JP2022037979A - Binary geothermal power generation system - Google Patents
Binary geothermal power generation system Download PDFInfo
- Publication number
- JP2022037979A JP2022037979A JP2020142231A JP2020142231A JP2022037979A JP 2022037979 A JP2022037979 A JP 2022037979A JP 2020142231 A JP2020142231 A JP 2020142231A JP 2020142231 A JP2020142231 A JP 2020142231A JP 2022037979 A JP2022037979 A JP 2022037979A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- flow rate
- reduced water
- water
- injector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 225
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 100
- 239000012530 fluid Substances 0.000 claims abstract description 52
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 claims abstract description 39
- 238000009835 boiling Methods 0.000 claims abstract description 19
- 238000001556 precipitation Methods 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims description 45
- 238000004458 analytical method Methods 0.000 claims description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000001273 butane Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
本発明は、バイナリー式地熱発電システムに関する。 The present invention relates to a binary geothermal power generation system.
バイナリー式地熱発電システムは、例えば特許文献1の背景技術に例示されているように、生産井から採取された地熱流体と低沸点媒体と熱交換し、これによって生成された蒸気を用いてバイナリータービンを駆動して発電するというものである。
A binary geothermal power generation system, for example, as exemplified in the background technology of
図10は、一般的なバイナリー式地熱発電システム43の構成を示す図である。図10において、3は生産井から採取された地熱流体を気水分離する気水分離器、5は気水分離器3で分離された水蒸気と低沸点媒体を熱交換して低沸点媒体(ブタン、ペンタン等の炭化水素)を蒸発させる蒸発器、7は気水分離器3で分離された熱水と低沸点媒体を熱交換して低沸点媒体を予熱する予熱器、9は蒸発器5で生成された蒸気を導入して駆動するバイナリータービン、11はバイナリータービン9によって駆動する発電機、13はバイナリータービン9から排出される蒸気を冷却して液化する冷却塔(空冷)、15は循環ライン16に設けられて液化された低沸点媒体を循環する循環ポンプ、17は予熱器7で熱交換された熱水を還元井に戻す還元水ポンプである。
FIG. 10 is a diagram showing the configuration of a general binary geothermal
上記のように構成されたバイナリー式地熱発電システム43においては、生産井から採取された地熱流体が気水分離器3で熱水と水蒸気に気水分離され、水蒸気は蒸発器5に送られ、熱水は予熱器7に送られる。
一方、低沸点媒体は循環ポンプ15よって循環ライン16を循環しており、予熱器7で予熱され、さらに蒸発器5で蒸気となってバイナリータービン9に導入され、バイナリータービン9が駆動され、バイナリータービン9の駆動によって発電機11が駆動して発電される。
バイナリータービン9に供給された蒸気は冷却塔13で液化されて循環ポンプ15で予熱器7に供給される。
水蒸気は蒸発器5で熱交換によって凝縮して温水となって、気水分離器3から供給された熱水と共に予熱器7に供給され、低沸点媒体を予熱した後、還元水ポンプ17によって還元井に戻される。
In the binary geothermal
On the other hand, the low boiling point medium circulates in the
The steam supplied to the
The steam is condensed by heat exchange in the
図10には、生産井から無次元流量(1)の地熱流体を採取した場合における、システムの途中での熱水等の流量、温度等の一例が示されている。
地熱流体は、気水分離器3で、流量(0.162)、温度130℃、圧力0.3MPaの水蒸気と、流量(0.838)、温度130℃、圧力0.3MPaの熱水に分離される。予熱器7に供給された水及び熱水は、流量(1)、温度100℃の還元水となって、還元水ポンプ17によって0.4MPaに昇圧されて還元井に戻される。
FIG. 10 shows an example of the flow rate, temperature, etc. of hot water or the like in the middle of the system when the geothermal fluid having the dimensionless flow rate (1) is collected from the production well.
The geothermal fluid is separated by the air-
上記のようなバイナリー式地熱発電システム43においては、電動機で駆動する還元水ポンプ17の電力が必要となり、その消費電力の分だけ外部に供給する電力量が低下する。
また、地熱流体は、一般にシリカ、カルシウム等が含まれており、これらは温度が低くなると析出しやすいため、気水分離器3で分離された熱水を還元井に戻す輸送管や還元井付近に付着して流路抵抗となり、輸送動力の増大や還元井の呑み込み量の減少を生じさせる。この結果、計画通りに蒸気や熱水を生産できなくなり、発電出力の低下、地熱発電所の経済性の低下を招く。
In the binary geothermal
In addition, the geothermal fluid generally contains silica, calcium, etc., and these tend to precipitate when the temperature is low. Therefore, the hot water separated by the air-
例えば、地熱流体のシリカ濃度が390mg/L未満の場合、還元水温度が100℃であればシリカを析出させないで運転することができるので、上記のような問題を回避するためには、還元水温度を約100℃以上に保持する必要があるが、この場合には熱水の地熱エネルギーを十分利用することができず、エネルギー利用効率が悪いという問題がある。
さらに、還元水温度が100℃以上であっても、生産される地熱流体の性状によっては還元水のシリカ溶解度を超えるシリカを含む場合もあり、その場合は、シリカ等が析出して上記のような問題を生じさせる。
For example, when the silica concentration of the geothermal fluid is less than 390 mg / L, if the reduced water temperature is 100 ° C, the operation can be performed without precipitating silica. Therefore, in order to avoid the above problems, the reduced water can be operated. It is necessary to keep the temperature at about 100 ° C or higher, but in this case, there is a problem that the geothermal energy of hot water cannot be fully utilized and the energy utilization efficiency is poor.
Further, even if the temperature of the reduced water is 100 ° C. or higher, depending on the properties of the produced geothermal fluid, silica may be contained that exceeds the silica solubility of the reduced water. Causes problems.
本発明はかかる課題を解決するためになされたものであり、還元水ポンプを不要あるいは還元水ポンプの電力消費量を抑制し、かつシリカ等の析出を防止して地熱エネルギーを有効活用できるバイナリー式地熱発電システムを提供することを目的としている。 The present invention has been made to solve such a problem, and is a binary type capable of effectively utilizing geothermal energy by eliminating the need for a reduced water pump, suppressing the power consumption of the reduced water pump, and preventing the precipitation of silica and the like. The purpose is to provide a geothermal power generation system.
(1)本発明に係るバイナリー式地熱発電システムは、生産井から採取された地熱流体を気水分離器で水蒸気と熱水に気水分離し、分離された水蒸気及び/または熱水を蒸発器によって低沸点媒体と熱交換し、これによって生成された前記低沸点媒体の蒸気を用いてバイナリータービンを駆動して発電すると共に、分離された熱水を還元水として還元井に戻すものであって、
前記還元水を還元井へ戻す還元水ラインに蒸気インジェクタを設け、該蒸気インジェクタに前記気水分離器で分離された水蒸気の一部と、前記還元水を導入して、該還元水の温度と圧力を上昇させて還元井に戻すようにしたことを特徴とするものである。
(1) In the binary geothermal power generation system according to the present invention, the geothermal fluid collected from the production well is separated into steam and hot water by a steam separator, and the separated steam and / or hot water is evaporated. The steam of the low boiling medium generated by exchanging heat with the low boiling medium is used to drive a binary turbine to generate power, and the separated hot water is returned to the reduction well as reduced water. ,
A steam injector is provided in the reduced water line for returning the reduced water to the reducing well, and a part of the steam separated by the steam separator and the reduced water are introduced into the steam injector to adjust the temperature of the reduced water. It is characterized by increasing the pressure and returning it to the reduction well.
(2)また、上記(1)に記載のものにおいて、生産井から採取する地熱流体の流量を調整する第1流量調整弁と、前記蒸気インジェクタに供給する水蒸気の流量を調整する第2流量調整弁と、
前記蒸発器側又は他の水蒸気利用側に供給する水蒸気の流量を検知する第1流量検知装置と、前記蒸気インジェクタに供給する水蒸気の流量を検知する第2流量検知装置と、前記蒸気インジェクタに供給する還元水の流量を検知する第3流量検知装置と、
前記蒸気インジェクタに供給する水蒸気の温度を検知する第1温度検知装置と、前記蒸気インジェクタに供給する還元水の温度を検知する第2温度検知装置と、前記蒸気インジェクタから排出された還元水の温度を検知する第3温度検知装置と、
前記蒸気インジェクタに供給する還元水の圧力を検知する第2圧力検知装置と、前記蒸気インジェクタから排出された還元水の圧力を検知する第3圧力検知装置と、前記蒸気インジェクタのスロート部の圧力を検知する第4圧力検知装置と、
前記タービンの発電する電力を検知する電力検知装置と、
気水分離器で分離された水蒸気のうち蒸発器又は他の水蒸気利用側に供給される蒸気と蒸気インジェクタに流入させる蒸気量との分配比、生産井の増産比とバイナリー発電出力の増加割合との関係、地熱流体に含まれるシリカ濃度分析値、地熱流体の蒸気と熱水の比率、バイナリー発電装置や蒸気インジェクタの設計仕様を格納するデータベースと、
前記各検知装置の検知信号を入力して、前記データベースに格納された情報に基づいて必要とされる発電出力とするための地熱流体の流量、及び還元水でシリカを析出させないために、またはシリカの析出を抑制するために必要とされる前記蒸気インジェクタへ供給する水蒸気の流量を演算し、該演算値に基づいて前記第1流量調整弁及び前記第2流量調整弁を制御する制御装置を備えたことを特徴とするものである。
(2) Further, in the above (1), the first flow rate adjusting valve for adjusting the flow rate of the geothermal fluid collected from the production well and the second flow rate adjusting for adjusting the flow rate of the steam supplied to the steam injector. With a valve,
A first flow rate detecting device that detects the flow rate of steam supplied to the evaporator side or another steam utilization side, a second flow rate detecting device that detects the flow rate of water vapor supplied to the steam injector, and a supply to the steam injector. A third flow rate detector that detects the flow rate of reduced water,
The first temperature detection device that detects the temperature of the steam supplied to the steam injector, the second temperature detection device that detects the temperature of the reduced water supplied to the steam injector, and the temperature of the reduced water discharged from the steam injector. A third temperature detector that detects
A second pressure detecting device that detects the pressure of the reduced water supplied to the steam injector, a third pressure detecting device that detects the pressure of the reduced water discharged from the steam injector, and the pressure of the throat portion of the steam injector. The 4th pressure detection device to detect and
A power detection device that detects the power generated by the turbine, and
Of the steam separated by the steam separator, the distribution ratio of the steam supplied to the evaporator or other steam utilization side and the amount of steam flowing into the steam injector, the production increase ratio of the production well and the increase rate of the binary power generation output Relationship, silica concentration analysis value contained in geothermal fluid, steam to hot water ratio of geothermal fluid, database containing design specifications of binary power generators and steam injectors,
The flow rate of the geothermal fluid to input the detection signal of each detection device to obtain the required power output based on the information stored in the database, and to prevent silica from being deposited by the reduced water, or silica. It is provided with a control device that calculates the flow rate of steam supplied to the steam injector, which is required to suppress the precipitation of water vapor, and controls the first flow rate adjusting valve and the second flow rate adjusting valve based on the calculated value. It is characterized by that.
(3)また、上記(1)に記載のものにおいて、生産井から採取する地熱流体の流量を調整する第1流量調整弁と、前記蒸気インジェクタに供給する水蒸気の流量を調整する第2流量調整弁と、
前記蒸発器側又は他の水蒸気利用側に供給する水蒸気の流量を検知する第1流量検知装置と、前記蒸気インジェクタに供給する水蒸気の流量を検知する第2流量検知装置と、前記蒸気インジェクタに供給する還元水の流量を検知する第3流量検知装置と、
前記蒸気インジェクタに供給する還元水の温度を検知する第2温度検知装置と、前記蒸気インジェクタから排出された還元水の温度を検知する第3温度検知装置と、
前記蒸気インジェクタに供給する水蒸気の圧力を検知する第1圧力検知装置と、前記蒸気インジェクタに供給する還元水の圧力を検知する第2圧力検知装置と、前記蒸気インジェクタから排出された還元水の圧力を検知する第3圧力検知装置と、前記蒸気インジェクタのスロート部の圧力を検知する第4圧力検知装置と、
前記タービンの発電する電力を検知する電力検知装置と、
気水分離器で分離された水蒸気のうち蒸発器又は他の水蒸気利用側に供給される蒸気と蒸気インジェクタに流入させる蒸気量との分配比、生産井の増産比とバイナリー発電出力の増加割合との関係、地熱流体に含まれるシリカ濃度分析値、地熱流体の蒸気と熱水の比率、バイナリー発電装置や蒸気インジェクタの設計仕様を格納するデータベースと、
前記各検知装置の検知信号を入力して、前記データベースに格納された情報に基づいて必要とされる発電出力とするための地熱流体の流量、及び還元水でシリカを析出させないために、またはシリカの析出を抑制するために必要とされる前記蒸気インジェクタへ供給する水蒸気の流量を演算し、該演算値に基づいて前記第1流量調整弁及び前記第2流量調整弁を制御する制御装置を備えたことを特徴とするものである。
(3) Further, in the above (1), the first flow rate adjusting valve for adjusting the flow rate of the geothermal fluid collected from the production well and the second flow rate adjusting for adjusting the flow rate of the steam supplied to the steam injector. With a valve,
A first flow rate detecting device that detects the flow rate of steam supplied to the evaporator side or another steam utilization side, a second flow rate detecting device that detects the flow rate of water vapor supplied to the steam injector, and a supply to the steam injector. A third flow rate detector that detects the flow rate of reduced water,
A second temperature detecting device that detects the temperature of the reduced water supplied to the steam injector, and a third temperature detecting device that detects the temperature of the reduced water discharged from the steam injector.
A first pressure detecting device that detects the pressure of the steam supplied to the steam injector, a second pressure detecting device that detects the pressure of the reduced water supplied to the steam injector, and the pressure of the reduced water discharged from the steam injector. A third pressure detecting device for detecting the pressure of the throat portion of the steam injector, and a fourth pressure detecting device for detecting the pressure in the throat portion of the steam injector.
A power detection device that detects the power generated by the turbine, and
Of the steam separated by the steam separator, the distribution ratio of the steam supplied to the evaporator or other steam utilization side and the amount of steam flowing into the steam injector, the production increase ratio of the production well and the increase rate of the binary power generation output Relationship, silica concentration analysis value contained in geothermal fluid, steam to hot water ratio of geothermal fluid, database containing design specifications of binary power generators and steam injectors,
The flow rate of the geothermal fluid to input the detection signal of each detection device to obtain the required power output based on the information stored in the database, and to prevent silica from being deposited by the reduced water, or silica. It is provided with a control device that calculates the flow rate of water vapor supplied to the steam injector, which is required to suppress the precipitation of water vapor, and controls the first flow rate adjusting valve and the second flow rate adjusting valve based on the calculated value. It is characterized by that.
(4)本発明に係るバイナリー式地熱発電システムは、生産井から採取された地熱流体である水蒸気を蒸発器によって低沸点媒体と熱交換し、これによって生成された前記低沸点媒体の蒸気を用いてバイナリータービンを駆動して発電すると共に、前記蒸発器によって水蒸気が凝縮した凝縮水を還元水として還元井に戻すバイナリー式地熱発電システムであって、
前記還元水を還元井へ戻す還元水ラインに蒸気インジェクタを設け、該蒸気インジェクタに前記地熱流体である水蒸気の一部と、前記還元水を導入して、該還元水の温度と圧力を上昇させて還元井に戻すようにしたことを特徴とするものである。
(4) In the binary geothermal power generation system according to the present invention, water vapor, which is a geothermal fluid collected from a production well, is heat-exchanged with a low-boiling medium by an evaporator, and the steam of the low-boiling medium generated thereby is used. This is a binary geothermal power generation system that drives a binary turbine to generate power and returns the condensed water condensed with steam by the evaporator to the reduction well as reduced water.
A steam injector is provided in the reducing water line for returning the reduced water to the reduction well, and a part of the steam which is the geothermal fluid and the reduced water are introduced into the steam injector to raise the temperature and pressure of the reduced water. It is characterized by returning it to the reduction well.
本発明においては、還元水を還元井へ戻す還元水ラインに蒸気インジェクタを設け、該蒸気インジェクタに気水分離器で分離された水蒸気と、還元水を導入して、該還元水の温度と圧力を上昇させて還元井に戻すようにしたことにより、還元水ポンプを不要あるいは還元水ポンプの電力消費量を抑制し、かつシリカ等の析出を防止して地熱エネルギーを有効活用できる。 In the present invention, a steam injector is provided in the reducing water line that returns the reduced water to the reduction well, and the steam separated by the steam separator and the reduced water are introduced into the steam injector to introduce the temperature and pressure of the reduced water. By raising the amount of water and returning it to the reduction well, the reduced water pump is unnecessary or the power consumption of the reduced water pump can be suppressed, and the precipitation of silica or the like can be prevented to effectively utilize the geothermal energy.
本実施の形態に係るバイナリー式地熱発電システムを図1に基づいて説明する。なお、図1において、従来例を説明した図10と共通する部分には同一の符号を付して説明を省略する。 The binary geothermal power generation system according to the present embodiment will be described with reference to FIG. In FIG. 1, the same reference numerals are given to the parts common to FIG. 10 in which the conventional example is described, and the description thereof will be omitted.
本実施の形態に係るバイナリー式地熱発電システム1は、生産井から採取された地熱流体を気水分離器3で水蒸気と熱水に気水分離し、分離された水蒸気及び熱水を低沸点媒体(ブタン、ペンタン等の炭化水素)と熱交換し、これによって生成された蒸気を用いてバイナリータービン9を駆動して発電すると共に、分離された熱水を還元水として還元井に戻すものである。
そして、還元水を還元井へ戻す還元水ライン19に蒸気インジェクタ21を設け、蒸気インジェクタ21に気水分離器3で分離された水蒸気の一部と、還元水を導入して、還元水の温度と圧力を上昇させて還元井に戻すようにしている。
本実施の形態においては、還元水を還元井に戻す還元水ライン19に蒸気インジェクタ21を設けた点に特徴があるので、以下においては、蒸気インジェクタ21の構成と、動作について説明する。
In the binary geothermal
Then, a
The present embodiment is characterized in that the
<蒸気インジェクタ>
蒸気インジェクタ21は、一般に液流に蒸気を混合してその熱と運動量を渡し、導入された液圧より高温、高圧の噴出液を得る装置である。
蒸気インジェクタ21は、図2に示すように、還元水が供給される筒状の還元水供給部23と、還元水供給部23を覆うように設けられ、水蒸気が供給される水蒸気供給部25と、還元水と水蒸気が混合される混合部27と、混合部27の下流側で縮径されたスロート部29と、スロート部29の下流側で拡径されたディフューザ部31とを備えている。
<Steam injector>
The
As shown in FIG. 2, the
上記のように構成された蒸気インジェクタ21において、還元水供給部23に還元水を、水蒸気供給部25に水蒸気を供給すると、混合部27において水蒸気と還元水が接触して水蒸気が凝縮する。水蒸気の凝縮によって蒸気インジェクタ21の内部(混合部27)の圧力が低下することにより、還元水と水蒸気を吸引する作用が発生する。
In the
水蒸気が吸引される際に高速流となり、この運動エネルギーが、還元水に受け渡され、還元水(混合水)を加速する。また、水蒸気と還元水との接触により水蒸気が凝縮して、還元水の温度が上昇する。そして、還元水(混合水)がスロート部29を通過後に拡径されたディフューザ部31において流速が低下し、これによって圧力回復されて、還元水(混合水)は昇圧されて吐出される。
When water vapor is sucked, it becomes a high-speed flow, and this kinetic energy is transferred to the reduced water to accelerate the reduced water (mixed water). In addition, the contact between the steam and the reduced water causes the steam to condense, and the temperature of the reduced water rises. Then, the flow velocity of the reduced water (mixed water) is reduced in the
以上のように、還元水ライン19に蒸気インジェクタ21を設けたことにより、蒸気インジェクタ21によって還元水の水圧を高めることができるので、還元水ポンプ17が不要になるか、あるいは還元水ポンプ17の動力を低減することができる。
また、蒸気インジェクタ21によって、還元水が水蒸気と接触することで、還元水の温度が上昇し、シリカ等の析出を防止することもできる。
還元水の圧力上昇及び温度上昇についての具体例については、後述の実施例で説明する。
As described above, by providing the
Further, the
Specific examples of the pressure increase and the temperature increase of the reduced water will be described in Examples described later.
なお、上述した蒸気インジェクタ21は、水蒸気供給部25が還元水供給部23を覆うように設けられているが、これに限定されるものではなく、供給された還元水と水蒸気が互いに接触しながら同一方向に流出する構造となっていればよい。例えば、上述したものとは逆に、還元水供給部23が筒状の水蒸気供給部25を覆うように設けても良い。
The
また、蒸気インジェクタ21の起動時に内部の流体を流出しやすくするために、スロート部29またはその上流側にドレン管33を設け、ドレン管33に蒸気インジェクタ21から流出する方向のみに流体を流すような開閉弁、例えば逆止弁35を設けるようにしてもよい。このようにすることで、蒸気インジェクタ21の起動を容易にする効果が得られる。
Further, in order to facilitate the outflow of the internal fluid when the
上記の実施の形態における地熱発電システム1は、気水分離器3で分離された1次蒸気の一部を蒸気インジェクタ21で利用するため、バイナリー式地熱発電システムで利用する水蒸気の量が減少し、その分だけ発電出力が減少する。
この点、発電出力を、蒸気インジェクタ21を用いない場合と同一にするには、生産井の増産比を制御して、増産される地熱流体からの熱エネルギーで補填するようにすればよい。
このように、発電出力は同一のまま、あるいは任意の必要とされる発電出力としつつ、1次蒸気の一部を蒸気インジェクタ21で利用する制御方法について、図3に基づいて説明する。
Since the geothermal
In this respect, in order to make the power generation output the same as when the
As described above, a control method in which a part of the primary steam is used in the
この場合の装置構成の一例としては、図3に示すように、生産井から地熱流体を採取するラインに地熱流体の流量を調整する第1流量調整弁37を設け、また気水分離器3から蒸気インジェクタ21に水蒸気を供給するラインに水蒸気量を調整する第2流量調整弁39を設け、これら第1流量調整弁37及び第2流量調整弁39を制御する制御装置41を設けるようにする。
なお、図3において、F1~F3、T1~T3、P1~P4、Wは、それぞれ流量検知装置、温度検知装置、圧力検知装置、電力検知装置を示しており、各装置の検知信号は、制御装置41に入力されるようにする。
As an example of the device configuration in this case, as shown in FIG. 3, a first flow
In FIG. 3, F1 to F3, T1 to T3, P1 to P4, and W indicate a flow rate detection device, a temperature detection device, a pressure detection device, and a power detection device, respectively, and the detection signal of each device is controlled. It is input to the
各検知装置を具体的に示すと、以下の通りである。
F1:蒸発器5側に供給する水蒸気の流量を検知する第1流量検知装置
F2:蒸気インジェクタ21に供給する水蒸気の流量を検知する第2流量検知装置
F3:蒸気インジェクタ21に供給する還元水の流量を検知する第3流量検知装置
T1:蒸気インジェクタ21に供給する水蒸気の温度を検知する第1温度検知装置
T2:蒸気インジェクタ21に供給する還元水の温度を検知する第2温度検知装置
T3:蒸気インジェクタ21から排出された還元水の温度を検知する第3温度検知装置
P1:蒸気インジェクタ21に供給する水蒸気の圧力を検知する第1圧力検知装置
P2:蒸気インジェクタ21に供給する還元水の圧力を検知する第2圧力検知装置
P3:蒸気インジェクタ21から排出された還元水の圧力を検知する第3圧力検知装置
P4:蒸気インジェクタ21のスロート部の圧力を検知する第4圧力検知装置
W:バイナリータービン9の発電する電力を検知する電力検知装置
なお、図3においてはT1とP1の両方を図示しているが、どちらか一方だけを設置すればよい。気水分離器3から分離した水蒸気は飽和蒸気であるから、飽和蒸気表を用いれば、温度と圧力のどちらか一方の検出値から他方の値を一意的に算出できるからである。
Specific examples of each detection device are as follows.
F1: First flow detection device that detects the flow rate of steam supplied to the
また、気水分離機3で分離された水蒸気のうち蒸発器5側に供給される水蒸気量と蒸気インジェクタ21に流入させる蒸気量との分配比、生産井の増産比とバイナリー発電出力の増加割合との関係、地熱流体性状(地熱流体に含まれるシリカ濃度分析値、地熱流体の蒸気と熱水の比率、温度、圧力等)、バイナリー発電装置や蒸気インジェクタ21の設計仕様等の制御に必要な機器等の情報は、制御装置41内にデータベースとして格納されている。
なお、蒸気インジェクタ21に設けられている圧力検知装置は、蒸気インジェクタ21ののど部(スロート部29)の圧力を検知するものである。
In addition, the distribution ratio of the amount of steam supplied to the
The pressure detecting device provided in the
上記のような装置構成を備えることで、各装置の検知信号が制御装置41に入力され、制御装置41は入力された検知信号とデータベースの情報に基づいて、蒸気インジェクタ21に供給するべき水蒸気量や、必要とされる地熱流体流量を演算し、演算結果に基づいて第1流量調整弁37及び/又は第2流量調整弁39を制御する。
By providing the device configuration as described above, the detection signal of each device is input to the
このような制御の具体例を以下に説明する。この制御の目的は、還元水をシリカ等が析出しない温度に昇温すること、及び必要な発電出力となるように、第1流量調整弁37及び/又は第2流量調整弁39を制御することである。
まず、地熱流体のシリカ濃度分析値から還元水のシリカ濃度を計算する。還元水は地熱流体から水蒸気を分離したものであり、地熱流体に比べてシリカが濃縮される。そこで、流量検知装置で計測した水蒸気、還元水の流量に基づいて地熱流体と還元水の流量比を計算し、濃縮された還元水のシリカ濃度を計算する。次に、図4に一例を示す水中シリカの溶解度曲線から還元水のシリカ濃度の飽和温度を算出し、飽和温度ならびに還元水の温度から、シリカ等が析出しないために必要な還元水の昇温量を演算する。それに基づいて蒸気インジェクタ21に供給する水蒸気の量と、還元水流量の比率を演算する。また、この演算値と蒸気インジェクタ21の仕様に基づいて、インジェクタ出口最大吐出圧力を演算する。
Specific examples of such control will be described below. The purpose of this control is to raise the temperature of the reduced water to a temperature at which silica or the like does not precipitate, and to control the first flow
First, the silica concentration of the reduced water is calculated from the silica concentration analysis value of the geothermal fluid. The reduced water is obtained by separating water vapor from the geothermal fluid, and silica is concentrated as compared with the geothermal fluid. Therefore, the flow rate ratio between the geothermal fluid and the reduced water is calculated based on the flow rates of water vapor and reduced water measured by the flow rate detecting device, and the silica concentration of the concentrated reduced water is calculated. Next, the saturation temperature of the silica concentration of the reduced water is calculated from the solubility curve of silica in water shown in FIG. 4, and the temperature of the reduced water required to prevent silica and the like from precipitating is raised from the saturation temperature and the temperature of the reduced water. Calculate the quantity. Based on this, the ratio of the amount of steam supplied to the
上記のインジェクタ出口最大吐出圧力、蒸気インジェクタ21に供給する水蒸気と還元水流量との比率、及び、生産井から生産される地熱流体の蒸気と熱水の比率から、蒸気インジェクタ21の昇圧作用で還元可能な生産井の増産可能範囲を演算する。ここで言う増産可能範囲とは、図10に示した蒸気インジェクタを使用しない場合の生産井の生産量(1)を基準として、これに対する増産量のことを意味している。
From the above-mentioned maximum discharge pressure at the injector outlet, the ratio of steam supplied to the
演算した生産井の増産可能範囲に基づいて発電出力可能範囲を演算し、この発電出力可能範囲内で発電出力を決定する。決定する発電出力は、例えば電力需要状況に応じて必要とされる発電出力、あるいは蒸気インジェクタ21を用いない場合の発電出力等である。
決定した発電出力となるように第1流量調整弁37を制御して、地熱流体を増産する。それと同時に、蒸気インジェクタ21の水蒸気と還元水の流量比が前述した演算値になるように第2流量調整弁39で蒸気インジェクタ21への水蒸気流入量を制御する。
The power generation output possible range is calculated based on the calculated production well production increaseable range, and the power generation output is determined within this power generation output possible range. The power generation output to be determined is, for example, a power generation output required according to the power demand situation, a power generation output when the
The first flow
なお、上記は還元水のシリカ濃度を算出して、そのシリカ濃度における飽和温度まで還元水を昇温することでシリカが析出しないように制御するものであったが、ある程度の析出量が許容されるような場合には、昇温量を調整して、所定の割合だけシリカの析出を抑制するようにしてもよい。この場合における昇温量の演算方法を下記に示す。 In the above, the silica concentration of the reduced water was calculated and the temperature of the reduced water was raised to the saturation temperature at the silica concentration to control the silica so as not to precipitate. However, a certain amount of precipitation is allowed. In such a case, the amount of temperature rise may be adjusted to suppress the precipitation of silica by a predetermined ratio. The calculation method of the amount of temperature rise in this case is shown below.
シリカ析出を抑制する割合(以降、「抑制率」という)を予め設定する(例えば、シリカ析出量を3割減としたい場合には抑制率を0.3とする)。
上記抑制率を達成するために目標とするべき還元水の飽和濃度を「目標飽和濃度」とするとき、抑制率を下記式(1)で定義することができる。
抑制率=(目標飽和濃度-還元水温度における飽和濃度)
/(還元水シリカ濃度-還元水温度における飽和濃度) ・・・(1)
The rate at which silica precipitation is suppressed (hereinafter referred to as “suppression rate”) is set in advance (for example, when the amount of silica precipitation is desired to be reduced by 30%, the suppression rate is set to 0.3).
When the saturation concentration of the reduced water to be targeted in order to achieve the above suppression rate is set to "target saturation concentration", the suppression rate can be defined by the following formula (1).
Suppression rate = (target saturation concentration-saturation concentration at reduced water temperature)
/ (Reduced water silica concentration-Saturated concentration at reduced water temperature) ・ ・ ・ (1)
前述のように還元水のシリカ濃度を求めたあと、水中シリカの溶解度曲線(図4参照)から、還元水温度における飽和濃度を算出し、上記式(1)に基づいて目標飽和濃度を演算する。さらに、水中シリカの溶解度曲線から、算出した目標飽和濃度を実現するのに必要な還元水の昇温量を演算する。これに基づいて蒸気インジェクタ21に供給する1次蒸気の量と、還元水流量の比率を演算する。該演算値に基づいて第2流量調整弁39で蒸気インジェクタ21への水蒸気流入量を制御することにより、所定の割合だけシリカの析出を抑制することができる。
After obtaining the silica concentration of the reduced water as described above, the saturation concentration at the reduced water temperature is calculated from the solubility curve of silica in water (see FIG. 4), and the target saturation concentration is calculated based on the above formula (1). .. Further, from the solubility curve of silica in water, the amount of temperature rise of the reduced water required to realize the calculated target saturation concentration is calculated. Based on this, the ratio of the amount of primary steam supplied to the
また、上記の説明では、蒸発器5に気水分離器3で分離した水蒸気を供給するようにしていたが、本発明のバイナリー式地熱発電システムは、これに限られるものではなく、図5に示すように、蒸発器5に気水分離器3で分離された熱水を供給するようにしてもよい。この場合、気水分離器3で分離された水蒸気は蒸気インジェクタ21と他の水蒸気利用側、例えばフラッシュ発電装置等に供給される。
Further, in the above description, the steam separated by the air-
図5に示す場合において、発電出力は同一のまま、あるいは必要とされる任意の発電出力としつつ、1次蒸気の一部を蒸気インジェクタ21で利用する制御の場合の装置構成は図6に示す通りであり、具体的な動作等は図3において説明したのと同様である。
なお、図6の例では、他の水蒸気利用側のラインにF1を設けている。
In the case shown in FIG. 5, the apparatus configuration in the case of control in which a part of the primary steam is used by the
In the example of FIG. 6, F1 is provided on another line on the steam utilization side.
また、図1、図3、図5、図6に示した例では、生産井から採取される地熱流体を気水分離器3で水蒸気と熱水に気水分離するものであったが、地熱流体が熱水を随伴せずに、ほぼ蒸気だけの場合には、図7に示すように、気水分離器3を設けることなく、水蒸気を直接蒸発器5及び蒸気インジェクタ21に導入してもよい。この場合、蒸発器5によって水蒸気が凝縮した凝縮水を還元水として還元井に戻す還元水ライン19に蒸気インジェクタ21を設け、蒸気インジェクタ21に地熱流体である水蒸気の一部と、還元水を導入して、還元水の温度と圧力を上昇させて還元井に戻すようにする。
蒸気を凝縮した凝縮水はシリカ濃度が低いので、積極的にシリカ析出を抑制する必要はないが、還元水ライン19に蒸気インジェクタ21を設けることによって、還元水の水圧を高める効果があるので、還元水ポンプ17が不要になるか、あるいは還元水ポンプ17の動力を低減することができる。
Further, in the examples shown in FIGS. 1, 3, 5, and 6, the geothermal fluid collected from the production well was separated into steam and hot water by the
Since the condensed water in which steam is condensed has a low silica concentration, it is not necessary to positively suppress silica precipitation. However, by providing the
図10に示したケースで蒸気/熱水の生産を1割増とした場合の蒸気インジェクタ適用例を図8に示す。
蒸気インジェクタ21に無次元流量(0.021)の蒸気と無次元流量(1.079)の熱水を導入することにより、還元水の温度を10℃昇温できる。100℃のシリカ溶解度は約390mg/L、110℃のシリカ溶解度は約420mg/Lであることから、生産される地熱流体のシリカ濃度が420mg/Lの場合、蒸気インジェクタ適用前は還元水1Lあたりシリカ30mg析出していたのが、蒸気インジェクタ21の適用により析出しなくなる。
FIG. 8 shows an example of applying a steam injector when the production of steam / hot water is increased by 10% in the case shown in FIG.
By introducing steam having a dimensionless flow rate (0.021) and hot water having a dimensionless flow rate (1.079) into the
生産される地熱流体のシリカ濃度が420mg/L以上の場合は、蒸気インジェクタ21を適用してもシリカは析出するが、適用前に比べて析出量が抑制されるので還元水配管のメンテナンス費の低減や使用期間の延長による還元井の追加掘削費が削減される。また、蒸気インジェクタ21の出口圧力は気水分離器3の圧力よりも高圧にできるので、還元井へ還元水を輸送するポンプ動力が低減される。
When the silica concentration of the produced geothermal fluid is 420 mg / L or more, silica is deposited even if the
別の適用例として、予熱器出口の熱水温度が80℃の場合の運転例を図9に示す。
この例の場合、蒸気インジェクタ21に導入する水蒸気の分だけ、蒸発器5に流入する蒸気の流量は減少するが、予熱器7において熱水を80℃まで熱利用するので、発電出力は同一となる。
本例においても、蒸気インジェクタ21の出口においては、還元水の温度が100℃、吐出圧力が0.6MPaまで昇圧できるので、還元井へ還元水を輸送するポンプ動力が低減される。
As another application example, FIG. 9 shows an operation example when the hot water temperature at the outlet of the preheater is 80 ° C.
In the case of this example, the flow rate of steam flowing into the
Also in this example, at the outlet of the
上記の実施例に示されるように、バイナリー発電システムに蒸気インジェクタ21を適用することによって、還元水の加温による還元井でのスケール生成の抑制、還元水の昇圧によるポンプ動力削減(外部に供給できる発電量の増大)、といった効果が期待できる。
As shown in the above embodiment, by applying the
1 バイナリー式地熱発電システム
3 気水分離器
5 蒸発器
7 予熱器
9 バイナリータービン
11 発電機
13 冷却塔
15 循環ポンプ
16 循環ライン
17 還元水ポンプ
19 還元水ライン
21 蒸気インジェクタ
23 還元水供給部
25 水蒸気供給部
27 混合部
29 スロート部
31 ディフューザ部
33 ドレン管
35 逆止弁
37 第1流量調整弁
39 第2流量調整弁
41 制御装置
43 バイナリー式地熱発電システム(従来例)
F1 第1流量検知装置
F2 第2流量検知装置
F3 第3流量検知装置
T1 第1温度検知装置
T2 第2温度検知装置
T3 第3温度検知装置
P1 第1圧力検知装置
P2 第2圧力検知装置
P3 第3圧力検知装置
P4 第4圧力検知装置
W 電力検知装置
1 Binary geothermal
F1 1st flow rate detection device F2 2nd flow rate detection device F3 3rd flow rate detection device T1 1st temperature detection device T2 2nd temperature detection device T3 3rd temperature detection device P1 1st pressure detection device P2 2nd pressure detection
Claims (4)
前記還元水を還元井へ戻す還元水ラインに蒸気インジェクタを設け、該蒸気インジェクタに前記気水分離器で分離された水蒸気の一部と、前記還元水を導入して、該還元水の温度と圧力を上昇させて還元井に戻すようにしたことを特徴とするバイナリー式地熱発電システム。 The geothermal fluid collected from the production well was separated into steam and hot water by a steam separator, and the separated steam and / or hot water was heat-exchanged with a low boiling point medium by an evaporator, which was produced. It is a binary geothermal power generation system that drives a binary turbine to generate power using the steam of the low boiling point medium and returns the separated hot water to the reduction well as reduced water.
A steam injector is provided in the reduced water line for returning the reduced water to the reducing well, and a part of the steam separated by the steam separator and the reduced water are introduced into the steam injector to adjust the temperature of the reduced water. A binary geothermal power generation system characterized by increasing the pressure and returning it to the reduction well.
前記蒸発器側又は他の水蒸気利用側に供給する水蒸気の流量を検知する第1流量検知装置と、前記蒸気インジェクタに供給する水蒸気の流量を検知する第2流量検知装置と、前記蒸気インジェクタに供給する還元水の流量を検知する第3流量検知装置と、
前記蒸気インジェクタに供給する水蒸気の温度を検知する第1温度検知装置と、前記蒸気インジェクタに供給する還元水の温度を検知する第2温度検知装置と、前記蒸気インジェクタから排出された還元水の温度を検知する第3温度検知装置と、
前記蒸気インジェクタに供給する還元水の圧力を検知する第2圧力検知装置と、前記蒸気インジェクタから排出された還元水の圧力を検知する第3圧力検知装置と、前記蒸気インジェクタのスロート部の圧力を検知する第4圧力検知装置と、
前記タービンの発電する電力を検知する電力検知装置と、
気水分離器で分離された水蒸気のうち蒸発器又は他の水蒸気利用側に供給される蒸気と蒸気インジェクタに流入させる蒸気量との分配比、生産井の増産比とバイナリー発電出力の増加割合との関係、地熱流体に含まれるシリカ濃度分析値、地熱流体の蒸気と熱水の比率、バイナリー発電装置や蒸気インジェクタの設計仕様を格納するデータベースと、
前記各検知装置の検知信号を入力して、前記データベースに格納された情報に基づいて必要とされる発電出力とするための地熱流体の流量、及び還元水でシリカを析出させないために、またはシリカの析出を抑制するために必要とされる前記蒸気インジェクタへ供給する水蒸気の流量を演算し、該演算値に基づいて前記第1流量調整弁及び前記第2流量調整弁を制御する制御装置を備えたことを特徴とする請求項1記載のバイナリー式地熱発電システム。 A first flow rate adjusting valve that adjusts the flow rate of the geothermal fluid collected from the production well, and a second flow rate adjusting valve that adjusts the flow rate of the steam supplied to the steam injector.
A first flow rate detecting device that detects the flow rate of steam supplied to the evaporator side or another steam utilization side, a second flow rate detecting device that detects the flow rate of water vapor supplied to the steam injector, and a supply to the steam injector. A third flow rate detector that detects the flow rate of reduced water,
The first temperature detection device that detects the temperature of the steam supplied to the steam injector, the second temperature detection device that detects the temperature of the reduced water supplied to the steam injector, and the temperature of the reduced water discharged from the steam injector. A third temperature detector that detects
A second pressure detecting device that detects the pressure of the reduced water supplied to the steam injector, a third pressure detecting device that detects the pressure of the reduced water discharged from the steam injector, and the pressure of the throat portion of the steam injector. The 4th pressure detection device to detect and
A power detection device that detects the power generated by the turbine, and
Of the steam separated by the steam separator, the distribution ratio of the steam supplied to the evaporator or other steam utilization side and the amount of steam flowing into the steam injector, the production increase ratio of the production well and the increase rate of the binary power generation output Relationship, silica concentration analysis value contained in geothermal fluid, steam to hot water ratio of geothermal fluid, database containing design specifications of binary power generators and steam injectors,
The flow rate of the geothermal fluid to input the detection signal of each detection device to obtain the required power output based on the information stored in the database, and to prevent silica from being deposited by the reduced water, or silica. It is provided with a control device that calculates the flow rate of water vapor supplied to the steam injector required to suppress the precipitation of water vapor and controls the first flow rate adjusting valve and the second flow rate adjusting valve based on the calculated value. The binary geothermal power generation system according to claim 1, wherein the system is characterized in that.
前記蒸発器側又は他の水蒸気利用側に供給する水蒸気の流量を検知する第1流量検知装置と、前記蒸気インジェクタに供給する水蒸気の流量を検知する第2流量検知装置と、前記蒸気インジェクタに供給する還元水の流量を検知する第3流量検知装置と、
前記蒸気インジェクタに供給する還元水の温度を検知する第2温度検知装置と、前記蒸気インジェクタから排出された還元水の温度を検知する第3温度検知装置と、
前記蒸気インジェクタに供給する水蒸気の圧力を検知する第1圧力検知装置と、前記蒸気インジェクタに供給する還元水の圧力を検知する第2圧力検知装置と、前記蒸気インジェクタから排出された還元水の圧力を検知する第3圧力検知装置と、前記蒸気インジェクタのスロート部の圧力を検知する第4圧力検知装置と、
前記タービンの発電する電力を検知する電力検知装置と、
気水分離器で分離された水蒸気のうち蒸発器又は他の水蒸気利用側に供給される蒸気と蒸気インジェクタに流入させる蒸気量との分配比、生産井の増産比とバイナリー発電出力の増加割合との関係、地熱流体に含まれるシリカ濃度分析値、地熱流体の蒸気と熱水の比率、バイナリー発電装置や蒸気インジェクタの設計仕様を格納するデータベースと、
前記各検知装置の検知信号を入力して、前記データベースに格納された情報に基づいて必要とされる発電出力とするための地熱流体の流量、及び還元水でシリカを析出させないために、またはシリカの析出を抑制するために必要とされる前記蒸気インジェクタへ供給する水蒸気の流量を演算し、該演算値に基づいて前記第1流量調整弁及び前記第2流量調整弁を制御する制御装置を備えたことを特徴とする請求項1記載のバイナリー式地熱発電システム。 A first flow rate adjusting valve that adjusts the flow rate of the geothermal fluid collected from the production well, and a second flow rate adjusting valve that adjusts the flow rate of the steam supplied to the steam injector.
A first flow rate detecting device that detects the flow rate of steam supplied to the evaporator side or another steam utilization side, a second flow rate detecting device that detects the flow rate of water vapor supplied to the steam injector, and a supply to the steam injector. A third flow rate detector that detects the flow rate of reduced water,
A second temperature detecting device that detects the temperature of the reduced water supplied to the steam injector, and a third temperature detecting device that detects the temperature of the reduced water discharged from the steam injector.
A first pressure detecting device that detects the pressure of the steam supplied to the steam injector, a second pressure detecting device that detects the pressure of the reduced water supplied to the steam injector, and the pressure of the reduced water discharged from the steam injector. A third pressure detecting device for detecting the pressure of the throat portion of the steam injector, and a fourth pressure detecting device for detecting the pressure in the throat portion of the steam injector.
A power detection device that detects the power generated by the turbine, and
Of the steam separated by the steam separator, the distribution ratio of the steam supplied to the evaporator or other steam utilization side and the amount of steam flowing into the steam injector, the production increase ratio of the production well and the increase rate of the binary power generation output Relationship, silica concentration analysis value contained in geothermal fluid, steam to hot water ratio of geothermal fluid, database containing design specifications of binary power generators and steam injectors,
The flow rate of the geothermal fluid to input the detection signal of each detection device to obtain the required power output based on the information stored in the database, and to prevent silica from being deposited by the reduced water, or silica. It is provided with a control device that calculates the flow rate of water vapor supplied to the steam injector required to suppress the precipitation of water vapor and controls the first flow rate adjusting valve and the second flow rate adjusting valve based on the calculated value. The binary geothermal power generation system according to claim 1, wherein the system is characterized in that.
前記還元水を還元井へ戻す還元水ラインに蒸気インジェクタを設け、該蒸気インジェクタに前記地熱流体である水蒸気の一部と、前記還元水を導入して、該還元水の温度と圧力を上昇させて還元井に戻すようにしたことを特徴とするバイナリー式地熱発電システム。 Water vapor, which is a geothermal fluid collected from a production well, is heat-exchanged with a low-boiling medium by an evaporator, and the steam of the low-boiling medium generated by this is used to drive a binary turbine to generate power, and the evaporator. It is a binary geothermal power generation system that returns the condensed water condensed by steam to the reduction well as reduced water.
A steam injector is provided in the reducing water line for returning the reduced water to the reduction well, and a part of the steam which is the geothermal fluid and the reduced water are introduced into the steam injector to raise the temperature and pressure of the reduced water. A binary geothermal power generation system characterized by returning to the reduction well.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020142231A JP7287367B2 (en) | 2020-08-26 | 2020-08-26 | Binary geothermal power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020142231A JP7287367B2 (en) | 2020-08-26 | 2020-08-26 | Binary geothermal power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022037979A true JP2022037979A (en) | 2022-03-10 |
JP7287367B2 JP7287367B2 (en) | 2023-06-06 |
Family
ID=80497667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020142231A Active JP7287367B2 (en) | 2020-08-26 | 2020-08-26 | Binary geothermal power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7287367B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09177507A (en) * | 1995-12-26 | 1997-07-08 | Yoshitaro Mori | Method for disposing non-condensable gas in geothermal power plant |
JP2004332626A (en) * | 2003-05-08 | 2004-11-25 | Jio Service:Kk | Generating set and generating method |
CN202023706U (en) * | 2011-04-01 | 2011-11-02 | 中国科学院广州能源研究所 | Device for carrying out flash evaporation electricity generation and recovering distilled water by using terrestrial heat |
JP2017160878A (en) * | 2016-03-11 | 2017-09-14 | Jfeエンジニアリング株式会社 | Injector type pressure increasing device and rankine cycle system |
-
2020
- 2020-08-26 JP JP2020142231A patent/JP7287367B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09177507A (en) * | 1995-12-26 | 1997-07-08 | Yoshitaro Mori | Method for disposing non-condensable gas in geothermal power plant |
JP2004332626A (en) * | 2003-05-08 | 2004-11-25 | Jio Service:Kk | Generating set and generating method |
CN202023706U (en) * | 2011-04-01 | 2011-11-02 | 中国科学院广州能源研究所 | Device for carrying out flash evaporation electricity generation and recovering distilled water by using terrestrial heat |
JP2017160878A (en) * | 2016-03-11 | 2017-09-14 | Jfeエンジニアリング株式会社 | Injector type pressure increasing device and rankine cycle system |
Also Published As
Publication number | Publication date |
---|---|
JP7287367B2 (en) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4676284B2 (en) | Waste heat recovery equipment for steam turbine plant | |
EP2784028A1 (en) | Integrative system of concentrating solar power plant and desalination plant | |
KR101813741B1 (en) | Waste heat steam generator | |
US8601814B2 (en) | Geothermal binary cycle power plant with geothermal steam condensate recovery system | |
US9879885B2 (en) | Cooling water supply system and binary cycle power plant including same | |
JP5593902B2 (en) | Heat pump steam generator | |
US20180156474A1 (en) | Heating installation | |
KR102332878B1 (en) | Oxy boiler power plant oxygen feed system heat integration | |
US9890948B2 (en) | Method for preheating feed water in steam power plants, with process steam outcoupling | |
KR102347285B1 (en) | System and method for fluid medium preheating | |
JP2012102711A (en) | Temperature reducing device steam heat recovery facilities | |
JP2015004357A (en) | Operation method of binary power generation device | |
US20190093518A1 (en) | Condensate recirculation | |
US20160230700A1 (en) | Exhaust heat recovery apparatus of engine | |
JP2022037979A (en) | Binary geothermal power generation system | |
JP5463313B2 (en) | Thermal power plant | |
KR102027515B1 (en) | Rankine cycle-based heat engine using ejector for waste heat recovery and method for operating the same heat engine | |
JP2009097735A (en) | Feed-water warming system and exhaust heat recovering boiler | |
JP2013234607A (en) | Solar heat power generation plant and operation method thereof | |
JP7331807B2 (en) | Geothermal power generation system | |
CN104990065B (en) | Boiler feedwater circulation deaerating type of cycles in turbine LP rotors | |
CN102803664A (en) | Steam power plant with a cooling system | |
JP2006063886A (en) | Thermal power plant | |
JPS61108814A (en) | Gas-steam turbine composite facility | |
JP2014009623A (en) | Boiler exhaust gas cleaning method in thermal power generation system and thermal power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220824 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230420 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230425 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230508 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7287367 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |