diameter 311 of the first opening. If it is less than 0.1 times, depending on the viscosity of the medium, the surface tension of the medium may be lost and the slope may be insufficient. If it exceeds 3 times, the second well cannot be deepened depending on the thickness 21 of the culture surface. The depth 312 of the first well is more preferably 0.13 to 2.5 times the diameter 311 of the first opening, and even more preferably 0.15 to 2 times. The diameter 311 and depth 312 of the first opening can be appropriately adjusted according to the size of the cells to be cultured and the desired spheroid.
 また、第1のウェルの傾斜面は、その傾斜角度313(θ)は0°超~90°未満であることが好ましい。傾斜角度θが0°(平坦面)であると、培地の粘度によっては、表面張力の影響により、第2のウェルへ培地が流れず、スフェロイドの大きさにばらつきが発生しやすい。また、傾斜角度313(θ)が90°以上であると、深堀形状になりやすいため、スフェロイドが取り出しづらくなるおそれがある。傾斜角度313(θ)は5°~80°であることがより好ましく、8°~70°であることがより一層好ましい。培地の粘度によって最適角度が異なるため、上記範囲の中で適宜調整することが可能である。 Further, the inclined surface of the first well preferably has an inclination angle 313 (θ) of more than 0 ° and less than 90 °. When the inclination angle θ is 0 ° (flat surface), depending on the viscosity of the medium, the medium does not flow to the second well due to the influence of the surface tension, and the spheroid size tends to vary. In addition, when the inclination angle 313 (θ) is 90 ° or more, the spheroids are likely to be difficult to take out because the shape tends to be deep. The inclination angle 313 (θ) is more preferably 5 ° to 80 °, and still more preferably 8 ° to 70 °. Since the optimum angle varies depending on the viscosity of the medium, it can be adjusted as appropriate within the above range.
 第1のウェル31と第2のウェル32は連結した形状となっている。第1のウェルと第2のウェルを合わせた深さ30(すなわち、マイクロウェル3の深さ)は、培養基材1の培養面の厚み21の0.1~0.9倍であることが好ましい。0.1倍未満では十分な深さのウェルが形成できず、0.9倍を超えると培養基材1の培養面2の強度が落ちるおそれがある。0.3~0.8倍が好ましく、0.4~0.7倍であることがより一層好ましい。 The first well 31 and the second well 32 are connected to each other. The combined depth 30 of the first well and the second well (that is, the depth of the microwell 3) is 0.1 to 0.9 times the thickness 21 of the culture surface of the culture substrate 1. preferable. If the ratio is less than 0.1 times, a well having a sufficient depth cannot be formed. If the ratio exceeds 0.9 times, the strength of the culture surface 2 of the culture substrate 1 may decrease. It is preferably 0.3 to 0.8 times, and more preferably 0.4 to 0.7 times.
 第1のウェル31と第2のウェル32の間(結合している部分、以下、境界部という)には図3及び図4に示すような突起5を形成することが好ましい。突起5は第2のウェル32内に落ち込んだ細胞や、第2のウェル32内で形成されたスフェロイドが第2のウェル32より外側に移動することを抑制するためのものである。突起5があることにより、培地交換時等に培養基材1を傾けた際に、突起5によってスフェロイドや細胞が堰き止められ、第2のウェル32内に留めることができる。突起5は境界部において、第2の開口部に突出している形状であることが好ましい。突起5は、第2の開口部を通じて第2のウェル32内に細胞が落ち込むこと、及び第2のウェル43内で形成されたスフェロイドが取り出すことができる範囲で、第2の開口部に突出していてもよい。例えば、第2のウェルの開口部の径321が250μm程度、所望のスフェロイドの径が150μm程度であった場合、突起5は2μm~5μm程度とすることが好ましい。なお突起5の形状としては、特に限定されないが、細胞やスフェロイドにダメージを与えたり、突起5上に細胞が残ってしまったりすることがないよう、細胞やスフェロイドが接触する箇所は尖った角を有しない非平坦面であることが好ましい。 It is preferable to form a protrusion 5 as shown in FIG. 3 and FIG. 4 between the first well 31 and the second well 32 (bonded portion, hereinafter referred to as a boundary portion). The protrusion 5 is for suppressing the cells that have fallen into the second well 32 and the spheroids formed in the second well 32 from moving outside the second well 32. Due to the presence of the protrusions 5, when the culture substrate 1 is tilted at the time of medium exchange or the like, spheroids and cells are blocked by the protrusions 5 and can be retained in the second well 32. It is preferable that the protrusion 5 has a shape protruding at the boundary portion into the second opening. The protrusion 5 protrudes into the second opening as long as the cells fall into the second well 32 through the second opening and the spheroids formed in the second well 43 can be taken out. May be. For example, when the diameter 321 of the opening of the second well is about 250 μm and the desired spheroid diameter is about 150 μm, the protrusion 5 is preferably about 2 μm to 5 μm. The shape of the protrusion 5 is not particularly limited, but the point where the cell or spheroid contacts has a sharp corner so as not to damage the cell or spheroid or leave the cell on the protrusion 5. It is preferable that it is a non-flat surface which does not have.
 本発明の培養基材1におけるマイクロウェル3は、培養面2の単位面積当たり、10個/cm~10000個/cm、形成することが好ましい。マイクロウェル3が10個/cm未満では、マイクロウェル3の数が少なくなることで、一度に形成できるスフェロイドの数が少なくなるため、培養効率が低下するおそれがある。マイクロウェル3が10000個/cm超となると、マイクロウェル3の数が多くなることで、一度に形成されるスフェロイドの数が増えるため、培地消費量が増加することにより培地交換頻度が増加し、培養時に手間が生じたり、細胞に十分に栄養が行き渡らなかったりするおそれがある。より好ましくは、15個/cm~5000個/cm、さらに好ましくは、20個/cm~1000個/cmである。マイクロウェル3の数は、使用する培養基材1の大きさ、所望のスフェロイドの大きさ及び数によって適宜調整可能である。 Microwell 3 in culture substrate 1 of the present invention, per unit area of the culture surface 2, 10 pieces / cm 2 ~ 10000 pieces / cm 2, is preferably formed. When the number of microwells 3 is less than 10 / cm 2 , the number of microwells 3 decreases, and the number of spheroids that can be formed at one time decreases, so that the culture efficiency may decrease. When microwell 3 is 10,000 / cm 2, greater than that greater number of microwells 3, since the increase in the number of spheroids formed at one time, medium exchange frequency is increased by a medium consumption increases There is a risk that labor may occur during the culture, or the cells may not be sufficiently fed with nutrients. More preferably, it is 15 pieces / cm 2 to 5000 pieces / cm 2 , and further preferably 20 pieces / cm 2 to 1000 pieces / cm 2 . The number of microwells 3 can be appropriately adjusted depending on the size of the culture substrate 1 to be used and the size and number of desired spheroids.
 マイクロウェル3は得られるスフェロイドの大きさを均一にするために、ウェルの大きさを均一にすることが好ましい。スフェロイドの大きさはウェルの大きさに依存するため、ウェルの大きさが異なると形成されるスフェロイドの大きさが均一でなくなってしまうため、好ましくない。 The microwell 3 preferably has a uniform well size in order to make the size of the obtained spheroid uniform. Since the size of the spheroid depends on the size of the well, if the size of the well is different, the size of the formed spheroid is not uniform, which is not preferable.
 なお、本発明の培養基材1において、必須ではないが、以下の構成を選択、組み合わせてもよい。 In the culture substrate 1 of the present invention, although not essential, the following configurations may be selected and combined.
 培養基材1の形状により、例えばシャーレの場合周壁部近くに、他のマイクロウェル3と同じ大きさのマイクロウェル3を形成できない広さの面が残ってしまう場合がある。この場合、マイクロウェル3を形成できない面を平坦面のまま残しておくと細胞が落ち込む可能性があり、細胞がスフェロイドにならない可能性がある。そのため、マイクロウェル3を形成できない面が残る場合は、その面を非平坦面にすることが好ましい。例えば、図2(a)のように傾斜壁4を形成する、図2(b)のように周壁を厚くする、非平坦面を形成する部品を置く、仕切りをつける等の対応をしてもよい。また、以上の対応は、均一な大きさのマイクロウェル3を形成できない場合に用いることに限られず、例えばマイクロウェル3を培養面2の一部のみに形成したい場合及びマイクロウェル3の数を規格化したい場合等にも用いることが可能である。 Depending on the shape of the culture substrate 1, for example, in the case of a petri dish, there may be a surface that is not wide enough to form a microwell 3 having the same size as the other microwells 3 in the vicinity of the peripheral wall. In this case, if the surface on which the microwell 3 cannot be formed is left as a flat surface, the cells may fall, and the cells may not become spheroids. Therefore, when the surface where the microwell 3 cannot be formed remains, it is preferable to make the surface non-flat. For example, the inclined wall 4 is formed as shown in FIG. 2 (a), the peripheral wall is thickened as shown in FIG. 2 (b), a part forming a non-flat surface is placed, and a partition is attached. Good. Further, the above-mentioned correspondence is not limited to use when the microwell 3 having a uniform size cannot be formed. For example, when the microwell 3 is formed only on a part of the culture surface 2 and the number of microwells 3 is specified. It is also possible to use it when desired.
 マイクロウェル3内からのスフェロイドの移動をより抑制するために、仕切りを設けてもよい。仕切りは培養面2に接合したものでもよく、載置したものでもよく、また培養面2に接触しないもの(例えば落し蓋形状等)を用いてもよい。また仕切りの材質は特に限定されないが、培養基材1と同じ材質でもよく、異なる材質でもよく、また細胞を通さず培地のみを通すメンブレン状の素材からなっていてもよい。 In order to further suppress the movement of spheroids from inside the microwell 3, a partition may be provided. The partition may be joined to the culture surface 2, may be placed, or may be one that does not contact the culture surface 2 (for example, a drop lid shape). The material of the partition is not particularly limited, but may be the same material as the culture substrate 1 or may be a different material, or may be made of a membrane-like material that passes only the medium without passing through the cells.
 第1のウェル31の中心部と第2のウェル32の中心部は、一致してもよく、一致しなくてもよい。一致させることで、第1のウェル31の傾斜面の長さが均一となるため、細胞が均一に落ちやすくなる。また、一致させないことで、ウェル開口部が傾いた形状となり、容器を傾けた際の細胞の飛び出しを防止することができる。 The center portion of the first well 31 and the center portion of the second well 32 may or may not match. By making them coincide, the length of the inclined surface of the first well 31 becomes uniform, so that the cells easily fall uniformly. Moreover, by not matching, the well opening has a tilted shape, and the cells can be prevented from popping out when the container is tilted.
 続いて本発明の培養基材1の製造方法について説明する。なお、製造方法は用いる基材の素材や所望の形状、大きさ等によって適宜変更可能である。 Subsequently, a method for producing the culture substrate 1 of the present invention will be described. In addition, a manufacturing method can be suitably changed with the raw material of a base material to be used, a desired shape, a magnitude | size, etc.
 培養基材1本体(マイクロウェル形成前の状態)は、基材の素材や大きさによって適した方法で製造すればよい。基材の素材は樹脂製、ガラス製、金属製、またはそれらの組合せ等から適宜選択できる。樹脂製の場合、例えばアクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂等に加え、前述した細胞低接着となる物質を混合したものや、着色剤(例えば、酸化チタン、カーボン等)を混合したもの等を用いることができる。培養基材の成形は例えば、射出成型、プレス成型、真空成型、ブロー成形等から適宜選択できる。 The culture substrate 1 main body (the state before formation of the microwell) may be manufactured by a method suitable for the material and size of the substrate. The material of the substrate can be appropriately selected from resin, glass, metal, or a combination thereof. In the case of resin, for example, in addition to acrylic resin, polystyrene resin, polyester resin, polycarbonate resin, polypropylene resin, etc., a mixture of the above-mentioned substances with low cell adhesion, or a colorant (for example, titanium oxide, carbon, etc.) A mixture or the like can be used. The culture substrate can be suitably selected from, for example, injection molding, press molding, vacuum molding, blow molding and the like.
 マイクロウェル3は第1のウェル31と第2のウェル32を一度に成形してもよく、また、第1のウェル31を形成後、第2のウェル32を形成してもよい。マイクロウェルの形成方法としては、金型(基材本体製造時に一緒に成形)、レーザ(COレーザ、YAGレーザ、エキシマレーザ等)、ナノインプリント、プレス等があげられる。第1のウェル31を形成後、第2のウェル32を形成する場合は、第1のウェル31を金型であらかじめ成形した上に、レーザで第2のウェル32を形成することで、ウェル数の規格化がしやすくなる。また、樹脂製の基材にCOレーザで第2のウェルを形成すると、樹脂が溶解及び気化することにより表面が滑らかな面となるため、きれいな球体のスフェロイドが形成しやすくなる。また、境界部になめらかな突起5が形成されるため、スフェロイドにダメージを与えることも少なく、好ましい形態となる。 In the microwell 3, the first well 31 and the second well 32 may be formed at a time, and the second well 32 may be formed after the first well 31 is formed. Examples of the method for forming the microwell include a mold (molded together when the base body is manufactured), laser (CO 2 laser, YAG laser, excimer laser, etc.), nanoimprint, press and the like. When the second well 32 is formed after the first well 31 is formed, the first well 31 is formed in advance with a mold, and then the second well 32 is formed with a laser. It becomes easy to standardize. In addition, when the second well is formed on the resin base material with a CO 2 laser, the resin is dissolved and vaporized, so that the surface becomes a smooth surface, so that it becomes easy to form a beautiful spherical spheroid. In addition, since the smooth protrusion 5 is formed at the boundary portion, the spheroid is hardly damaged and a preferable form is obtained.
 第1のウェル31を形成後、COレーザで第2のウェル32を形成する場合、そのレーザ光の強度は5~500Wであることが好ましい。強度を高くすればするほど、第2のウェルを深く32、且つ第2の開口部の径321を広く形成することができる。つまり、強度が高いほど、大きなスフェロイドを形成することが可能となる。照射スポットは円形であることが好ましいが、細胞を凝集できる形状のウェルが形成できれば特に形は問わない。照射スポットの直径は、20μm~1500μmが適当である。なお、レーザの照射位置に関しても、所望のウェル形状に応じて適宜調整可能である。また、培養基材1の材質によっても適宜強度を調整してもよい。例えば、ポリスチレンの場合は5~30W、ガラスの場合は80~200Wが好ましい。 When the second well 32 is formed with a CO 2 laser after the first well 31 is formed, the intensity of the laser light is preferably 5 to 500 W. The higher the strength, the deeper the second well 32 and the wider the diameter 321 of the second opening. That is, the higher the strength, the larger spheroids can be formed. The irradiation spot is preferably circular, but the shape is not particularly limited as long as a well capable of aggregating cells can be formed. The diameter of the irradiation spot is suitably 20 μm to 1500 μm. The laser irradiation position can also be adjusted as appropriate according to the desired well shape. Further, the strength may be appropriately adjusted depending on the material of the culture substrate 1. For example, 5-30 W is preferable for polystyrene, and 80-200 W is preferable for glass.
 前記培養基材1の培養面2が細胞低接着面となっていない(細胞低接着の素材で成形していない)場合は、別途細胞低接着処理を行う必要がある。低接着処理の方法としては、低接着となる物質を含んだ液体に培養面2を浸漬させて培養面2に定着させる方法、低接着となる物質をUV硬化樹脂と混合してUV照射により定着させる方法、放電処理、低接着となる物質を含むシートを貼り付ける方法等があげられる。なお、細胞低接着の素材で培養基材1を成形している場合においても、前記低接着処理を併せて行ってもよい。
 なお、2016年12月28日に出願された日本特許出願2016-256320号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
When the culture surface 2 of the culture substrate 1 is not a low cell adhesion surface (not molded from a low cell adhesion material), it is necessary to separately perform a cell low adhesion treatment. As a low adhesion treatment method, the culture surface 2 is immersed in a liquid containing a low adhesion substance and fixed to the culture surface 2, or the low adhesion substance is mixed with a UV curable resin and fixed by UV irradiation. And a method of attaching a sheet containing a substance that has low adhesion. Even when the culture substrate 1 is formed of a material having low cell adhesion, the low adhesion treatment may be performed together.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-256320 filed on Dec. 28, 2016 are cited here as disclosure of the specification of the present invention. Incorporated.
1:培養基材、2:培養面、21:培養面の厚み、3:マイクロウェル、30:マイクロウェル全体の深さ、31:第1のウェル、311:第1のウェルの径、312:第1のウェルの深さ、313:第1のウェルの傾斜角度、32:第2のウェル、321:第2のウェルの径、322:第2のウェルの深さ、4:傾斜壁、5:突起 1: culture substrate, 2: culture surface, 21: thickness of culture surface, 3: microwell, 30: depth of whole microwell, 31: first well, 311: diameter of first well, 312: Depth of first well, 313: inclination angle of first well, 32: second well, 321: diameter of second well, 322: depth of second well, 4: inclined wall, 5 : Projection

Claims (15)

  1.  細胞を培養するための培養面を有する培養基材であって、
     前記培養面は複数のマイクロウェルを有し、
     前記マイクロウェルは、傾斜面を有する第1のウェルと、該第1のウェル内に存在する第2のウェルとを有し、かつ、前記第1のウェルと第2のウェルとの間の境界部に突起を有し、
     前記培養面は細胞低接着面となっていることを特徴とする培養基材。
    A culture substrate having a culture surface for culturing cells,
    The culture surface has a plurality of microwells;
    The microwell has a first well having an inclined surface and a second well existing in the first well, and a boundary between the first well and the second well Has a protrusion on the part,
    The culture substrate, wherein the culture surface is a low cell adhesion surface.
  2.  前記培養面が、その外周面に傾斜壁を有する、請求項1に記載の培養基材。 The culture substrate according to claim 1, wherein the culture surface has an inclined wall on an outer peripheral surface thereof.
  3.  前記第1のウェルが、培養面に稠密に配置されている、請求項1又は2に記載の培養基材。 The culture substrate according to claim 1 or 2, wherein the first wells are densely arranged on the culture surface.
  4.  前記第2のウェルの開口部の径が、0.05mm~3mmである、請求項1~3のいずれか1項に記載の培養基材。 The culture substrate according to any one of claims 1 to 3, wherein the diameter of the opening of the second well is 0.05 mm to 3 mm.
  5.  前記第1のウェルがその内部に傾斜面を有し、該傾斜面の傾斜角度が0°超~90°未満である、請求項1~4のいずれか1項に記載の培養基材。 The culture substrate according to any one of claims 1 to 4, wherein the first well has an inclined surface therein, and the inclined angle of the inclined surface is more than 0 ° and less than 90 °.
  6.  前記第2のウェルの深さが、その開口部の径の0.1~2倍である、請求項1~5のいずれか1項に記載の培養基材。 The culture substrate according to any one of claims 1 to 5, wherein the depth of the second well is 0.1 to 2 times the diameter of the opening.
  7.  前記第1のウェルの開口部の径が、第2のウェルの開口部の径の1.5~5倍である、請求項1~6のいずれか1項に記載の培養基材。 The culture substrate according to any one of claims 1 to 6, wherein the diameter of the opening of the first well is 1.5 to 5 times the diameter of the opening of the second well.
  8.  第1のウェルの深さが、その開口部の径の0.1~3倍である、請求項1~7のいずれか1項に記載の培養基材。 The culture substrate according to any one of claims 1 to 7, wherein the depth of the first well is 0.1 to 3 times the diameter of the opening.
  9.  前記第1のウェルと第2のウェルとを合わせた深さが、培養面の厚みの0.1~0.9倍である、請求項1~8のいずれか1項に記載の培養基材。 The culture substrate according to any one of claims 1 to 8, wherein the combined depth of the first well and the second well is 0.1 to 0.9 times the thickness of the culture surface. .
  10.  細胞を培養するための培養面を有する培養基材の製造方法であって、
     傾斜面を有する第1のウェルと、該第1のウェル内に存在する第2のウェルとを有し、かつ前記第1のウェルと第2のウェルとの間の境界部に突起があるように、複数のマイクロウェルを培養面に形成することを特徴とする培養基材の製造方法。
    A method for producing a culture substrate having a culture surface for culturing cells,
    A first well having an inclined surface; and a second well existing in the first well; and a protrusion at a boundary between the first well and the second well. And forming a plurality of microwells on the culture surface.
  11.  前記第1のウェルを形成後、第2のウェルを形成する、請求項10に記載の培養基材の製造方法。 The method for producing a culture substrate according to claim 10, wherein the second well is formed after forming the first well.
  12.  前記培養基材と同時に第1のウェルを形成する、請求項10又は11に記載の培養基材の製造方法。 The method for producing a culture substrate according to claim 10 or 11, wherein the first well is formed simultaneously with the culture substrate.
  13.  前記第1のウェルを形成後、第1のウェル内に第2のウェルをレーザで形成する、請求項10~12のいずれか1項に記載の培養基材の製造方法。 The method for producing a culture substrate according to any one of claims 10 to 12, wherein after the formation of the first well, a second well is formed in the first well by a laser.
  14.  前記突起をレーザによって形成する、請求項10~13のいずれか1項に記載の培養基材の製造方法。 The method for producing a culture substrate according to any one of claims 10 to 13, wherein the protrusion is formed by a laser.
  15.  前記マイクロウェル形成後に、前記培養面に細胞低接着処理を行う、請求項10~14のいずれか1項に記載の培養基材の製造方法。 The method for producing a culture substrate according to any one of claims 10 to 14, wherein a low cell adhesion treatment is performed on the culture surface after forming the microwell.
PCT/JP2017/045153 2016-12-28 2017-12-15 Cell culture substrate and method for producing same WO2018123663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256320 2016-12-28
JP2016256320A JP2020043764A (en) 2016-12-28 2016-12-28 Cell culture substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2018123663A1 true WO2018123663A1 (en) 2018-07-05

Family

ID=62708232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045153 WO2018123663A1 (en) 2016-12-28 2017-12-15 Cell culture substrate and method for producing same

Country Status (2)

Country Link
JP (1) JP2020043764A (en)
WO (1) WO2018123663A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166452A1 (en) * 2019-02-13 2020-08-20 古河電気工業株式会社 Storage container
WO2021024943A1 (en) 2019-08-02 2021-02-11 積水化学工業株式会社 Scaffold material for cell culture and cell culture container
WO2021034533A1 (en) * 2019-08-16 2021-02-25 Corning Incorporated Cell culture assemblies and methods of using the same
WO2021039882A1 (en) * 2019-08-28 2021-03-04 学校法人東海大学 Method for culturing tie2-positive stem/progenitor cell-containing cell population using culture substrate, and utilization thereof
WO2021132480A1 (en) * 2019-12-27 2021-07-01 Agc株式会社 Culture substrate and culture dish
WO2022039165A1 (en) 2020-08-18 2022-02-24 東ソー株式会社 Method for inducing differentiation of pluripotent stem cells into ectodermal, mesodermal, and endodermal cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069001A1 (en) * 2003-09-25 2005-07-28 Toyama Prefecture Microwell array chip and its manufacturing method
WO2014196204A1 (en) * 2013-06-07 2014-12-11 株式会社クラレ Culture vessel and culture method
WO2016069892A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Devices and methods for generation and culture of 3d cell aggregates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069001A1 (en) * 2003-09-25 2005-07-28 Toyama Prefecture Microwell array chip and its manufacturing method
WO2014196204A1 (en) * 2013-06-07 2014-12-11 株式会社クラレ Culture vessel and culture method
WO2016069892A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Devices and methods for generation and culture of 3d cell aggregates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166452A1 (en) * 2019-02-13 2020-08-20 古河電気工業株式会社 Storage container
JP2020129981A (en) * 2019-02-13 2020-08-31 古河電気工業株式会社 Storage container
JP7019618B2 (en) 2019-02-13 2022-02-15 古河電気工業株式会社 Containment vessel
WO2021024943A1 (en) 2019-08-02 2021-02-11 積水化学工業株式会社 Scaffold material for cell culture and cell culture container
WO2021034533A1 (en) * 2019-08-16 2021-02-25 Corning Incorporated Cell culture assemblies and methods of using the same
WO2021039882A1 (en) * 2019-08-28 2021-03-04 学校法人東海大学 Method for culturing tie2-positive stem/progenitor cell-containing cell population using culture substrate, and utilization thereof
WO2021132480A1 (en) * 2019-12-27 2021-07-01 Agc株式会社 Culture substrate and culture dish
WO2022039165A1 (en) 2020-08-18 2022-02-24 東ソー株式会社 Method for inducing differentiation of pluripotent stem cells into ectodermal, mesodermal, and endodermal cells

Also Published As

Publication number Publication date
JP2020043764A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018123663A1 (en) Cell culture substrate and method for producing same
JP5921437B2 (en) Culture substrate
JP6767375B2 (en) Cell culture vessel
JP6313043B2 (en) Method for culturing adherent cells
JP2018108032A (en) Culture vessel
US20200181552A1 (en) Handling features for microcavity cell culture vessel
AU2014276229A1 (en) Culture vessel and culture method
JP2010088347A (en) Method and container for spheroid culture
CN111094535A (en) Cell culture container
US11254910B2 (en) Method for producing different populations of molecules or fine particles with arbitrary distribution forms and distribution densities simultaneously and in quantity, and masking
JP3214876U (en) Culture substrate
JP2015164406A (en) Life science container
JP6081276B2 (en) Cell culture carrier
KR101471928B1 (en) Cell culture container
WO2017209301A1 (en) Well plate, well plate sheet, and culturing method
JP3215918U (en) Culture substrate
US20200148989A1 (en) Cell culture vessel for 3d culture and methods of culturing 3d cells
WO2021132480A1 (en) Culture substrate and culture dish
US20210301237A1 (en) Well for cultivating biological material
KR20150121867A (en) Cell culture module
KR20170017548A (en) Cell culture container and method for fabricating the same
JP2019050734A (en) Cell culture vessel, cell culture vessel with cell assembly, cell assembly culture method, and cell assembly
JP2022071581A (en) Microplate
JP2022095001A (en) Microplate
JP2016119846A (en) Pocket member for culture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP