JP2022031802A - Light irradiation device and exposure apparatus including the same - Google Patents

Light irradiation device and exposure apparatus including the same Download PDF

Info

Publication number
JP2022031802A
JP2022031802A JP2021191850A JP2021191850A JP2022031802A JP 2022031802 A JP2022031802 A JP 2022031802A JP 2021191850 A JP2021191850 A JP 2021191850A JP 2021191850 A JP2021191850 A JP 2021191850A JP 2022031802 A JP2022031802 A JP 2022031802A
Authority
JP
Japan
Prior art keywords
light
angle
light source
polarizing element
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021191850A
Other languages
Japanese (ja)
Other versions
JP7140430B2 (en
Inventor
智彦 井上
Tomohiko Inoue
健一 山下
Kenichi Yamashita
弘 松本
Hiroshi Matsumoto
富彦 池田
Tomihiko Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Electric Co Ltd
Original Assignee
Phoenix Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020053452A external-priority patent/JP6989977B2/en
Application filed by Phoenix Electric Co Ltd filed Critical Phoenix Electric Co Ltd
Priority to JP2021191850A priority Critical patent/JP7140430B2/en
Publication of JP2022031802A publication Critical patent/JP2022031802A/en
Application granted granted Critical
Publication of JP7140430B2 publication Critical patent/JP7140430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a light irradiation device for an exposure apparatus which can perform photo-alignment treatment with a simple configuration.
SOLUTION: A light irradiation device 10 comprises: a light source 12 having a plurality of LEDs 16; a polarization element 14 that receives light rays L from the light source 12, and irradiates a workpiece X with the transmitted light rays L; and an optical filter 30 that selectively transmits light rays L with a predetermined wavelength or longer, out of the light rays L emitted from the light source. An optical axis CL of each LED 16 is set to form a first angle θ1 with respect to the workpiece X, and a second angle θ2, which is equal to a half of the light distribution angle of the light rays L emitted from each LED 16, is set to be smaller than the first angle θ1. In addition, the optical filter 30 is arranged so as to be parallel to the workpiece X, and is characterized in that the transmittance of the light rays L with a predetermined wavelength or longer increases as an incident angle at which the light rays L having a predetermined wavelength or longer enter the optical filter 30 becomes larger.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、主に液晶パネルを製造する際の露光用に用いられる光照射装置、およびこれを備える露光装置に関する。 The present invention relates to a light irradiation device mainly used for exposure when manufacturing a liquid crystal panel, and an exposure device including the light irradiation device.

液晶をTN方式の表示パネルとして使用する際、2枚のガラス基板の間に液晶を封入してこれらガラス板の内面に形成された透明電極に電圧を印加しただけでは正常も動作しない。これは液晶分子がバラバラの状態にあるからである。 When a liquid crystal is used as a TN type display panel, it does not operate normally only by enclosing the liquid crystal between two glass substrates and applying a voltage to the transparent electrodes formed on the inner surfaces of these glass plates. This is because the liquid crystal molecules are in a disjointed state.

液晶に正常なTN方式の動作をさせるためには、液晶分子を一定方向に配向させるとともに、液晶分子の立ち上がり方向を一定にする必要がある。具体的には、ガラス基板に対して3°程度傾く方向に液晶分子を配向させており、この傾きの角度はプレチルト角と呼ばれている。 In order for the liquid crystal to operate in the normal TN method, it is necessary to orient the liquid crystal molecules in a certain direction and to make the rising direction of the liquid crystal molecules constant. Specifically, the liquid crystal molecules are oriented in a direction tilted by about 3 ° with respect to the glass substrate, and this tilt angle is called a pretilt angle.

そして、液晶の配向性能をもつ一対のガラス基板のうち、一方のガラス基板をX方向に配向するように配置し、対面する他方のガラス基板をX方向と直交するY方向に配置する。(TN方式) Then, of the pair of glass substrates having liquid crystal alignment performance, one glass substrate is arranged so as to be oriented in the X direction, and the other glass substrate facing the other is arranged in the Y direction orthogonal to the X direction. (TN method)

このように、液晶パネルの製造には液晶配向処理が必要であり、従前より、ガラス基板の表面を物理的に擦るラビング処理が行われてきた(例えば、特許文献1)。このラビング処理とは、ガラス基板上に形成された有機高分子膜を毛足の長い布等で所定の方向に擦ることにより、液晶分子を一定方向に配向させることのできる膜を形成する処理方法である。 As described above, the liquid crystal alignment treatment is required for the production of the liquid crystal panel, and the rubbing treatment for physically rubbing the surface of the glass substrate has been conventionally performed (for example, Patent Document 1). This rubbing treatment is a treatment method for forming a film capable of orienting liquid crystal molecules in a certain direction by rubbing an organic polymer film formed on a glass substrate with a cloth having long hairs in a predetermined direction. Is.

ラビング処理が普及して、応答速度が速いTN方式が一般的になったことにより、液晶パネルが安定した性能で安価に量産できるようになってパソコン等のOA機器用の表示モニターやゲーム機用のモニターとして液晶モニターが普及した経緯がある。 With the spread of rubbing processing and the generalization of the TN method, which has a fast response speed, LCD panels can be mass-produced at low cost with stable performance, and are used for display monitors and game machines for OA equipment such as personal computers. There is a history that LCD monitors have become widespread as monitors.

しかし、ラビング方式には、均一性に乏しいこと、TFTの静電破壊が生じる可能性があること、さらに、ラビング時に生じる粉末ごみが付着するといった信頼性に係わる問題があった。 However, the rubbing method has problems related to reliability, such as poor uniformity, the possibility of electrostatic breakdown of the TFT, and adhesion of powder dust generated during rubbing.

加えて、ラビング方式で達成できるプレチルト角は、上述のように水平配向液晶モードを代表するTN方式においては3°程度であり、低電圧駆動で、高速応答に対応した液晶モードの表示パネルを構成するためには難があった。 In addition, the pre-tilt angle that can be achieved by the rubbing method is about 3 ° in the TN method that represents the horizontally oriented liquid crystal mode as described above, and it constitutes a liquid crystal mode display panel that supports high-speed response with low voltage drive. There was a difficulty in doing so.

このようなラビング方式の問題に対応するため、現在では、光配向処理を実施できる露光機が提案されており、この露光機には、光源としてロングアークの水銀灯での使用が試みられている。 In order to deal with such a problem of the rubbing method, an exposure machine capable of performing photoalignment processing has been proposed at present, and an attempt is made to use this exposure machine in a long arc mercury lamp as a light source.

特開2007-17475号公報Japanese Unexamined Patent Publication No. 2007-17475

しかしながら、ロングアークの水銀灯を用いた露光機にも問題があると考えられる。一般に、露光材料には特定の波長帯域の光に反応するように感光特性が設定されているところ、水銀灯からの光の分光特性を見ると、当該光は多くの水銀線の輝線で構成されていることがわかる。 However, it is considered that there is a problem in the exposure machine using the long arc mercury lamp. Generally, the exposure material is set to have photosensitive characteristics so as to react to light in a specific wavelength band, but when looking at the spectral characteristics of the light from a mercury lamp, the light is composed of many emission lines of mercury rays. You can see that there is.

このため、水銀灯を露光用の光源とした場合、露光材料の感光特性から外れた波長の光が多くなることから、当該感光波長帯域を外れた波長の光によって露光材料を過露光させてしまうおそれがあると考えられる。 For this reason, when a mercury lamp is used as a light source for exposure, a large amount of light has a wavelength outside the photosensitive characteristics of the exposure material, so that the exposure material may be overexposed by light having a wavelength outside the photosensitive wavelength band. It is thought that there is.

もちろん、感光特性から外れた波長の光線(短波側および長波側)を選択波長反射膜によってカットすることも可能であるが、狭帯域のカットフィルター(バンドパスフィルタ)が必要となり、かつ、高い精度が要求されることから、結果として装置のコストアップにつながってしまう。 Of course, it is possible to cut light rays with wavelengths outside the photosensitive characteristics (short wave side and long wave side) by the selective wavelength reflection film, but a narrow band cut filter (bandpass filter) is required and high accuracy is required. As a result, the cost of the device is increased.

また、ロングアークの水銀灯から放射される光は広範囲に拡散するので、光配向処理を実施するために重要な水銀灯からの光の照射角の制御が難しく、例えばルーバー等で余分な光を遮る手法も検討されているが、この場合、水銀灯から放射される光の利用効率が低下するという別の問題がある。 In addition, since the light emitted from a long-arc mercury lamp is diffused over a wide area, it is difficult to control the irradiation angle of the light from the mercury lamp, which is important for performing photoalignment processing. For example, a method of blocking excess light with a louver or the like. However, in this case, there is another problem that the utilization efficiency of the light emitted from the mercury lamp is lowered.

さらに、コリメートされた(平行化された)光をガラス基板に対して斜めに照射する方法もあるが、この手法は光学系が複雑になることから装置が大型で高価になるという問題があると考えられる。 Furthermore, there is also a method of irradiating the glass substrate with collimated (parallelized) light at an angle, but this method has the problem that the equipment is large and expensive because the optical system is complicated. Conceivable.

本発明は、上述した問題に鑑みてなされたものであり、その目的は、簡便な構成で光配向処理を実施できる露光装置用の光照射装置を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a light irradiation device for an exposure device capable of performing a light alignment process with a simple configuration.

本発明の一局面によれば、
複数のLEDを有する光源と、
前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
前記光源から放射された光のうち所定の波長以上の光を選択的に透過する光学フィルターとを備えており、
前記各LEDの光軸は、前記ワークに対して傾いた第1の角度を有しており、
前記各LEDから放射される前記光の配光角の半分である第2の角度は、前記第1の角度よりも小さくなっており、
前記光学フィルターは、前記ワークに対して平行となるように配置されており、
前記光学フィルターは、前記光学フィルターに対する所定の波長以上の前記光の入射角が大きくなるに連れて、所定の波長以上の前記光の透過率を高めるようになっていることを特徴とする
光照射装置が提供される。
According to one aspect of the invention
A light source with multiple LEDs and
A polarizing element that receives light from the light source and irradiates the work with the transmitted light.
It is equipped with an optical filter that selectively transmits light having a predetermined wavelength or higher among the light radiated from the light source.
The optical axis of each of the LEDs has a first angle tilted with respect to the work.
The second angle, which is half the light distribution angle of the light emitted from each of the LEDs, is smaller than the first angle.
The optical filter is arranged so as to be parallel to the work.
The optical filter is characterized in that the transmittance of the light having a predetermined wavelength or more is increased as the incident angle of the light having a predetermined wavelength or more with respect to the optical filter is increased. Equipment is provided.

本発明の他の局面によれば、
複数のLEDを有する光源と、
前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
前記光源からの光を透過するカバー部材とを備えており、
前記各LEDの光軸は、前記ワークに対して傾いた第1の角度を有しており、
前記各LEDから放射される前記光の配光角の半分である第2の角度は、前記第1の角度よりも小さくなっており、
前記偏光素子は、ワイヤーグリッドの形成面を有しており、
前記カバー部材は、前記偏光素子における前記形成面に対向する位置に配設されており、
前記カバー部材と前記形成面との間の空間は密閉されており、
前記偏光素子および前記カバー部材は、前記ワークに対して平行となるように配置されていることを特徴とする
光照射装置が提供される。
According to other aspects of the invention
A light source with multiple LEDs and
A polarizing element that receives light from the light source and irradiates the work with the transmitted light.
It is provided with a cover member that transmits light from the light source.
The optical axis of each of the LEDs has a first angle tilted with respect to the work.
The second angle, which is half the light distribution angle of the light emitted from each of the LEDs, is smaller than the first angle.
The polarizing element has a surface on which a wire grid is formed.
The cover member is arranged at a position facing the forming surface of the polarizing element.
The space between the cover member and the forming surface is hermetically sealed.
A light irradiation device is provided in which the polarizing element and the cover member are arranged so as to be parallel to the work.

好適には、
前記光照射装置は、前記光源と前記偏光素子との間において前記ワークと平行に配設されている透光板をさらに備えている。
Preferably,
The light irradiation device further includes a translucent plate arranged in parallel with the work between the light source and the polarizing element.

本発明の他の局面によれば、
上述した光照射装置を備える露光装置が提供される。
According to other aspects of the invention
An exposure apparatus including the above-mentioned light irradiation apparatus is provided.

本発明に係る光照射装置によれば、複数のLEDの光軸をワークに対して第1の角度だけ傾け、各LEDから放射される光の配向角の半分に相当する第2の角度をこの第1の角度よりも小さく設定することにより、各LEDから放射された光のすべてがLEDからワークに向かう垂線よりもLEDの光軸側に向かう。 According to the light irradiation device according to the present invention, the optical axes of a plurality of LEDs are tilted by a first angle with respect to the work, and a second angle corresponding to half of the orientation angle of the light emitted from each LED is set. By setting it smaller than the first angle, all the light emitted from each LED is directed toward the optical axis side of the LED rather than the perpendicular line from the LED to the work.

これにより、簡便な構成で実効的な照射角を有する光の量が多い光配向処理を実施できる露光装置用の光照射装置を提供することができた。 As a result, it has become possible to provide a light irradiation device for an exposure device capable of performing a light alignment process having a simple configuration and an effective irradiation angle and a large amount of light.

本発明が適用された第1実施形態に係る光照射装置10を示す図である。It is a figure which shows the light irradiation apparatus 10 which concerns on 1st Embodiment to which this invention was applied. 本発明が適用された第2実施形態に係る光照射装置10を示す図である。It is a figure which shows the light irradiation apparatus 10 which concerns on the 2nd Embodiment to which this invention was applied. 本発明が適用された第3実施形態に係る光照射装置10を示す図である。It is a figure which shows the light irradiation apparatus 10 which concerns on 3rd Embodiment to which this invention was applied. 光学フィルター30の光透過特性を説明するためのグラフである。It is a graph for demonstrating the light transmission characteristic of an optical filter 30. 本発明が適用された第4実施形態に係る光照射装置10を示す図である。It is a figure which shows the light irradiation apparatus 10 which concerns on 4th Embodiment to which this invention was applied. 変形例1に係る光照射装置10を示す図である。It is a figure which shows the light irradiation apparatus 10 which concerns on modification 1. FIG. 変形例1に係る光照射装置10を示す図である。It is a figure which shows the light irradiation apparatus 10 which concerns on modification 1. FIG. 変形例2に係る光源12を示す図である。It is a figure which shows the light source 12 which concerns on the modification 2. 変形例2に係る光源12を示す図である。It is a figure which shows the light source 12 which concerns on the modification 2. 変形例2に係る光源12を示す図である。It is a figure which shows the light source 12 which concerns on the modification 2.

(第1実施形態に係る光照射装置10の構成)
本発明が適用された第1実施形態に係る光照射装置10について以下に説明する。光照射装置10は、主に液晶パネルを製造する際の露光の為に露光装置に組み込まれて用いられる。この光照射装置10は、図1に示すように、大略、光源12と、偏光素子14とを備えている。
(Structure of the light irradiation device 10 according to the first embodiment)
The light irradiation device 10 according to the first embodiment to which the present invention is applied will be described below. The light irradiation device 10 is used by being incorporated in the exposure device mainly for exposure when manufacturing a liquid crystal panel. As shown in FIG. 1, the light irradiation device 10 generally includes a light source 12 and a polarizing element 14.

光源12は、ワーク(露光対象物)Xが載置される露光面Aに向けて露光用光Lを照射する部材であり、第1実施形態では複数のLED16が使用されている。これらLED16は露光面A上を一定方向に移動していくワークXに対して走査するように露光用光Lを照射していくので、当該光源12はワークXの移動方向に直交する方向に複数のLED16を略直列に配置することによって形成されている。 The light source 12 is a member that irradiates the exposure light L toward the exposure surface A on which the work (exposure object) X is placed, and a plurality of LEDs 16 are used in the first embodiment. Since these LEDs 16 irradiate the work X moving in a certain direction on the exposure surface A with the exposure light L so as to scan, the light sources 12 are plurality of in the direction orthogonal to the moving direction of the work X. It is formed by arranging the LEDs 16 of the above in substantially series.

また、光源12を構成する各LED16は、これらLED16の光軸CLがワークXに対して第1の角度θ1(つまり、入射角θ1)を有するように、ワークXに対して(つまり、露光面Aに対して)傾けて配置されている。角度成分のバラツキが少ない光を斜めから照射して作成した配向膜を液晶パネルに使用することにより、安定したプレチルト角と配向状態とを出現させることが可能となり、任意の配向モードの液晶パネルが実現できる。 Further, each LED 16 constituting the light source 12 has a first angle θ1 (that is, an incident angle θ1) with respect to the work X so that the optical axis CL of these LEDs 16 has a first angle θ1 (that is, an incident angle θ1) with respect to the work X (that is, an exposed surface). It is arranged at an angle (relative to A). By using an alignment film created by irradiating light with little variation in the angle component from an angle to the liquid crystal panel, it is possible to make a stable pretilt angle and orientation state appear, and the liquid crystal panel in any orientation mode can be used. realizable.

さらに、各LED16から放射される光Lの配光角の半分である第2の角度θ2は、上述した第1の角度θ1よりも小さくなるように設定されている。 Further, the second angle θ2, which is half the light distribution angle of the light L emitted from each LED 16, is set to be smaller than the above-mentioned first angle θ1.

偏光素子14は、光源12から照射された光のうち一方向に振動する光成分のみを透過して偏光する素子であり、第1実施形態では、ワイヤーグリッド偏光素子が使用されている。ワイヤーグリッド偏光素子は、透明基板(ガラス基板)の一方の表面にワイヤーグリッドを形成したものである。この第1実施形態では、ワイヤーグリッドの形成面18は、偏光素子14における光源12側の面であってもよいし、光源12とは反対側の面であってもよい。また、偏光素子14はワークX(露光面A)に対して平行となるように配設されるのが好適である。 The polarizing element 14 is an element that transmits and polarizes only a light component that vibrates in one direction among the light emitted from the light source 12, and in the first embodiment, a wire grid polarizing element is used. The wire grid polarizing element has a wire grid formed on one surface of a transparent substrate (glass substrate). In this first embodiment, the formation surface 18 of the wire grid may be the surface of the polarizing element 14 on the light source 12 side or the surface opposite to the light source 12. Further, it is preferable that the polarizing element 14 is arranged so as to be parallel to the work X (exposed surface A).

(第1実施形態に係る光照射装置10の効果)
第1実施形態に係る光照射装置10によれば、複数のLED16の光軸CLをワークXに対して第1の角度θ1だけ傾け、各LED16から放射される光Lの配向角の半分に相当する第2の角度θ2をこの第1の角度θ1よりも小さく設定することにより、各LED16から放射された光LのすべてがLED16からワークXに向かう垂線よりもLED16の光軸CL側に向かうようになる。
(Effect of the light irradiation device 10 according to the first embodiment)
According to the light irradiation device 10 according to the first embodiment, the optical axes CL of the plurality of LEDs 16 are tilted by the first angle θ1 with respect to the work X, which corresponds to half of the orientation angle of the light L emitted from each LED 16. By setting the second angle θ2 to be smaller than this first angle θ1, all the light L emitted from each LED 16 is directed toward the optical axis CL side of the LED 16 rather than the perpendicular line from the LED 16 toward the work X. become.

これにより、簡便な構成で実効的な照射角を有する光の量が多い光配向処理を実施できる露光装置用の光照射装置10を提供することができる。 This makes it possible to provide a light irradiation device 10 for an exposure device capable of performing a light alignment process having a simple configuration and an effective irradiation angle and a large amount of light.

(第2実施形態に係る光照射装置10の構成)
第2実施形態に係る光照射装置10は、図2に示すように、上述した第1実施形態に係る光照射装置10に透光板20が加えられたものである。
(Structure of the light irradiation device 10 according to the second embodiment)
As shown in FIG. 2, the light irradiation device 10 according to the second embodiment is a light irradiation device 10 according to the above-mentioned first embodiment to which a light transmitting plate 20 is added.

透光板20は、光源12からの光Lを透過する例えばガラス製の板材であり、光源12と偏光素子14との間において、ワークXと平行に配設されている。なお、透光板20の表面(両面とも)には、反射防止膜等の反射防止処理をしないようにするのが好適である。 The light-transmitting plate 20 is, for example, a glass plate that transmits light L from the light source 12, and is arranged in parallel with the work X between the light source 12 and the polarizing element 14. It is preferable that the surface (both sides) of the translucent plate 20 is not subjected to antireflection treatment such as an antireflection film.

(第2実施形態に係る光照射装置10の効果)
第2実施形態に係る光照射装置10によれば、光源12から放射された光Lのうち透光板20に対する入射角θ3が大きい光Lは当該透光板20の表面で反射するので偏光素子14やワークXには届かなくなる。
(Effect of the light irradiation device 10 according to the second embodiment)
According to the light irradiation device 10 according to the second embodiment, among the light L radiated from the light source 12, the light L having a large incident angle θ3 with respect to the translucent plate 20 is reflected on the surface of the translucent plate 20 and is therefore a polarizing element. It will not reach 14 or Work X.

これにより、ワークXまで届く光Lの当該ワークXに対する入射角を所定の値以下に制限することができるので、より安定したプレチルト角の光配向処理を実現することができる。 As a result, the incident angle of the light L reaching the work X with respect to the work X can be limited to a predetermined value or less, so that a more stable optical orientation process of the pretilt angle can be realized.

(第3実施形態に係る光照射装置10の構成)
第3実施形態に係る光照射装置10は、図3に示すように、大略、光源12と、偏光素子14と、光学フィルター30とを備えている。
(Structure of the light irradiation device 10 according to the third embodiment)
As shown in FIG. 3, the light irradiation device 10 according to the third embodiment generally includes a light source 12, a polarizing element 14, and an optical filter 30.

光源12は、第1,第2実施形態と同様に、ワークXが載置される露光面Aに向けて露光用光Lを照射する部材であり、複数のLED16が使用されている。これらLED16は露光面A上を一定方向に移動していくワークXに対して走査するように露光用光Lを照射していくので、当該光源12はワークXの移動方向に直交する方向に複数のLED16を略直列に配置することによって形成されている。 Similar to the first and second embodiments, the light source 12 is a member that irradiates the exposure light L toward the exposure surface A on which the work X is placed, and a plurality of LEDs 16 are used. Since these LEDs 16 irradiate the work X moving in a certain direction on the exposure surface A with the exposure light L so as to scan, the light sources 12 are plurality of in the direction orthogonal to the moving direction of the work X. It is formed by arranging the LEDs 16 of the above in substantially series.

なお、第3実施形態に係る光照射装置10では、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定する必要はなく、第1の角度θ1および第2の角度θ2は任意である。もちろん、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定してもよい。 In the light irradiation device 10 according to the third embodiment, it is not necessary to specify the first angle θ1 and the second angle θ2 as in the first and second embodiments, and the first angle θ1 and the second angle θ2 are not required. The angle θ2 of is arbitrary. Of course, the first angle θ1 and the second angle θ2 may be defined as in the first and second embodiments.

偏光素子14は、光源12から照射された光のうち一方向に振動する光成分のみを透過して偏光する素子であり、第1,2実施形態と同様、ワイヤーグリッド偏光素子が使用されている。 The polarizing element 14 is an element that transmits and polarizes only a light component that vibrates in one direction among the light emitted from the light source 12, and the wire grid polarizing element is used as in the first and second embodiments. ..

なお、ワイヤーグリッドの形成面18は、偏光素子14における光源12側の面であってもよいし、光源12とは反対側の面であってもよい。また、偏光素子14はワークX(露光面A)に対して平行となるように配設されるのが好適である。 The surface 18 for forming the wire grid may be the surface of the polarizing element 14 on the light source 12 side or the surface opposite to the light source 12. Further, it is preferable that the polarizing element 14 is arranged so as to be parallel to the work X (exposed surface A).

光学フィルター30は、光源12と偏光素子14との間に配設されており、光源12から放射された光Lのうち所定の波長以上の光Lを選択的に透過する部材であって、表面に波長選択膜が形成されている。また、光学フィルター30は、偏光素子14と同様、ワークX(露光面A)に対して平行となるように配設されるのが好適である。なお、光学フィルター30としては、以下に説明する条件を満たすものであれば、所定の波長以上の光を透過するロングパスフィルタや、所定の波長範囲の光を透過し、それよりも長波長および短波長の光を遮断するバンドパスフィルタを使用することができる。さらに、光学フィルター30は、偏光素子14の光源12側とは反対側に配設してもよい。 The optical filter 30 is arranged between the light source 12 and the polarizing element 14, and is a member that selectively transmits light L having a predetermined wavelength or more among the light L emitted from the light source 12 and has a surface surface. A wavelength selection film is formed on the surface. Further, it is preferable that the optical filter 30 is arranged so as to be parallel to the work X (exposed surface A) like the polarizing element 14. As the optical filter 30, if the conditions described below are satisfied, a long-pass filter that transmits light of a predetermined wavelength or higher, or a long-pass filter that transmits light in a predetermined wavelength range and has a longer wavelength and a shorter wavelength than that of the optical filter 30 are transmitted. A bandpass filter that blocks light of wavelength can be used. Further, the optical filter 30 may be arranged on the side opposite to the light source 12 side of the polarizing element 14.

ここで、光学フィルター30は、角度依存性を有しており、当該光学フィルター30に入る光の入射角θ1が大きくなるとともに、この光学フィルター30を透過する光の波長の領域が低波長側に広がっていく。このことの一例を図4に示す。例えば325nmの光について考えたとき、光学フィルター30に対する光の入射角θ1が0°の場合(つまり、光学フィルター30に対して垂直に入射する場合)、325nmの光の透過率は約5%である。 Here, the optical filter 30 has an angle dependence, the incident angle θ1 of the light entering the optical filter 30 becomes large, and the wavelength region of the light transmitted through the optical filter 30 is on the low wavelength side. It will spread. An example of this is shown in FIG. For example, when considering light at 325 nm, when the incident angle θ1 of light with respect to the optical filter 30 is 0 ° (that is, when the light is incident perpendicular to the optical filter 30), the transmittance of light at 325 nm is about 5%. be.

そして、光学フィルター30に対する325nmの光の入射角を15°,30°,45°と大きくしていくと、この325nmの光の透過率は15%,70%,95%と高くなっていく。 Then, when the incident angles of the light of 325 nm with respect to the optical filter 30 are increased to 15 °, 30 °, and 45 °, the transmittance of the light of 325 nm increases to 15%, 70%, and 95%.

このような光学フィルター30の性質を利用して、光学フィルター30を当該光学フィルター30に対する所定の波長以上の光Lの入射角θ1が大きくなるに連れて、所定の波長以上の光Lの透過率を高めるように設定することで、所望のプレチルト角に対応する光学フィルター30への入射角(第1の角度θ1)の時に所望の波長以上の光Lを十分に透過することができる。 Utilizing such properties of the optical filter 30, the transmittance of the light L having a predetermined wavelength or more increases as the incident angle θ1 of the light L having a predetermined wavelength or more with respect to the optical filter 30 increases. By setting to increase the light L, light L having a desired wavelength or higher can be sufficiently transmitted at the incident angle (first angle θ1) to the optical filter 30 corresponding to the desired pretilt angle.

(第3実施形態に係る光照射装置10の効果)
第3実施形態に係る光照射装置10によれば、光源12から放射される光Lのうち光学フィルター30への入射角θ1が小さい光L(光学フィルター30に対して略垂直に入射する光)は当該光学フィルター30を透過し難くなり、ワークXに対する所望の入射角θ1に近い光Lを中心として露光を行うことができるので、より安定したプレチルト角を得ることができる。
(Effect of the light irradiation device 10 according to the third embodiment)
According to the light irradiation device 10 according to the third embodiment, among the light L emitted from the light source 12, the light L having a small incident angle θ1 on the optical filter 30 (light incident substantially perpendicular to the optical filter 30). Is difficult to pass through the optical filter 30, and exposure can be performed centering on the light L close to the desired incident angle θ1 with respect to the work X, so that a more stable pretilt angle can be obtained.

(第4実施形態に係る光照射装置10の構成)
第4実施形態に係る光照射装置10は、図5に示すように、大略、光源12と、偏光素子14と、カバー部材40とを備えている。
(Structure of the light irradiation device 10 according to the fourth embodiment)
As shown in FIG. 5, the light irradiation device 10 according to the fourth embodiment generally includes a light source 12, a polarizing element 14, and a cover member 40.

光源12は、上述した実施形態と同様に、ワークXが載置される露光面Aに向けて露光用光Lを照射する部材であり、複数のLED16が使用されている。これらLED16は露光面A上を一定方向に移動していくワークXに対して走査するように露光用光Lを照射していくので、当該光源12はワークXの移動方向に直交する方向に複数のLED16を略直列に配置することによって形成されている。 Similar to the above-described embodiment, the light source 12 is a member that irradiates the exposure light L toward the exposure surface A on which the work X is placed, and a plurality of LEDs 16 are used. Since these LEDs 16 irradiate the work X moving in a certain direction on the exposure surface A with the exposure light L so as to scan, the light sources 12 are plurality of in the direction orthogonal to the moving direction of the work X. It is formed by arranging the LEDs 16 of the above in substantially series.

なお、第4実施形態に係る光照射装置10でも、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定する必要はなく、第1の角度θ1および第2の角度θ2は任意である。もちろん、第1,第2実施形態と同様に第1の角度θ1および第2の角度θ2を規定してもよい。 In the light irradiation device 10 according to the fourth embodiment, it is not necessary to specify the first angle θ1 and the second angle θ2 as in the first and second embodiments, and the first angle θ1 and the second angle θ2 are not required. The angle θ2 of is arbitrary. Of course, the first angle θ1 and the second angle θ2 may be defined as in the first and second embodiments.

偏光素子14は、光源12から照射された光のうち一方向に振動する光成分のみを透過して偏光する素子であり、第1,2実施形態と同様、ワイヤーグリッド偏光素子が使用されている。 The polarizing element 14 is an element that transmits and polarizes only a light component that vibrates in one direction among the light emitted from the light source 12, and the wire grid polarizing element is used as in the first and second embodiments. ..

なお、ワイヤーグリッドの形成面18は、偏光素子14における光源12側の面であってもよいし、光源12とは反対側の面であってもよい。また、偏光素子14はワークX(露光面A)に対して平行となるように配設されるのが好適である。 The surface 18 for forming the wire grid may be the surface of the polarizing element 14 on the light source 12 side or the surface opposite to the light source 12. Further, it is preferable that the polarizing element 14 is arranged so as to be parallel to the work X (exposed surface A).

カバー部材40は、光源12からの光Lを透過する例えばガラス製の板材であり、偏光素子14におけるワイヤーグリッドの形成面18に対向する位置において、ワークXと略平行に配設されている。つまり、図示するように偏光素子14におけるワイヤーグリッドの形成面18が光源12側とは反対側に形成されている場合、カバー部材40も偏光素子14における光源12側とは反対側に配設される。逆に、偏光素子14におけるワイヤーグリッドの形成面18が光源12側に形成されている場合(図示せず)、カバー部材40も偏光素子14における光源12側に配設される。 The cover member 40 is, for example, a glass plate that transmits light L from the light source 12, and is arranged substantially parallel to the work X at a position facing the formation surface 18 of the wire grid in the polarizing element 14. That is, when the formation surface 18 of the wire grid in the polarizing element 14 is formed on the side opposite to the light source 12 side as shown in the drawing, the cover member 40 is also arranged on the side opposite to the light source 12 side in the polarizing element 14. To. On the contrary, when the formation surface 18 of the wire grid in the polarizing element 14 is formed on the light source 12 side (not shown), the cover member 40 is also arranged on the light source 12 side in the polarizing element 14.

なお、カバー部材40の表面(両面とも)には、反射防止膜等の反射防止処理をしなくてもよいが、一方または両方の表面に反射防止膜等の反射防止処理を行うのが好適である。 The surface (both sides) of the cover member 40 may not be subjected to antireflection treatment such as an antireflection film, but it is preferable to perform antireflection treatment such as an antireflection film on one or both surfaces. be.

また、カバー部材40と偏光素子14におけるワイヤーグリッドの形成面18との間の空間Sは密閉するのが好適である。例えば、カバー部材40および偏光素子14の周縁を保持する保持枠42を設け、当該保持枠42でカバー部材40と偏光素子14におけるワイヤーグリッドの形成面18との間の空間Sを密閉することが考えられる。 Further, it is preferable that the space S between the cover member 40 and the formation surface 18 of the wire grid in the polarizing element 14 is sealed. For example, a holding frame 42 for holding the peripheral edges of the cover member 40 and the polarizing element 14 may be provided, and the holding frame 42 may seal the space S between the cover member 40 and the wire grid forming surface 18 of the polarizing element 14. Conceivable.

なお、上述した「密閉」とは、当該空間Sにシロキサン化合物等の微小固形物が侵入しない程度の意味であり、完全な意味での「密閉」は必要ない。 The above-mentioned "sealing" means that a minute solid substance such as a siloxane compound does not enter the space S, and "sealing" in a complete sense is not necessary.

また、偏光素子14にはいわゆる「反射タイプ」のワイヤーグリッドを用いるのが好適である。「反射タイプ」であれば、光源12からの光Lによってワイヤーグリッドが加熱され、密閉された空間の温度が不所望に上昇することによってワイヤーグリッドの形成面18等を損傷させる可能性が低いからである。 Further, it is preferable to use a so-called "reflection type" wire grid for the polarizing element 14. In the case of the "reflection type", the wire grid is heated by the light L from the light source 12, and the temperature of the enclosed space is unlikely to be damaged by the formation surface 18 of the wire grid. Is.

さらに、密閉された空間Sを冷却することを目的として、カバー部材40、偏光素子14、あるいは保持枠42といった当該空間Sを構成する部材を強制空冷または水冷といった方法によって冷却してもよい。 Further, for the purpose of cooling the sealed space S, the members constituting the space S such as the cover member 40, the polarizing element 14, or the holding frame 42 may be cooled by a method such as forced air cooling or water cooling.

(第4実施形態に係る光照射装置10の構成)
第4実施形態に係る光照射装置10によれば、偏光素子14におけるワイヤーグリッドの形成面18に対向する位置にカバー部材40が配設されているので、例えば光照射装置10のメンテナンス等の際に誤ってワイヤーグリッドの形成面18を損傷させるのを回避できるとともに、ワイヤーグリッドの形成面18にシロキサン化合物等の微小固形物による汚れが付着するのを回避できる。
(Structure of the light irradiation device 10 according to the fourth embodiment)
According to the light irradiation device 10 according to the fourth embodiment, since the cover member 40 is arranged at a position facing the formation surface 18 of the wire grid in the polarizing element 14, for example, when the light irradiation device 10 is maintained. It is possible to prevent the wire grid forming surface 18 from being accidentally damaged, and to prevent the wire grid forming surface 18 from being contaminated with fine solid matter such as a siloxane compound.

(変形例1)
上述した第1から第4実施例に係る光照射装置10の構成は、互いに組み合わせることができる。例えば、第3実施例の光学フィルター30と第4実施例のカバー部材40とを組み合わせることにより、図6に示すように、光源12に近い側から順に、光学フィルター30、偏光素子14、カバー部材40が配置された光照射装置10を形成できる。
(Modification 1)
The configurations of the light irradiation devices 10 according to the first to fourth embodiments described above can be combined with each other. For example, by combining the optical filter 30 of the third embodiment and the cover member 40 of the fourth embodiment, as shown in FIG. 6, the optical filter 30, the polarizing element 14, and the cover member are sequentially arranged from the side closest to the light source 12. The light irradiation device 10 in which the 40 is arranged can be formed.

もちろん、偏光素子14およびカバー部材40の位置を逆にして、光源12に近い側から順に、光学フィルター30、カバー部材40、偏光素子14が配置された光照射装置10を形成してもよい。 Of course, the positions of the polarizing element 14 and the cover member 40 may be reversed to form the light irradiation device 10 in which the optical filter 30, the cover member 40, and the polarizing element 14 are arranged in order from the side closest to the light source 12.

さらに言えば、図7に示すように、光学フィルター30をワークに最も近い位置に配置して、光源12に近い側から順に、カバー部材40、偏光素子14、光学フィルター30が配置された光照射装置10を形成してもよい。 Furthermore, as shown in FIG. 7, the optical filter 30 is arranged at the position closest to the work, and the cover member 40, the polarizing element 14, and the optical filter 30 are arranged in this order from the side closest to the light source 12. The device 10 may be formed.

(変形例2)
また、上述した第1から第4実施例に係る光照射装置10で使用されている光源12に対し、図8に示すように、LED16からの光Lの配光角を制御するためのレンズ50をさらに設けてもよい。このレンズ50の数は、図示するように1つであってもよいし、2つ以上であってもよい。
(Modification 2)
Further, as shown in FIG. 8, the lens 50 for controlling the light distribution angle of the light L from the LED 16 with respect to the light source 12 used in the light irradiation device 10 according to the first to fourth embodiments described above. May be further provided. The number of the lenses 50 may be one or two or more as shown in the figure.

さらに、上述した第1から第4実施例に係る光照射装置10で使用されている光源12に対し、図9に示すように、LED16からの光Lの配光角を制御するためのリフレクター52をさらに設けてもよい。 Further, as shown in FIG. 9, the reflector 52 for controlling the light distribution angle of the light L from the LED 16 with respect to the light source 12 used in the light irradiation device 10 according to the first to fourth embodiments described above. May be further provided.

また、図10に示すように、レンズ50とリフレクター52とを組み合わせてLED16からの光Lの配光角を制御してもよい。 Further, as shown in FIG. 10, the lens 50 and the reflector 52 may be combined to control the light distribution angle of the light L from the LED 16.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上述した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary and not restrictive in all respects. The scope of the present invention is shown by the scope of claims, not the description described above, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

10…光照射装置、12…光源、14…偏光素子、16…LED、18…ワイヤーグリッドの形成面
20…透光板
30…光学フィルター
40…カバー部材、42…保持枠
50…レンズ、52…リフレクター
X…ワーク(露光対象物)、A…露光面、L…露光用光、CL…(LED16の)光軸、θ1…第1の角度、θ2…第2の角度、θ3…(透光板20への)入射角、S…(カバー部材40とワイヤーグリッドの形成面18との間の)空間
10 ... Light irradiation device, 12 ... Light source, 14 ... Polarizing element, 16 ... LED, 18 ... Wire grid forming surface 20 ... Translucent plate 30 ... Optical filter 40 ... Cover member, 42 ... Holding frame 50 ... Lens, 52 ... Reflector X ... Work (exposed object), A ... Exposed surface, L ... Light for exposure, CL ... Optical axis (of LED16), θ1 ... First angle, θ2 ... Second angle, θ3 ... (Translucent plate) Angle of incidence (to 20), S ... Space (between the cover member 40 and the forming surface 18 of the wire grid)

Claims (4)

複数のLEDを有する光源と、
前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
前記光源から放射された光のうち所定の波長以上の光を選択的に透過する光学フィルターとを備えており、
前記各LEDの光軸は、前記ワークに対して傾いた第1の角度を有しており、
前記各LEDから放射される前記光の配光角の半分である第2の角度は、前記第1の角度よりも小さくなっており、
前記光学フィルターは、前記ワークに対して平行となるように配置されており、
前記光学フィルターは、前記光学フィルターに対する所定の波長以上の前記光の入射角が大きくなるに連れて、所定の波長以上の前記光の透過率を高めるようになっていることを特徴とする
光照射装置。
A light source with multiple LEDs and
A polarizing element that receives light from the light source and irradiates the work with the transmitted light.
It is equipped with an optical filter that selectively transmits light having a predetermined wavelength or higher among the light radiated from the light source.
The optical axis of each of the LEDs has a first angle tilted with respect to the work.
The second angle, which is half the light distribution angle of the light emitted from each of the LEDs, is smaller than the first angle.
The optical filter is arranged so as to be parallel to the work.
The optical filter is characterized in that the transmittance of the light having a predetermined wavelength or more is increased as the incident angle of the light having a predetermined wavelength or more with respect to the optical filter is increased. Device.
複数のLEDを有する光源と、
前記光源からの光を受け、透過させた前記光をワークに照射する偏光素子と、
前記光源からの光を透過するカバー部材とを備えており、
前記各LEDの光軸は、前記ワークに対して傾いた第1の角度を有しており、
前記各LEDから放射される前記光の配光角の半分である第2の角度は、前記第1の角度よりも小さくなっており、
前記偏光素子は、ワイヤーグリッドの形成面を有しており、
前記カバー部材は、前記偏光素子における前記形成面に対向する位置に配設されており、
前記カバー部材と前記形成面との間の空間は密閉されており、
前記偏光素子および前記カバー部材は、前記ワークに対して平行となるように配置されていることを特徴とする
光照射装置。
A light source with multiple LEDs and
A polarizing element that receives light from the light source and irradiates the work with the transmitted light.
It is provided with a cover member that transmits light from the light source.
The optical axis of each of the LEDs has a first angle tilted with respect to the work.
The second angle, which is half the light distribution angle of the light emitted from each of the LEDs, is smaller than the first angle.
The polarizing element has a surface on which a wire grid is formed.
The cover member is arranged at a position facing the forming surface of the polarizing element.
The space between the cover member and the forming surface is hermetically sealed.
A light irradiation device characterized in that the polarizing element and the cover member are arranged so as to be parallel to the work.
前記光源と前記偏光素子との間において前記ワークと平行に配設されている透光板をさらに備えている
請求項1または2に記載の光照射装置。
The light irradiation device according to claim 1 or 2, further comprising a light transmitting plate arranged in parallel with the work between the light source and the polarizing element.
請求項1から3のいずれか1項に記載の光照射装置を備える露光装置。 An exposure apparatus including the light irradiation apparatus according to any one of claims 1 to 3.
JP2021191850A 2020-03-24 2021-11-26 Light irradiation device and exposure device provided with same Active JP7140430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021191850A JP7140430B2 (en) 2020-03-24 2021-11-26 Light irradiation device and exposure device provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020053452A JP6989977B2 (en) 2020-03-24 2020-03-24 Light irradiation device and exposure device equipped with this
JP2021191850A JP7140430B2 (en) 2020-03-24 2021-11-26 Light irradiation device and exposure device provided with same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020053452A Division JP6989977B2 (en) 2020-03-24 2020-03-24 Light irradiation device and exposure device equipped with this

Publications (2)

Publication Number Publication Date
JP2022031802A true JP2022031802A (en) 2022-02-22
JP7140430B2 JP7140430B2 (en) 2022-09-21

Family

ID=87846613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021191850A Active JP7140430B2 (en) 2020-03-24 2021-11-26 Light irradiation device and exposure device provided with same

Country Status (1)

Country Link
JP (1) JP7140430B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512850A (en) * 1997-08-05 2001-08-28 エルシコン・インコーポレーテッド Exposure system and method for aligning liquid crystals
JP2005010408A (en) * 2003-06-18 2005-01-13 Sony Corp Photo-alignment treatment method and manufacturing method of liquid crystal display
JP2006323060A (en) * 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device
JP2016153920A (en) * 2016-05-19 2016-08-25 ウシオ電機株式会社 Polarization light irradiation device
CN209014871U (en) * 2018-07-16 2019-06-21 香港科技大学 Photohead and exposure system for light orientation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512850A (en) * 1997-08-05 2001-08-28 エルシコン・インコーポレーテッド Exposure system and method for aligning liquid crystals
JP2005010408A (en) * 2003-06-18 2005-01-13 Sony Corp Photo-alignment treatment method and manufacturing method of liquid crystal display
JP2006323060A (en) * 2005-05-18 2006-11-30 Ushio Inc Polarized-light irradiating device
JP2016153920A (en) * 2016-05-19 2016-08-25 ウシオ電機株式会社 Polarization light irradiation device
CN209014871U (en) * 2018-07-16 2019-06-21 香港科技大学 Photohead and exposure system for light orientation

Also Published As

Publication number Publication date
JP7140430B2 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP3075917B2 (en) Liquid crystal display device, its manufacturing method and its manufacturing device
US6292296B1 (en) Large scale polarizer and polarizer system employing it
JP2010134483A (en) Method of manufacturing liquid crystal display, and exposure device for alignment treatment
JP2928226B2 (en) Polarized light irradiation device for photo-alignment of alignment film of liquid crystal display device
CN103620487B (en) Light directional illumination device
JP6989977B2 (en) Light irradiation device and exposure device equipped with this
JP2012123207A (en) Exposure apparatus and exposure method
JP2022031802A (en) Light irradiation device and exposure apparatus including the same
JP2009139623A (en) Liquid crystal lens
WO2022153672A1 (en) Light projecting device and exposure device provided with same
JP2010506205A (en) Polarizing plate and polarized light irradiation apparatus including the same
JP7142380B2 (en) Light irradiation device and exposure device provided with same
JP7257719B2 (en) Light irradiation device and exposure device provided with same
JP4046427B2 (en) Polarizer with large area polarizing plate
TW201921131A (en) Photo-aligning exposure device
JP4135557B2 (en) Polarized light irradiation device for photo-alignment
TW201007351A (en) Photomask and photo alignment process using the same
KR101659698B1 (en) Method and apparatus for manufacturing liquid crystal display device
JP7193196B2 (en) Measuring Mechanism for Alignment Film Exposure Apparatus and Adjustment Method for Alignment Film Exposure Apparatus
TW445381B (en) Large scale polarizer and polarizer system employing it
CN113366380A (en) Exposure apparatus for photo-alignment and exposure method for photo-alignment
TW202331311A (en) Thermal activated switching polarizer
KR101096697B1 (en) A polarizing system and an UV irradiating apparatus
JP2016024416A (en) Light orientation irradiation device and light orientation irradiation method
KR20070070709A (en) Light irradation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7140430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150