JPH09177507A - Method for disposing non-condensable gas in geothermal power plant - Google Patents

Method for disposing non-condensable gas in geothermal power plant

Info

Publication number
JPH09177507A
JPH09177507A JP7339207A JP33920795A JPH09177507A JP H09177507 A JPH09177507 A JP H09177507A JP 7339207 A JP7339207 A JP 7339207A JP 33920795 A JP33920795 A JP 33920795A JP H09177507 A JPH09177507 A JP H09177507A
Authority
JP
Japan
Prior art keywords
condensable gas
hot water
steam
underground
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7339207A
Other languages
Japanese (ja)
Other versions
JP2899604B2 (en
Inventor
Yoshitaro Mori
芳太郎 森
Takemi Omiya
武美 大宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP33920795A priority Critical patent/JP2899604B2/en
Publication of JPH09177507A publication Critical patent/JPH09177507A/en
Application granted granted Critical
Publication of JP2899604B2 publication Critical patent/JP2899604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform detoxicating treatment for non-condensable gas containing toxic gas without exhausting the gas into the atmosphere by injecting non- condensable gas generated in a condenser provided in the downstream side of a steam turbine into a heated water returning well and returning the gas together with returning heated water to the underground. SOLUTION: A geothermal fluid jetted out of a production well 1 is passed through an entrance separator 2 and a steam header 3 and then supplied to the stream entrance part of a steam turbine 5. The steam is introduced to the stream turbine 5 and used for power generation and heated water is returned through a returning well 7 to the underground. Especially, non-condensable gas generated in a condenser 8 provided in the downstream side of the steam turbine 5 is injected into the heated water returning well 7 and thus returned together with the returning heated water to the underground. Thus, since the gas is returned to the underground, no environmental problem such as an offensive odor or the like is prevented and the non-condensable gas is subjected to a detoxicating treatment without reducing the amount of returning heated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、地熱発電に供され
る地熱流体中に含まれる非凝縮性ガスを無害化処理する
技術についての提案であり、とくに自噴した地熱流体を
大気に開放することなく処理するクローズドシステムに
係る地熱発電設備に適用される非凝縮性ガスの処分方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a proposal for a technique for detoxifying non-condensable gas contained in geothermal fluid used for geothermal power generation, and in particular to open the self-injected geothermal fluid to the atmosphere. The present invention relates to a method for disposing non-condensable gas applied to a geothermal power generation facility related to a closed system for processing without treatment.

【0002】[0002]

【従来の技術】一般的な地熱発電のシステムは、図1に
示すように、地下深部にある高温の地熱流体貯留層に対
し、地上から坑井(生産井)を掘削し、地下深部の地熱
流体をこの生産井1を通じて地上に自噴させ、一方、地
上では坑口セパレーター2(気水分離器)により蒸気と
熱水とに分離し、蒸気は蒸気ヘッダー3、セパレーター
4を経て蒸気タービン5に供給して発電機6を駆動させ
る。一方、熱水は還元井7を介して地下に還元する手法
である。
2. Description of the Related Art A general geothermal power generation system, as shown in FIG. 1, excavates a well (production well) from the ground to a high-temperature geothermal fluid reservoir in the deep underground, and The fluid is self-injected to the ground through this production well 1, while on the other hand, it is separated into steam and hot water by a wellhead separator 2 (steam / water separator), and the steam is supplied to a steam turbine 5 via a steam header 3 and a separator 4. Then, the generator 6 is driven. On the other hand, hot water is a method of returning to the underground through the reducing well 7.

【0003】かかる地熱発電システムにおいて、坑口セ
パレーター2にて分離された熱水の処理(還元)方法と
して、一旦大気に開放したのちに還元する、いわゆる大
気開放システムと、大気開放することなく所定の圧力を
保持したまま地下還元する、いわゆるクローズドシステ
ムと称される2つの方式がある。
In such a geothermal power generation system, as a method of treating (reducing) the hot water separated by the wellhead separator 2, a so-called atmospheric opening system in which the hot water is once released to the atmosphere and then reduced is provided and a predetermined atmosphere without opening to the atmosphere. There are two methods, so-called closed systems, in which underground return is performed while maintaining pressure.

【0004】上記大気開放システムは、予めスケールを
故意に析出させることにより熱水中のシリカ成分を低下
させるための大きな回流水槽を必要とし、しかも、熱水
の温度低下、曝気による酸化等により、例えば、地熱流
体中に含まれるシリカ成分がモノ珪酸からポリ珪酸に形
態が変化する際に析出するスケールの生成を阻止するた
めに、スケール防止剤の使用が不可欠となる。従って、
労力やコストが嵩むという問題があった。さらに、この
開放システムは、これらの努力にもかかわらず、完全な
スケール除去のためには還元坑井の改修や、常に新規坑
井の掘削等が必要となり、地熱発電コストの増加の一因
となっていた。
The above-mentioned atmosphere opening system requires a large circulating water tank for lowering the silica component in hot water by intentionally precipitating scale beforehand, and furthermore, due to the temperature drop of hot water, oxidation by aeration, etc. For example, the use of a scale inhibitor is indispensable in order to prevent the formation of scale that precipitates when the silica component contained in the geothermal fluid changes its form from monosilicic acid to polysilicic acid. Therefore,
There is a problem that labor and cost increase. In addition, despite these efforts, this open system requires rehabilitation of the reduction well and excavation of new wells in order to completely remove the scale, which contributes to the increase in geothermal power generation costs. Was becoming.

【0005】これに対し、図1に示すようなクローズド
システムでは、大気開放式の場合に起こる、熱水の温度
低下、曝気による酸化がないので、スケールの発生を招
くことなく熱水の地下還元ができるというメリットがあ
り、近年の地熱発電所ではほとんどがこの方式を採用し
始めているのが実情である。例えば、本出願人がかつて
提案したこの技術(特公昭62−18712号公報)
は、「地熱発電蒸気採取坑井より自噴する実質的に蒸気
と熱水とからなる地熱流体を、地上に設けた気水分離器
に導入して、蒸気と熱水に分離した後、前記熱水を大気
に開放することなく 100℃以上の温度と 1.5kg/cm2
上の圧力を保持しつつ還元坑井を通じて地下深部の地温
が 180℃以上の裂け目の多い地層部へ地下還元する」方
法である。
On the other hand, in the closed system as shown in FIG. 1, since there is no temperature drop of hot water and oxidation due to aeration that occurs in the case of the open-air type, the hot water is returned underground without causing scale. In fact, most geothermal power plants in recent years have begun to adopt this method. For example, this technology that was proposed by the present applicant (Japanese Patent Publication No. 62-18712).
”Geothermal power generation steam extraction A geothermal fluid consisting essentially of steam and hot water that self-injects from a well is introduced into a steam-water separator installed on the ground to separate it into steam and hot water. The method of substituting underground into deeply cracked strata with deep ground temperature of 180 ℃ or higher through reduction wells while maintaining temperature of 100 ℃ or higher and pressure of 1.5kg / cm 2 or higher without releasing water to the atmosphere. " Is.

【0006】[0006]

【発明が解決しようとする課題】従来の上記発電方式の
場合、一般には蒸気タービンの効率を上げるために、そ
の下流側には復水器8が設けられるのが普通である。こ
の復水器8には通常、ジェット型が使用されるが、二酸
化炭素や硫化水素等のガスと共に蒸気を吸引し凝縮させ
る機能を有する装置である。この装置の役割は、蒸気タ
ービン5から排出される蒸気が、該復水器8内に導入さ
れたときに凝縮するときに起こる体積変化によって、該
復水器内に高真空を作り出しタービン背圧を低く保つこ
とで、タービン効率を向上させることにある。例えば、
非凝縮性ガスを復水器8から効率的に排出することで、
タービン効率を向上させるために、この非凝縮性ガス
を、スチームジェットエジェクタ9a,9bまたはコン
プレッサーに導入し、復水器8からの非凝縮性ガスの排
出効率を高めるための工夫もなされている。なお、図示
の10はインタークーラー、11はアウタークーラーであ
り、非凝縮性ガスはこれを経て大気に放出されている。
In the case of the above-mentioned conventional power generation system, generally, a condenser 8 is usually provided on the downstream side of the steam turbine in order to improve the efficiency of the steam turbine. A jet type is usually used for the condenser 8, but it is a device having a function of sucking and condensing vapor together with gases such as carbon dioxide and hydrogen sulfide. The role of this device is to create a high vacuum in the condenser by the volume change that occurs when the steam discharged from the steam turbine 5 condenses when being introduced into the condenser 8. To keep turbine low to improve turbine efficiency. For example,
By efficiently discharging the non-condensable gas from the condenser 8,
In order to improve turbine efficiency, this non-condensable gas is introduced into the steam jet ejectors 9a and 9b or the compressor to improve the discharge efficiency of the non-condensable gas from the condenser 8. In the figure, 10 is an intercooler and 11 is an outer cooler, through which the non-condensable gas is discharged to the atmosphere.

【0007】ところで、地熱蒸気というのは、通常の火
力発電に比して非凝縮性ガスが非常に多く、全蒸気量の
10%を超える場合もある。そして、この非凝縮性ガス
は有害ガスを含むことから、無害化して排出する必要が
ある。しかし、従来、非凝縮性ガスから硫化水素のよう
な有害ガスを経済的に除去(処分)する技術は未だ確立
されておらず、復水器8やスチームジェットエジェクタ
9a,9bからそのまま大気中に放出するか、またはタ
ーボブロワで加速し温水を冷却循環するための冷却塔12
より大量の排気とともに放出しているのが現状である。
By the way, geothermal steam has a very large amount of non-condensable gas as compared with ordinary thermal power generation, and sometimes exceeds 10% of the total steam amount. Since this non-condensable gas contains harmful gas, it must be detoxified and discharged. However, conventionally, a technology for economically removing (disposing) a harmful gas such as hydrogen sulfide from a non-condensable gas has not been established yet, and the condenser 8 and the steam jet ejectors 9a and 9b are directly exposed to the atmosphere. Cooling tower 12 for discharging or accelerating by turbo blower to circulate hot water for cooling
At present, it is emitted with a larger amount of exhaust gas.

【0008】以上説明したように従来の技術によれば、
復水器が高真空に保たれる結果、蒸気タービンの効率も
向上するが、硫化水素ガス含有非凝縮性ガスの放出に伴
う悪臭の発生という環境上の問題をしばしば起すので、
非凝縮性ガスの有効な処分方法の確立が強く求められて
いる。
As described above, according to the conventional technique,
As a result of the condenser being kept in a high vacuum, the efficiency of the steam turbine is also improved, but it often causes an environmental problem such as the generation of a bad odor due to the release of the non-condensable gas containing hydrogen sulfide gas.
There is a strong demand for the establishment of effective disposal methods for non-condensable gases.

【0009】本発明の第1の目的は、有害ガス含有非凝
縮性ガスの無害化処理の方法を提案するところにある。
本発明の第2の目的は、非凝縮性ガスを大気中に放出す
ることなく処分する方法を提案するところにある。本発
明の第3の目的は、非凝縮性ガスを、クローズドシステ
ムにおける熱水の地下還元に悪影響を及ぼすことなく、
その熱水とともに地下還元する好適な方法を提案すると
ころにある。
A first object of the present invention is to propose a method for detoxifying a non-condensable gas containing a harmful gas.
A second object of the present invention is to propose a method of disposing non-condensable gases without releasing them into the atmosphere. A third object of the present invention is to use non-condensable gases without adversely affecting the underground reduction of hot water in a closed system,
We are proposing a suitable method of performing underground reduction together with the hot water.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに本発明では、次の事項を要旨構成とする課題解決手
段を提案する。 (1) 蒸気採取用生産井より自噴する地熱流体を、気水分
離器を介して蒸気と熱水とに分離し、その後、大気に開
放することなく、蒸気は蒸気タービンに導入して発電に
供する一方で、熱水については還元井を通じて地下に還
元する方法において、前記蒸気タービンの下流側に設け
た復水器にて発生する非凝縮性ガスを、熱水還元用還元
井内に注入することにより該還元熱水と共に地下還元す
ることを特徴とする地熱発電設備において発生する非凝
縮性ガスの処分方法。 (2) 上記非凝縮性ガスを、還元熱水用配管中に注入して
該還元熱水と合流させた後に地下還元することを特徴と
する非凝縮性ガスの処分方法。 (3) 上記非凝縮性ガスを地下還元するに当たり、非凝縮
性ガスをコンプレッサーで加圧した後、還元熱水用配管
中または還元井内に設けたエジェクターを通じて還元熱
水と合流させた後に地下還元することを特徴とする非凝
縮性ガスの処分方法。
In order to achieve the above-mentioned object, the present invention proposes a means for solving the problems having the following items as its gist. (1) The geothermal fluid that self-injects from the steam extraction production well is separated into steam and hot water through a steam separator, and then the steam is introduced into a steam turbine for power generation without opening to the atmosphere. On the other hand, in the method of returning hot water to the underground through a reduction well, the non-condensable gas generated in the condenser installed on the downstream side of the steam turbine is injected into the reduction well for hot water reduction. A method for disposing of non-condensable gas generated in a geothermal power generation facility, which is characterized by performing underground reduction with the reduced hot water. (2) A method for disposing non-condensable gas, which comprises injecting the non-condensable gas into a piping for reduced hot water, joining the reduced hot water, and then performing underground reduction. (3) In returning the non-condensable gas to the underground, after compressing the non-condensable gas with a compressor, after combining with the reduced hot water through an ejector provided in the pipe for the reduced hot water or in the reduction well, the underground reduction is performed. A method for disposing of non-condensable gas, characterized by:

【0011】[0011]

【発明の実施の形態】本発明において、復水器で抽出分
離された非凝縮性ガスは、基本的には気水分離された後
の還元熱水に混合して地下還元するが、そのままだと、
ガスと液体は混合することなく別々に地下還元されるこ
とになる。このような場合、還元熱水の配管中または還
元井中の還元熱水が図5に示すようなスラグ流 (気泡1
7) となり、また、場合によってはガス注入による熱水
脈動を生じ、還元熱水量が低下する恐れがある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the non-condensable gas extracted and separated by the condenser is basically mixed with the reduced hot water after the steam separation, and is reduced underground. When,
Gas and liquid will be separately returned underground without mixing. In such a case, the reduced hot water in the reduced hot water pipe or the reduced well is flown into the slag (bubble 1
7) and, depending on the case, hot water pulsation due to gas injection may occur, and the amount of reduced hot water may decrease.

【0012】そこで、本発明の好ましい実施の形態とし
ては、この非凝縮性ガスをコンプレッサー等により加圧
し、次いで、還元熱水用配管内もしくは還元井内に設置
したエジェクターに、該非凝縮性ガスを高速で注入する
ことによって、還元熱水と均質混合したのち地下深部に
還元する。このように、エジェクターを用いて還元熱水
と非凝縮性ガスとを混合させると、非凝縮性ガスが還元
熱水中に、より微細な気泡となって混合されるので好ま
しい。
Therefore, as a preferred embodiment of the present invention, the non-condensable gas is pressurized by a compressor or the like, and then the non-condensable gas is rapidly supplied to an ejector installed in the reduced hot water pipe or the reduction well. By injecting with, the mixture is mixed homogeneously with hot water for reduction and then reduced deep underground. As described above, it is preferable to mix the reduced hot water and the non-condensable gas by using the ejector because the non-condensable gas is mixed with the reduced hot water in the form of finer bubbles.

【0013】また、本発明において、非凝縮性ガス量が
多いときには、前記エジエクターを還元井の地下深部ま
で降下させて設置し、還元層にできるだけ近い深い位置
に非凝縮性ガスを注入することがより好ましい。
Further, in the present invention, when the amount of the non-condensable gas is large, it is possible to install the aged ejector down to the deep underground of the reduction well and inject the non-condensable gas into a deep position as close as possible to the reduction layer. More preferable.

【0014】[0014]

【実施例】図2は、本発明の非凝縮性ガスの処分方法の
一例を示す略線図である。生産井1から噴出する地熱流
体は、坑口セパレーター2を経て蒸気ヘッダー3を通
り、さらに蒸気タービン5の蒸気入口部に供給される。
このようにして高圧噴出される蒸気によってタービン5
のロータを回転し、発電機6で発電が行われる。
EXAMPLE FIG. 2 is a schematic diagram showing an example of a method for disposing of non-condensable gas according to the present invention. The geothermal fluid ejected from the production well 1 passes through the wellhead separator 2, the steam header 3, and is further supplied to the steam inlet portion of the steam turbine 5.
In this way, the high-pressure steam ejects the turbine 5
The rotor is rotated, and the generator 6 generates electric power.

【0015】蒸気タービン5に導入される蒸気は、稀に
過熱蒸気もあるが、一般には150℃以上の飽和蒸気で
あり、一方、タービン駆動後の排出蒸気は、出口温度5
0℃程度の低温の湿り蒸気である。タービン出口側後方
では、このような低温の湿り蒸気を吸引し、発電効率を
向上するために、復水器8が設けられており、かかる低
温湿り蒸気は大部分がこの復水器8内で冷却されて凝縮
し、一方で該復水器8内はそのために減圧雰囲気になっ
ている。
The steam introduced into the steam turbine 5 is rarely overheated steam, but is generally saturated steam at 150 ° C. or higher, while the exhaust steam after driving the turbine has an outlet temperature of 5
It is a low temperature wet steam of about 0 ° C. At the rear of the turbine outlet side, a condenser 8 is provided in order to suck such low-temperature wet steam and improve power generation efficiency. Most of the low-temperature wet steam is stored in the condenser 8. The condenser 8 is cooled and condensed, while the inside of the condenser 8 is therefore in a reduced pressure atmosphere.

【0016】なお、同図中12は、復水器8の冷却水を冷
却するために設けられた冷却塔である。ここで、復水器
8で抽出された非凝縮性ガスは、いくつかのコンプレッ
サー13a,13bとインタークーラー10を経て非凝縮性ガ
ス配管16を通って還元熱水配管14もしくは還元井7に設
けたエジェクター15a,15bに供給され熱水と注入合
流、混合される。なお、還元熱水配管14は、生産井1か
ら噴出する地熱流体を蒸気と熱水に分離した後の熱水
を、大気開放することなくクローズド・システムにより
還元井7中に地下還元するための配管である。
Reference numeral 12 in the figure is a cooling tower provided for cooling the cooling water of the condenser 8. Here, the non-condensable gas extracted by the condenser 8 is provided in the reduction hot water pipe 14 or the reduction well 7 through some compressors 13a and 13b and the intercooler 10 and the non-condensable gas pipe 16. It is supplied to the ejectors 15a and 15b, and is injected and merged with the hot water to be mixed. Note that the reduction hot water pipe 14 is used for underground reduction of the hot water after separating the geothermal fluid ejected from the production well 1 into steam and hot water into the reduction well 7 by a closed system without opening to the atmosphere. It is piping.

【0017】図3は、上記熱水用配管14と非凝縮性ガス
配管16との合流部の説明図である。これらのもしくは還
元井7内に、それぞれエジェクター15aが内挿されてい
る。なお、これらのエジェクター15aは、通常、非凝縮
性ガス流路部17と還元熱水取り込み口18とを有する。
FIG. 3 is an explanatory view of a joining portion of the hot water pipe 14 and the non-condensable gas pipe 16. Ejectors 15a are respectively inserted in these or reduction wells 7. In addition, these ejectors 15a usually have a non-condensable gas flow path portion 17 and a reduced hot water intake port 18.

【0018】本発明において、このような構造のエジェ
クター15aは、前記還元熱水用配管14の下流側(還元井
寄り)において、管内還元熱水中に浸漬するように配設
され、該エジェクター15aの中心部に設けた非凝縮性ガ
ス流路部17に配管16を接続し、非凝縮性ガス流路部17か
らエジェクター15a内に非凝縮性ガスを高速で流し込
む。その結果、還元熱水用配管14内を流れる還元熱水
が、エジェクター15aの周辺に設けた還元熱水取り込み
口18から該エジェクター15a内に吸引され、還元熱水と
非凝縮性ガスの細粒化された泡とが溶け合うような形で
混合された状態になり、ひいては非凝縮性ガスは還元熱
水用配管14または還元井7を通じて地下深部の還元層に
還元され、硫化水素による悪影響を招くことなく処分す
るすることができる。
In the present invention, the ejector 15a having such a structure is disposed so as to be immersed in the reduced hot water in the pipe at the downstream side (close to the reduction well) of the reduced hot water pipe 14 and the ejector 15a is provided. The pipe 16 is connected to the non-condensable gas flow passage portion 17 provided at the center of the non-condensable gas flow passage portion 17, and the non-condensable gas is flown from the non-condensable gas flow passage portion 17 into the ejector 15a at high speed. As a result, the reduced hot water flowing through the reduced hot water pipe 14 is sucked into the ejector 15a through the reduced hot water intake port 18 provided around the ejector 15a, and the reduced hot water and the non-condensable gas fine particles are drawn. The non-condensable gas is reduced to a deep underground reducing layer through the reduced hot water pipe 14 or the reduction well 7, resulting in the adverse effect of hydrogen sulfide. Can be disposed of without.

【0019】なお、図4は、図3に示したと同様のエジ
ェクター15bを、還元井7内の所定深度の位置に設置し
た例であり、作用において図2と変わりはないが、還元
井7の深部に非凝縮性ガスを直接還元することができる
ので、とくに非凝縮性ガス量が多い場合に還元熱水の脈
動を生じない還元方法として有利に適用される。
FIG. 4 shows an example in which an ejector 15b similar to that shown in FIG. 3 is installed at a position of a predetermined depth in the reduction well 7, and the operation is the same as in FIG. Since the non-condensable gas can be directly reduced to a deep portion, it can be advantageously applied as a reduction method that does not cause pulsation of reduced hot water especially when the amount of the non-condensable gas is large.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、地
熱流体に含まれる非凝縮性ガスを還元熱水と共に混合し
た状態にして地下還元することができるので、悪臭の発
生のような環境問題を発生することなく、また、還元熱
水量を低下させることなく非凝縮性ガスを無害化処理す
ることができる。
As described above, according to the present invention, the non-condensable gas contained in the geothermal fluid can be mixed with the reducing hot water for the underground reduction, so that the environment such as the generation of a bad odor can be achieved. The non-condensable gas can be detoxified without causing a problem or reducing the amount of reduced hot water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の地熱発電時に発生する非凝縮性ガス処分
のフローシート。
FIG. 1 is a flow sheet for disposal of non-condensable gas generated during conventional geothermal power generation.

【図2】本発明にかかる地熱発電時に発生する非凝縮性
ガス処分のフローシート。
FIG. 2 is a flow sheet for disposal of non-condensable gas generated during geothermal power generation according to the present invention.

【図3】本発明で用いる還元熱水用配管と非凝縮性ガス
配管との混合部のもようを示す略線図。
FIG. 3 is a schematic diagram showing the appearance of the mixing section of the reduced hot water pipe and the non-condensable gas pipe used in the present invention.

【図4】本発明で用いる還元熱水と非凝縮性ガスとの還
元井内で混合するときのもようを示す略線図。
FIG. 4 is a schematic diagram showing how the reduced hot water used in the present invention and a non-condensable gas are mixed in a reducing well.

【図5】スラグ流のもようを示す還元井の説明図。FIG. 5 is an explanatory diagram of a reduction well showing the flow of slag.

【符号の説明】[Explanation of symbols]

1 生産井 2 坑口セパレーター 3 蒸気ヘッダー 4 セパレーター 5 蒸気タービン 7 還元井 8 復水器 13a,13b コンプレッサー 14 還元熱水用配管 15a,15b エジェクター 16 非凝縮性ガス配管
17スラグ流 (気泡)
1 Production well 2 Wellhead separator 3 Steam header 4 Separator 5 Steam turbine 7 Reduction well 8 Condenser 13a, 13b Compressor 14 Reduced hot water piping 15a, 15b Ejector 16 Non-condensable gas piping
17 Slag flow (air bubbles)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸気採取用生産井より自噴する地熱流体
を、気水分離器を介して蒸気と熱水とに分離し、その
後、大気に開放することなく、蒸気は蒸気タービンに導
入して発電に供する一方で、熱水については還元井を通
じて地下に還元する方法において、前記蒸気タービンの
下流側に設けた復水器にて発生する非凝縮性ガスを、熱
水還元用還元井内に注入することにより、該還元熱水と
共に地下還元することを特徴とする地熱発電設備におい
て発生する非凝縮性ガスの処分方法。
1. A geothermal fluid self-injected from a steam sampling production well is separated into steam and hot water through a steam separator, and then the steam is introduced into a steam turbine without being released to the atmosphere. While supplying power, in the method of returning hot water to the underground through a reduction well, non-condensable gas generated in a condenser installed downstream of the steam turbine is injected into the reduction well for hot water reduction. The method for disposing of non-condensable gas generated in a geothermal power generation facility is characterized by performing underground reduction with the reduced hot water.
【請求項2】 上記非凝縮性ガスを、還元熱水用配管中
に注入して該還元熱水と合流させた後に地下還元するこ
とを特徴とする請求項1に記載の非凝縮性ガスの処分方
法。
2. The non-condensable gas according to claim 1, wherein the non-condensable gas is injected into a piping for hot water for reduction, merged with the hot water for reduction, and then subjected to underground reduction. Disposal method.
【請求項3】 上記非凝縮性ガスを地下還元するに当た
り、非凝縮性ガスをコンプレッサーで加圧した後、還元
熱水用配管中または還元井内に設けたエジェクターを通
じて還元熱水と合流させた後に地下還元することを特徴
とする請求項1または2に記載の非凝縮性ガスの処分方
法。
3. When reducing the non-condensable gas underground, after compressing the non-condensable gas with a compressor, the non-condensable gas is joined with the reduced hot water through an ejector provided in a pipe for the reduced hot water or in a reduction well. The method for disposing of non-condensable gas according to claim 1 or 2, wherein the method is a underground reduction.
JP33920795A 1995-12-26 1995-12-26 Disposal method of non-condensable gas generated in geothermal power plant Expired - Lifetime JP2899604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33920795A JP2899604B2 (en) 1995-12-26 1995-12-26 Disposal method of non-condensable gas generated in geothermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33920795A JP2899604B2 (en) 1995-12-26 1995-12-26 Disposal method of non-condensable gas generated in geothermal power plant

Publications (2)

Publication Number Publication Date
JPH09177507A true JPH09177507A (en) 1997-07-08
JP2899604B2 JP2899604B2 (en) 1999-06-02

Family

ID=18325261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33920795A Expired - Lifetime JP2899604B2 (en) 1995-12-26 1995-12-26 Disposal method of non-condensable gas generated in geothermal power plant

Country Status (1)

Country Link
JP (1) JP2899604B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127540A (en) * 2010-12-13 2012-07-05 Yamadai Kiden Kk Artesian hot spring heat exchanger
JP2018017188A (en) * 2016-07-28 2018-02-01 株式会社東芝 Geothermal power plant
FR3087475A1 (en) 2018-10-22 2020-04-24 IFP Energies Nouvelles METHOD AND SYSTEM FOR INJECTING GAS IN THE BASEMENT
US20200284475A1 (en) * 2019-03-08 2020-09-10 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Jet pump apparatus and methods for standing column well systems and deployment thereof
JP2022037979A (en) * 2020-08-26 2022-03-10 Jfeエンジニアリング株式会社 Binary geothermal power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210073A (en) * 1989-11-22 1991-09-13 Ormat Turbines Ltd Muffling device for geo-thermal generation and using method of said device
JPH03213673A (en) * 1990-01-18 1991-09-19 Fuji Electric Co Ltd Water soluble hydrogen sulfide gas removing device
JPH04321775A (en) * 1991-04-22 1992-11-11 Fuji Electric Co Ltd Geothermal steam turbine equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210073A (en) * 1989-11-22 1991-09-13 Ormat Turbines Ltd Muffling device for geo-thermal generation and using method of said device
JPH03213673A (en) * 1990-01-18 1991-09-19 Fuji Electric Co Ltd Water soluble hydrogen sulfide gas removing device
JPH04321775A (en) * 1991-04-22 1992-11-11 Fuji Electric Co Ltd Geothermal steam turbine equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127540A (en) * 2010-12-13 2012-07-05 Yamadai Kiden Kk Artesian hot spring heat exchanger
JP2018017188A (en) * 2016-07-28 2018-02-01 株式会社東芝 Geothermal power plant
FR3087475A1 (en) 2018-10-22 2020-04-24 IFP Energies Nouvelles METHOD AND SYSTEM FOR INJECTING GAS IN THE BASEMENT
US11401791B2 (en) 2018-10-22 2022-08-02 IFP Energies Nouvelles Method and system for mixing liquid and gas that have been separately injected into a well comprising two coaxial cylinders and discharging the liquid/gas mixture into an underground formation
US20200284475A1 (en) * 2019-03-08 2020-09-10 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Jet pump apparatus and methods for standing column well systems and deployment thereof
JP2022037979A (en) * 2020-08-26 2022-03-10 Jfeエンジニアリング株式会社 Binary geothermal power generation system

Also Published As

Publication number Publication date
JP2899604B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
KR101378195B1 (en) Power plants that utilize gas turbines for power generation and processes for lowering co2 emissions
CN102913311B (en) Gas turbine engine system and its operating method
US7942008B2 (en) Method and system for reducing power plant emissions
KR101401813B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
EP1039115B1 (en) Gas turbine system
US20170107163A1 (en) Landfill Gas Treatment Method With Polishing and Post-Treatment Enrichment
JP2000064854A (en) Operating method of electric power plant equipment by carbon dioxide process
JP2000064854A5 (en)
EP1813866A2 (en) Method of processing volatile organic compound by using gas turbine and processing system of volatile organic compound
JP2015519499A (en) Method for operating a combined cycle power plant and a combined cycle power plant for using such a method
CN106039916B (en) The system for reducing non-methane total hydrocarbons waste gas content in polymerisation in solution rubber process
JPH09177507A (en) Method for disposing non-condensable gas in geothermal power plant
JPH08177713A (en) Equipment and method for treating noncondensable gas in geothermal fluid
CA2281139C (en) Method of treating carbon dioxide-containing gas and apparatus therefor
JPH03210073A (en) Muffling device for geo-thermal generation and using method of said device
JP2008023438A (en) Carbon dioxide recovery system and carbon dioxide recovery method
JP4579479B2 (en) Gas extraction method and apparatus for turbine condenser
WO2007066569A1 (en) Mechanism and method for removing steam remaining in steam cooling piping of gas turbine
JPH0626362A (en) Co2 gas turbine cycle
KR20230154248A (en) Sealed leak gas recovery system and method using an ejector
JP2000044209A (en) Formation of gaseous nitrogen and method and apparatus for processing work by using the same
CN112594013B (en) Device and method for sealing shaft end of organic working medium turbine and recycling working medium
JP2002156098A (en) Vent gas treatment method
JP2011169207A (en) Gas extraction system of steam turbine plant, gas extraction operating method, and constructing method of gas extraction system
JP2001355411A (en) Steam recovering device and method for steam turbine plant