JP2022032679A - 熱媒体圧縮装置、空調装置、および熱媒体圧縮方法 - Google Patents
熱媒体圧縮装置、空調装置、および熱媒体圧縮方法 Download PDFInfo
- Publication number
- JP2022032679A JP2022032679A JP2020136718A JP2020136718A JP2022032679A JP 2022032679 A JP2022032679 A JP 2022032679A JP 2020136718 A JP2020136718 A JP 2020136718A JP 2020136718 A JP2020136718 A JP 2020136718A JP 2022032679 A JP2022032679 A JP 2022032679A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- heat medium
- flow rate
- pipe
- side pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
- F25B1/053—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/22—Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0252—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
- F25B2313/02523—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses during heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0254—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0401—Refrigeration circuit bypassing means for the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/022—Compressor control for multi-stage operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/026—Compressor control by controlling unloaders
- F25B2600/0261—Compressor control by controlling unloaders external to the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
【課題】空調用の圧縮機を効率良く運転する。【解決手段】熱媒体圧縮装置は、第1の圧縮機1、第2の圧縮機2と、これら第1の圧縮機1と第2の圧縮機2とを熱交換器に並列に接続する吸入側配管4および吐出側配管5と、前記第1の圧縮機1の吐出側と第2の圧縮機2の吸入側とを直列に接続する接続配管6と、前記吸入側配管4、吐出側配管5、接続配管6を流れる熱媒体の流量を制御する制御部3とを有し、前記制御部3は、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で択一的に接続し、あるいは、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で直列に接続し、直列に接続された前記第2の圧縮機2に吸引される熱媒体の流量を前記第1の圧縮機1から排出される熱媒体の流量より多く制御する。【選択図】図1
Description
本発明は、熱媒体圧縮装置、空調装置、および熱媒体圧縮方法に関する。
サーバー等の電子機器を収容するサーバー室には、電子機器から発生する熱を吸収して適正な室温に維持する空気調和装置(以下空調装置と称す)が設けられる。この空調装置に関連する技術として、特許文献1に記載されたものが知られている。
この空調装置は、特許文献1の段落0010に記載されたように、吸入した冷媒を中圧まで圧縮する低圧縮比で効率の良い容量可変な圧縮機と、吸入した中圧の冷媒を高圧に圧縮して吐出する高圧縮比の容量可変な圧縮機とを直列に接続した構成を有する。また前記空調装置は、前記圧縮機と放熱/吸熱部との間の配管を切り替えることによって冷房、暖房のいずれかで動作する構成とされている。
この空調装置は、特許文献1の段落0010に記載されたように、吸入した冷媒を中圧まで圧縮する低圧縮比で効率の良い容量可変な圧縮機と、吸入した中圧の冷媒を高圧に圧縮して吐出する高圧縮比の容量可変な圧縮機とを直列に接続した構成を有する。また前記空調装置は、前記圧縮機と放熱/吸熱部との間の配管を切り替えることによって冷房、暖房のいずれかで動作する構成とされている。
また特許文献2には、特許文献1と同じく、二基の圧縮機を直列に接続した空調装置が開示されている。
ところで、空調装置に低圧熱媒体(例えば通常の環境で保管、運搬する場合の蒸気圧力が1MPa以下のフッ素化合物ガス)を用いた場合、熱媒体が移動させることのできる単位容積当たりの熱量が高圧熱媒体に比して少ないため、多量の熱媒体の移動が必要となり、吐出流量が大きな圧縮機が必要とされる。またサーバー室の冷却のために消費されるエネルギーを考慮すると、サーバーの発熱量の変化、季節、時間帯による気温の変化に対応した効率的な圧縮機の運用が求められる。
この発明は、空調装置に設けられる圧縮装置を効率的に運用することを目的とする。
上記課題を解決するために、本発明の第1の態様にかかる熱媒体圧縮装置は、以下の構成を有する。
熱媒体を圧縮する第1の圧縮機、および第2の圧縮機と、これら第1の圧縮機と第2の圧縮機とを熱交換器に接続する吸入側配管および吐出側配管と、前記第1の圧縮機の吐出側と第2の圧縮機の吸入側とを直列に接続する接続配管と、前記吸入側配管、吐出側配管、接続配管を流れる熱媒体の流量を制御する制御部と、を有し、前記制御部は、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で択一的に接続し、あるいは、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で直列に接続し、直列に接続された前記第2の圧縮機に吸引される熱媒体の流量を前記第1の圧縮機から排出される熱媒体の流量より多く制御することを特徴とする。
熱媒体を圧縮する第1の圧縮機、および第2の圧縮機と、これら第1の圧縮機と第2の圧縮機とを熱交換器に接続する吸入側配管および吐出側配管と、前記第1の圧縮機の吐出側と第2の圧縮機の吸入側とを直列に接続する接続配管と、前記吸入側配管、吐出側配管、接続配管を流れる熱媒体の流量を制御する制御部と、を有し、前記制御部は、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で択一的に接続し、あるいは、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で直列に接続し、直列に接続された前記第2の圧縮機に吸引される熱媒体の流量を前記第1の圧縮機から排出される熱媒体の流量より多く制御することを特徴とする。
本発明の第2の態様にかかる熱媒体圧縮方法は、以下の構成を有する。
熱媒体を圧縮する第1の圧縮機および第2の圧縮機を熱交換器に対して並列およびまたは直列に接続することによって、熱交換器への熱媒体の流量を制御する熱交換方法であって、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で直列に接続した状態で、前記第2の圧縮機に吸引される熱媒体の流量を前記第1の圧縮機から排出される熱媒体の流量より多く制御することを特徴とする。
熱媒体を圧縮する第1の圧縮機および第2の圧縮機を熱交換器に対して並列およびまたは直列に接続することによって、熱交換器への熱媒体の流量を制御する熱交換方法であって、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で直列に接続した状態で、前記第2の圧縮機に吸引される熱媒体の流量を前記第1の圧縮機から排出される熱媒体の流量より多く制御することを特徴とする。
本発明は、複数の圧縮機を備えた圧縮装置を効率的に運転することができる。
本発明の第1の態様の最小構成例にかかる熱媒体圧縮装置について図1を参照して説明する。
この熱媒体圧縮装置は、第1の圧縮機1、第2の圧縮機2と、これら第1の圧縮機1と第2の圧縮機2とを熱交換器に並列に接続する吸入側配管4および吐出側配管5と、前記第1の圧縮機1の吐出側と第2の圧縮機2の吸入側とを直列に接続する接続配管6と、前記吸入側配管4、吐出側配管5、接続配管6を流れる熱媒体の流量を制御する制御部3と、を有し、前記制御部3は、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で択一的に接続し、あるいは、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で直列に接続し、直列に接続された前記第2の圧縮機2に吸引される熱媒体の流量を前記第1の圧縮機1から排出される熱媒体の流量より多く制御する。
この熱媒体圧縮装置は、第1の圧縮機1、第2の圧縮機2と、これら第1の圧縮機1と第2の圧縮機2とを熱交換器に並列に接続する吸入側配管4および吐出側配管5と、前記第1の圧縮機1の吐出側と第2の圧縮機2の吸入側とを直列に接続する接続配管6と、前記吸入側配管4、吐出側配管5、接続配管6を流れる熱媒体の流量を制御する制御部3と、を有し、前記制御部3は、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で択一的に接続し、あるいは、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で直列に接続し、直列に接続された前記第2の圧縮機2に吸引される熱媒体の流量を前記第1の圧縮機1から排出される熱媒体の流量より多く制御する。
上記構成の熱媒体圧縮装置にあっては、第1の圧縮機1から吐出された熱媒体の流量より第2の熱媒体に吸引される熱媒体の流量より多くすることにより、第2の圧縮機2の圧縮能力が第1の圧縮機1と同一あるいは大きい場合であっても、第2の圧縮機2に十分な熱媒体が吸い込まれるので、効率的な運転を行うことができる。
本発明の第2の態様の最小構成例にかかる熱媒体圧縮方法について図1を参照して説明する。
熱媒体を圧縮する第1の圧縮機1および第2の圧縮機2を熱交換器に対して並列およびまたは直列に接続することによって、熱交換器への熱媒体の流量を制御する熱交換方法であって、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で直列に接続した状態で、前記第2の圧縮機2に吸引される熱媒体の流量を前記第1の圧縮1機から排出される熱媒体の流量より多く制御することを特徴とする。
熱媒体を圧縮する第1の圧縮機1および第2の圧縮機2を熱交換器に対して並列およびまたは直列に接続することによって、熱交換器への熱媒体の流量を制御する熱交換方法であって、前記第1の圧縮機1と第2の圧縮機2とを前記吸入側配管4と吐出側配管5との間で直列に接続した状態で、前記第2の圧縮機2に吸引される熱媒体の流量を前記第1の圧縮1機から排出される熱媒体の流量より多く制御することを特徴とする。
上記構成の熱媒体圧縮方法にあっては、第1の圧縮機1から吐出された熱媒体の流量より第2の熱媒体に吸引される熱媒体の流量より多くすることにより、第2の圧縮機2の圧縮能力が第1の圧縮機1と同一あるいは大きい場合であっても、第2の圧縮機2に十分な熱媒体が吸い込まれるので、効率的な運転を行うことができる。
図1を具体化した本発明の第1実施形態に係る構成について図2~図8を参照して説明する。
まず、図2を参照して、第1実施形態にかかる熱媒体圧縮装置を有する空調装置について説明する。
本発明にかかる熱媒体圧縮装置100は、受熱器200で吸熱した熱媒体を吸入して圧縮する。具体的には、例えばサーバー室の空調において、図1の矢印Aに示すように受熱器200が吸入した空気(サーバー室に設置されたサーバー等の排熱により温度が上昇した空気)を熱媒体の蒸発(圧力低下)によって冷却して、矢印Bに示すように大気中に放出する。前記熱媒体圧縮装置100は、前記熱交換によって圧力が低下した熱媒体を吸い込んで圧縮した後、放熱器300、膨張弁400を経由して前記受熱器200へ循環させる。
まず、図2を参照して、第1実施形態にかかる熱媒体圧縮装置を有する空調装置について説明する。
本発明にかかる熱媒体圧縮装置100は、受熱器200で吸熱した熱媒体を吸入して圧縮する。具体的には、例えばサーバー室の空調において、図1の矢印Aに示すように受熱器200が吸入した空気(サーバー室に設置されたサーバー等の排熱により温度が上昇した空気)を熱媒体の蒸発(圧力低下)によって冷却して、矢印Bに示すように大気中に放出する。前記熱媒体圧縮装置100は、前記熱交換によって圧力が低下した熱媒体を吸い込んで圧縮した後、放熱器300、膨張弁400を経由して前記受熱器200へ循環させる。
前記放熱器300は、例えば熱媒体圧縮装置100を構成する圧縮機100aのケーシング等の部材、あるいはここで圧縮されて排出された熱媒体を冷却するもので、例えば、冷却水の循環とクーリングタワーにおける放熱とによって放熱するシステム、あるいは放熱フィンにより大気中に放熱する構成が採用される。前記膨張弁400は、熱媒体圧縮装置100~放熱器300を経て圧縮された熱媒体の流速を調整することにより、受熱器200へ低温となった熱媒体(液相または気液混相)を供給する。なお図2の空調装置にあっては、低圧熱媒体(例えば通常の環境で保管、運搬する場合の蒸気圧力が1MPa以下のフッ素化合物ガス)が使用される。
前記熱媒体圧縮装置100の構成について、図3を参照して説明する。
符号1は吸入した熱媒体を圧縮して吐出する第1の圧縮機であって、この第1実施形態では、例えば、容積式圧縮機に比して圧縮比が小さく、吐出流量(容積流量)が大きなターボ圧縮機が採用されている。
前記第1の圧縮機1は、吸入側配管4から供給された熱媒体を所定の圧縮比で圧縮して接続配管6へ排出し、第2の圧縮機2の吸入側へ供給する。この第1実施形態では、前記第2の圧縮機2として、前記第1の圧縮機1と同一仕様(少なくとも、圧縮比と単位時間当たりの容積流量とに拠って特定される定格容量が同一)のターボ圧縮機が採用されている。
符号1は吸入した熱媒体を圧縮して吐出する第1の圧縮機であって、この第1実施形態では、例えば、容積式圧縮機に比して圧縮比が小さく、吐出流量(容積流量)が大きなターボ圧縮機が採用されている。
前記第1の圧縮機1は、吸入側配管4から供給された熱媒体を所定の圧縮比で圧縮して接続配管6へ排出し、第2の圧縮機2の吸入側へ供給する。この第1実施形態では、前記第2の圧縮機2として、前記第1の圧縮機1と同一仕様(少なくとも、圧縮比と単位時間当たりの容積流量とに拠って特定される定格容量が同一)のターボ圧縮機が採用されている。
前記第2の圧縮機2の吐出側には、(第1の)吐出側配管5が接続されている。また前記第2の圧縮機2の吐出側には、前記(第1の)吐出側配管5と並列に(第2の)吐出側配管7が接続され、さらに、バイパス配管8と戻り配管9とが接続されている。
前記吸入側配管4には、前記第1の圧縮機1に吸入される熱媒体の流量を調整する第1の弁10が設けられている。前記戻り配管9には、該戻り配管9を流れる熱媒体の流量を調整する第2の弁20が設けられている。前記バイパス配管8には、該バイパス配管8を流れる熱媒体の流量を調整する第3の弁30が設けられ、前記第2の吐出側配管7には、該第2の吐出側配管7を流れる熱媒体の流量を調整する第4の弁40が設けられている。前記第2の吐出側配管7とバイパス配管8との接続個所は、前記戻り配管9を介して前記接続配管6に接続されている。
前記吸入側配管4には、前記第1の圧縮機1に吸入される熱媒体の流量を調整する第1の弁10が設けられている。前記戻り配管9には、該戻り配管9を流れる熱媒体の流量を調整する第2の弁20が設けられている。前記バイパス配管8には、該バイパス配管8を流れる熱媒体の流量を調整する第3の弁30が設けられ、前記第2の吐出側配管7には、該第2の吐出側配管7を流れる熱媒体の流量を調整する第4の弁40が設けられている。前記第2の吐出側配管7とバイパス配管8との接続個所は、前記戻り配管9を介して前記接続配管6に接続されている。
前記第1の弁10、第2の弁20、第3の弁30、第4の弁40は、例えば、電動モータ、あるいは空気圧によって操作される自動弁であって、図2~図8に図示しない制御部によって開、閉、あるいはその中間の開度に制御されるが、これらの一部または全部を空調装置の運転状況に応じて手動操作により調整しても良い。
前記熱媒体圧縮装置は、前記第1の弁10、第2の弁20、第3の弁30、第4の弁40の操作によって、後述の動作例1~4の運転モードに切り替えて熱媒体を圧縮する。
これら動作例1~4における前記第1、第2、第3、第4、の弁10、20、30、40の開閉状況の組み合わせを表1に示す。
前記熱媒体圧縮装置は、前記第1の弁10、第2の弁20、第3の弁30、第4の弁40の操作によって、後述の動作例1~4の運転モードに切り替えて熱媒体を圧縮する。
これら動作例1~4における前記第1、第2、第3、第4、の弁10、20、30、40の開閉状況の組み合わせを表1に示す。
前記表1に示された動作例1~4について、図4~7を参照して説明する。
なお図4~7において、実線は、熱媒体が流れる配管、破線は、熱媒体の流量が調整される配管、二点鎖線は、物理的な管は存在するが熱媒体が流れない配管、を各々示すものとする。
なお図4~7において、実線は、熱媒体が流れる配管、破線は、熱媒体の流量が調整される配管、二点鎖線は、物理的な管は存在するが熱媒体が流れない配管、を各々示すものとする。
図4は動作例1を示す。
この動作例1は、空調装置の熱負荷が大きい場合の動作を示し、第1の弁10が全開、第3の弁30が全閉、第2の弁20、第4の弁40の開度が運転状況に応じて調整される。
すなわち、この動作例1にあっては、第1の弁10が全開であるため、第1の圧縮機1に吸入側配管4から熱媒体が吸入され、所定の圧縮比で圧縮されて接続配管6へ吐出される。ここで、第1の圧縮機1から吐出される熱媒体の流量は、第1の圧縮機1の圧縮比に応じて、第1の圧縮機1に吸入された熱媒体の流量より減少する。前記第1の圧縮機1から接続配管6へ吐出された熱媒体は、第2圧縮機2に吸入されて所定の圧縮比で圧縮されて第1、第2の吐出側配管5、6へ吐出される。なお第3の弁30が全閉とされていることから、バイパス配管8へ熱媒体が流れて第1の圧縮機1へ循環し、再度圧縮されることはない。
この動作例1は、空調装置の熱負荷が大きい場合の動作を示し、第1の弁10が全開、第3の弁30が全閉、第2の弁20、第4の弁40の開度が運転状況に応じて調整される。
すなわち、この動作例1にあっては、第1の弁10が全開であるため、第1の圧縮機1に吸入側配管4から熱媒体が吸入され、所定の圧縮比で圧縮されて接続配管6へ吐出される。ここで、第1の圧縮機1から吐出される熱媒体の流量は、第1の圧縮機1の圧縮比に応じて、第1の圧縮機1に吸入された熱媒体の流量より減少する。前記第1の圧縮機1から接続配管6へ吐出された熱媒体は、第2圧縮機2に吸入されて所定の圧縮比で圧縮されて第1、第2の吐出側配管5、6へ吐出される。なお第3の弁30が全閉とされていることから、バイパス配管8へ熱媒体が流れて第1の圧縮機1へ循環し、再度圧縮されることはない。
また第2の圧縮機2で圧縮された熱媒体は、第2の弁20、第4の弁40の開度に応じて、第2の吐出側配管7、戻り配管9を経由して接続配管6へ戻され、第2の圧縮機2へ再び吸入される。ここで前記第2の弁20、第4の弁40は、前記戻り配管9から戻されて循環する熱媒体の流量が、第2の圧縮機2の効率的な運転を可能とする定格容量に近い吸入流量となるように開度が調整される。そして、第2の圧縮機2で圧縮された熱媒体は、吐出側配管5を経由して受熱器へ供給され、空気と熱交換されてサーバー室の空気を冷却する。
このように、動作例1にあっては、第2の圧縮機2により圧縮された熱媒体の一部を接続配管6を経由して第2の圧縮機2の吸入側へ戻して循環させることにより、第1の圧縮機1の吐出量より第2の圧縮機2の吸入量を多くすることができ、第2の圧縮機2が第1の圧縮機1と同等の吐出容量を有する場合であっても、出力調整が容易ではないターボ圧縮機における、吸入量の不足によるサージング、あるいは圧縮効率の低下を防止することができる。すなわち、第1の圧縮機1と同一の圧縮比、吐出流量を有する第2の圧縮機2に、第1の圧縮機1から吐出される定格より少量の熱媒体に加えて、戻り配管9を経由して循環する熱媒体を吸入させることにより、第2の圧縮機を効率の良い定格吸入量、吐出量に近い条件で運転することができる。
図5は動作例2を示す。
この動作例2は、サーバーの負荷が小さく、サーバー室内へ排出される熱量が少ない場合、あるいは秋期、冬季等の外気温が低く、空調装置の熱負荷が小さい場合に第1の圧縮機1のみを運転する場合の動作を示している。この動作例2では、第1の弁10が開、第2の弁20、第4の弁40が開とされ、第3の弁30の開度が運転状況に応じて調整される。
すなわち、この動作例2にあっては、第1の弁10が全開であるため、第1の圧縮機1に吸入側配管4から熱媒体が吸入され、所定の圧縮比で圧縮されて接続配管6へ吐出される。接続配管6へ流入した熱媒体は、第2の弁20、第4の弁40がともに全開であることから、吐出側配管5から排出されて受熱器へ供給され、サーバー室の空気を冷却する。
また、第3の弁30の開度を調整することにより、第1の圧縮機1を流れる熱媒体の流量を維持しつつ、熱負荷に応じた必要な流量の熱媒体を供給することができる。なお、第1の圧縮機1の定格容量が、必要とされる熱媒体の流量より大きい場合であっても、第3の弁30を開閉して第1の圧縮機1を循環する熱媒体の流量を調整することによって、第1の圧縮機1を定格容量近くで効率良く運転することができる。
この動作例2は、サーバーの負荷が小さく、サーバー室内へ排出される熱量が少ない場合、あるいは秋期、冬季等の外気温が低く、空調装置の熱負荷が小さい場合に第1の圧縮機1のみを運転する場合の動作を示している。この動作例2では、第1の弁10が開、第2の弁20、第4の弁40が開とされ、第3の弁30の開度が運転状況に応じて調整される。
すなわち、この動作例2にあっては、第1の弁10が全開であるため、第1の圧縮機1に吸入側配管4から熱媒体が吸入され、所定の圧縮比で圧縮されて接続配管6へ吐出される。接続配管6へ流入した熱媒体は、第2の弁20、第4の弁40がともに全開であることから、吐出側配管5から排出されて受熱器へ供給され、サーバー室の空気を冷却する。
また、第3の弁30の開度を調整することにより、第1の圧縮機1を流れる熱媒体の流量を維持しつつ、熱負荷に応じた必要な流量の熱媒体を供給することができる。なお、第1の圧縮機1の定格容量が、必要とされる熱媒体の流量より大きい場合であっても、第3の弁30を開閉して第1の圧縮機1を循環する熱媒体の流量を調整することによって、第1の圧縮機1を定格容量近くで効率良く運転することができる。
このように、動作例2にあっては、第1の圧縮機1のみを運転することによって、熱負荷に応じた適切な消費エネルギーで空調装置を運転することができる。なお図5の管路にあっては、第1の圧縮機1~バイパス配管8~第2の吐出側配管7を経由して第1の吐出側配管5に到る管路の抵抗が第2の圧縮機2の内部を経由して第1の吐出側配管5に到る管路の抵抗より小さいので、第2の圧縮機2を経由して流れる熱媒体の流量は小さい。
なお、第2の圧縮機2の吸入側、吐出側に各々弁を設け(図5において図示略)、これらの弁を全閉とすることにより、第2の圧縮機2を熱媒体の管路から切り離すことが可能な構成を採用すれば、第1の圧縮機1の運転中であっても、第2の圧縮機2を熱媒体の管路から切り離して保守、点検、あるいは予備の圧縮機との交換を行うことができる。
なお、第2の圧縮機2の吸入側、吐出側に各々弁を設け(図5において図示略)、これらの弁を全閉とすることにより、第2の圧縮機2を熱媒体の管路から切り離すことが可能な構成を採用すれば、第1の圧縮機1の運転中であっても、第2の圧縮機2を熱媒体の管路から切り離して保守、点検、あるいは予備の圧縮機との交換を行うことができる。
図6は動作例3を示す。
この動作例3は、前述の動作例2と同じく、サーバーの負荷が小さく、サーバー室内へ排出される熱量が少ない、あるいは秋期、冬季等の外気温が低く、空調装置の熱負荷が小さい場合に第2の圧縮機2のみを運転する場合の動作を示している。この動作例3では、第1の弁10が閉、第2の弁20、第3の弁30が開とされ、第4の弁40の開度が運転状況に応じて調整される。
すなわち、動作例3にあっては、第1の弁10が全閉であるため、第1の圧縮機1に吸入側配管4から熱媒体が吸入されることがなく、第2の弁20、第3の弁30が全開であることから、バイパス配管8、戻り配管9,接続配管6を経由して第2の圧縮機2の吸入側へ熱媒体が供給される。第2の圧縮機2へ吸入されて圧縮された熱媒体は、所定の圧縮比で圧縮されて吐出側配管5から蒸発器へ送り出される。また第2の圧縮機2へ吸入されて圧縮された熱媒体は、第2の弁20が全開であることから、第4の弁40の開度に応じた流量が再度第2の圧縮機2に吸入されて圧縮される。すなわち、第4の弁40の開度に応じて循環する熱媒体の流量を調整することにより、熱負荷に応じた熱媒体を吐出側配管5から蒸発器へ供給することができる。なお動作例3にあっては、第2の圧縮機2に圧縮前の熱媒体が吸入されるので、その流量は、動作例1のように第1の圧縮機1によって圧縮されて容積が減少した場合に比して大きく、したがって、第4の弁40を全閉にして循環をなくした運転状況も発生し得る。
この動作例3は、前述の動作例2と同じく、サーバーの負荷が小さく、サーバー室内へ排出される熱量が少ない、あるいは秋期、冬季等の外気温が低く、空調装置の熱負荷が小さい場合に第2の圧縮機2のみを運転する場合の動作を示している。この動作例3では、第1の弁10が閉、第2の弁20、第3の弁30が開とされ、第4の弁40の開度が運転状況に応じて調整される。
すなわち、動作例3にあっては、第1の弁10が全閉であるため、第1の圧縮機1に吸入側配管4から熱媒体が吸入されることがなく、第2の弁20、第3の弁30が全開であることから、バイパス配管8、戻り配管9,接続配管6を経由して第2の圧縮機2の吸入側へ熱媒体が供給される。第2の圧縮機2へ吸入されて圧縮された熱媒体は、所定の圧縮比で圧縮されて吐出側配管5から蒸発器へ送り出される。また第2の圧縮機2へ吸入されて圧縮された熱媒体は、第2の弁20が全開であることから、第4の弁40の開度に応じた流量が再度第2の圧縮機2に吸入されて圧縮される。すなわち、第4の弁40の開度に応じて循環する熱媒体の流量を調整することにより、熱負荷に応じた熱媒体を吐出側配管5から蒸発器へ供給することができる。なお動作例3にあっては、第2の圧縮機2に圧縮前の熱媒体が吸入されるので、その流量は、動作例1のように第1の圧縮機1によって圧縮されて容積が減少した場合に比して大きく、したがって、第4の弁40を全閉にして循環をなくした運転状況も発生し得る。
このように、動作例3にあっては、第2の圧縮機2のみを運転することによって、熱負荷に応じた適切な消費エネルギーで空調装置を運転することができる。なお、第1の圧縮機1の吸入側の第1の10に加えて、吐出側(接続配管6からバイパス配管9が分岐する接続点より上流)に弁を設けておき、これらを全閉とすることにより、第2の圧縮機2の運転中であっても、第1の圧縮機1を熱媒体の管路から切り離して保守、点検、あるいは予備の圧縮機との交換を行うことができる。
図7は動作例4を示す。
この動作例4は、サーバーからの発熱量が極めて少ない、あるいは秋期、冬季等の外気温が低く、空調装置の熱付加が極めて小さい場合、さらには、シャットダウン等、サーバーが通電されていない場合の動作を示し、第1の弁10,第2の弁20が全閉、第3の弁30、第4の弁40が全開とされている。また第1の圧縮機1、第2の圧縮機2は、いずれも停止されている。
すなわち、動作例4にあっては、吸入側配管4~第2の吐出側配管7~第1の吐出側配管5を経由して熱媒体が循環する。
なお、第2の圧縮機2の吐出側に弁を設けておけば、第1の圧縮機1と第2の圧縮機2とを共に熱媒体の管路から切り離して保守、点検、あるいは予備機との交換を行うことができる。
この動作例4は、サーバーからの発熱量が極めて少ない、あるいは秋期、冬季等の外気温が低く、空調装置の熱付加が極めて小さい場合、さらには、シャットダウン等、サーバーが通電されていない場合の動作を示し、第1の弁10,第2の弁20が全閉、第3の弁30、第4の弁40が全開とされている。また第1の圧縮機1、第2の圧縮機2は、いずれも停止されている。
すなわち、動作例4にあっては、吸入側配管4~第2の吐出側配管7~第1の吐出側配管5を経由して熱媒体が循環する。
なお、第2の圧縮機2の吐出側に弁を設けておけば、第1の圧縮機1と第2の圧縮機2とを共に熱媒体の管路から切り離して保守、点検、あるいは予備機との交換を行うことができる。
以上のように構成された空調装置にあっては、図8に示すように、季節による外気温の変化(空調装置の負荷)に応じて、第1の圧縮機1、第2の圧縮機2を運転または停止させ、サーバー室の冷却に要する所要電力を削減することができる。
詳細には、冬季のように熱負荷が最も小さい場合には、圧縮機を運転しないことにより、熱媒体の自然循環(吸熱により蒸発し、管路を循環する間に自然冷却によって冷却される状態)による冷却を行う。また春季、秋期のように、中間の熱負荷の場合には、圧縮機1台のみを運転して低圧縮比で熱媒体を圧縮することにより、低圧縮の熱媒体を蒸発器に供給して冷却を行う。また夏期のように、熱負荷が大きい場合には、2台の圧縮機を雲底して高圧縮比で熱媒体を圧縮することにより、高圧縮の熱媒体を蒸発器に供給して冷却を行う。
詳細には、冬季のように熱負荷が最も小さい場合には、圧縮機を運転しないことにより、熱媒体の自然循環(吸熱により蒸発し、管路を循環する間に自然冷却によって冷却される状態)による冷却を行う。また春季、秋期のように、中間の熱負荷の場合には、圧縮機1台のみを運転して低圧縮比で熱媒体を圧縮することにより、低圧縮の熱媒体を蒸発器に供給して冷却を行う。また夏期のように、熱負荷が大きい場合には、2台の圧縮機を雲底して高圧縮比で熱媒体を圧縮することにより、高圧縮の熱媒体を蒸発器に供給して冷却を行う。
すなわち、第1実施形態にあっては、第1の圧縮機1、第2の圧縮機2として同一定格容量(圧縮比と流量が同一)を採用しているので、両方の圧縮機を停止した場合、圧縮機を1台運転した場合、圧縮機を2台運転した場合のいずれかの動作態様で必要な冷却能力を得ることができる。
また、第1の圧縮機1、第2の圧縮機として、互いに定格容量が異なるものを採用すれば、いずれかの圧縮機を選択的に単独運転することにより、熱負荷に応じてより細かく容量を調整することができる。
また、第1の圧縮機1、第2の圧縮機として、互いに定格容量が異なるものを採用すれば、いずれかの圧縮機を選択的に単独運転することにより、熱負荷に応じてより細かく容量を調整することができる。
なお本発明にかかる熱媒体圧縮雄値で使用される圧縮機は、ターボ圧縮機に限定されるものではない。すなわち、ターボ方式以外の他の方式の圧縮機に適用した場合であっても、圧縮機を循環する熱媒体の量を調整することにより、圧縮機を効率の良い、例えば定格容量に近い吸入量、吐出量の運転条件で運転して消費電力削減を図ることができる。
また、管路中の予期しない圧力バランスの変動によって熱媒体が本来の方向と異なる方向へ流れる現象を防止するため、あるいは、より細かい流量、圧力の調整、あるいは、管路を構成する種々の機器の保守、点検、交換のため、図3に示す管路にさらに開閉弁、逆止弁を追加しても良い。さらに、低圧縮比、高流量(圧縮機2基分)の熱媒体を熱交換器に供給すべく、第1の圧縮機、第2の圧縮機を吸入側配管および吐出側配管に対して並列に接続するための管路を設けても良い。
また、管路中の予期しない圧力バランスの変動によって熱媒体が本来の方向と異なる方向へ流れる現象を防止するため、あるいは、より細かい流量、圧力の調整、あるいは、管路を構成する種々の機器の保守、点検、交換のため、図3に示す管路にさらに開閉弁、逆止弁を追加しても良い。さらに、低圧縮比、高流量(圧縮機2基分)の熱媒体を熱交換器に供給すべく、第1の圧縮機、第2の圧縮機を吸入側配管および吐出側配管に対して並列に接続するための管路を設けても良い。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
本発明は、熱媒体圧縮装置、空調装置、および熱媒体圧縮方法に利用することができる。
1 第1の圧縮機
2 第2の圧縮機
3 制御部
4 吸入側配管
5 (第1の)吐出側配管
6 接続配管
7 (第2の)吐出側配管
8 バイパス配管
9 戻り配管
10 第1の弁
20 第2の弁
30 第3の弁
40 第4の弁
100 熱媒体圧縮装置
200 受熱器(蒸発器)
300 放熱器(凝縮器)
400 膨張弁
2 第2の圧縮機
3 制御部
4 吸入側配管
5 (第1の)吐出側配管
6 接続配管
7 (第2の)吐出側配管
8 バイパス配管
9 戻り配管
10 第1の弁
20 第2の弁
30 第3の弁
40 第4の弁
100 熱媒体圧縮装置
200 受熱器(蒸発器)
300 放熱器(凝縮器)
400 膨張弁
Claims (8)
- 熱媒体を圧縮する第1の圧縮機、および第2の圧縮機と、
これら第1の圧縮機と第2の圧縮機とを熱交換器に接続する吸入側配管および吐出側配管と、
前記第1の圧縮機の吐出側と第2の圧縮機の吸入側とを直列に接続する接続配管と、
前記吸入側配管、吐出側配管、接続配管を流れる熱媒体の流量を制御する制御部と、
を有し、
前記制御部は、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で択一的に接続し、あるいは、前記第1の圧縮機と第2の圧縮機とを前記吸入側配管と吐出側配管との間で直列に接続するとともに、直列に接続された前記第2の圧縮機に吸引される熱媒体の流量を前記第1の圧縮機から排出される熱媒体の流量より多く制御する、
熱媒体圧縮装置。 - 前記第2の圧縮機の最大容量は、少なくとも前記第1の圧縮機の最大容量を有する、
請求項1に記載の熱媒体圧縮装置。 - 前記第2の圧縮機の吐出側と吸入側とを接続する戻り配管を有し、
前記制御部は、さらに、前記戻り配管を流れる熱媒体の流量を制御する、
請求項1または2のいずれか1項に記載の熱媒体圧縮装置。 - 前記吸入側配管と前記接続側管路とを接続するバイパス配管を有し、
前記制御部は、さらに、前記バイパス配管を開または閉に制御する、
請求項1~3のいずれか1項に記載の熱媒体圧縮装置。 - 前記吸入側配管、吐出側配管、戻り配管、バイパス配管は、それぞれ流量を調整する弁を有し、
前記制御部は、前記弁の開度を制御する、
請求項4に記載の熱媒体圧縮装置。 - 前記第1、第2の圧縮機はターボ圧縮機である、請求項1~5のいずれか1項記載の熱媒体圧縮装置。
- 請求項1~6のいずれか1項に記載の熱媒体圧縮装置と、
この熱媒体圧縮装置から供給された熱媒体を大気と熱交換する熱交換器と、
を有する空調装置。 - 熱媒体を圧縮する第1の圧縮機および第2の圧縮機を熱交換器に対して択一的にまたは直列に接続することによって、熱交換器への熱媒体の流量を制御する熱交換方法であって、
前記第1の圧縮機と第2の圧縮機とを吸入側配管と吐出側配管との間で直列に接続した状態で、前記第2の圧縮機に吸引される熱媒体の流量を前記第1の圧縮機から排出される熱媒体の流量より多く制御する
熱媒体圧縮方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020136718A JP2022032679A (ja) | 2020-08-13 | 2020-08-13 | 熱媒体圧縮装置、空調装置、および熱媒体圧縮方法 |
US17/398,534 US20220049880A1 (en) | 2020-08-13 | 2021-08-10 | Heating medium compression apparatus, air conditioner, and heating medium compression method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020136718A JP2022032679A (ja) | 2020-08-13 | 2020-08-13 | 熱媒体圧縮装置、空調装置、および熱媒体圧縮方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022032679A true JP2022032679A (ja) | 2022-02-25 |
Family
ID=80222790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020136718A Pending JP2022032679A (ja) | 2020-08-13 | 2020-08-13 | 熱媒体圧縮装置、空調装置、および熱媒体圧縮方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220049880A1 (ja) |
JP (1) | JP2022032679A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240035711A1 (en) * | 2022-07-27 | 2024-02-01 | Trane International Inc. | Two-stage compressor having variable speed first stage |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2394041B1 (de) * | 2009-02-03 | 2015-06-17 | GE Jenbacher GmbH & Co. OHG | Brennkraftmaschine |
US9360011B2 (en) * | 2013-02-26 | 2016-06-07 | Emerson Climate Technologies, Inc. | System including high-side and low-side compressors |
JP6643632B2 (ja) * | 2016-03-10 | 2020-02-12 | パナソニックIpマネジメント株式会社 | 空気調和装置 |
GB2574065B (en) * | 2018-05-25 | 2021-06-16 | Intelligent Power Generation Ltd | Rotary regenerator |
US11287087B2 (en) * | 2018-08-01 | 2022-03-29 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Device and process for refueling containers with pressurized gas |
-
2020
- 2020-08-13 JP JP2020136718A patent/JP2022032679A/ja active Pending
-
2021
- 2021-08-10 US US17/398,534 patent/US20220049880A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20220049880A1 (en) | 2022-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060225445A1 (en) | Refrigerant system with variable speed compressor in tandem compressor application | |
US20210364208A1 (en) | Heating, Ventilation, and Air-Conditioning System with a Thermal Energy Storage Device | |
EP1719962A2 (en) | Cogeneration system | |
EP2095038A1 (en) | Refrigerant system with intercooler utilized for reheat function | |
JP2006322617A (ja) | マルチ型空気調和装置 | |
CN113891635A (zh) | 冷站单元、集成冷站系统及其控制方法和相关设备 | |
AU2006243095A1 (en) | Refrigerating apparatus | |
AU2003220985A1 (en) | Heat source unit of air conditioner and air conditioner | |
KR101166385B1 (ko) | 수열원 공기 조화 시스템 및 그 제어방법 | |
US20210302073A1 (en) | Heating, Ventilation, and Air-Conditioning System with Reheat | |
JP2022032679A (ja) | 熱媒体圧縮装置、空調装置、および熱媒体圧縮方法 | |
EP1717529A2 (en) | Cogeneration system | |
WO2018097124A1 (ja) | 空気調和装置 | |
JP2017150689A (ja) | 空気調和装置 | |
JP2021021509A (ja) | 空気調和装置 | |
CN110849019A (zh) | 一种热泵式空调系统及其控制方法 | |
EP3770532A1 (en) | Air-conditioning apparatus | |
KR100524719B1 (ko) | 멀티 에어컨 시스템의 유량 가변형 바이패스 장치 | |
JP2005226873A (ja) | 空気調和装置 | |
JP6917583B2 (ja) | 空気調和機 | |
CN219367765U (zh) | 空调室外系统 | |
CN219741003U (zh) | 多联空调系统 | |
CN219797563U (zh) | 数据中心用空调系统 | |
CN113272598A (zh) | 空调机 | |
CN219761783U (zh) | 间接蒸发冷式冷媒直冷冷却系统 |