JP2004502893A - Gas extraction method and apparatus for turbine condenser - Google Patents

Gas extraction method and apparatus for turbine condenser Download PDF

Info

Publication number
JP2004502893A
JP2004502893A JP2001558581A JP2001558581A JP2004502893A JP 2004502893 A JP2004502893 A JP 2004502893A JP 2001558581 A JP2001558581 A JP 2001558581A JP 2001558581 A JP2001558581 A JP 2001558581A JP 2004502893 A JP2004502893 A JP 2004502893A
Authority
JP
Japan
Prior art keywords
condenser
turbine
steam
jet pump
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001558581A
Other languages
Japanese (ja)
Other versions
JP4579479B2 (en
Inventor
ケーニッヒ、トーマス
レーマン、ヴォルフガング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004502893A publication Critical patent/JP2004502893A/en
Application granted granted Critical
Publication of JP4579479B2 publication Critical patent/JP4579479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

タービン復水器をガス抽出するために、起動ジェットポンプ(19)を通って導かれる駆動蒸気(D)によって、タービン復水器(1)内に含まれる空気(L)が吸い出される。本発明によれば、駆動蒸気(D)が空気(L)と共に、タービン復水器(1)に後置接続された補助復水器(5)に導かれる。To extract gas from the turbine condenser, the air (L) contained in the turbine condenser (1) is sucked out by the driving steam (D T ) guided through the starting jet pump (19). According to the invention, the drive steam (D T ) is led together with the air (L) to an auxiliary condenser (5) downstream of the turbine condenser (1).

Description

【0001】
本発明は、特に起動時におけるタービン復水器のガス抽出方法に関する。また本発明はその方法を実施するための装置に関する。
【0002】
蒸気タービン設備の運転中、通常、ボイラで生成され蒸気タービンにおいて仕事をしながら膨張した蒸気は、蒸気タービンに後置接続された復水器において凝縮される。タービン復水器において生じた復水は、蒸気タービンの水−蒸気回路に再び導入される。タービン設備の運転中タービン復水器又は主復水器内に存在する空気を吸い出すために、しばしばいわゆる運転ジェットポンプが使用され、この運転ジェットポンプは、駆動蒸気導管に接続され、主復水器に後置接続された補助復水器と結合されている。ジェットポンプ原理で作動する運転ジェットポンプの吸込み側に、主復水器と結合された空気導管が接続されている。
【0003】
蒸気タービンの起動又は再起動の際、まずタービン復水器又は主復水器からガスを抽出し真空度を高める必要がある。その場合、ジェットポンプ原理に従い駆動蒸気が供給されるいわゆる起動蒸気エゼクタによって、タービン復水器および従って蒸気タービン設備が例えば30分以内に1.0バールから約0.3バールに排気される。起動ジェットポンプの吐出し側から出る蒸気・空気混合気は、配管を介して大気に搬出される。その配管は、発生する蒸気・空気混合気の設定された混合温度に対して設計されねばならず、守るべき環境条件に基づいて消音器を設けねばならない。
【0004】
その場合の主な欠点は、蒸気タービンの水−蒸気回路から通常取り出される駆動蒸気が失われ、それに応じた量の給水がタービン復水器の給水回路に補給されねばならないことにある。この給水損失は起動過程の回数の増加と共に上昇し、必要な給水準備のために余分な費用がかかることになる。
【0005】
本発明の課題は、上述の欠点が特に簡単なやり方で回避される、特に起動運転時におけるタービン復水器のガス抽出方法を提供することにある。さらに本発明の課題は、この方法を実施するために特に適した装置を提供することにある。
【0006】
上述の方法に関する課題は、本発明によれば特許請求の範囲の請求項1に記載の特徴によって解決される。そのために、起動ジェットポンプを通って導かれる駆動蒸気が、タービン復水器から吸い出された空気と共に補助復水器に導入される。
【0007】
これによって、補助復水器内で凝縮した駆動蒸気は、復水としてタービン復水器の給水回路に、従って蒸気タービン設備に再び導入される。駆動蒸気内に含まれる空気は、補助復水器から排出されるのが目的に適っている。
【0008】
数時間にわたる起動運転をも可能にするために、定格運転に応じた復水量あるいは給水量の少なくとも半分が、補助復水器における冷却に対して利用されるようにするのが目的に適っている。これは、補助復水器を通して主復水器から導かれる復水流を通常調整する制御弁を相応して設計することを必要とするだけである。
【0009】
さらに補助復水器を通して導かれる復水流の加熱を必要な限界内に抑えるために、復水ポンプによって補助復水器を通して導かれる復水流は、約75%の大部分が、主復水器の復水器管を介して導かれる。これによって、主復水器の冷却水冷却は、補助復水器を通して導かれる復水部分流の再冷却に利用される。従って、復水流即ち単位時間当たり搬送される復水量の約25%の比較的少ない部分が、起動運転にも必要な蒸気タービンからの排水の冷却に利用される。
【0010】
装置についての上述の課題は、本発明によれば、請求項5に記載の特徴によって解決される。その有利な構成はその従属請求項に記載されている。
【0011】
本発明によって得られる利点は特に、蒸気タービンの水−蒸気回路から取り出されてタービン復水器のガス抽出に利用される駆動蒸気が、蒸気タービン設備の補助復水器に導入されることによって、再び回路に供給されることにある。これによって、回路への給水の望ましくない補給が回避される。更にまた、タービンおよび復水器を排気するための蒸気噴射・空気ポンプ系における従来通常の消音器が省かれる。
【0012】
以下図を参照して本発明の実施例を詳細に説明する。図1には、後置接続された補助復水器と蒸気噴射・空気ポンプ系とを備えたタービン復水器のガス抽出装置の配管系統が概略的に示されている。
【0013】
蒸気タービン設備(図示せず)の主復水器又はタービン復水器1は、その出口側が復水集合器2を介して復水導管3に接続され、復水導管3は復水ポンプ4を介して補助復水器5の入口側に接続されている。補助復水器5の出口側は復水導管6を介して主復水器1に接続されている。この復水導管6内には、起動運転に必要な低温復水量を調整するための循環調整弁7が存在している。また復水導管6に、例えばボイラ加熱面に通じる復水循環導管8が接続され、この復水循環導管8は起動時に閉じられる調整弁9を備えている。
【0014】
補助復水器5に集まる復水Kは復水導管10を介して主復水器1の復水集合器2に導かれる。そのために復水導管10は、それぞれ止め弁11a、11bが存在している2つの分岐管10a、10bを介して、補助復水器5の第1圧力段5aないし第2圧力段5bに接続されている。復水を帰還させるために用いられる復水導管10の分岐管10cが主復水器1に通じており、主復水器1に蒸気タービン(図示せず)からの蒸気排出管12が開口している。
【0015】
主復水器1に3つの部分導管14a、14b、14cに共通の蒸気・空気混合配管14が接続されている。この蒸気・空気混合配管14は主復水器1および従ってタービン設備(図示せず)からガスを抽出又は排気するためのジェットポンプ系15に通じている。そのために配管14はそれぞれ止め弁16a、16bを介して補助復水器5の第1圧力段5aの運転ジェットポンプ17a、17bに通じている。主復水器1に接続された配管14は、止め弁18が存在している部分導管14cを介して、起動ジェットポンプ19に通じている。この起動ジェットポンプ19は補助復水器5の第2圧力段5bに属している。
【0016】
補助復水器5の第1圧力段5aおよび第2圧力段5bにそれぞれ、別の運転ジェットポンプ20a、20bが属している。これらの運転ジェットポンプ17a、20a、17b、20bは冗長的に、即ち重複して構成されている。
【0017】
運転ジェットポンプ17a、17b及び20a、20bは、それぞれ止め弁23が存在している分岐導管21a、21b及び22a、22bを介して共通の駆動蒸気導管24に接続されている。同様に起動ジェットポンプ19は、さらに止め弁26が存在している分岐導管25を介して駆動蒸気導管24に接続されている。駆動蒸気導管24には今1つの止め弁27が存在し、これを通して導入される駆動蒸気Dは、蒸気タービンの水−蒸気回路から図示していない方式で取り出される。
【0018】
蒸気タービン設備の起動運転時には、まずタービン復水器1がガス抽出される。そのために、止め弁27および止め弁26が開かれて、分岐導管25および起動ジェットポンプ19を通して駆動蒸気Dが導かれる。起動運転中に駆動蒸気導管24および分岐導管25を通して導かれる単位時間当たりの駆動蒸気Dの量は、起動ジェットポンプ19によって決定される。ジェットポンプ原理で作動する起動ジェットポンプ19を通して導かれる駆動蒸気Dは、主復水器1内に生ずる負圧のために空気導管14を介して主復水器1から吸い出された空気Lと共に、蒸気・空気混合気Dとして補助復水器5に導入される。そのために、起動ジェットポンプ19は吐出し側が連結導管28を介して、好ましくは、補助復水器5の第2圧力段5bに接続されている。駆動蒸気Dは補助復水器5において凝縮されるのに対し、駆動蒸気Dで共に運ばれる空気Lは排気導管29を介して補助復水器5から大気に排出される。補助復水器5内で凝縮した駆動蒸気Dは、復水として復水導管10を介して主復水器1の復水集合器2に導入され、従ってその回路に導入される。
【0019】
補助復水器5において駆動蒸気Dを凝縮するために、補助復水器5に冷却水として、復水ポンプ4によって搬送される主復水器1からの復水Kの部分流が導入される。補助復水器5内における駆動蒸気Dとの熱交換中に温まった冷却水K′は、補助復水器5から復水導管6を通って出て行く。補助復水器5を通して導かれる復水部分流あるいは冷却水K′の単位時間当たりの量を調整するために、調整弁あるいは制御弁7が利用される。起動運転中、冷却水K′の量は定格復水量の約50%〜70%に調整される。
【0020】
重複して構成された運転ジェットポンプ17a、17b及び20a、20bは、起動ジェットポンプ19と同様にジェットポンプ原理で作動するものであり、それらの運転ジェットポンプのうち例えばジェットポンプ17a、20aが蒸気タービン設備の定格運転中に作動し、一方残りの両ジェットポンプは待機状態にある。起動ジェットポンプ19は蒸気タービン設備の始動時に主復水器1をガス抽出するために使われ、運転ジェットポンプ17a、20a又は17b、20bは、蒸気タービン設備の通常運転中に、主復水器1内に生ずる空気Lをそこから吸い出す。
【図面の簡単な説明】
【図1】
本発明に基づくタービン復水器のガス抽出装置の配管系統図である。
【符号の説明】
1  タービン復水器
4  復水ポンプ
5  補助復水器
7  調整弁
14  空気導管
17a、17b  運転ジェットポンプ
19  起動ジェットポンプ
20a、20b  運転ジェットポンプ
24  駆動蒸気導管
  駆動蒸気
L  空気
K  復水
[0001]
The present invention particularly relates to a method for extracting gas from a turbine condenser at startup. The invention also relates to an apparatus for performing the method.
[0002]
During operation of a steam turbine installation, steam that is typically generated in a boiler and expanded while working in the steam turbine is condensed in a condenser downstream of the steam turbine. The condensate generated in the turbine condenser is reintroduced into the water-steam circuit of the steam turbine. During the operation of the turbine installation, so-called operating jet pumps are often used to extract the air present in the turbine condenser or the main condenser, this operating jet pump being connected to the driving steam conduit and being connected to the main condenser. It is connected to the auxiliary condenser connected downstream. On the suction side of an operating jet pump operating on the jet pump principle, an air line connected to the main condenser is connected.
[0003]
When starting or restarting the steam turbine, it is necessary to first extract gas from the turbine condenser or main condenser to increase the degree of vacuum. In that case, the turbine condenser and thus the steam turbine installation are evacuated from 1.0 bar to about 0.3 bar, for example, within 30 minutes by a so-called start-up steam ejector supplied with drive steam according to the jet pump principle. The vapor-air mixture that is discharged from the discharge side of the starting jet pump is carried out to the atmosphere via piping. The piping must be designed for the set mixing temperature of the resulting steam-air mixture, and must be equipped with a silencer based on the environmental conditions to be protected.
[0004]
The main drawback in that case is that the drive steam normally withdrawn from the water-steam circuit of the steam turbine is lost and a corresponding amount of water must be replenished to the water supply circuit of the turbine condenser. This water supply loss increases with an increase in the number of start-up processes, which leads to extra costs for the necessary water supply preparation.
[0005]
It is an object of the present invention to provide a method for gas extraction of a turbine condenser, in particular during start-up operation, in which the disadvantages mentioned above are avoided in a particularly simple manner. It is a further object of the present invention to provide a device which is particularly suitable for performing this method.
[0006]
The object of the above-mentioned method is solved according to the invention by the features of claim 1. To that end, the driving steam guided through the starting jet pump is introduced into the auxiliary condenser together with the air sucked from the turbine condenser.
[0007]
The drive steam condensed in the auxiliary condenser is thereby reintroduced as condensate into the water supply circuit of the turbine condenser and thus into the steam turbine installation. The air contained in the driving steam is expediently discharged from the auxiliary condenser.
[0008]
It is expedient to ensure that at least half of the condensate or water supply according to the rated operation is used for cooling in the auxiliary condenser in order to be able to start up for several hours. . This only requires a corresponding design of the control valve which normally regulates the condensate flow led from the main condenser through the auxiliary condenser.
[0009]
Furthermore, in order to keep the heating of the condensate stream led through the auxiliary condenser within the required limits, the condensate stream led through the auxiliary condenser by the condensate pump is mostly 75% of the main condenser Guided through the condenser tube. Thereby, the cooling water cooling of the main condenser is used for re-cooling the condensate partial stream guided through the auxiliary condenser. Thus, a relatively small portion of the condensate stream, i.e., about 25% of the condensate conveyed per unit time, is used to cool the wastewater from the steam turbine which is also required for start-up operation.
[0010]
The above-mentioned object of the device is solved according to the invention by the features of claim 5. Advantageous configurations are set out in the dependent claims.
[0011]
The advantages provided by the present invention are, in particular, the fact that the drive steam taken from the water-steam circuit of the steam turbine and used for the gas extraction of the turbine condenser is introduced into the auxiliary condenser of the steam turbine installation. Is to be supplied to the circuit again. This avoids the undesirable replenishment of the circuit with water. Furthermore, the conventional silencers in the steam injection and air pump system for exhausting the turbine and the condenser are eliminated.
[0012]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a piping system of a gas extraction device of a turbine condenser having an auxiliary condenser connected downstream and a steam injection / air pump system.
[0013]
A main condenser or a turbine condenser 1 of a steam turbine facility (not shown) is connected at an outlet side to a condensing pipe 3 through a condensing condenser 2, and the condensing pipe 3 is connected to a condensing pump 4. It is connected to the inlet side of the auxiliary condenser 5 through the. The outlet side of the auxiliary condenser 5 is connected to the main condenser 1 via a condenser conduit 6. In this condensate conduit 6, there is a circulation control valve 7 for adjusting the low-temperature condensate amount required for the start-up operation. Also connected to the condensate conduit 6 is, for example, a condensate recirculation conduit 8 leading to the boiler heating surface, and this condensate recirculation conduit 8 is provided with a regulating valve 9 which is closed at startup.
[0014]
The condensed water K collected in the auxiliary condenser 5 is guided to the condensate collector 2 of the main condenser 1 via the condensate conduit 10. For this purpose, the condenser line 10 is connected to the first pressure stage 5a to the second pressure stage 5b of the auxiliary condenser 5 via two branch pipes 10a, 10b, in which stop valves 11a, 11b are present, respectively. ing. A branch pipe 10c of the condensate conduit 10 used for returning the condensate communicates with the main condenser 1, and a steam discharge pipe 12 from a steam turbine (not shown) is opened in the main condenser 1. ing.
[0015]
A common steam / air mixing pipe 14 is connected to the three partial conduits 14a, 14b, 14c of the main condenser 1. This steam / air mixing line 14 leads to a jet pump system 15 for extracting or exhausting gas from the main condenser 1 and thus from the turbine installation (not shown). For this purpose, the pipe 14 leads to the operating jet pumps 17a, 17b of the first pressure stage 5a of the auxiliary condenser 5 via stop valves 16a, 16b, respectively. The pipe 14 connected to the main condenser 1 communicates with a starting jet pump 19 via a partial conduit 14c where a stop valve 18 is present. This starting jet pump 19 belongs to the second pressure stage 5 b of the auxiliary condenser 5.
[0016]
Separate operating jet pumps 20a, 20b belong to the first pressure stage 5a and the second pressure stage 5b of the auxiliary condenser 5, respectively. These operating jet pumps 17a, 20a, 17b, 20b are configured redundantly, that is, redundantly.
[0017]
The operating jet pumps 17a, 17b and 20a, 20b are connected to a common driving steam line 24 via branch lines 21a, 21b and 22a, 22b, respectively, in which a stop valve 23 is present. Similarly, the start-up jet pump 19 is connected to the driving steam line 24 via a branch line 25 in which a stop valve 26 is present. A further stop valve 27 is present in the driving steam conduit 24, through which the driving steam DT introduced is withdrawn in a manner not shown from the water-steam circuit of the steam turbine.
[0018]
During the startup operation of the steam turbine equipment, first, the gas is extracted from the turbine condenser 1. For this purpose, the stop valve 27 and the stop valve 26 are opened, and the driving steam DT is led through the branch conduit 25 and the starting jet pump 19. The amount of the driving steam DT per unit time guided through the driving steam conduit 24 and the branch conduit 25 during the start-up operation is determined by the starting jet pump 19. The driving steam DT, which is led through a starting jet pump 19 operating on the jet pump principle, draws air L drawn out of the main condenser 1 via the air line 14 due to the negative pressure created in the main condenser 1. together, it is introduced into the auxiliary condenser 5 as a vapor-air mixture D L. For this purpose, the starting jet pump 19 is connected on the discharge side via a connecting line 28, preferably to the second pressure stage 5 b of the auxiliary condenser 5. The driving steam DT is condensed in the auxiliary condenser 5, while the air L carried together with the driving steam DT is discharged from the auxiliary condenser 5 to the atmosphere via the exhaust conduit 29. The driving steam DT condensed in the auxiliary condenser 5 is introduced as condensate via the condensate conduit 10 into the condensing condenser 2 of the main condenser 1 and is therefore introduced into the circuit.
[0019]
In order to condense the drive steam DT in the auxiliary condenser 5, a partial flow of the condensate K from the main condenser 1 conveyed by the condensate pump 4 is introduced into the auxiliary condenser 5 as cooling water. You. The cooling water K ′ warmed during the heat exchange with the driving steam DT in the auxiliary condenser 5 exits the auxiliary condenser 5 through the condenser conduit 6. A regulating valve or control valve 7 is used to regulate the amount of condensate partial flow or cooling water K 'guided per unit time through the auxiliary condenser 5. During the start-up operation, the amount of the cooling water K 'is adjusted to approximately 50% to 70% of the rated condensate amount.
[0020]
The operating jet pumps 17a, 17b and 20a, 20b configured in an overlapping manner operate on the jet pump principle similarly to the starting jet pump 19, and among these operating jet pumps, for example, the jet pumps 17a, 20a It operates during the rated operation of the turbine installation, while the remaining two jet pumps are on standby. The starting jet pump 19 is used to extract gas from the main condenser 1 at the start of the steam turbine equipment, and the operating jet pump 17a, 20a or 17b, 20b is used during normal operation of the steam turbine equipment. The air L generated in 1 is sucked out therefrom.
[Brief description of the drawings]
FIG.
It is a piping system diagram of the gas extraction device of the turbine condenser based on this invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Turbine condenser 4 Condenser pump 5 Auxiliary condenser 7 Adjusting valve 14 Air conduit 17a, 17b Operating jet pump 19 Starting jet pump 20a, 20b Operating jet pump 24 Drive steam conduit DT Drive steam L Air K Condensate

Claims (8)

起動ジェットポンプ(19)を通って導かれる駆動蒸気(D)によって、タービン復水器(1)内に含まれる空気(L)が吸い出され、この空気(L)が駆動蒸気(D)と共に、タービン復水器(1)に後置接続された補助復水器(5)に導かれることを特徴とするタービン復水器のガス抽出方法。The driving steam (D T ) guided through the starting jet pump (19) sucks air (L) contained in the turbine condenser (1), and this air (L) is used as the driving steam (D T). ) Together with the auxiliary condenser (5) connected downstream of the turbine condenser (1). 駆動蒸気(D)が補助復水器(5)において凝縮され、その復水(K)がタービン復水器(1)に導入されることを特徴とする請求項1記載の方法。Motive steam (D T) is condensed in the auxiliary condenser (5) The method of claim 1, wherein that the condensate (K) is introduced into the turbine condenser (1). 補助復水器(5)から空気(L)が排出されることを特徴とする請求項1又は2記載の方法。3. The method as claimed in claim 1, wherein the air is discharged from the auxiliary condenser. タービン復水器(1)からの調整可能な復水部分流(K′)が補助復水器(5)を介して搬送されることを特徴とする請求項1ないし3のいずれか1つに記載の方法。4. The method according to claim 1, wherein the adjustable condensate partial stream from the turbine condenser is conveyed via an auxiliary condenser. The described method. 特に請求項1ないし4のいずれか1つに記載の方法を実施するため、出口側に補助復水器(5)が接続されているタービン復水器(1)のガス抽出装置において、駆動蒸気導管(24)と結合され、吐出し側において補助復水器(5)と結合された起動ジェットポンプ(19)を備え、この起動ジェットポンプ(19)が吸込み側において主復水器(1)と結合された空気導管(14)と接続されていることを特徴とするタービン復水器のガス抽出装置。In particular, in order to carry out the method according to any one of claims 1 to 4, the gas extraction device of the turbine condenser (1), to which an auxiliary condenser (5) is connected at the outlet side, A starting jet pump (19) connected to the conduit (24) and connected on the discharge side to an auxiliary condenser (5), the starting jet pump (19) being provided on the suction side for the main condenser (1); A gas extraction device for a turbine condenser, characterized in that it is connected to an air conduit (14) coupled to the gas conduit. 起動ジェットポンプ(19)に少なくとも1つの運転ジェットポンプ(17、20)が並列接続されていることを特徴とする請求項5記載の装置。6. The device according to claim 5, wherein at least one operating jet pump (17, 20) is connected in parallel to the starting jet pump (19). 各運転ジェットポンプ(17a、17b、20a、20b)が重複して構成されていることを特徴とする請求項6記載の装置。7. The device according to claim 6, wherein each of the operating jet pumps (17a, 17b, 20a, 20b) is configured in an overlapping manner. 補助復水器(5)の入口側が復水ポンプ(4)を介して、出口側が調整弁(7)を介してそれぞれタービン復水器(1)に接続されていることを特徴とする請求項5ないし7のいずれか1つに記載の装置。The auxiliary condenser (5) is connected to the turbine condenser (1) on the inlet side via a condenser pump (4) and the outlet side is connected to the turbine condenser (1) via a regulating valve (7). An apparatus according to any one of claims 5 to 7.
JP2001558581A 2000-02-09 2000-12-20 Gas extraction method and apparatus for turbine condenser Expired - Fee Related JP4579479B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00102718 2000-02-09
PCT/EP2000/013039 WO2001059265A1 (en) 2000-02-09 2000-12-20 Method and device for evacuating a turbine condenser

Publications (2)

Publication Number Publication Date
JP2004502893A true JP2004502893A (en) 2004-01-29
JP4579479B2 JP4579479B2 (en) 2010-11-10

Family

ID=8167815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001558581A Expired - Fee Related JP4579479B2 (en) 2000-02-09 2000-12-20 Gas extraction method and apparatus for turbine condenser

Country Status (6)

Country Link
US (1) US6755023B2 (en)
EP (1) EP1254302B1 (en)
JP (1) JP4579479B2 (en)
CN (1) CN1325767C (en)
DE (1) DE50010850D1 (en)
WO (1) WO2001059265A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060254280A1 (en) * 2005-05-12 2006-11-16 Siemens Westinghouse Power Corporation Combined cycle power plant using compressor air extraction
US8112997B2 (en) * 2008-04-28 2012-02-14 Siemens Energy, Inc. Condensate polisher circuit
US8069667B2 (en) * 2009-02-06 2011-12-06 Siemens Energy, Inc. Deaerator apparatus in a superatmospheric condenser system
CN101666250B (en) * 2009-09-25 2012-04-11 天津大学 System for improving low-temperature heat source power generation capacity by using injection pump
DE102011114776B4 (en) * 2011-10-01 2014-10-23 Walter Aumann Method for operating a steam power plant
EP2589764A1 (en) * 2011-11-04 2013-05-08 Siemens Aktiengesellschaft Power plant assembly with integrated steam turbine with hogging ejector and method for starting-up a power-plant assembly with steam turbine
EP2642089B1 (en) 2012-03-19 2016-08-24 General Electric Technology GmbH Method for operating a power plant
DE102012023898A1 (en) * 2012-12-07 2014-06-12 Man Diesel & Turbo Se Method for operating plant for production of mechanical and electrical energy, has turbine in which steam is supplied and capacitor with closed vacuum breaker valve is evacuated
CN105247411A (en) * 2013-06-04 2016-01-13 夏普株式会社 Display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1109722B (en) * 1959-03-21 1961-06-29 Siemens Ag Extraction device for turbine condensers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927428A (en) * 1952-01-26 1960-03-08 Sala Antillo Geothermic central plant for the production of energy, with uncondensable gases compressor-extractors directly operated by the engines producing the energy
JPS5968502A (en) * 1982-10-13 1984-04-18 Hitachi Ltd Method and device for deaerating condensate in electric power plant
GB8325813D0 (en) * 1983-09-27 1983-10-26 Hick Hargreaves & Co Ltd Condenser vacuum system
DE8708383U1 (en) * 1986-08-20 1988-10-20 Körting Hannover AG, 3000 Hannover Steam turbine plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1109722B (en) * 1959-03-21 1961-06-29 Siemens Ag Extraction device for turbine condensers

Also Published As

Publication number Publication date
EP1254302A1 (en) 2002-11-06
CN1325767C (en) 2007-07-11
CN1434895A (en) 2003-08-06
EP1254302B1 (en) 2005-07-27
US6755023B2 (en) 2004-06-29
JP4579479B2 (en) 2010-11-10
WO2001059265A1 (en) 2001-08-16
US20030000215A1 (en) 2003-01-02
DE50010850D1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
JP5151014B2 (en) HEAT PUMP DEVICE AND HEAT PUMP OPERATION METHOD
CN110454769A (en) A kind of Generator Set high back pressure steam feed pump control system and control method
JP2001514353A (en) Operating method of combined gas and steam turbine facility and combined gas and steam turbine facility for implementing the method
RU2585584C2 (en) Water-steam circuit and method for cleaning thereof
JP4579479B2 (en) Gas extraction method and apparatus for turbine condenser
EP2911157B1 (en) Nuclear power plant and non-condensable gas extraction method therefor
CN109312635A (en) Condensate recirculation
JP5489771B2 (en) Gas extraction system for steam turbine plant, gas extraction operation method and construction method of gas extraction system
US20080236135A1 (en) Combined power plant
JPS61110877A (en) Vacuum pump for condenser
JP3777527B2 (en) Air extraction equipment
JPH02218802A (en) Steam turbine
JP2581294B2 (en) Condenser cooling water heat recovery equipment
CN220552302U (en) Vacuumizing system for air cooling heating unit
JP4198475B2 (en) Steam power generator
JP2011089455A (en) Device with seal mechanism
JP3159641B2 (en) Combined cycle power plant and method for cooling high temperature members in the plant
JP2001355411A (en) Steam recovering device and method for steam turbine plant
JP2000240405A (en) Apparatus for operating reheating power generating plant
JPH04369387A (en) Automatic adjusting apparatus for vacuum degree of condenser
JP2677740B2 (en) Geothermal power plant gas extractor
JP2012117767A (en) Boiler water feed pump installation
JPS5853197B2 (en) geothermal turbine equipment
CN116697770A (en) Vacuumizing system for air cooling heating unit
JP2604117B2 (en) Double pressure type waste heat boiler water supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees