JP2022035716A - Rolled aluminum alloy material and production method therefor - Google Patents

Rolled aluminum alloy material and production method therefor Download PDF

Info

Publication number
JP2022035716A
JP2022035716A JP2020140218A JP2020140218A JP2022035716A JP 2022035716 A JP2022035716 A JP 2022035716A JP 2020140218 A JP2020140218 A JP 2020140218A JP 2020140218 A JP2020140218 A JP 2020140218A JP 2022035716 A JP2022035716 A JP 2022035716A
Authority
JP
Japan
Prior art keywords
mass
less
aluminum alloy
volume
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020140218A
Other languages
Japanese (ja)
Other versions
JP7336421B2 (en
Inventor
眞二 籠重
Shinji Kagoshige
智明 山ノ井
Tomoaki Yamanoi
昌明 伊藤
Masaaki Ito
和久 宗宮
Kazuhisa Somiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Aluminium Corp
Original Assignee
Sakai Aluminium Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Aluminium Corp filed Critical Sakai Aluminium Corp
Priority to JP2020140218A priority Critical patent/JP7336421B2/en
Priority to CN202110959320.XA priority patent/CN114075636A/en
Publication of JP2022035716A publication Critical patent/JP2022035716A/en
Application granted granted Critical
Publication of JP7336421B2 publication Critical patent/JP7336421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/02Light metals
    • C23F3/03Light metals with acidic solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

To provide a rolled aluminum alloy material excellent in brilliancy and processability.SOLUTION: A rolled aluminum alloy material in this invention has a chemical composition comprising in mass%, Si of 0.02-0.08%, Fe of 0.02-0.08%, Cu of 0.06-0.15%, Mn of 0.0005-0.01%, Mg of 0.42-0.75%, Ni of 0.001-0.1%, Zn of 0.001-0.1%, Ti of 0.0005-0.04%, Ga of 0.0002-0.01%, B of 0.0002-0.01% and the balance of Al with inevitable impurities. In this material, tensile strength is in a range of 100-180 MPa and conductivity is 50% or more in IACS. Further, the reflectance after chemical polishing treatment at the solution temperature of 90°C for 120 sec. using a chemical polishing solution comprising phosphoric acid of 70 vol%, nitric acid of 5 vol% and the balance of water is 65% or more.SELECTED DRAWING: None

Description

この発明は、成形加工後に化学研磨および陽極酸化処理を施すことにより、化粧品用ケース、キャップ、自動車や室内照明用のリフレクター、装飾品等に好んで使用されるアルミニウム合金圧延材およびその製造方法に関する。 The present invention relates to an aluminum alloy rolled material which is preferably used for cosmetic cases, caps, reflectors for automobiles and interior lighting, decorative objects, etc. by subjecting them to chemical polishing and anodizing after molding, and a method for producing the same. ..

化粧品用ケース、キャップ、自動車や室内照明用のリフレクター、装飾品等に使用される、光輝性と深絞り・へら絞り等の成形性の双方が要求される部材には、JISA1085やA1050のようなJIS1000系のアルミニウム材料がよく用いられる。また、強度が特に求められる用途についてはA5052等の5000系のアルミニウム材料が多く用いられる。 Materials such as JIS A1085 and A1050 are used for cosmetic cases, caps, reflectors for automobiles and interior lighting, decorative items, etc. that require both brilliance and moldability such as deep drawing and spinning. JIS1000 series aluminum materials are often used. Further, for applications where strength is particularly required, 5000 series aluminum materials such as A5052 are often used.

このような用途に用いられるアルミニウム材料は、成形加工後にリン酸を主成分とする酸性浴にて電解研磨または化学研磨され、その後陽極酸化処理を実施し、必要に応じて着色された後、封孔処理を施すことにより耐傷性、耐食性、耐候性を高めることが、標準的な構成となっている。 The aluminum material used for such applications is electropolished or chemically polished in an acidic bath containing phosphoric acid as a main component after molding, then anodized, colored as necessary, and then sealed. It is a standard configuration to improve scratch resistance, corrosion resistance, and weather resistance by applying hole treatment.

特に近年は、LED素子を搭載した照明器具用途や意匠性、装飾性を高め、金属的な光沢・質感・高級感を製品に付与する製品用途への需要増に対し、電力を使用せずに複雑な形状や微小な部品や内面側への光輝性付与が可能な化学研磨に適した材料ニーズが高まっている。 Especially in recent years, in response to increasing demand for lighting equipment applications equipped with LED elements, and product applications that enhance design and decoration and give products a metallic luster, texture, and luxury, without using electric power. There is an increasing need for materials suitable for chemical polishing that can impart brilliance to complex shapes, minute parts, and the inner surface side.

このような用途に対して、上述のJISA1085やA1050のようなJIS1000系の純アルミニウム合金は絞り加工性ならびに化学研磨後の光輝性には優れるが、強度が低いため、製品としての使用時に取り扱い時の打痕の発生や落下や衝撃による変形の課題がある。一方、高強度材として知られるJISA5052等のAl-Mg系合金(5000系合金)は、強度は高いがそれ故に成形加工時の金型への負荷や成形後のスプリングバックが大きく、正確な製品形状・寸法精度を得るための易加工性を必ずしも満足していないのが現状である。 For such applications, JIS1000-based pure aluminum alloys such as JISA1085 and A1050 mentioned above are excellent in drawability and brilliance after chemical polishing, but because of their low strength, they are used when handled as a product. There is a problem of dents and deformation due to dropping or impact. On the other hand, Al-Mg-based alloys (5000-based alloys) such as JISA5052, which are known as high-strength materials, have high strength, but therefore have a large load on the mold during molding and springback after molding, and are accurate products. The current situation is that the ease of processing for obtaining shape and dimensional accuracy is not always satisfied.

例えば、特許文献1には、Cuを0.05%~0.15%、Siを0.1%以下、Feを0.05%~0.2%、Mgを0.2%~0.4%以下含有し、かつ、Tiを0.1%以下、Bを0.01%以下のうち少なくとも1種以上を含む光輝アルマイト性および深絞り性、深絞り時の耐肌荒れ性に優れたAl合金板とその製造方法が開示されている。 For example, Patent Document 1 describes Cu as 0.05% to 0.15%, Si as 0.1% or less, Fe as 0.05% to 0.2%, and Mg as 0.2% to 0.4. An Al alloy containing% or less and containing at least one of Ti 0.1% or less and B 0.01% or less, which is excellent in brilliant alumite property, deep drawing property, and rough skin resistance at the time of deep drawing. The plate and its manufacturing method are disclosed.

特許文献2には、Mgを1.5%~5.0%、Tiを0.005%~0.20%、Cuを0.01%~0.30%含有し、更にMnを0.05%~0.60%、Crを0.05%~0.40%、Zrを0.05%~0.30%、Vを0.05%~0.20%、Bを0.0005%~0.05%のうち1種または2種以上含有し、かつ、不純物としてFeを0.10%以下、Siを0.10%以下、その他不純物単独で0.05%以下に抑制したスピニング加工性および光輝性に優れたAl合金とその製造方法が開示されている。 Patent Document 2 contains 1.5% to 5.0% of Mg, 0.005% to 0.20% of Ti, 0.01% to 0.30% of Cu, and 0.05% of Mn. % To 0.60%, Cr 0.05% to 0.40%, Zr 0.05% to 0.30%, V 0.05% to 0.20%, B 0.0005% to Spinning workability that contains one or more of 0.05% and suppresses Fe as impurities to 0.10% or less, Si to 0.10% or less, and other impurities alone to 0.05% or less. Further, an Al alloy having excellent brilliance and a method for producing the same are disclosed.

特許文献3には、Siを0.10%以下、Feを0.10%以下、Cuを0.01%~0.10%、Mgを1.5%~3.0%含有し、残部がAlおよび不可避不純物よりなる光輝アルマイト性に優れたAl合金板の製造方法が開示されている。 Patent Document 3 contains Si of 0.10% or less, Fe of 0.10% or less, Cu of 0.01% to 0.10%, Mg of 1.5% to 3.0%, and the balance. A method for producing an Al alloy plate having excellent brilliant alumite properties, which is composed of Al and unavoidable impurities, is disclosed.

特許文献4には、Feを0.05%~0.15%、Cuを0.06%~0.15%、Tiを0.004%~0.04%含有し、不純物としてのSi、MgおよびMnが0.08%以下であり、残部がAlおよび不可避不純物からなる照明反射板用Al合金板とその製造方法が開示されている。 Patent Document 4 contains 0.05% to 0.15% of Fe, 0.06% to 0.15% of Cu, 0.004% to 0.04% of Ti, and Si and Mg as impurities. And Mn is 0.08% or less, and an Al alloy plate for a lighting reflector in which the balance is Al and unavoidable impurities and a method for producing the same are disclosed.

特許文献5には、Feを0.005%~0.05%、Siを0.005%~0.05%、Cuを0.01%~0.1%、Crを0.05%~0.30%、Mgを2.5%~3.5%含有し、残部がAlと不純物からなる深絞り性、耐凹み性および外観に優れたAl合金が開示されている。 In Patent Document 5, Fe is 0.005% to 0.05%, Si is 0.005% to 0.05%, Cu is 0.01% to 0.1%, and Cr is 0.05% to 0. Disclosed is an Al alloy containing .30% and 2.5% to 3.5% of Mg, and the balance of which is Al and impurities, which is excellent in deep drawing property, dent resistance and appearance.

特開昭57-51249号公報Japanese Unexamined Patent Publication No. 57-51249 特開昭62-23973号公報Japanese Unexamined Patent Publication No. 62-23973 特開昭62-270757号公報Japanese Unexamined Patent Publication No. 62-270757 特開平8-269605号公報Japanese Unexamined Patent Publication No. 8-269605 特開2007-204842号公報Japanese Unexamined Patent Publication No. 2007-204842

しかしながら、特許文献1では電解研磨性、化学研磨性、アルマイト後の光沢については満足されているものの強度についての検討は必ずしも十分なものではない。 However, although Patent Document 1 is satisfied with the electrolytic polishing property, the chemical polishing property, and the gloss after alumite, the study on the strength is not always sufficient.

特許文献2は、非常に高い強度が要求される用途への適用例であり、目的とする成形加工方法が異なるため、光輝性は満足されているものの化粧品用ケースやキャップ等の薄板の絞り材用途には適さない材料となっている。 Patent Document 2 is an application example to an application that requires extremely high strength, and since the target molding processing method is different, the brilliance is satisfied, but a thin plate drawing material such as a cosmetic case or a cap is satisfied. The material is not suitable for use.

特許文献3は、特許文献1より高強度が要求される中強度アルミニウム合金板の製造方法について開示している。同文献では、光輝性については検討されているものの成形性については、曲げ性と張出性についてのみ検討されており、化粧品用ケースやキャップ等の薄板の絞り材用途に必須の深絞り性については検討されていない。 Patent Document 3 discloses a method for manufacturing a medium-strength aluminum alloy plate, which requires higher strength than Patent Document 1. In this document, although the brilliance is examined, the moldability is examined only for the bendability and the overhangability, and the deep drawing property essential for the use of thin plate drawing materials such as cosmetic cases and caps. Has not been considered.

特許文献4は、純アルミ系をベースにFe、Cu、Tiを添加し、耐力を低く抑えることを狙いとしているが、薄板でかつ、化粧品用ケースのように天面と側面の成形加工度が異なるような形状については、成形加工度が低く加工硬化の少ない部分の形態維持性(耐凹み性等)に著しく劣るため、取り扱い時の凹み等の課題が解決されていない。 Patent Document 4 aims to reduce the yield strength by adding Fe, Cu, and Ti to a pure aluminum base, but it is a thin plate and has a top and side surface molding process like a cosmetic case. For different shapes, the morphological maintenance (dent resistance, etc.) of the portion having a low degree of molding process and less work hardening is remarkably inferior, so that problems such as dents during handling have not been solved.

特許文献5には、Al-Mg系にFe、Si、Cu、Crを添加して深絞り性、耐凹み性、外観性(光輝性)を向上させることが開示されているが、アルマイト処理(陽極酸化処理)後の色調変化により、使用用途が限定される課題が残っている。 Patent Document 5 discloses that Fe, Si, Cu, and Cr are added to an Al—Mg system to improve deep drawing property, dent resistance, and appearance (brilliance). Due to the change in color tone after anodizing), there remains the problem that the intended use is limited.

上記のように従来においては、照明器具用途や意匠性、装飾性が要求される用途に用いられる光輝性アルミニウム材であって、光輝性易と加工性の双方を備えるアルミニウム合金板を得ることは非常に困難であるという課題があった。 As described above, conventionally, it is possible to obtain an aluminum alloy plate which is a brilliant aluminum material used for lighting equipment applications, applications requiring design and decorativeness, and has both brilliance and processability. There was the problem that it was very difficult.

この発明は、上記の課題に鑑みてなされたものであり、光輝性および加工性に優れたアルミニウム合金圧延材およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a rolled aluminum alloy material having excellent brilliance and workability and a method for producing the same.

本願発明者は、上記の課題を解決すべく、鋭意研究の結果、アルミニウム合金圧延材の組成とアルミニウム合金圧延材の製造工程を検討することで、光輝性ならびに加工性に優れたアルミニウム合金圧延材が得られることを見出し、本発明をなすに至った。 As a result of diligent research, the inventor of the present application examined the composition of the rolled aluminum alloy material and the manufacturing process of the rolled aluminum alloy material, and as a result, the rolled aluminum alloy material having excellent brilliance and workability. It was found that the above was obtained, and the present invention was made.

すなわち本発明は、以下の手段を備えるものである。 That is, the present invention comprises the following means.

[1]Si:0.02質量%~0.08質量%、Fe:0.02質量%~0.08質量%、Cu:0.06質量%~0.15質量%、Mn:0.0005質量%~0.01質量%、Mg:0.42質量%~0.75質量%、Ni:0.001質量%~0.1質量%、Zn:0.001質量%~0.1質量%、Ti:0.0005質量%~0.04質量%、Ga:0.0002質量%~0.01質量%、B:0.0002質量%~0.01質量%を含有し、残部がAlと不可避不純物からなる化学組成を有し、
かつ、引張強さが100MPa以上180MPa以下、導電率が50%IACS以上であり、更に、リン酸:70体積%、硝酸:5体積%、残部水からなる化学研磨液にて、液温90℃、時間120秒の化学研磨処理後の反射率が65%以上であることを特徴とするアルミニウム合金圧延材。
[1] Si: 0.02% by mass to 0.08% by mass, Fe: 0.02% by mass to 0.08% by mass, Cu: 0.06% by mass to 0.15% by mass, Mn: 0.0005 Mass% to 0.01% by mass, Mg: 0.42% by mass to 0.75% by mass, Ni: 0.001% by mass to 0.1% by mass, Zn: 0.001% by mass to 0.1% by mass , Ti: 0.0005% by mass to 0.04% by mass, Ga: 0.0002% by mass to 0.01% by mass, B: 0.0002% by mass to 0.01% by mass, and the balance is Al. It has a chemical composition consisting of unavoidable impurities and has a chemical composition.
In addition, the tensile strength is 100 MPa or more and 180 MPa or less, the conductivity is 50% IACS or more, and the liquid temperature is 90 ° C. with a chemical polishing liquid consisting of phosphoric acid: 70% by volume, nitric acid: 5% by volume, and the balance water. , An aluminum alloy rolled material characterized by having a reflectance of 65% or more after a chemical polishing treatment for a time of 120 seconds.

[2]前記化学組成におけるCu:0.08質量%~0.12質量%、Mn:0.001質量%~0.005質量%、Ni:0.002質量%~0.05質量%、Zn:0.002質量%~0.05質量%、Ti:0.005質量%~0.04質量%、Ga:0.002質量%~0.05質量%、B:0.001質量%~0.02質量%であり、
かつ、引張強さが125MPa以上165MPa以下、導電率が52%IACS以上である前項[1]に記載のアルミニウム合金圧延材。
[2] Cu: 0.08% by mass to 0.12% by mass, Mn: 0.001% by mass to 0.005% by mass, Ni: 0.002% by mass to 0.05% by mass, Zn in the chemical composition. : 0.002% by mass to 0.05% by mass, Ti: 0.005% by mass to 0.04% by mass, Ga: 0.002% by mass to 0.05% by mass, B: 0.001% by mass to 0 It is 0.02% by mass,
The rolled aluminum alloy material according to the preceding item [1], which has a tensile strength of 125 MPa or more and 165 MPa or less and a conductivity of 52% IACS or more.

[3]前記化学組成における不可避不純物中のCrが0.01質量%以下、Vが0.015質量%以下、Zrが0.015質量%以下、Caが0.005質量%以下、Pbが0.005質量%以下、Biが0.005質量%以下、Snが0.005質量%以下、Inが0.005質量%以下に規制されている前項[1]または[2]に記載のアルミニウム合金圧延材。 [3] Cr in the unavoidable impurities in the chemical composition is 0.01% by mass or less, V is 0.015% by mass or less, Zr is 0.015% by mass or less, Ca is 0.005% by mass or less, and Pb is 0. The aluminum alloy according to the preceding item [1] or [2], which is restricted to .005% by mass or less, Bi is 0.005% by mass or less, Sn is 0.005% by mass or less, and In is 0.005% by mass or less. Rolled material.

[4]Si:0.02質量%~0.08質量%、Fe:0.02質量%~0.08質量%、Cu:0.06質量%~0.15質量%、Mn:0.0005質量%~0.01質量%、Mg:0.42質量%~0.75質量%、Ni:0.001質量%~0.1質量%、Zn:0.001質量%~0.1質量%、Ti:0.0005質量%~0.04質量%、Ga:0.0002質量%~0.01質量%、B:0.0002質量%~0.01質量%を含有し、残部がAlと不可避不純物からなる化学組成を有するアルミニウム合金鋳塊に対し、
その鋳塊に実施される面削の前または後に、500℃以上580℃以下の温度で1時間以上20時間以下の時間にて均質化処理を実施し、480℃以上550℃以下の温度で0.5時間以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施した後、少なくとも1回、圧下率55%以上98.5%以下の冷間圧延を実施してアルミニウム合金圧延材を得るようにしたことを特徴とするアルミニウム合金圧延材の製造方法。
[4] Si: 0.02% by mass to 0.08% by mass, Fe: 0.02% by mass to 0.08% by mass, Cu: 0.06% by mass to 0.15% by mass, Mn: 0.0005 Mass% to 0.01% by mass, Mg: 0.42% by mass to 0.75% by mass, Ni: 0.001% by mass to 0.1% by mass, Zn: 0.001% by mass to 0.1% by mass , Ti: 0.0005% by mass to 0.04% by mass, Ga: 0.0002% by mass to 0.01% by mass, B: 0.0002% by mass to 0.01% by mass, and the balance is Al. For aluminum alloy ingots having a chemical composition consisting of unavoidable impurities
Before or after the surface milling carried out on the ingot, homogenization treatment is carried out at a temperature of 500 ° C. or higher and 580 ° C. or lower for 1 hour or longer and 20 hours or lower, and 0 at a temperature of 480 ° C. or higher and 550 ° C. or lower. Hot rolling is started after holding for 5 hours or more and 10 hours, and after performing hot rolling with a reduction ratio of 95% or more and 99.5% or less by a plurality of reduction passes, the reduction ratio is 55% or more and 98. A method for producing an aluminum alloy rolled material, which comprises performing cold rolling of 5% or less to obtain an aluminum alloy rolled material.

[5]前記化学組成におけるCu:0.08質量%~0.12質量%、Mn:0.001質量%~0.005質量%、Ni:0.002質量%~0.05質量%、Zn:0.002質量%~0.05質量%、Ti:0.005質量%~0.04質量%、Ga:0.002質量%~0.05質量%、B:0.001質量%~0.02質量%である前項[4]に記載のアルミニウム合金圧延材の製造方法。 [5] Cu: 0.08% by mass to 0.12% by mass, Mn: 0.001% by mass to 0.005% by mass, Ni: 0.002% by mass to 0.05% by mass, Zn in the chemical composition. : 0.002% by mass to 0.05% by mass, Ti: 0.005% by mass to 0.04% by mass, Ga: 0.002% by mass to 0.05% by mass, B: 0.001% by mass to 0 The method for producing a rolled aluminum alloy according to the preceding item [4], which is 0.02% by mass.

[6]前記化学組成における不可避不純物中のCrが0.01質量%以下、Vが0.015質量%以下、Zrが0.015質量%以下、Caが0.005質量%以下、Pbが0.005質量%以下、Biが0.005質量%以下、Snが0.005質量%以下、Inが0.005質量%以下に規制されている前項[4]または[5]に記載のアルミニウム合金圧延材の製造方法。 [6] Cr in the unavoidable impurities in the chemical composition is 0.01% by mass or less, V is 0.015% by mass or less, Zr is 0.015% by mass or less, Ca is 0.005% by mass or less, and Pb is 0. The aluminum alloy according to the preceding item [4] or [5], which is restricted to .005% by mass or less, Bi is 0.005% by mass or less, Sn is 0.005% by mass or less, and In is 0.005% by mass or less. Manufacturing method of rolled material.

[7]冷間圧延におけるいずれかのパスの前後に少なくとも1回、220℃以上380℃以下、0.5時間以上12時間保持による焼鈍工程を実施するようにした前項[4]~[6]のいずれか1項に記載のアルミニウム合金圧延材の製造方法。 [7] The previous section [4] to [6], in which the annealing step is carried out at least once before and after any of the passes in cold rolling by holding at 220 ° C. or higher and 380 ° C. or lower and 0.5 hours or longer for 12 hours. The method for producing a rolled aluminum alloy according to any one of the above items.

[8]冷間圧延を施した後に少なくとも1回、150℃以上300℃以下、0.5時間以上12時間以下保持による焼鈍工程を実施するようにした前項[4]~[7]のいずれか1項に記載のアルミニウム合金圧延材の製造方法。 [8] Any of the above items [4] to [7], in which the annealing step is carried out at least once after cold rolling by holding at 150 ° C. or higher and 300 ° C. or lower and 0.5 hours or longer and 12 hours or lower. The method for producing a rolled aluminum alloy according to item 1.

[9]前項[1]~[3]のいずれか1項に記載のアルミニウム合金圧延材を成形加工後、リン酸:70体積%~80体積%、硝酸:5体積%~10体積%、硝酸銅:0.2質量%~0.8質量%、残部水からなる化学研磨液にて、液温:90~100℃、時間:60秒~180秒の化学研磨処理を実施し、水洗、乾燥後に4~10μmのアルマイト処理を施して、反射率60%以上とすることを特徴とする光輝性成形体の製造方法。 [9] After molding the rolled aluminum alloy according to any one of the above items [1] to [3], phosphoric acid: 70% by volume to 80% by volume, nitric acid: 5% by volume to 10% by volume, nitric acid. A chemical polishing liquid consisting of copper: 0.2% by mass to 0.8% by volume and the balance water is subjected to chemical polishing treatment at a liquid temperature of 90 to 100 ° C. and a time of 60 to 180 seconds, and then washed and dried. A method for producing a brilliant molded product, which is characterized in that it is later subjected to an alumite treatment of 4 to 10 μm to have a reflectance of 60% or more.

[10]前項[4]~[8]のいずれか1項に記載の製造方法によって得られたアルミニウム合金圧延材を成形加工後、リン酸:70体積%~80体積%、硝酸:5体積%~10体積%、硝酸銅:0.2質量%~0.8質量%、残部水からなる化学研磨液にて、液温:90~100℃、時間:60秒~180秒の化学研磨処理を実施し、水洗、乾燥後に4~10μmのアルマイト処理を施して、反射率60%以上とすることを特徴とする光輝性成形体の製造方法。 [10] After molding the rolled aluminum alloy obtained by the production method according to any one of the above items [4] to [8], phosphoric acid: 70% by volume to 80% by volume and nitric acid: 5% by volume. Chemical polishing treatment consisting of ~ 10% by volume, copper nitrate: 0.2% by mass ~ 0.8% by mass, and residual water at a liquid temperature of 90 to 100 ° C. and a time of 60 seconds to 180 seconds. A method for producing a brilliant molded product, which is carried out, washed with water, dried, and then subjected to an alumite treatment of 4 to 10 μm to have a reflectance of 60% or more.

発明[1]のアルミニウム合金圧延材によれば、Si:0.02質量%~0.08質量%、Fe:0.02質量%~0.08質量%、Cu:0.06質量%~0.15質量%、Mn:0.0005質量%~0.01質量%、Mg:0.42質量%~0.75質量%、Ni:0.001質量%~0.1質量%、Zn:0.001質量%~0.1質量%、Ti:0.0005質量%~0.04質量%、Ga:0.0002質量%~0.01質量%、B:0.0002質量%~0.01質量%を含有し、残部がAlと不可避不純物からなる化学組成を有し、かつ、引張強さが100MPa以上180MPa以下、導電率が50%IACS以上であり、更に、リン酸:70体積%、硝酸:5体積%、残部水からなる化学研磨液にて、液温90℃、時間120秒の化学研磨処理後の反射率が65%以上であるため、優れた光輝性および加工性を得ることができる。 According to the rolled aluminum alloy material of the invention [1], Si: 0.02% by mass to 0.08% by mass, Fe: 0.02% by mass to 0.08% by mass, Cu: 0.06% by mass to 0. .15% by mass, Mn: 0.0005% by mass to 0.01% by mass, Mg: 0.42% by mass to 0.75% by mass, Ni: 0.001% by mass to 0.1% by mass, Zn: 0 .001% by mass to 0.1% by mass, Ti: 0.0005% by mass to 0.04% by mass, Ga: 0.0002% by mass to 0.01% by mass, B: 0.0002% by mass to 0.01 It contains mass%, has a chemical composition in which the balance is composed of Al and unavoidable impurities, has a tensile strength of 100 MPa or more and 180 MPa or less, a conductivity of 50% IACS or more, and a phosphoric acid: 70% by mass. A chemical polishing liquid consisting of nitric acid: 5% by mass and the balance of water has a reflectance of 65% or more after a chemical polishing treatment at a liquid temperature of 90 ° C. and a time of 120 seconds, so that excellent brilliance and workability can be obtained. Can be done.

発明[2]のアルミニウム合金圧延材によれば、発明[1]のアルミニウム合金圧延材であってさらに、前記化学組成におけるCu:0.08質量%~0.12質量%、Mn:0.001質量%~0.005質量%、Ni:0.002質量%~0.05質量%、Zn:0.002質量%~0.05質量%、Ti:0.005質量%~0.04質量%、Ga:0.002質量%~0.05質量%、B:0.001質量%~0.02質量%であり、かつ、引張強さが125MPa以上165MPa以下、導電率が52%IACS以上であるため、より優れた光輝性および加工性を得ることができる。 According to the rolled aluminum alloy material of the invention [2], the rolled aluminum alloy material of the invention [1] further has Cu: 0.08% by mass to 0.12% by mass and Mn: 0.001 in the chemical composition. Mass% to 0.005% by mass, Ni: 0.002% by mass to 0.05% by mass, Zn: 0.002% by mass to 0.05% by mass, Ti: 0.005% by mass to 0.04% by mass , Ga: 0.002% by mass to 0.05% by mass, B: 0.001% by mass to 0.02% by mass, and a tensile strength of 125 MPa or more and 165 MPa or less and a conductivity of 52% IACS or more. Therefore, more excellent brilliance and processability can be obtained.

発明[3]のアルミニウム合金圧延材によれば、発明[1]または[2]のアルミニウム合金圧延材であってさらに、前記化学組成における不可避不純物中のCrが0.01質量%以下、Vが0.015質量%以下、Zrが0.015質量%以下、Caが0.005質量%以下、Pbが0.005質量%以下、Biが0.005質量%以下、Snが0.005質量%以下、Inが0.005質量%以下に規制されているため、より一層直ぐぐれた光輝性および加工性を得ることができる。 According to the aluminum alloy rolled material of the invention [3], in the aluminum alloy rolled material of the invention [1] or [2], Cr in the unavoidable impurities in the chemical composition is 0.01% by mass or less, and V is 0.015% by mass or less, Zr is 0.015% by mass or less, Ca is 0.005% by mass or less, Pb is 0.005% by mass or less, Bi is 0.005% by mass or less, Sn is 0.005% by mass. Hereinafter, since In is restricted to 0.005% by mass or less, even more excellent brilliance and processability can be obtained.

発明[4]~[6]の製造方法によれば、所定の化学組成を有するアルミニウム合金鋳塊に対し、その鋳塊に実施される面削の前または後に、500℃以上580℃以下の温度で1時間以上20時間以下の時間にて均質化処理を実施し、480℃以上550℃以下の温度で0.5時間以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施した後、少なくとも1回、圧下率55%以上98.5%以下の冷間圧延を実施してアルミニウム合金圧延材を得るものであるため、優れた光輝性および加工性を有するアルミニウム合金圧延材を得ることができる。 According to the production methods of the inventions [4] to [6], the temperature of an aluminum alloy ingot having a predetermined chemical composition is 500 ° C. or higher and 580 ° C. or lower before or after rolling on the ingot. The homogenization treatment was carried out in 1 hour or more and 20 hours or less, and hot rolling was started after holding at a temperature of 480 ° C or more and 550 ° C or less for 0.5 hours or more and 10 hours. Since hot rolling of 95% or more and 99.5% or less is carried out and then cold rolling of a reduction ratio of 55% or more and 98.5% or less is carried out at least once, an aluminum alloy rolled material is obtained. An aluminum alloy rolled material having excellent brilliance and processability can be obtained.

発明[7]の製造方法によれば、発明[4]~[6]の製造方法であってさらに、冷間圧延におけるいずれかのパスの前後に少なくとも1回、220℃以上380℃以下、0.5時間以上12時間保持による焼鈍工程を実施するものであるため、より優れた光輝性および加工性を有するアルミニウム合金圧延材を得ることができる。 According to the manufacturing method of the invention [7], it is the manufacturing method of the inventions [4] to [6], and further, at least once before and after any one pass in cold rolling, 220 ° C. or higher and 380 ° C. or lower, 0. Since the annealing step is carried out by holding for 5 hours or more and 12 hours, an aluminum alloy rolled material having more excellent brilliance and processability can be obtained.

発明[8]の製造方法によれば、発明[4]~[7]の製造方法であってさらに、冷間圧延を施した後に少なくとも1回、150℃以上300℃以下、0.5時間以上12時間以下保持による焼鈍工程を実施するものであるため、より一層優れた光輝性および加工性を有するアルミニウム合金圧延材を得ることができる。 According to the manufacturing method of the invention [8], it is the manufacturing method of the inventions [4] to [7], and further, at least once after cold rolling, 150 ° C. or higher and 300 ° C. or lower, 0.5 hours or longer. Since the annealing step is carried out by holding for 12 hours or less, it is possible to obtain an aluminum alloy rolled material having even more excellent brilliance and processability.

発明[9]の製造方法によれば、発明[1]~[3]のアルミニウム合金圧延材を成形加工後、リン酸:70体積%~80体積%、硝酸:5体積%~10体積%、硝酸銅:0.2質量%~0.8質量%、残部水からなる化学研磨液にて、液温:90~100℃、時間:60秒~180秒の化学研磨処理を実施し、水洗、乾燥後に4~10μmのアルマイト処理を施して、反射率60%以上とするものであるため、優れた光輝性および加工性を有する光輝性成形体を得ることができる。 According to the production method of the invention [9], after molding the rolled aluminum alloy material of the inventions [1] to [3], phosphoric acid: 70% by volume to 80% by volume, nitric acid: 5% by volume to 10% by volume, Copper nitrate: 0.2% by volume to 0.8% by volume, with a chemical polishing liquid consisting of the balance water, liquid temperature: 90 to 100 ° C., time: 60 to 180 seconds, chemical polishing treatment, washing with water, After drying, it is subjected to an alumite treatment of 4 to 10 μm to have a reflectance of 60% or more, so that a brilliant molded body having excellent brilliance and processability can be obtained.

発明[10]の製造方法によれば、発明[4]~[8]の製造方法によって得られたアルミニウム合金圧延材を成形加工後、リン酸:70体積%~80体積%、硝酸:5体積%~10体積%、硝酸銅:0.2質量%~0.8質量%、残部水からなる化学研磨液にて、液温:90~100℃、時間:60秒~180秒の化学研磨処理を実施し、水洗、乾燥後に4~10μmのアルマイト処理を施して、反射率60%以上とするものであるため、優れた光輝性および加工性を有する光輝性成形体を得ることができる。 According to the production method of the invention [10], after molding the aluminum alloy rolled material obtained by the production methods of the inventions [4] to [8], phosphoric acid: 70% by volume to 80% by volume, nitrate: 5 volumes. Chemical polishing treatment consisting of% to 10% by volume, copper nitrate: 0.2% by volume to 0.8% by volume, and residual water at a liquid temperature of 90 to 100 ° C. and a time of 60 to 180 seconds. After washing with water and drying, an alumite treatment of 4 to 10 μm is performed to obtain a reflectance of 60% or more, so that a brilliant molded body having excellent brilliance and processability can be obtained.

本願発明者は、アルミニウム合金圧延材用鋳塊に対し熱間圧延、冷間圧延を順次実施してアルミニウム合金圧延材を製造する製造方法において、化学研磨時の均一溶解を確保するためにAl、Si、Fe、Cu、Mn、Mg、Ni、Zn、Ti、B等の元素が相互に形成する金属間化合物の発生を抑止しながら材料強度ならびに導電率を制御することで、光輝性ならびに加工性に優れたアルミニウム合金圧延材が得られることを見出し、本発明をなすに至った。 In the manufacturing method for producing an aluminum alloy rolled material by sequentially performing hot rolling and cold rolling on an ingot for an aluminum alloy rolled material, the inventor of the present application uses Al to ensure uniform melting during chemical polishing. By controlling the material strength and conductivity while suppressing the generation of intermetallic compounds formed by elements such as Si, Fe, Cu, Mn, Mg, Ni, Zn, Ti, and B, brilliance and workability. It has been found that an excellent rolled aluminum alloy can be obtained, and the present invention has been made.

以下に、本発明のアルミニウム合金圧延材の構成について詳細に説明する。 Hereinafter, the configuration of the rolled aluminum alloy material of the present invention will be described in detail.

本願のアルミニウム合金圧延材の合金組成(化学組成)において、各元素の添加目的および含有量の限定理由は下記の通りである。 In the alloy composition (chemical composition) of the rolled aluminum alloy of the present application, the purpose of adding each element and the reason for limiting the content are as follows.

(Si含有量)
Siは、再結晶温度を上昇させるとともに結晶粒の粗大化を抑制する。この作用を得るために、下限値以上の含有が必要である。一方、過度に含有すると、単体またはAl-Fe-Si 系の金属間化合物を形成し、化学研磨処理時に金属間化合物周辺が局部溶解して微細な凹凸を形成し易く、反射率が低下する。また、陽極酸化皮膜中に混入した金属間化合物が、皮膜膜の透明性を阻害する。従い、本発明では、Si含有量は0.02質量%以上0.08質量%以下(0.02質量%~0.08質量%と同様である、以下同じ)とする。Si含有量は0.025質量%以上0.06質量%以下であることが好ましく、更に0.03質量%以上0.05質量%以下であることが一層好ましい。
(Si content)
Si raises the recrystallization temperature and suppresses the coarsening of crystal grains. In order to obtain this effect, the content must be at least the lower limit. On the other hand, if it is excessively contained, a simple substance or an Al—Fe—Si-based intermetallic compound is formed, and the periphery of the intermetallic compound is likely to be locally melted during the chemical polishing treatment to form fine irregularities, resulting in a decrease in reflectance. In addition, the intermetallic compound mixed in the anodic oxide film inhibits the transparency of the film. Therefore, in the present invention, the Si content is 0.02% by mass or more and 0.08% by mass or less (similar to 0.02% by mass to 0.08% by mass, the same applies hereinafter). The Si content is preferably 0.025% by mass or more and 0.06% by mass or less, and more preferably 0.03% by mass or more and 0.05% by mass or less.

(Fe含有量)
Feは、再結晶温度を上昇させるとともに結晶粒を微細化させ材料強度を向上させる。この作用を得るために、下限値以上の含有が必要となる。一方、過度に含有すると、Al-Fe系の金属間化合物が過剰に形成され、化学研磨処理時に金属間化合物周辺が局部溶解して微細な凹凸を形成し易く、反射率が低下する。また、陽極酸化皮膜中に混入した金属間化合物が、皮膜膜の透明性を阻害する。本発明では、Fe含有量は0.02質量%以上0.08質量%以下とする。Fe含有量は0.025質量%以上0.06質量%以下であることが好ましく、更に0.03質量%以上0.05質量%以下であることが一層好ましい。
(Fe content)
Fe raises the recrystallization temperature and refines the crystal grains to improve the material strength. In order to obtain this effect, the content must be at least the lower limit. On the other hand, if it is excessively contained, an Al—Fe-based intermetallic compound is excessively formed, and the periphery of the intermetallic compound is likely to be locally dissolved during the chemical polishing treatment to form fine irregularities, resulting in a decrease in reflectance. In addition, the intermetallic compound mixed in the anodic oxide film inhibits the transparency of the film. In the present invention, the Fe content is 0.02% by mass or more and 0.08% by mass or less. The Fe content is preferably 0.025% by mass or more and 0.06% by mass or less, and more preferably 0.03% by mass or more and 0.05% by mass or less.

(Cu含有量)
Cuは、強度向上に有効な元素である。また、Al中に固溶し、Al材と各種金属間化合物との電位差が小さくなることで、化学研磨又の表面凹凸を均一にする効果を有する。この効果を得るために、下限値以上の含有が必要となる。一方、過度に含有すると、Al-Cu系の粗大な金属間化合物が析出し易くなり、深絞り加工で割れの起点となり易い。また、陽極酸化時に皮膜の色調が黄色化し易くなる。更に多量に含有すると耐食性が低下する。従ってCu含有量の範囲は0.06質量%以上0.15質量%以下とする。更に0.08質量%以上0.12質量%以下であることが好ましく、特に0.09質量%以上0.11質量%以下であることが一層好ましい。
(Cu content)
Cu is an element effective for improving strength. Further, it has an effect of making chemical polishing or surface unevenness uniform by dissolving in Al and reducing the potential difference between the Al material and various intermetallic compounds. In order to obtain this effect, it is necessary to contain more than the lower limit. On the other hand, if it is excessively contained, coarse Al—Cu-based intermetallic compounds are likely to precipitate, and are likely to be the starting points of cracks in deep drawing. In addition, the color tone of the film tends to turn yellow during anodization. If it is contained in a larger amount, the corrosion resistance is lowered. Therefore, the range of Cu content is 0.06% by mass or more and 0.15% by mass or less. Further, it is preferably 0.08% by mass or more and 0.12% by mass or less, and particularly preferably 0.09% by mass or more and 0.11% by mass or less.

(Mn含有量)
Mnは再結晶粒の微細化のために一般的に添加される合金元素であるが、一方で、必要以上に添加するとAl-Fe-Mn系の金属間化合物を形成し、化学研磨処理時に金属間化合物周辺が局部溶解して微細な凹凸を形成し易く、反射率が低下する。また、Mnが陽極酸化皮膜形成時に皮膜中に取り込まれると、皮膜の色調が褐色になる。従って、Mnの含有量は0.0005質量%以上0.01質量%以下であることが好ましい。更に0.001質量%以上0.008質量%以下であることが好ましく、特に更に0.002質量%以上0.005質量%以下であることが一層好ましい。
(Mn content)
Mn is an alloy element generally added for the miniaturization of recrystallized grains, but on the other hand, when added more than necessary, an Al—Fe—Mn-based intermetallic compound is formed, and the metal is formed during the chemical polishing treatment. The periphery of the intermetallic compound is likely to dissolve locally to form fine irregularities, and the reflectance is lowered. Further, when Mn is incorporated into the film during the formation of the anodic oxide film, the color tone of the film becomes brown. Therefore, the Mn content is preferably 0.0005% by mass or more and 0.01% by mass or less. Further, it is preferably 0.001% by mass or more and 0.008% by mass or less, and further preferably 0.002% by mass or more and 0.005% by mass or less.

(Mg含有量)
MgはAl中に固溶することで強度向上に大きく寄与する元素である。但し、本発明では製品加工時の易加工性を確保するための最適値が存在する。一方、過度に含有すると、深絞りで割れを生じ、また、陽極酸化皮膜中に混入して、皮膜膜の透明性を阻害する傾向がある。以上の理由によりMgの含有量を0.42質量%以上0.75質量%以下の範囲とする。更に0.45質量%以上0.65質量%以下が望ましく、特に0.50質量%以上0.60質量%以下が一層好ましい。
(Mg content)
Mg is an element that greatly contributes to the improvement of strength by being dissolved in Al. However, in the present invention, there is an optimum value for ensuring easy workability at the time of product processing. On the other hand, if it is contained in an excessive amount, it tends to crack in deep drawing and is mixed in the anodic oxide film to impair the transparency of the film. For the above reasons, the Mg content is set in the range of 0.42% by mass or more and 0.75% by mass or less. Further, it is preferably 0.45% by mass or more and 0.65% by mass or less, and particularly preferably 0.50% by mass or more and 0.60% by mass or less.

(Zn含有量)
Znは少量であればAl中に固溶するため化学研磨時の金属間化合物による局部溶解が発生せず、強度アップにも寄与する元素である。しかしながら含有量が多くなると合金材の耐食性を低下させる。更に含有量が多くなるとMgとの共存による微細析出物により化学研磨時の反射率を著しく低下させる。従ってZnの含有量は0.001質量%以上0.1質量%以下とする。更に0.002質量%以上0.05質量%以下であることが好ましく、特に更に0.05質量%以上0.01質量%以下であることが一層好ましい。
(Zn content)
If the amount of Zn is small, it dissolves in Al, so that local dissolution due to the intermetallic compound during chemical polishing does not occur, and it is an element that also contributes to increasing the strength. However, when the content is high, the corrosion resistance of the alloy material is lowered. When the content is further increased, the reflectance at the time of chemical polishing is remarkably lowered due to the fine precipitates due to the coexistence with Mg. Therefore, the Zn content is 0.001% by mass or more and 0.1% by mass or less. Further, it is preferably 0.002% by mass or more and 0.05% by mass or less, and further preferably 0.05% by mass or more and 0.01% by mass or less.

(Ti含有量)
Tiは、合金をスラブ鋳造時の鋳塊組織を微細化し、熱間圧延時に粗大再結晶による筋模様の発生を防止すると共に、冷間圧延のパス間の前後に施される焼鈍時の結晶粒径を小さくして成形加工時の肌荒れを防止する効果がある。しかしながら、多量に含有すると、晶出物がサイズの大きい晶出物が多く生成するため、化学研磨時の反射率が低下する。従って、Ti含有量はTi:0.0005質量%以上0.04質量%以下とする。更に0.005質量%以上0.03質量%以下が好ましく、特に0.008質量%以上0.02質量%以下であることが一層好ましい。
(Ti content)
Ti refines the ingot structure during slab casting of the alloy, prevents the generation of streaks due to coarse recrystallization during hot rolling, and crystallized during annealing before and after the cold rolling pass. It has the effect of reducing the diameter to prevent rough skin during molding. However, if it is contained in a large amount, a large amount of crystallized products having a large size are produced, so that the reflectance during chemical polishing is lowered. Therefore, the Ti content is Ti: 0.0005% by mass or more and 0.04% by mass or less. Further, it is preferably 0.005% by mass or more and 0.03% by mass or less, and more preferably 0.008% by mass or more and 0.02% by mass or less.

(Ni含有量)
Niは少量であれば強度向上に有効な元素である。また。陽極酸化時の色調変化がFeやCr程大きくない。しかしながら、多量に添加するとAl-Fe-Ni系の金属間化合物を形成し、化学研磨処理時に金属間化合物周辺が局部溶解して微細な凹凸を形成し易く、反射率が低下する。従って、Ni含有量は0.001質量%以上0.1質量%以下とする。更に0.002質量%以上0.05質量%以下であることが好ましく、更に0.01質量%以上0.03質量%以下であることが一層好ましい。
(Ni content)
Ni is an element effective for improving strength if it is used in a small amount. Also. The color change during anodization is not as large as Fe and Cr. However, when added in a large amount, an Al—Fe—Ni-based intermetallic compound is formed, and the periphery of the intermetallic compound is easily dissolved locally during the chemical polishing treatment to form fine irregularities, resulting in a decrease in reflectance. Therefore, the Ni content is 0.001% by mass or more and 0.1% by mass or less. Further, it is preferably 0.002% by mass or more and 0.05% by mass or less, and further preferably 0.01% by mass or more and 0.03% by mass or less.

(Ga含有量)
GaはAl中に固溶するため化学研磨時の金属間化合物による局部溶解が発生せず、強度アップにも寄与する元素である。但し、多量に含有すると結晶粒界や晶出物界面に偏析しやすいため、熱間圧延、冷間圧延に表面割れを発生させ加工性を低下させる。従って、Gaの含有量は0.001質量%以上0.1質量%以下とする。更に0.002質量%以上0.05質量%以下であることが好ましく、更に0.01質量%以上0.03質量%以下であることが一層好ましい。
(Ga content)
Since Ga is a solid solution in Al, local dissolution by intermetallic compounds during chemical polishing does not occur, and it is an element that contributes to an increase in strength. However, if it is contained in a large amount, it tends to segregate at the grain boundaries and the interface of the crystallized material, so that surface cracks occur in hot rolling and cold rolling, which deteriorates workability. Therefore, the Ga content is 0.001% by mass or more and 0.1% by mass or less. Further, it is preferably 0.002% by mass or more and 0.05% by mass or less, and further preferably 0.01% by mass or more and 0.03% by mass or less.

(B含有量)
Bは鋳塊の結晶組織を微細化する効果がある。しかしながら、多量に含有すると、硬質の晶出物が多く生成するため、化学研磨時の反射率が低下する。従って、B含有量は0.0005質量%以上0.04質量%以下とする。更に0.001質量%以上0.02質量%以下が好ましく、特に0.003質量%以上0.01質量%以下であることが一層好ましい。
(B content)
B has the effect of refining the crystal structure of the ingot. However, if it is contained in a large amount, a large amount of hard crystallization is generated, so that the reflectance at the time of chemical polishing is lowered. Therefore, the B content is 0.0005% by mass or more and 0.04% by mass or less. Further, it is preferably 0.001% by mass or more and 0.02% by mass or less, and more preferably 0.003% by mass or more and 0.01% by mass or less.

(Cr含有量)
Crは強度向上ならびに結晶粒の微細化に有効な元素として知られているが、一方で熱間圧延時の加工性を低下させる。また、金属間化合物として析出して化学研磨時の反射率が低下する。また、陽極酸化時に皮膜の色調が黒色化し易くなる。さらに過度に含有すると、粗大な金属間化合物により皮膜が白濁化する。従って不可避不純物としてのCrの含有量の範囲は0.01質量%以下とする。更に0.008質量%以下であることが好ましく、特に0.0005質量%以下であることが一層好ましい。
(Cr content)
Cr is known as an element effective for improving strength and refining crystal grains, but on the other hand, it lowers processability during hot rolling. In addition, it precipitates as an intermetallic compound and the reflectance during chemical polishing decreases. In addition, the color tone of the film tends to turn black during anodizing. If it is further contained in an excessive amount, the film becomes cloudy due to the coarse intermetallic compound. Therefore, the range of the content of Cr as an unavoidable impurity is 0.01% by mass or less. Further, it is preferably 0.008% by mass or less, and particularly preferably 0.0005% by mass or less.

(V含有量)
Vは粒界に偏析しやすく、V含有量が多くなると延性を低下させるため、少ないことが好ましい。従って、不可避不純物としてのV含有量は0.015質量%以下とする。更に0.01質量%以下が好ましく、特に0.005質量%以下であることが一層好ましい。
(V content)
V tends to segregate at the grain boundaries, and the ductility decreases as the V content increases, so a small amount is preferable. Therefore, the V content as an unavoidable impurity is 0.015% by mass or less. Further, it is preferably 0.01% by mass or less, and more preferably 0.005% by mass or less.

(Zr含有量)
Zrは粒界に偏析しやすく、Zr含有量が多くなると延性を低下させるため、少ないことが好ましい。また、更に過度に含有するとAlとの微細な金属間化合物を形成し、化学研磨時の反射率が低下する。従って、不可避不純物としてのZr含有量は0.015質量%以下とする。更に0.01質量%以下が好ましく、特に0.005質量%以下であることが一層好ましい。
(Zr content)
Zr tends to segregate at the grain boundaries, and the ductility decreases as the Zr content increases, so a small amount is preferable. Further, if it is contained in an excessive amount, a fine intermetallic compound with Al is formed, and the reflectance at the time of chemical polishing is lowered. Therefore, the Zr content as an unavoidable impurity is 0.015% by mass or less. Further, it is preferably 0.01% by mass or less, and more preferably 0.005% by mass or less.

(Ca含有量)
Caは多量に含有すると延性を低下させる。従って、不可避不純物としてのCa含有量は0.005質量%以下であることが好ましく、更に0.004質量%以下であることが好ましく、特に0.003質量%以下であることが一層好ましい。
(Ca content)
When Ca is contained in a large amount, ductility is reduced. Therefore, the Ca content as an unavoidable impurity is preferably 0.005% by mass or less, more preferably 0.004% by mass or less, and particularly preferably 0.003% by mass or less.

(In含有量)
Inは耐食性を著しく低下させるため少ないことが好ましい。不可避不純物としてのIn含有量は0.005質量%以下であることが好ましく、更に0.004質量%以下であることが好ましく、特に0.003質量%以下であることが一層好ましい。
(In content)
It is preferable that the amount of In is small because it significantly lowers the corrosion resistance. The In content as an unavoidable impurity is preferably 0.005% by mass or less, more preferably 0.004% by mass or less, and particularly preferably 0.003% by mass or less.

(Pb、Bi、Sn含有量)
Pb、Bi、Snはアルミニウム中の固溶限が極めて低く、粒界に析出しやすい。従って不可避不純物としての各元素の含有量として0.005質量%以下であることが好ましく、更に0.004質量%以下であることが一層好ましく、特に0.003質量%以下であることが一層好ましい。
(Pb, Bi, Sn content)
Pb, Bi, and Sn have extremely low solid solution limits in aluminum and are likely to precipitate at grain boundaries. Therefore, the content of each element as an unavoidable impurity is preferably 0.005% by mass or less, further preferably 0.004% by mass or less, and particularly preferably 0.003% by mass or less. ..

次に、本願規定のアルミニウム合金圧延材を得るための処理工程について記述する。 Next, a processing process for obtaining the rolled aluminum alloy material specified in the present application will be described.

常法にて溶解成分調整し、上記合金組成のアルミニウム合金鋳塊を得る。得られた合金鋳塊に熱間圧延前加熱より前の工程として均質化処理を施すことが好ましい。 The dissolution component is adjusted by a conventional method to obtain an aluminum alloy ingot having the above alloy composition. It is preferable to subject the obtained alloy ingot to a homogenization treatment as a step prior to heating before hot rolling.

前記均質化処理はアルミニウム合金鋳塊中に固溶する元素濃度を均一にするために実施するが、温度が高すぎると共晶融解が生じ、熱間圧延時の割れの原因となるため、500℃以上580℃以下で行うことが好ましく、特に520℃以上560℃以下で行うことが好ましい。時間は1時間以上20時間以下で行うことが好ましく、特に2時間以上15時間以下で行うことが好ましい。 The homogenization treatment is carried out in order to make the concentration of elements that dissolve in the aluminum alloy ingot uniform. However, if the temperature is too high, eutectic melting occurs and causes cracking during hot rolling. Therefore, 500 The temperature is preferably 520 ° C or higher and 580 ° C or lower, and particularly preferably 520 ° C or higher and 560 ° C or lower. The time is preferably 1 hour or more and 20 hours or less, and particularly preferably 2 hours or more and 15 hours or less.

アルミニウム合金鋳塊に均質化処理を行った後、熱間圧延前加熱を行う。熱間圧延前加熱の好ましい温度範囲は480℃以上550℃以下である。時間は0.5時間以上10時間以下が好ましい。更に好ましい範囲は、温度490℃以上530℃以下、時間1時間以上8時間以下である。なお、前記均質化処理および熱間圧延前加熱双方の好ましい温度範囲にて均質化処理と熱間圧延前加熱を兼ねて同じ温度で加熱しても良い。 After the aluminum alloy ingot is homogenized, it is heated before hot rolling. The preferable temperature range for heating before hot rolling is 480 ° C. or higher and 550 ° C. or lower. The time is preferably 0.5 hours or more and 10 hours or less. A more preferable range is a temperature of 490 ° C. or higher and 530 ° C. or lower, and an hour of 1 hour or more and 8 hours or less. In addition, you may heat at the same temperature for both the homogenization treatment and the hot rolling preheating in the preferable temperature range of both the homogenization treatment and the hot rolling preheating.

鋳造後熱間圧延前加熱前に鋳塊の表面近傍の不純物層を除去する為に鋳塊に面削を施すことが好ましい。面削は鋳造後均質化処理前であっても良いし、均質化処理後熱間圧延前加熱前であってもよい。 After casting, before hot rolling, before heating, it is preferable to face-cut the ingot in order to remove the impurity layer near the surface of the ingot. The face milling may be performed after casting and before homogenization treatment, or after homogenization treatment and before hot rolling and before heating.

熱間圧延前加熱後のアルミニウム合金鋳塊に熱間圧延を施す。熱間圧延は粗熱間圧延と仕上げ熱間圧延からなり、粗熱間圧延機を用い複数のパスからなる粗熱間圧延を行った後、粗熱間圧延機とは異なる仕上げ熱間圧延機を用いて仕上げ熱間圧延を行う。 Before hot rolling Hot rolling is performed on the aluminum alloy ingot after heating. Hot rolling consists of rough hot rolling and finish hot rolling. After performing rough hot rolling consisting of multiple passes using a rough hot rolling machine, a finishing hot rolling machine different from the rough hot rolling machine Is used for finishing hot rolling.

上記熱間圧延ならびにその後の製造工程における結晶組織を十分に形成させるために熱間圧延総圧下率(粗+仕上げ)は95%以上とする。また、熱間圧延上り温度は200℃以上350℃以下とすることが好ましい。熱間圧延上り温度を200℃以下では熱間圧延中の再結晶が十分に進まず、最終圧延板に深絞り・へら絞り等の絞り加工を施した際に耳率が高くなるとともにフローラインが発生し、外観不良となる。また350℃以上では熱間圧延上りの結晶粒径が大きくなるために最終圧延板の結晶粒径が大きくなり、絞り加工後に肌荒れが発生する。 In order to sufficiently form the crystal structure in the hot rolling and the subsequent manufacturing process, the total hot rolling reduction ratio (rough + finish) is 95% or more. Further, the hot rolling ascending temperature is preferably 200 ° C. or higher and 350 ° C. or lower. When the hot rolling rise temperature is 200 ° C or less, recrystallization during hot rolling does not proceed sufficiently, and when the final rolled plate is drawn by deep drawing, spinning, etc., the ear ratio becomes high and the flow line becomes high. It occurs and the appearance is poor. Further, at 350 ° C. or higher, the crystal grain size after hot rolling becomes large, so that the crystal grain size of the final rolled plate becomes large, and rough skin occurs after drawing.

なお、本願において、粗熱間圧延機での最終パスを熱間圧延の最終パスとする場合は、仕上げ熱間圧延を省略することができる。 In the present application, when the final pass in the rough hot rolling mill is the final pass for hot rolling, the finishing hot rolling can be omitted.

冷間圧延をコイルで実施する場合には、仕上げ熱間圧延後のアルミニウム合金圧延材を巻き取り装置で巻き取って熱延コイルとすればよい。仕上げ熱間圧延を省略し、熱間粗圧延の最終パスを熱間圧延の最終パスとする場合は、熱間粗圧延の後、アルミニウム合金圧延材を巻き取り装置にて巻き取って熱延コイルとしてもよい。 When cold rolling is carried out with a coil, the aluminum alloy rolled material after finishing hot rolling may be wound by a winding device to form a hot-rolled coil. When finishing hot rolling is omitted and the final pass of hot rough rolling is the final pass of hot rough rolling, after hot rough rolling, the aluminum alloy rolled material is wound by a take-up device and hot-rolled coil. May be.

熱間圧延終了後、所定の厚さのアルミニウム合金圧延材を得るまでの冷間圧延の圧下率は所定の強度を得るために55%以上で実施されることが好ましい。冷間圧延によるアルミニウム合金圧延材の圧延率は更に70%以上が好ましく、特に85%以上が好ましい。圧下率の上限は、98.5%以下とする。 After the completion of hot rolling, the rolling reduction ratio of cold rolling until an aluminum alloy rolled material having a predetermined thickness is obtained is preferably 55% or more in order to obtain a predetermined strength. The rolling ratio of the rolled aluminum alloy material by cold rolling is more preferably 70% or more, and particularly preferably 85% or more. The upper limit of the reduction rate shall be 98.5% or less.

熱間圧延終了後、冷間圧延前後またはそのパス間においてアルミニウム合金圧延材に焼鈍を実施し、機械的性質、ならびに深絞り・へら絞り性を向上させることができる。本発明において上記効果を得るために少なくとも1回、温度220℃以上380℃以下の焼鈍を実施することが望ましい。更に温度240℃以上340℃以下が好ましく、特に温度260℃以上320℃以下が一層好ましい。 After the completion of hot rolling, the aluminum alloy rolled material can be annealed before and after cold rolling or between the passes to improve the mechanical properties and the deep drawing / spinning ability. In the present invention, it is desirable to perform annealing at a temperature of 220 ° C. or higher and 380 ° C. or lower at least once in order to obtain the above effects. Further, the temperature is preferably 240 ° C. or higher and 340 ° C. or lower, and particularly preferably the temperature of 260 ° C. or higher and 320 ° C. or lower.

前記熱間圧延終了後、冷間圧延前後またはそのパス間において実施するアルミニウム合金圧延材の焼鈍時間は、0.5時間以上12時間以下が好ましい。更に1時間以上8時間以下が好ましく、特に2時間以上6時間以下が一層好ましい。 After the completion of the hot rolling, the annealing time of the rolled aluminum alloy material before and after the cold rolling or between the passes is preferably 0.5 hours or more and 12 hours or less. Further, it is preferably 1 hour or more and 8 hours or less, and particularly preferably 2 hours or more and 6 hours or less.

前記焼鈍後に冷間圧延を実施する場合、加工硬化にて強度は向上する。但し、加工度が多すぎると伸びや、深絞り・へら絞り性の低下を招く。焼鈍後に冷間圧延を実施する場合の冷間圧延圧下率は10%以上40%以下が好ましい。更に15%以上35%以下が好ましく、特に20%以上30%以下が一層好ましい。 When cold rolling is carried out after the annealing, the strength is improved by work hardening. However, if the degree of processing is too high, it causes elongation and deterioration of deep drawing and spinning. When cold rolling is performed after annealing, the cold rolling reduction rate is preferably 10% or more and 40% or less. Further, 15% or more and 35% or less are preferable, and 20% or more and 30% or less are particularly preferable.

更に冷間圧延を施す工程が終了した後に焼鈍を実施することで大幅な強度低下を起こすことなく冷間圧延による伸びの低下を回復させることができる。本発明において上記効果を得るために少なくとも1回、150℃以上300℃以下、0.5時間以上12時間以下保持による焼鈍を実施することが好ましい。更に、180℃以上280℃以下、1時間以上8時間以下が好ましく、特に200℃以上250℃以下、2時間以上6時間以下が一層好ましい。 Further, by performing annealing after the step of cold rolling is completed, it is possible to recover the decrease in elongation due to cold rolling without causing a significant decrease in strength. In the present invention, in order to obtain the above effect, it is preferable to carry out annealing at least once by holding at 150 ° C. or higher and 300 ° C. or lower and 0.5 hours or longer and 12 hours or lower. Further, 180 ° C. or higher and 280 ° C. or lower are preferable, 1 hour or more and 8 hours or less, and particularly 200 ° C. or higher and 250 ° C. or lower, 2 hours or more and 6 hours or lower are more preferable.

冷間圧延前あるいは冷間圧延のパス間にて、板幅端部の耳割れ部位をトリミングし、更に冷間圧延を進めることで板破断を防ぐ工程を含めても良い。 A step of trimming the ear crack portion at the end of the plate width and further proceeding with cold rolling to prevent plate breakage may be included before cold rolling or between cold rolling passes.

また、冷間圧延後のアルミニウム合金圧延材に必要に応じて洗浄を実施しても良い。 Further, the rolled aluminum alloy material after cold rolling may be washed if necessary.

なお、本願発明のアルミニウム合金圧延材の製造はコイルで行ってもよく、単板で行ってもよい。また、冷間圧延より後の任意の工程でアルミニウム合金圧延材を切断し切断後の工程を単板で行ってもよいし、用途に応じスリットして条にしても良い。 The rolled aluminum alloy material of the present invention may be produced by a coil or a veneer. Further, the rolled aluminum alloy material may be cut in an arbitrary step after the cold rolling and the step after the cutting may be performed on a single plate, or may be slit and stripped according to the application.

本願発明のアルミニウム合金圧延材の引張強度(記号σとする)は100≦σ≦180MPa、伸び導電率(記号Σとする)はΣ≧50%IACSと規定する。引張強度σは更に125≦σ≦165MPa、導電率Σは更に52%IACS以上が好ましい。本願発明に規定の引張強度と導電率を満足することにより、光輝性ならびに加工性に優れたアルミニウム合金圧延材が得られる。 The tensile strength (symbol σ B ) of the rolled aluminum alloy of the present invention is defined as 100 ≤ σ B ≤ 180 MPa, and the elongation conductivity (symbol Σ) is defined as Σ ≧ 50% IACS. It is preferable that the tensile strength σ B is 125 ≦ σ B ≦ 165 MPa and the conductivity Σ is 52% IACS or more. By satisfying the tensile strength and conductivity specified in the present invention, a rolled aluminum alloy material having excellent brilliance and workability can be obtained.

薄板状とされたアルミニウム合金板は、さらに、所望の成形加工を行う。該加工では、深絞り加工や、へら絞り加工が可能であり、割れの発生を招くことなく種々の形状に成形をして成形体を得ることができる。その後、バフ研磨、化学研磨処理、陽極酸化処理が施される。 The thin aluminum alloy plate is further subjected to a desired molding process. In the processing, deep drawing and spinning are possible, and it is possible to obtain a molded body by molding into various shapes without causing cracking. After that, buffing, chemical polishing, and anodizing are performed.

該化学研磨処理では、リン酸、硝酸、硝酸銅を含有する研磨液を推奨するものの、その他の処理条件が特に制限されるものではなく、既知の種々の方法により行うことができる。 In the chemical polishing treatment, a polishing liquid containing phosphoric acid, nitric acid, and copper nitrate is recommended, but other treatment conditions are not particularly limited, and various known methods can be used.

また、該陽極酸化処理では、膜厚を4~10μmを推奨するものの、その他の処理条件が特に制限されるものではなく、既知の種々の方法により行うことができる。 Further, in the anodizing treatment, although the film thickness is recommended to be 4 to 10 μm, other treatment conditions are not particularly limited, and various known methods can be used.

上記の製造方法によれば、一定の強度を有することで深絞り・へら絞り等に対する適度な加工性を有し、成形後の化学研磨・アルマイト処理後の光輝性に優れ、かつ使用に際し、凹みや変形に強いアルミニウム合金圧延材が得られる。 According to the above manufacturing method, it has a certain strength and has appropriate workability for deep drawing, spinning, etc., has excellent brilliance after chemical polishing and alumite treatment after molding, and is dented during use. An aluminum alloy rolled material that is resistant to deformation can be obtained.

さらに本発明により得られたアルミニウム合金圧延材を用いて、化粧品用ケース、キャップ、自動車や室内照明用のリフレクター、装飾品等の光輝性成形体を確実に得ることができる。 Further, by using the rolled aluminum alloy obtained by the present invention, it is possible to surely obtain a brilliant molded body such as a cosmetic case, a cap, a reflector for automobiles and interior lighting, and a decorative item.

以下に、本発明を実施例により説明する。なお、本発明は、ここに記述する実施例に発明の範囲を限定するものではなく、本発明の趣旨に適合しうる範囲で適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術範囲に含まれる。 Hereinafter, the present invention will be described by way of examples. It should be noted that the present invention does not limit the scope of the invention to the examples described here, and it is also possible to carry out the present invention with appropriate modifications within the range suitable for the gist of the present invention. It is included in the technical scope of the present invention.

Figure 2022035716000001
Figure 2022035716000001

Figure 2022035716000002
Figure 2022035716000002

Figure 2022035716000003
Figure 2022035716000003

表1に本実施例で準備した各アルミニウム合金スラブ(アルミニウム合金鋳塊)の化学組成(C1~C12)を示す。C1~C6の化学組成は、本発明に関連した化学組成(請求項1の化学組成)に含まれるものであり、C7~C12の化学組成は、本発明に関連した化学組成を逸脱するものである。 Table 1 shows the chemical compositions (C1 to C12) of each aluminum alloy slab (aluminum alloy ingot) prepared in this example. The chemical compositions of C1 to C6 are included in the chemical composition related to the present invention (the chemical composition of claim 1), and the chemical compositions of C7 to C12 deviate from the chemical composition related to the present invention. be.

表2に本実施例において圧延材を製造するに際して実施される各種の製造工程(P1~P11)を示す。P1~P6の製造工程は、本発明に関連した製造工程(請求項4の製造工程)に含まれるものであり、P7~P11の製造工程は、いずれかの処理工程が本発明に関連した製造工程を逸脱するものである。 Table 2 shows various manufacturing processes (P1 to P11) carried out when the rolled material is manufactured in this embodiment. The manufacturing processes of P1 to P6 are included in the manufacturing process (manufacturing step of claim 4) related to the present invention, and the manufacturing steps of P7 to P11 are manufactured in which any of the processing steps is related to the present invention. It deviates from the process.

また表3には表1の化学組成(C1~C12)の各合金スラブに対し、表2の製造工程(P1~P11)のいずれの工程が実施されたかの情報が含まれている。例えば実施例1~6は、化学組成C1~C6の各合金スラブに対し、製造工程P1~P6がそれぞれ実施されたものであり、比較例7~12は、化学組成C7~C12の各合金スラブに対し、製造工程P10,P7,P6,P8,P9,P11がそれぞれ実施されたものである。 In addition, Table 3 contains information on which of the manufacturing steps (P1 to P11) in Table 2 was carried out for each alloy slab having the chemical composition (C1 to C12) in Table 1. For example, in Examples 1 to 6, the manufacturing steps P1 to P6 were carried out for each alloy slab having a chemical composition C1 to C6, and in Comparative Examples 7 to 12, each alloy slab having a chemical composition C7 to C12 was carried out. On the other hand, the manufacturing processes P10, P7, P6, P8, P9, and P11 were carried out, respectively.

具体的に説明すると、表1の化学組成のアルミニウム合金スラブに面削を施し、次いで、面削後の合金スラブに対し加熱炉中で表2記載の均質化処理を実施した後、同じ炉中で温度を降下させ、表2記載の熱間圧延前加熱温度に到達後に保持し、表2記載の条件にて熱間圧延を実施し、表2記載の熱延上り温度、板厚の熱間圧延板を得た。仕上げ熱間圧延後の合金板に表2記載の中間熱処理、冷間圧延、最終熱処理を施し、実施例1~6および比較例7~12の所定の板厚のアルミニウム合金板(アルミニウム合金圧延材)を得た。 Specifically, the aluminum alloy slab having the chemical composition shown in Table 1 is face-cut, and then the alloy slab after the face-cutting is subjected to the homogenization treatment shown in Table 2 in a heating furnace, and then in the same furnace. After the temperature is lowered to the temperature before hot rolling shown in Table 2, the temperature is maintained after reaching the heating temperature shown in Table 2, and hot rolling is carried out under the conditions shown in Table 2. A rolled plate was obtained. After the hot-rolled finish, the alloy plate is subjected to the intermediate heat treatment, cold rolling, and final heat treatment shown in Table 2, and the aluminum alloy plate (aluminum alloy rolled material) having a predetermined plate thickness in Examples 1 to 6 and Comparative Examples 7 to 12 is applied. ) Was obtained.

こうして得られた各合金板材に以下の方法により、引張強さ、導電率、耳率を測定し評価した。その評価結果を表3に併せて示す。 The tensile strength, conductivity, and ear ratio of each alloy plate thus obtained were measured and evaluated by the following methods. The evaluation results are also shown in Table 3.

[引張強さ、耐力、伸び]
引張強さ(σB)、耐力(σ0.2)および伸び(δ)は、JISZ2201に定めるJIS5号試験片にて、圧延方向に対し平行方向に採取した試料について常温、常法により測定した。そして100≦σ≦180MPaでかつ、δ≧10%のものを「○」とした。
[Tensile strength, proof stress, elongation]
The tensile strength (σ B ), proof stress (σ 0.2 ) and elongation (δ) were measured at room temperature and by a conventional method for a sample collected in a direction parallel to the rolling direction with a JIS No. 5 test piece defined in JIS Z2201. .. Then, those having 100 ≦ σ B ≦ 180 MPa and δ ≧ 10% were designated as “◯”.

[導電率]
得られた合金板の導電率を、国際的に採択された焼鈍標準軟銅(体積低効率1.7241×10-2μΩm)の導電率を100%IACSとしたときの相対値(%IACS)として求めた。
[conductivity]
The conductivity of the obtained alloy plate was determined as a relative value (% IACS) when the conductivity of the internationally adopted annealed standard annealed copper (volume low efficiency 1.7241 × 10-2 μΩm) was 100% IACS. rice field.

実施例1~6および比較例7~12の各板材を90mmφの円形に打抜加工してそれぞれブランクとし、各ブランクに対し深絞り加工して、実施例1~6および比較例7~12における、底面50mmφ、肩R2.0mmの円筒容器をそれぞれ作製した。 Each of the plate materials of Examples 1 to 6 and Comparative Examples 7 to 12 was punched into a circle of 90 mmφ to form a blank, and each blank was deep-drawn to form a blank in Examples 1 to 6 and Comparative Examples 7 to 12. , A cylindrical container having a bottom surface of 50 mmφ and a shoulder R of 2.0 mm was prepared.

実施例1~6および比較例7~12の各円筒容器側壁高さを、円周方向にピッチ45°で合計8点測定し、下式のような計算から耳率を求めた。 The heights of the side walls of the cylindrical containers of Examples 1 to 6 and Comparative Examples 7 to 12 were measured at a total of 8 points at a pitch of 45 ° in the circumferential direction, and the ear ratio was obtained from the calculation as shown in the following formula.

耳率(%)=(H45-H0-90)/{(H45+H0-90)/2}×100
ここで、
・H45:45°耳(4点)の平均高さ、
・H0-90:0°、90°耳(4点)の平均高さ、
・{(H45+H0-90)/2}:全測定点(8点)の平均高さ、
である。耳率の測定回数は、n=3とし、3回の値の平均値としている。なお、本成形用途における耳率は18%以下を合格とし、円筒容器の形状に成形できずに破断したものは「×」とした。
Ear ratio (%) = (H 45 -H 0-90 ) / {(H 45 + H 0-90 ) / 2} x 100
here,
・ H 45 : Average height of 45 ° ears (4 points),
・ H 0-90 : 0 °, 90 ° Average height of ears (4 points),
-{(H 45 + H 0-90 ) / 2}: Average height of all measurement points (8 points),
Is. The number of times the ear rate is measured is n = 3, and the average value of the three values is used. The ear ratio in this molding application was 18% or less, and the one that could not be molded into the shape of a cylindrical container and was broken was marked with "x".

次いで、上記円筒容器をリン酸:70体積%、硝酸:5体積%、残部水からなる化学研磨液にて、液温90℃、時間120秒の化学研磨処理を実施した。更に15体積%硫酸液中で液温20℃、15Vで10分の陽極酸化処理(アルマイト処理)を実施し、水洗後、90℃の温水で15 分間の封孔処理を実施した。化学研磨後、ならびに陽極酸化処理後のカップ底面の反射率の測定を実施した。反射率の測定方法は以下の通りである。 Next, the cylindrical container was subjected to a chemical polishing treatment at a liquid temperature of 90 ° C. and a time of 120 seconds with a chemical polishing liquid consisting of phosphoric acid: 70% by volume, nitric acid: 5% by volume, and residual water. Further, anodizing treatment (anodizing treatment) was carried out in a 15% by volume sulfuric acid solution at a liquid temperature of 20 ° C. and 15 V for 10 minutes, and after washing with water, a pore-sealing treatment was carried out with warm water at 90 ° C. for 15 minutes. The reflectance of the bottom surface of the cup was measured after chemical polishing and after anodizing. The method for measuring the reflectance is as follows.

[反射率]
反射率評価は、JISZ8741鏡面光沢度測定方法ならびに(参考)アルミニウム及びアルミニウム合金の陽極酸化皮膜の45度鏡面反射率の測定方法に定める方法に従って実施した。なお、円筒容器の形状に成形できずに破断したものについては化学研磨後、ならびに陽極酸化処理後の反射率測定を実施せず、「-」としている。
[Reflectance]
The reflectance evaluation was carried out according to the method specified in JISZ8741 Mirror gloss measuring method and (reference) 45 degree mirror reflectance measuring method of aluminum and aluminum alloy anodic oxide film. For those that could not be formed into the shape of a cylindrical container and were broken, the reflectance was not measured after chemical polishing and after anodizing, and was marked as "-".

上記深絞りカップ材の底面を上面とし、円筒容器のほぼ中心部に鋼球を落下させ、耐凹み性測定を実施した。測定条件は以下の通りである。 With the bottom surface of the deep-drawn cup material as the upper surface, a steel ball was dropped into the substantially center of the cylindrical container, and the dent resistance was measured. The measurement conditions are as follows.

・鋼球径:11.0mmφ 、重量 :5.5g
・落下高さ:100mm
・凹み測定装置:触針式表面形状測定器
・測定回数:n=5
[耐凹み性]
耐凹み性の評価は、鋼球を上記所定の高さから落下させ、周辺からの凹み量を測定し、最大値が100μm以下であるものを「○」、100μmを超えるものを「×」とした。なお、円筒容器の形状に成形できずに破断したものについては耐凹み性評価を実施せず、「-」としている。
-Steel ball diameter: 11.0 mmφ, weight: 5.5 g
・ Drop height: 100 mm
・ Recess measuring device: Stylus type surface shape measuring device ・ Number of measurements: n = 5
[Dent resistance]
In the evaluation of dent resistance, a steel ball is dropped from the above-mentioned predetermined height, the amount of dent from the periphery is measured, and the maximum value is 100 μm or less as “○” and the maximum value exceeds 100 μm as “×”. did. For those that could not be formed into the shape of a cylindrical container and were broken, the dent resistance evaluation was not performed and the value was set to "-".

表3に示すように本願規定の化学組成、引張強さおよび導電率を満足する実施例1~6のアルミニウム合金圧延材を得ることができた。 As shown in Table 3, the rolled aluminum alloy materials of Examples 1 to 6 satisfying the chemical composition, tensile strength and conductivity specified in the present application could be obtained.

この発明のアルミニウム合金圧延材は、一定の強度を有することで深絞り・へら絞り等に対する適度な加工性を有し、成形後の化学研磨・アルマイト処理後の光輝性に優れ、かつ使用に際し、凹みや変形に強いアルミニウム合金板として利用可能である。
The rolled aluminum alloy material of the present invention has a certain strength and has appropriate workability for deep drawing, spinning, etc., is excellent in chemical polishing after molding, and has excellent brilliance after alumite treatment, and is used. It can be used as an aluminum alloy plate that is resistant to dents and deformation.

Claims (10)

Si:0.02質量%~0.08質量%、Fe:0.02質量%~0.08質量%、Cu:0.06質量%~0.15質量%、Mn:0.0005質量%~0.01質量%、Mg:0.42質量%~0.75質量%、Ni:0.001質量%~0.1質量%、Zn:0.001質量%~0.1質量%、Ti:0.0005質量%~0.04質量%、Ga:0.0002質量%~0.01質量%、B:0.0002質量%~0.01質量%を含有し、残部がAlと不可避不純物からなる化学組成を有し、
かつ、引張強さが100MPa以上180MPa以下、導電率が50%IACS以上であり、更に、リン酸:70体積%、硝酸:5体積%、残部水からなる化学研磨液にて、液温90℃、時間120秒の化学研磨処理後の反射率が65%以上であることを特徴とするアルミニウム合金圧延材。
Si: 0.02% by mass to 0.08% by mass, Fe: 0.02% by mass to 0.08% by mass, Cu: 0.06% by mass to 0.15% by mass, Mn: 0.0005% by mass to 0.01% by mass, Mg: 0.42% by mass to 0.75% by mass, Ni: 0.001% by mass to 0.1% by mass, Zn: 0.001% by mass to 0.1% by mass, Ti: Contains 0.0005% by mass to 0.04% by mass, Ga: 0.0002% by mass to 0.01% by mass, B: 0.0002% by mass to 0.01% by mass, and the balance is from Al and unavoidable impurities. Has a chemical composition of
In addition, the tensile strength is 100 MPa or more and 180 MPa or less, the conductivity is 50% IACS or more, and the liquid temperature is 90 ° C. with a chemical polishing liquid consisting of phosphoric acid: 70% by volume, nitric acid: 5% by volume, and the balance water. , An aluminum alloy rolled material characterized by having a reflectance of 65% or more after a chemical polishing treatment for a time of 120 seconds.
前記化学組成におけるCu:0.08質量%~0.12質量%、Mn:0.001質量%~0.005質量%、Ni:0.002質量%~0.05質量%、Zn:0.002質量%~0.05質量%、Ti:0.005質量%~0.04質量%、Ga:0.002質量%~0.05質量%、B:0.001質量%~0.02質量%であり、
かつ、引張強さが125MPa以上165MPa以下、導電率が52%IACS以上である請求項1に記載のアルミニウム合金圧延材。
Cu: 0.08% by mass to 0.12% by mass, Mn: 0.001% by mass to 0.005% by mass, Ni: 0.002% by mass to 0.05% by mass, Zn: 0. 002 mass% to 0.05 mass%, Ti: 0.005 mass% to 0.04 mass%, Ga: 0.002 mass% to 0.05 mass%, B: 0.001 mass% to 0.02 mass % And
The rolled aluminum alloy material according to claim 1, wherein the tensile strength is 125 MPa or more and 165 MPa or less, and the conductivity is 52% IACS or more.
前記化学組成における不可避不純物中のCrが0.01質量%以下、Vが0.015質量%以下、Zrが0.015質量%以下、Caが0.005質量%以下、Pbが0.005質量%以下、Biが0.005質量%以下、Snが0.005質量%以下、Inが0.005質量%以下に規制されている請求項1または2に記載のアルミニウム合金圧延材。 Cr in the unavoidable impurities in the chemical composition is 0.01% by mass or less, V is 0.015% by mass or less, Zr is 0.015% by mass or less, Ca is 0.005% by mass or less, and Pb is 0.005% by mass. The aluminum alloy rolled material according to claim 1 or 2, wherein Bi is 0.005% by mass or less, Sn is 0.005% by mass or less, and In is 0.005% by mass or less. Si:0.02質量%~0.08質量%、Fe:0.02質量%~0.08質量%、Cu:0.06質量%~0.15質量%、Mn:0.0005質量%~0.01質量%、Mg:0.42質量%~0.75質量%、Ni:0.001質量%~0.1質量%、Zn:0.001質量%~0.1質量%、Ti:0.0005質量%~0.04質量%、Ga:0.0002質量%~0.01質量%、B:0.0002質量%~0.01質量%を含有し、残部がAlと不可避不純物からなる化学組成を有するアルミニウム合金鋳塊に対し、
その鋳塊に実施される面削の前または後に、500℃以上580℃以下の温度で1時間以上20時間以下の時間にて均質化処理を実施し、480℃以上550℃以下の温度で0.5時間以上10時間保持後に熱間圧延を開始し、複数の圧下パスにより圧下率95%以上99.5%以下の熱間圧延を実施した後、少なくとも1回、圧下率55%以上98.5%以下の冷間圧延を実施してアルミニウム合金圧延材を得るようにしたことを特徴とするアルミニウム合金圧延材の製造方法。
Si: 0.02% by mass to 0.08% by mass, Fe: 0.02% by mass to 0.08% by mass, Cu: 0.06% by mass to 0.15% by mass, Mn: 0.0005% by mass to 0.01% by mass, Mg: 0.42% by mass to 0.75% by mass, Ni: 0.001% by mass to 0.1% by mass, Zn: 0.001% by mass to 0.1% by mass, Ti: Contains 0.0005% by mass to 0.04% by mass, Ga: 0.0002% by mass to 0.01% by mass, B: 0.0002% by mass to 0.01% by mass, and the balance is from Al and unavoidable impurities. For aluminum alloy ingots having a chemical composition of
Before or after the surface milling carried out on the ingot, homogenization treatment is carried out at a temperature of 500 ° C. or higher and 580 ° C. or lower for 1 hour or longer and 20 hours or lower, and 0 at a temperature of 480 ° C. or higher and 550 ° C. or lower. Hot rolling is started after holding for 5 hours or more and 10 hours, and after performing hot rolling with a reduction ratio of 95% or more and 99.5% or less by a plurality of reduction passes, the reduction ratio is 55% or more and 98. A method for producing an aluminum alloy rolled material, which comprises performing cold rolling of 5% or less to obtain an aluminum alloy rolled material.
前記化学組成におけるCu:0.08質量%~0.12質量%、Mn:0.001質量%~0.005質量%、Ni:0.002質量%~0.05質量%、Zn:0.002質量%~0.05質量%、Ti:0.005質量%~0.04質量%、Ga:0.002質量%~0.05質量%、B:0.001質量%~0.02質量%である請求項4に記載のアルミニウム合金圧延材の製造方法。 Cu: 0.08% by mass to 0.12% by mass, Mn: 0.001% by mass to 0.005% by mass, Ni: 0.002% by mass to 0.05% by mass, Zn: 0. 002 mass% to 0.05 mass%, Ti: 0.005 mass% to 0.04 mass%, Ga: 0.002 mass% to 0.05 mass%, B: 0.001 mass% to 0.02 mass The method for producing a rolled aluminum alloy according to claim 4, wherein the mass is%. 前記化学組成における不可避不純物中のCrが0.01質量%以下、Vが0.015質量%以下、Zrが0.015質量%以下、Caが0.005質量%以下、Pbが0.005質量%以下、Biが0.005質量%以下、Snが0.005質量%以下、Inが0.005質量%以下に規制されている請求項4または5に記載のアルミニウム合金圧延材の製造方法。 Cr in the unavoidable impurities in the chemical composition is 0.01% by mass or less, V is 0.015% by mass or less, Zr is 0.015% by mass or less, Ca is 0.005% by mass or less, and Pb is 0.005% by mass. The method for producing a rolled aluminum alloy according to claim 4 or 5, wherein Bi is 0.005% by mass or less, Sn is 0.005% by mass or less, and In is 0.005% by mass or less. 冷間圧延におけるいずれかのパスの前後に少なくとも1回、220℃以上380℃以下、0.5時間以上12時間保持による焼鈍工程を実施するようにした請求項4~6のいずれか1項に記載のアルミニウム合金圧延材の製造方法。 According to any one of claims 4 to 6, the annealing step is carried out at least once before and after any of the passes in cold rolling by holding at 220 ° C. or higher and 380 ° C. or lower and 0.5 hours or longer and 12 hours. The method for manufacturing a rolled aluminum alloy material according to the above method. 冷間圧延を施した後に少なくとも1回、150℃以上300℃以下、0.5時間以上12時間以下保持による焼鈍工程を実施するようにした請求項4~7のいずれか1項に記載のアルミニウム合金圧延材の製造方法。 The aluminum according to any one of claims 4 to 7, wherein the annealing step is carried out by holding at least once at 150 ° C. or higher and 300 ° C. or lower and 0.5 hours or longer and 12 hours or lower after cold rolling. Manufacturing method of rolled alloy material. 請求項1~3のいずれか1項に記載のアルミニウム合金圧延材を成形加工後、リン酸:70体積%~80体積%、硝酸:5体積%~10体積%、硝酸銅:0.2質量%~0.8質量%、残部水からなる化学研磨液にて、液温:90~100℃、時間:60秒~180秒の化学研磨処理を実施し、水洗、乾燥後に4~10μmのアルマイト処理を施して、反射率60%以上とすることを特徴とする光輝性成形体の製造方法。 After molding the rolled aluminum alloy according to any one of claims 1 to 3, phosphoric acid: 70% by volume to 80% by volume, nitrate: 5% by volume to 10% by volume, copper nitrate: 0.2% by volume. A chemical polishing solution consisting of% to 0.8% by volume and the balance of water is subjected to a chemical polishing treatment at a liquid temperature of 90 to 100 ° C. and a time of 60 to 180 seconds. A method for producing a brilliant molded body, which is characterized by being treated to have a reflectance of 60% or more. 請求項4~8のいずれか1項に記載の製造方法によって得られたアルミニウム合金圧延材を成形加工後、リン酸:70体積%~80体積%、硝酸:5体積%~10体積%、硝酸銅:0.2質量%~0.8質量%、残部水からなる化学研磨液にて、液温:90~100℃、時間:60秒~180秒の化学研磨処理を実施し、水洗、乾燥後に4~10μmのアルマイト処理を施して、反射率60%以上とすることを特徴とする光輝性成形体の製造方法。
After molding the rolled aluminum alloy obtained by the production method according to any one of claims 4 to 8, phosphoric acid: 70% by volume to 80% by volume, nitric acid: 5% by volume to 10% by volume, nitric acid. A chemical polishing liquid consisting of copper: 0.2% by mass to 0.8% by mass and the balance water is subjected to chemical polishing treatment at a liquid temperature of 90 to 100 ° C. and a time of 60 to 180 seconds, and then washed and dried. A method for producing a brilliant molded product, which is characterized in that it is later subjected to an alumite treatment of 4 to 10 μm to have a reflectance of 60% or more.
JP2020140218A 2020-08-21 2020-08-21 Aluminum alloy rolled material and its manufacturing method Active JP7336421B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020140218A JP7336421B2 (en) 2020-08-21 2020-08-21 Aluminum alloy rolled material and its manufacturing method
CN202110959320.XA CN114075636A (en) 2020-08-21 2021-08-20 Rolled aluminum alloy material and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020140218A JP7336421B2 (en) 2020-08-21 2020-08-21 Aluminum alloy rolled material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022035716A true JP2022035716A (en) 2022-03-04
JP7336421B2 JP7336421B2 (en) 2023-08-31

Family

ID=80283363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020140218A Active JP7336421B2 (en) 2020-08-21 2020-08-21 Aluminum alloy rolled material and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7336421B2 (en)
CN (1) CN114075636A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700366B (en) * 2022-06-07 2022-10-11 中铝材料应用研究院有限公司 Al-Mg alloy thin plate and rolling method for reducing earing rate of Al-Mg alloy thin plate
CN115141947B (en) * 2022-07-08 2023-06-27 中铝河南洛阳铝加工有限公司 5000-series aluminum alloy slab ingot with high-proportion scrap added, preparation method thereof and aluminum product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751249A (en) * 1980-08-21 1982-03-26 Kobe Steel Ltd Manufacture of aluminum alloy plate with property of bright alumite and superior strength
JPS58171559A (en) * 1982-03-31 1983-10-08 Sumitomo Light Metal Ind Ltd Manufacture of al alloy plate for trim material with superior brightness
JPH02138447A (en) * 1988-11-18 1990-05-28 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy sheet for brightening
JPH08269605A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Aluminum alloy sheet for lighting reflector and its production
JP2001288591A (en) * 2000-04-04 2001-10-19 Nippon Techno Kk Chemical polishing method of metal article
CN104762538A (en) * 2015-04-09 2015-07-08 广东欧珀移动通信有限公司 Aluminum alloy and anodic oxidation method thereof
JP2018070991A (en) * 2017-03-16 2018-05-10 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751249A (en) * 1980-08-21 1982-03-26 Kobe Steel Ltd Manufacture of aluminum alloy plate with property of bright alumite and superior strength
JPS58171559A (en) * 1982-03-31 1983-10-08 Sumitomo Light Metal Ind Ltd Manufacture of al alloy plate for trim material with superior brightness
JPH02138447A (en) * 1988-11-18 1990-05-28 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy sheet for brightening
JPH08269605A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Aluminum alloy sheet for lighting reflector and its production
JP2001288591A (en) * 2000-04-04 2001-10-19 Nippon Techno Kk Chemical polishing method of metal article
CN104762538A (en) * 2015-04-09 2015-07-08 广东欧珀移动通信有限公司 Aluminum alloy and anodic oxidation method thereof
US20170327964A1 (en) * 2015-04-09 2017-11-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Aluminum alloy and method of anodizing same
JP2018070991A (en) * 2017-03-16 2018-05-10 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal

Also Published As

Publication number Publication date
CN114075636A (en) 2022-02-22
JP7336421B2 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP2011202283A (en) Aluminum alloy, aluminum alloy foil, container and method of preparing aluminum alloy foil
TW201807210A (en) Al-mg-Si-based alloy material, Al-Mg-Si-based alloy plate, and method for manufacturing Al-Mg-Si-based alloy plate
JPH07197219A (en) Production of aluminum alloy sheet for forming
JP2022035716A (en) Rolled aluminum alloy material and production method therefor
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP5745364B2 (en) Aluminum can plate for can body and method for manufacturing the same, and resin-coated aluminum alloy plate for can body and method for manufacturing the same
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
TW201814088A (en) Aluminum alloy sheet and anodized aluminum alloy sheet capable of suppressing a decrease in glossiness after performing an anodizing treatment, and exerting an excellent workability
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
TWI712695B (en) Method of fabricating high temperature resistant and impact resistant aluminum alloy
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2525017B2 (en) Aluminum alloy material for can ends
TW201738390A (en) Method for producing al-mg-Si alloy plate
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP4665101B2 (en) Aluminum alloy molded body excellent in deep drawability, dent resistance and appearance and production method thereof
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JPS6256227B2 (en)
JP3557953B2 (en) Aluminum alloy sheet for precision machining and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02