JP2022029879A - Extremely narrow groove submerged arc welding method and extremely narrow groove submerged arc welding apparatus - Google Patents
Extremely narrow groove submerged arc welding method and extremely narrow groove submerged arc welding apparatus Download PDFInfo
- Publication number
- JP2022029879A JP2022029879A JP2020133448A JP2020133448A JP2022029879A JP 2022029879 A JP2022029879 A JP 2022029879A JP 2020133448 A JP2020133448 A JP 2020133448A JP 2020133448 A JP2020133448 A JP 2020133448A JP 2022029879 A JP2022029879 A JP 2022029879A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- groove
- torch
- distance
- groove wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 324
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000011324 bead Substances 0.000 claims abstract description 65
- 230000007547 defect Effects 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000004927 fusion Effects 0.000 claims description 105
- 230000008685 targeting Effects 0.000 abstract 2
- 238000002844 melting Methods 0.000 description 19
- 230000008018 melting Effects 0.000 description 19
- 238000012360 testing method Methods 0.000 description 17
- 230000035515 penetration Effects 0.000 description 15
- 230000007423 decrease Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 239000002893 slag Substances 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 102220047090 rs6152 Human genes 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- VQKWAUROYFTROF-UHFFFAOYSA-N arc-31 Chemical compound O=C1N(CCN(C)C)C2=C3C=C4OCOC4=CC3=NN=C2C2=C1C=C(OC)C(OC)=C2 VQKWAUROYFTROF-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 244000257022 tick clover Species 0.000 description 1
- 210000003371 toe Anatomy 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/095—Monitoring or automatic control of welding parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/18—Submerged-arc welding
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
Abstract
Description
本発明は極狭開先サブマージアーク溶接方法および極狭開先サブマージアーク溶接装置に関する。 The present invention relates to an ultra-narrow groove submerged arc welding method and an ultra-narrow groove submerged arc welding apparatus.
サブマージアーク溶接(Submerged arc welding : SAW)は、その高溶着効率性や高品質性から、圧力容器等の大型鋼構造物における厚板や極厚板の突合せ溶接に多く使われている。SAWで厚板や極厚板を溶接する場合、融合不良(Lack of fusion : LF)などの溶接欠陥を防止するために、開先角度を30°程度まで広くする必要がある。しかし、開先角度が広いと、必要な溶着断面積が増加し、溶接ビードの積層による溶接の完了までに多大な時間を要する。 Submerged arc welding (SAW) is often used for butt welding of thick plates and extra-thick plates in large steel structures such as pressure vessels because of its high welding efficiency and high quality. When welding a thick plate or an extra-thick plate with SAW, it is necessary to widen the groove angle to about 30 ° in order to prevent welding defects such as poor fusion (Lack of fusion: LF). However, if the groove angle is wide, the required welding cross-sectional area increases, and it takes a long time to complete the welding by laminating the weld beads.
これに対し、開先角度を1~3°とし、ルート幅を狭くした、狭開先SAWでは,必要な溶着断面積が少なくなり、溶接時間の短縮が期待できる。狭開先SAWはこれまでいくつか研究開発が行われてきた。近年では、開先角度をほぼ0°とし、かつ開先幅を18mm以下とすることで、溶接対象である極厚板を溶接ビードの初層から最終層まで1層1パスで積層する極狭開先SAWの研究も進められている。 On the other hand, in the narrow groove SAW where the groove angle is 1 to 3 ° and the root width is narrowed, the required welding cross-sectional area is reduced, and the welding time can be expected to be shortened. Some research and development has been carried out on the narrow groove SAW. In recent years, by setting the groove angle to almost 0 ° and the groove width to 18 mm or less, the extremely narrow plate to be welded is laminated from the first layer to the last layer of the weld bead in one layer and one pass. Research on groove SAW is also underway.
1層1パス施工では、1パスで両側の開先壁を溶融させる必要があるが、開先底のコーナー部はアークプラズマで直接加熱しにくかったり、熱が拡散しやすかったりする等の理由から溶融しにくく、融合不良が生じやすい。また,開先が狭くなると溶接後にスラグが自然にはく離せず、その除去が困難となる。仮に開先壁にアンダカットが生じた場合、そこにスラグが固着し、これを十分に除去できないと、スラグ巻込みの原因となる。これらの溶接欠陥を防止するには,両側の開先壁を溶融しつつ、アンダカットが生じない溶接部形状となる溶接条件を選定する必要がある。しかし、欠陥の生じない溶接条件やトーチ狙い位置についての、すなわち適正な溶接条件についての範囲が狭い。そして、適正な溶接条件範囲が狭いため、溶接中の変動(開先幅の変化や装置の動作ずれ等)で開先幅やトーチ狙い位置が変化してしまって、本来欠陥が生じない溶接条件でも突然欠陥が生じてしまうことがある。 In 1-layer 1-pass construction, it is necessary to melt the groove walls on both sides in 1 pass, but the corners of the groove bottom are difficult to heat directly with arc plasma, and heat is easily diffused. It is difficult to melt and fusion failure is likely to occur. In addition, if the groove is narrowed, the slag will not naturally separate after welding, making it difficult to remove it. If undercut occurs on the groove wall, slag will stick to it, and if it cannot be removed sufficiently, it will cause slag entrainment. In order to prevent these welding defects, it is necessary to select welding conditions that give a welded portion shape that does not cause undercut while melting the groove walls on both sides. However, the range of welding conditions and torch target positions where defects do not occur, that is, proper welding conditions is narrow. Since the range of appropriate welding conditions is narrow, the groove width and torch aiming position change due to fluctuations during welding (changes in groove width, device operation deviation, etc.), and welding conditions that do not originally cause defects. But sudden defects can occur.
一方、近年ではデジタル波形制御が可能な大容量の溶接電源が開発されており、従来の可動鉄心形と比較して出力の安定性や再現性が向上し、EN比、周波数、位相差などについて、出力波形をより精密に制御可能である。たとえば、EN比により溶接ワイヤの送給速度すなわち溶着断面積を制御できる。このように,デジタル波形制御電源ではEN比等のパラメータにより溶接部形状の制御が可能となり、極狭開先SAWにおいて融合不良やアンダカットなどの溶接欠陥を防止することが期待できる。 On the other hand, in recent years, a large-capacity welding power supply capable of digital waveform control has been developed, and the stability and reproducibility of the output are improved compared to the conventional movable iron core type, and the EN ratio, frequency, phase difference, etc. are improved. , The output waveform can be controlled more precisely. For example, the feed rate of the welded wire, that is, the welded cross-sectional area can be controlled by the EN ratio. As described above, in the digital waveform control power supply, the shape of the welded portion can be controlled by parameters such as the EN ratio, and it can be expected to prevent welding defects such as fusion failure and undercut in the ultra-narrow groove SAW.
一方、公知技術として、特許文献1や特許文献2に記載されたものがある。このうち、特許文献1には、溶接線に対し左右倣いと上下倣いとを自動で行う装置が記載されている。この装置によれば、開先形状の変化に対して、トーチ狙い位置の自動追従が可能である。特許文献2には、ビード断面高さと溶着断面積から積層時のビード形状を定式化し、各層のトーチ狙い位置を決定するアルゴリズムを用いる溶接方法が記載されている。
On the other hand, as known techniques, there are those described in
ところが、特許文献1に記載のものでは、溶接中の変動に対し溶接条件を適正化できないため、1層1パス施工では溶接欠陥が生じる。特許文献2に記載のものは、1層1パス施工に対応しておらず、入力された溶接条件に対してトーチ狙い位置のみを決定するため、溶接中の変動に対して溶接条件を適正化できない。
However, in the case described in
そこで本発明は、このような問題を解決して、極狭開先SAWにおいて、溶接中の変動に対して溶接欠陥の生じない溶接条件、トーチ狙い位置を制御するアルゴリズムによる溶接方法および溶接装置を得ることを目的とする。 Therefore, the present invention solves such a problem and provides a welding method and a welding apparatus based on an algorithm for controlling the welding conditions, the torch aiming position, and the welding conditions in which welding defects do not occur due to fluctuations during welding in an extremely narrow groove SAW. The purpose is to get.
この目的を達成するため、本発明の極狭開先サブマージアーク溶接方法は、
所定の溶接条件のもとで、溶接対象と同じ素材にビードオンプレート溶接を施して、そのビードオンプレート溶接の際のビード幅WBと溶着断面積ARとを計測し、
前記溶接条件から溶接入熱Qを求め、
溶接時の開先壁への入熱HGを、前記溶接入熱Qと、前記ビード幅WBと、トーチ-開先壁間距離Lとを用いて表し、
トーチ狙い位置における溶融池表面から開先底のコーナー部までの一般化した距離Rを、前記溶着断面積ARと前記トーチ-開先壁間距離Lとを用いて表し、
前記入熱HGと距離Rとで形成されるHG-R平面に、実験的に求めた開先溶接時の融合不良の有無の表示をプロットし、
この開先溶接時の融合不良の有無の表示がプロットされたHG-R平面に、開先壁における融合不良の有無を基準とする判定線を引き、
前記判定線よりも融合不良の無い領域となるように溶接条件を設定して開先溶接を行うことを特徴とする。
In order to achieve this object, the ultra-narrow groove submerged arc welding method of the present invention is used.
Under predetermined welding conditions, bead-on-plate welding is performed on the same material as the object to be welded, and the bead width WB and welding cross-sectional area AR at the time of the bead-on-plate welding are measured.
Welding heat input Q is obtained from the above welding conditions.
The heat input HG to the groove wall at the time of welding is expressed by using the welding heat input Q, the bead width WB , and the distance L between the torch and the groove wall.
The generalized distance R from the surface of the molten pool to the corner of the groove bottom at the torch target position is expressed using the welding cross-sectional area AR and the distance L between the torch and the groove wall.
An experimentally obtained display of the presence or absence of fusion failure during groove welding was plotted on the HG -R plane formed by the heat input HG and the distance R.
A judgment line based on the presence or absence of fusion failure on the groove wall is drawn on the HGR plane on which the display of the presence or absence of fusion failure during groove welding is plotted.
It is characterized in that groove welding is performed by setting welding conditions so as to be a region where there is no fusion defect from the determination line.
このようにすると、融合不良が生じないようにしながら、極狭開先サブマージアーク溶接を行うことができる。 By doing so, it is possible to perform ultra-narrow groove submerged arc welding while preventing fusion defects from occurring.
本発明の極狭開先サブマージアーク溶接方法によると、溶接時の開先壁への入熱HGを、溶接入熱Qと、ビード幅WBおよびトーチ-開先壁間距離Lの差(WB-L)との積で表すことが好適である。 According to the ultra-narrow groove submerged arc welding method of the present invention, the heat input HG to the groove wall at the time of welding is the difference between the welding heat input Q, the bead width WB and the distance L between the torch and the groove wall ( It is preferably expressed as a product of WB -L).
また本発明の極狭開先サブマージアーク溶接方法によると、トーチ狙い位置における溶融池表面から開先底のコーナー部までの距離Rを、溶着断面積ARをトーチ-開先壁間距離Lで除したもの(AR/L)のべき乗と、トーチ-開先壁間距離Lのべき乗との和で表すことが好適である。 Further, according to the ultra-narrow groove submerged arc welding method of the present invention, the distance R from the surface of the molten pool to the corner of the groove bottom at the torch target position is the distance R between the torch and the groove wall, and the welding cross-sectional area AR is the distance L between the torch and the groove wall. It is preferable to express it as the sum of the power of the divided product (AR / L ) and the power of the torch-groove wall distance L.
さらに本発明の極狭開先サブマージアーク溶接方法によると、トーチ-開先壁間距離Lを開先溶接時に計測し、この計測されたトーチ-開先壁間距離Lに対して、溶接欠陥の生じない適正範囲となる溶接条件を設定することが好適である。 Further, according to the ultra-narrow groove submerged arc welding method of the present invention, the torch-groove wall distance L is measured at the time of groove welding, and the measured torch-groove wall distance L is subject to welding defects. It is preferable to set welding conditions within an appropriate range that does not occur.
さらに本発明の極狭開先サブマージアーク溶接方法によると、開先溶接時の溶接条件としての、EN比と、溶接電流と、電圧と、溶接速度とのうちの少なくとも1つを制御することが好適である。 Further, according to the ultra-narrow groove submerged arc welding method of the present invention, it is possible to control at least one of the EN ratio, the welding current, the voltage, and the welding speed as the welding conditions at the time of groove welding. Suitable.
本発明の極狭開先サブマージアーク溶接装置は、デジタル式の溶接電源を備え、このデジタル式の溶接電源は、EN比と、溶接電流と、電圧との設定値を設定変更できるものであることを特徴とする。 The ultra-narrow groove submerged arc welding apparatus of the present invention is provided with a digital welding power source, and this digital welding power source can set and change the set values of the EN ratio, the welding current, and the voltage. It is characterized by.
このようなものであると、本発明の方法にもとづき融合不良が生じない溶接を実施することができる装置を得ることができる。 With such a device, it is possible to obtain an apparatus capable of performing welding without causing fusion defects based on the method of the present invention.
本発明の極狭開先サブマージアーク溶接装置によると、トーチ-開先壁間距離Lを調整するためにトーチを溶接線方向に直交する方向に移動させるための移動装置を有することが好適である。 According to the ultra-narrow groove submerged arc welding apparatus of the present invention, it is preferable to have a moving device for moving the torch in a direction orthogonal to the welding line direction in order to adjust the distance L between the torch and the groove wall. ..
このようなものであると、トーチ狙い位置にずれが生じた場合に、そのずれを修正することができる。 With such a thing, when a deviation occurs in the torch aiming position, the deviation can be corrected.
本発明によると、溶接中に開先幅が変動するような場合であっても、融合不良が生じないようにしながら、極狭開先サブマージアーク溶接を行うことができる。 According to the present invention, even when the groove width fluctuates during welding, ultra-narrow groove submerged arc welding can be performed while preventing fusion defects from occurring.
本発明は実験的手法に基づいて完成された。以下、その実験的手法を参照したうえで本発明について詳述する。 The present invention has been completed on the basis of experimental techniques. Hereinafter, the present invention will be described in detail with reference to the experimental method.
図1~図3は、狭開先に対してサブマージアーク溶接を行ったときの状況を示す。ここで11は開先の溝壁、12は溝底、13は溝底のコーナー部、WRはルート幅すなわち溝壁11、11どうしの間隔、14は溶融池である。このうち、図1は、良好な溶融状態を示す。すなわち、溝壁11、溝底12、コーナー部13が、それぞれ適度な深さまで溶融している。これに対し、図2はコーナー部13において融合不良LFが生じた状態を示す。図3は、図における右側の溝壁11にアンダカット15が生じた状態を示す。
1 to 3 show a situation when submerged arc welding is performed on a narrow groove. Here, 11 is the groove wall of the groove, 12 is the groove bottom, 13 is the corner portion of the groove bottom, WR is the root width, that is, the distance between the
[実験]
溶接欠陥は、図1~図3に示すルート幅WRと、トーチ狙い位置Pすなわちルート幅WRの方向における溶接トーチの位置とに影響を受けると見込まれる。そこで、ルート幅WRとトーチ狙い位置Pとの変化が溶接欠陥に及ぼす影響を評価するため、シングルトーチで開先溶接を実施した。各溶接条件で溶接欠陥を判定し、ビード高さh、溶込み深さDを計測した。また、開先溶接時と溶接部の形状を比較するため、ビードオンプレート溶接も実施した。得られた結果から融合不良判定モデルを作成するために、シングルトーチおよびタンデムトーチを用いて、ビード幅WBおよび溶着断面積ARを変化させた溶接条件で ビードオンプレート溶接を実施し、各溶接条件でのビード幅WBおよび溶着断面積ARを計測した。次に、それらの溶接条件で開先溶接を実施し、融合不良を判定した。
[experiment]
Weld defects are expected to be affected by the root width WR shown in FIGS. 1 to 3 and the position of the welding torch in the direction of the torch target position P, that is, the root width WR . Therefore, in order to evaluate the effect of the change between the root width WR and the torch target position P on the welding defect, groove welding was performed with a single torch. Welding defects were determined under each welding condition, and the bead height h and the penetration depth D were measured. In addition, bead-on-plate welding was also performed to compare the shape of the welded portion with that at the time of groove welding. In order to create a fusion failure judgment model from the obtained results, bead-on-plate welding was performed using a single torch and a tandem torch under welding conditions in which the bead width WB and the welded cross-sectional area AR were changed. The bead width WB and the welded cross-sectional area AR under the welding conditions were measured. Next, groove welding was performed under those welding conditions, and fusion failure was determined.
用いた実験装置の概略を図4に示す。この図4は、タンデムトーチで開先溶接するときの装置構成であって、16、17はその溶接トーチ、18は溶接トーチ16、17を移動させるためのキャリッジ、19は溶接ワイヤのフィーダ、20は溶接電源である。溶接電源20には、デジタル波形制御できるものを使用した。21は試験体であるが、この試験体21の材質は、21/4Cr-1Mo鋼であった。開先溶接での極狭開先を模擬するため、試験体21を構成する1対の長さ400mm×幅70mm×板厚30mmの材料どうしの間に、長さ400×幅w(寸法の違うものを複数種類準備した)×板厚25mmのインサート材24をはさみ、開先角度0°、開先深さ20mmの試験体とした。この開先試験体について大型鋼構造物と同等の冷却速度となるように、試験体側面に水冷銅板22を設置した。また、溶接時の変形を抑制するためストロングバック23を取り付けた。矢印25は、溶接方向を示す。予熱、パス間温度は200~250℃とし、後熱処理は実施しなかった。ビードオンプレート溶接では、長さ400mm×幅70mm×板厚20mmの平板試験体を使用した。溶接ワイヤおよびフラックスは、JIS Z3183 S642-2CM相当のものを使用した。実験条件は種々のものを採用したが、溶接現象を分かりやすくするため単電極のシングルトーチとし、トーチ角度は0°(垂直)とした。溶接条件は、EN比(交番電流における負電流の比)0.5の矩形波、溶接電流600A、溶接電圧33V、溶接速度30cm/min、CTWD(Contact Tip to Work Distance)30mmを「基準条件」とした。上述のインサート材の幅wを変化させることで、ルート幅WRをWR=8~18mmで変化させた。トーチ狙い位置Pは、開先の中心の位置を0mmとし、溶接線方向に対して直交方向に1~3mmの範囲で変化させた。
The outline of the experimental apparatus used is shown in FIG. FIG. 4 shows an apparatus configuration for groove welding with a tandem torch, 16 and 17 are the welding torch, 18 is a carriage for moving the welding torches 16 and 17, and 19 is a feeder of the welding wire. Is a welding power source. As the
実験に際しては、実施工で想定されるシングルトーチまたは2電極を直列に配置したタンデムトーチ とした。電極角度は、シングルトーチでは0°、タンデムトーチでは先行電極は0°、後行電極は15°とした。タンデムトーチでのトーチ間隔は15mmとした。溶接条件は、EN比を0.0~1.0、溶接電流を400~800A、電圧を20~40V、溶接速度を30~43cm/min(シングルトーチ)、60~81cm/min(タンデムトーチ)でそれぞれ変化させた。CTWDは、30mmで一定とした。開先試験体のルート幅WRは14mm、トーチ狙い位置Pは0mmとした。
In the experiment, a single torch or a tandem torch with two electrodes arranged in series, which is assumed in the implementation work, was used. The electrode angle was 0 ° for the single torch, 0 ° for the leading electrode and 15 ° for the trailing electrode in the tandem torch. The torch spacing in the tandem torch was set to 15 mm. Welding conditions are EN ratio 0.0 to 1.0, welding current 400 to 800 A,
ビードオンプレート溶接、開先溶接それぞれの結果に対して、溶接部の形状を確認するため溶接部断面マクロ試験を実施し、ビード幅WBおよび溶着断面積ARを計測した。試験位置は、溶接定常部であるところの、溶接開始位置および終了位置からそれぞれ100mm以上離れた位置とした。 For the results of bead-on-plate welding and groove welding, a macro test was conducted on the weld section to confirm the shape of the weld, and the bead width WB and welding cross-section area AR were measured. The test position was a position 100 mm or more away from the welding start position and the welding end position, which are the welding steady portions.
[実験結果]
ルート幅WRが溶接欠陥に及ぼす影響を評価するため、上述の基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)に対して、ルート幅WBを8~18mmの範囲で変化させた。各ルート幅WBの値での溶接部断面のマクロ試験結果を図5に示す。トーチ狙い位置はP=0mmで一定である。図5には、同条件でのビードオンプレート溶接結果も併せて示す。ルート幅WR=8mmでは、融合不良は生じなかったが、開先の両壁面が大きく溶融し、アンダカットが生じた。アンダカット部は、スラグが固着し除去できなかった。ルート幅WR=12~15mmでは、アンダカット、融合不良共に生じない良好な溶接部が得られた。ルート幅WR=16mmでは、片側(図における左側)の開先壁は溶融するが、反対側(図における右側)は、溶融せず融合不良となり、スラグを除去できなかった。ルート幅WR=18mmでは、両壁面ともに溶融せず融合不良となり、両側の溶接止端部でスラグを除去できなかった。このルート幅WR=18mmでは、ビードオンプレートでのビード幅WB(約26.5mm)と比較してルート幅WRは小さかった(18mm)が、開先壁は溶融しなかった。
[Experimental result]
In order to evaluate the effect of the root width WR on welding defects, the root width WB is set to 8 to 8 to the above-mentioned reference conditions (EN ratio 0.5, welding current 600A, voltage 33V, welding speed 30cm / min). It was varied in the range of 18 mm. FIG. 5 shows the macro test results of the cross section of the welded portion at each route width WB value. The aiming position of the torch is constant at P = 0 mm. FIG. 5 also shows the results of bead-on-plate welding under the same conditions. When the root width WR = 8 mm, no fusion failure occurred, but both wall surfaces of the groove were largely melted and undercut occurred. The slag stuck to the undercut portion and could not be removed. When the root width WR = 12 to 15 mm, a good welded portion was obtained in which neither undercut nor fusion failure occurred. When the root width WR = 16 mm, the groove wall on one side (left side in the figure) melted, but the other side (right side in the figure) did not melt and the fusion was poor, and the slag could not be removed. When the root width WR = 18 mm, both wall surfaces did not melt and fusion was poor, and slag could not be removed at the weld toes on both sides. At this root width WR = 18 mm, the root width WR was smaller (18 mm) compared to the bead width WB (about 26.5 mm) on the bead-on plate, but the groove wall did not melt.
次に、トーチ狙い位置Pでの開先底からの溶接金属が溶着した高さ(ビード高さh)と、開先底から母材側へ溶込んだ深さ(溶込み深さD)とを評価した。これらの関係を図6に示す。ここで、28は溶接トーチ、29は溶接ワイヤである。ルート幅WRとビード高さhと溶込み深さDとの関係を図7に示す。同じ溶接条件であるので溶着断面積は変わらないが、ビード高さhは、ルート幅WRが広くなると低くなり、WR=12mm以上でほぼ一定となった。一方、溶込み深さDは、ルート幅WR=8mmのときに最も浅く、ルート幅WRが広くなると深くなり、ルート幅WR=14mm以上で一定となった。 Next, the height at which the weld metal is welded from the groove bottom at the torch target position P (bead height h) and the depth at which the weld metal is welded from the groove bottom to the base metal side (penetration depth D). Was evaluated. These relationships are shown in FIG. Here, 28 is a welding torch and 29 is a welding wire. FIG. 7 shows the relationship between the root width WR , the bead height h, and the penetration depth D. Since the welding conditions are the same, the welded cross-sectional area does not change, but the bead height h becomes lower as the root width WR becomes wider, and becomes almost constant when WR = 12 mm or more. On the other hand, the penetration depth D was the shallowest when the root width WR = 8 mm, became deeper when the root width WR was widened, and became constant when the root width WR = 14 mm or more.
トーチ狙い位置Pが溶接欠陥に及ぼす影響を評価するため、溶接欠陥が生じなかったルート幅WR=14mmの試験体に対して、上記の基準条件でトーチ狙い位置Pを0~3mmで変化させた。各トーチ狙い位置Pでの溶接部横断面のマクロ試験結果を図8に示す。図8に示される溶接部断面において、開先中心から右側を、トーチ狙い位置Pの正の方向とした。トーチ狙い位置P=1~2mmの範囲では、溶接部の形状が狙いずれ方向(右側)に偏るが、溶接欠陥は生じなかった。一方、P=3mmでは、トーチが離れた側の開先壁は溶融せず、融合不良LFが生じた。一方、図6に示すトーチ28が近づいた側では、広い範囲で開先壁が溶融し、アンダカットが生じスラグが除去できなかった。トーチ狙い位置Pとビード高さhと溶込み深さDとの関係を図9および図10に示す。ビード高さhおよび溶込み深さDは、トーチ狙い位置Pの直下での値である。トーチ狙い位置P=0~2mmの範囲では、ビード高さhと溶込み深さDとは、トーチ狙い位置Pの大きさが変動してもそれぞれ値の変化は認められなかった。これに対し、トーチ狙い位置P=3mmとなると、ビード高さhと溶込み深さDとは、ともに大きくなった。
In order to evaluate the effect of the torch aiming position P on the welding defect, the torch aiming position P is changed from 0 to 3 mm under the above reference conditions for the test piece having the root width WR = 14 mm in which the welding defect did not occur. rice field. FIG. 8 shows the macro test results of the cross section of the welded portion at each torch aiming position P. In the cross section of the welded portion shown in FIG. 8, the right side from the groove center is defined as the positive direction of the torch aiming position P. In the range of the torch aiming position P = 1 to 2 mm, the shape of the welded portion was biased in either direction (right side), but no welding defect occurred. On the other hand, when P = 3 mm, the groove wall on the side where the torch was separated did not melt, and a fusion defective LF occurred. On the other hand, on the side where the
[融合不良判定モデルの作成]
(溶接欠陥を防止するためのトーチ-開先壁間距離Lの条件)
上記の実験結果から、溶接欠陥は、ルート幅WRとトーチ狙い位置Pとに影響を受けることがわかった。これらのルート幅WRやトーチ狙い位置Pの値が変わると、溶接トーチと開先壁との距離が変わる。すなわち、ルート幅WRとトーチ狙い位置Pとの関係は、図11に示されるトーチ-開先壁間距離Lで表現できる。図5および図8において、開先壁が過剰に溶融、ガウジングされアンダカットが生じたことから、アンダカットと、開先壁が溶融した面積とには相関があると考えられる。ここで、開先壁で溶融した面積(図5や図8のように断面表示されたときに現れる面積)を、AGと定義する(図12参照)。また、上述のように、開先溶接時の融合不良LFは、開先底のコーナー部13で生じやすい。すなわち、開先壁を大きく溶融する溶接条件とするほど、融合不良LFを防止できると考えられる。ここで、開先底でコーナー部13から開先壁側に溶融した幅(溶込んだ深さ)をWGと定義する。上述の基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)において、開先壁での溶融幅WGおよびトーチ狙い位置Pを変化させた条件で、溶融面積AGを計測した結果を図12に示す。同様の条件で、溶融幅WGを計測した結果を図13に示す。これらの計測結果は、左右の開先壁で別々に計測したものをともに表している。凡例はそれぞれ良好(〇)、アンダカットが発生(△)、融合不良LFが発生(×)である。図12に示すように、トーチ-開先壁間距離Lが小さくなると溶融面積AGは増加し、アンダカットが生じたL=4mmでは溶融面積AGは30mm2以上となった。また、図13に示すように、開先壁での溶融幅WGは、トーチ-開先壁間距離L=5~6mmで極大となり、トーチ-開先壁間距離Lがさらに大きくなると減少し、WG=0mmとなったときには融合不良LFが生じた。以上より、同一の溶接条件で、トーチ-開先壁間距離Lが小さくなると、アンダカットが生じやすく、開先壁での溶融幅WGは減少する。一方、トーチ-開先壁間距離Lが大きすぎると、開先底を十分に溶融できなくなり融合不良LFが生じる。つまり、上述の基準条件での、極狭開先SAWで溶接欠陥を防止するトーチ-開先壁間距離Lの範囲は4<L≦7.5mmである。
[Creation of fusion failure judgment model]
(Condition of distance L between torch and groove wall to prevent welding defects)
From the above experimental results, it was found that the welding defect is affected by the root width WR and the torch aiming position P. When the values of the route width WR and the torch aiming position P change, the distance between the welded torch and the groove wall changes. That is, the relationship between the route width WR and the torch aiming position P can be expressed by the torch-groove wall distance L shown in FIG. In FIGS. 5 and 8, since the groove wall was excessively melted and gouged to cause undercut, it is considered that there is a correlation between the undercut and the area where the groove wall is melted. Here, the area melted by the groove wall (the area that appears when the cross section is displayed as shown in FIGS. 5 and 8) is defined as AG (see FIG. 12). Further, as described above, poor fusion LF during groove welding is likely to occur at the
(融合不良LFへの影響因子)
図13に示すように、開先壁での溶融幅WGは、トーチ-開先壁間距離L=5~6mmで極大となり、Lがさらに大きくなると減少した。ここで、ビードオンプレート溶接でのビード幅WBと開先壁での溶融幅WGとから、開先壁による溶接部形状への影響を考える。図13より導出される「L+WG」と「L」との関係を図14~図17に示す。L≦4mmではアンダカットが生じるため、L≧4mmを対象とした。図14において、〇は融合不良LFなし、×は融合不良が生じた。「L+WG」は開先底で溶融した幅であり、開先溝の幅方向でどれだけが溶融できたかを表している。L+WG>Lの範囲で、融合不良LFの無い良好な溶接部となる。
(Influence factor on poor fusion LF)
As shown in FIG. 13, the melting width WG at the groove wall became maximum at the distance L between the torch and the groove wall = 5 to 6 mm, and decreased as L became larger. Here, from the bead width WB in bead-on-plate welding and the melt width WG in the groove wall, the influence of the groove wall on the weld shape is considered. The relationship between “L + WG ” and “L” derived from FIG. 13 is shown in FIGS. 14 to 17. Since undercut occurs when L ≦ 4 mm, L ≧ 4 mm was targeted. In FIG. 14, ◯ indicates no fusion failure LF, and × indicates that fusion failure occurred. "L + WG " is the width melted at the groove bottom, and indicates how much was melted in the width direction of the groove groove. In the range of L + WG > L, a good welded portion with no fusion defect LF is obtained.
図14において、横軸の方向に沿って「領域(a)」「領域(b)」「領域(c)」と3つの領域に分ける。ここで、ビードオンプレート溶接時のビード幅WBを考慮すると、領域(a)はWB/2≦Lとなる領域であり、ここでは、図15に示すようにビード幅WBに対しトーチ-開先壁間距離Lが大きく、したがってトーチ狙い位置Pから開先壁が遠くなるため、ビード幅WBはビードオンプレート溶接とほぼ同じとなる。すなわち、L+WG=WB/2となり、融合不良LFとなる。領域(b)は、7.5mm<L<WB/2であって、図16に示すようにトーチ-開先壁間距離Lはビード幅よりも小さくなるが、開先壁を溶融できず、融合不良LFが生じる。ビードオンプレート溶接と比較して、開先溶接では熱が拡散しやすいため、開先壁は溶融しにくい。領域(c)は、4mm≦L≦7.5mmとトーチ-開先壁間距離Lが小さくなる領域である。この領域では、溶接トーチから開先壁まで十分な熱量が輸送されるため、図17に示すように開先壁を溶融する。そのため、L+WG>Lとなり、融合不良LFは生じない。 In FIG. 14, it is divided into three regions, “region (a)”, “region (b)”, and “region (c)” along the direction of the horizontal axis. Here, considering the bead width WB at the time of bead-on-plate welding, the region (a) is a region where WB / 2 ≦ L, and here, as shown in FIG. 15, the torch with respect to the bead width WB . -Because the distance L between the groove walls is large and therefore the groove wall is far from the torch target position P, the bead width WB is almost the same as the bead-on-plate welding. That is, L + WG = WB / 2, resulting in a poor fusion LF. The region (b) is 7.5 mm <L < WB / 2, and as shown in FIG. 16, the distance L between the torch and the groove wall is smaller than the bead width, but the groove wall cannot be melted. , Poor fusion LF occurs. Compared to bead-on-plate welding, groove welding tends to diffuse heat, so the groove wall is less likely to melt. The region (c) is a region where the distance L between the torch and the groove wall is small, 4 mm ≦ L ≦ 7.5 mm. In this region, a sufficient amount of heat is transferred from the welding torch to the groove wall, so that the groove wall is melted as shown in FIG. Therefore, L + WG > L, and no fusion failure LF occurs.
しかし、図13に示したように、トーチ-開先壁間距離L=5mmより小さいL=4mmで、開先壁での溶融幅WGは減少した。L=4mmとなるのは、図7においてルート幅WR=8mmとなる場合や、図10においてトーチ狙い位置P=3mmとなる場合である。どちらの場合でもビード高さhは増加し、溶込み深さDは減少している。一方、トーチ狙い位置の直下におけるビード高さhと溶込み深さDとの和は、ルート幅WRやトーチ狙い位置Pに依らずほぼ一定であった。 However, as shown in FIG. 13, when the distance between the torch and the groove wall was L = 4 mm, which was smaller than L = 5 mm, the melting width WG at the groove wall decreased. L = 4 mm is the case where the root width WR = 8 mm in FIG. 7 and the case where the torch aiming position P = 3 mm in FIG. In either case, the bead height h is increased and the penetration depth D is decreased. On the other hand, the sum of the bead height h and the penetration depth D directly under the torch aiming position was almost constant regardless of the route width WR and the torch aiming position P.
アーク溶接では、図18および図19に示すように、アーク31に基づくアーク力32によって溶融池14を下向きに押し下げる力と、重力によって生じる溶融金属の位置ヘッド33とが釣り合う状態で、溶融池14が形成される。ルート幅が狭い狭開先では、アーク力32よりも溶融金属の位置ヘッド33の方が大きくなり、溶融金属の先行現象(溶融金属がアーク直下の溶融池表面上に大きく盛り上がり、アークによる入熱が開先の底に届かなくなる現象)が生じやすくなる。図7および図10において、各ルート幅WRおよびルート狙い位置Pでビード高さhと溶け込み深さDとの和に差異が認められなかったのは、溶接電流の2乗に比例するアーク力32が強くなったためと考えられる。したがって、トーチ狙い位置直下でビード高さhが増加すると、溶融池14を下向きに押し下げる力と位置ヘッド33とは、開先の溝底12よりも高い位置で釣り合う(図20および図21)。その結果、アークプラズマと開先壁(特に開先底のコーナー部13)の距離が遠くなり、そのため十分に加熱できなくなって、開先壁での溶融幅WGが減少したと考えられる。したがって、融合不良LFを防止するには、溶接トーチ28と開先底のコーナー部13との距離が遠くならないよう、トーチ-開先壁間距離Lとビード高さhとを小さくする必要がある。
In arc welding, as shown in FIGS. 18 and 19, the
[溶接欠陥の生じない溶接条件範囲]
(融合不良判定モデル)
図11~図13に示した、溶接欠陥の生じないトーチ-開先壁間距離Lの範囲(4mm<L≦7.5mm)は、上述の基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)のもとでの結果である。これに対し、溶接条件が変わると溶接部形状は変化し、特に融合不良LFは溶接条件の影響を受けやすい。様々な溶接条件に対して融合不良LFを防止する条件範囲を選定するためには、一般に非常に多くの実験を実施する必要がある。しかし、本発明においては、ビードオンプレート溶接による実験結果から、極狭開先SAWで融合不良LFを防止する条件を判定するモデルを作成した。
[Welding condition range without welding defects]
(Fusion failure judgment model)
The range of the torch-weld wall distance L (4 mm <L ≦ 7.5 mm) in which welding defects do not occur as shown in FIGS. 11 to 13 is the above-mentioned reference conditions (EN ratio 0.5, welding current 600 A,). This is the result under a voltage of 33 V and a welding speed of 30 cm / min). On the other hand, when the welding conditions change, the shape of the welded portion changes, and in particular, the poorly fused LF is easily affected by the welding conditions. In general, it is necessary to carry out a large number of experiments in order to select a condition range for preventing fusion failure LF for various welding conditions. However, in the present invention, a model for determining the conditions for preventing fusion failure LF in the ultra-narrow groove SAW was created from the experimental results by bead-on-plate welding.
すなわち、上記の考察から、極狭開先SAWでの融合不良LFの原因は、アークから開先壁まで輸送される熱量が低下することにある。すなわち、溶接中にどれだけ入熱するかという点と、その入熱熱量がどれだけ幅広く輸送されるかという点とが、重要となる。溶接電流I[A]、溶接電圧V[V]、溶接速度v[cm/min]を用いると、溶接入熱Q[kJ/mm]は、以下の式(1)で算出される。 That is, from the above consideration, the cause of the poor fusion LF in the ultra-narrow groove SAW is that the amount of heat transferred from the arc to the groove wall decreases. That is, how much heat is input during welding and how widely the amount of heat input is transported are important. When the welding current I [A], the welding voltage V [V], and the welding speed v [cm / min] are used, the welding heat input Q [kJ / mm] is calculated by the following equation (1).
Q=I×V×60/(v×10)×1/1000 (1) Q = I x V x 60 / (v x 10) x 1/1000 (1)
ここで、溶接入熱がQであり、ビードオンプレート溶接でのビード幅がWBである溶接条件の場合、溶接入熱Qがビード幅WBの範囲に投与されると考える。このとき、同じ条件での極狭開先SAWでは、図22に示すように、溶接部の半分を考えるとQ/2が入熱し、これが片側WB/2の範囲に投与される。このとき、熱源であるアークプラズマからL(トーチ-開先壁間距離)だけ離れた位置に開先壁があった場合に、開先壁に輸送される熱量はWB/2-Lとなる。これを開先壁への入熱HG[kJ/mm・mm]として、以下の式(2)で定義する。このとき、アークによる入熱はガウス分布であり、溶融池温度はトーチ狙い位置直下で最大となり、溶融池端側となるにつれ低温となるが、簡単のためビード幅方向への入熱は一様であるとする。 Here, in the case of welding conditions where the welding heat input is Q and the bead width in bead-on-plate welding is WB , it is considered that the welding heat input Q is administered within the range of the bead width WB . At this time, in the ultra-narrow groove SAW under the same conditions, as shown in FIG. 22, Q / 2 receives heat when considering half of the welded portion, and this is administered to the range of WB / 2 on one side. At this time, if the groove wall is located at a position separated by L (distance between the torch and the groove wall) from the arc plasma which is the heat source, the amount of heat transferred to the groove wall is WB / 2-L. .. This is defined by the following equation (2) as the heat input HG [kJ / mm · mm] to the groove wall. At this time, the heat input by the arc has a Gaussian distribution, the molten pool temperature becomes maximum just below the target position of the torch, and becomes lower as it becomes closer to the end of the molten pool, but for simplicity, the heat input in the bead width direction is uniform. Suppose there is.
HG=Q/2(WB/2-L) (2) HG = Q / 2 ( WB / 2-L) (2)
融合不良のもう一つの原因は、ビード高さhが増加することにある。ビード高さhが増加すると、アークプラズマから開先底のコーナー部までの距離が遠くなり、このコーナー部を十分に加熱できなくなる。ここで、極狭開先SAW時の溶融池のビード高さh[mm]は、ビードオンプレート溶接での溶着断面積AR[mm2]と、トーチ-開先壁間距離Lとを用いて、以下の式(3)で表される。 Another cause of poor fusion is an increase in bead height h. When the bead height h increases, the distance from the arc plasma to the corner portion of the groove bottom becomes long, and this corner portion cannot be sufficiently heated. Here, for the bead height h [mm] of the molten pool at the time of the ultra-narrow groove SAW, the welding cross-sectional area AR [mm 2 ] in the bead-on-plate welding and the distance L between the torch and the groove wall are used. It is expressed by the following equation (3).
h=AR/2L (3) h = AR / 2L (3)
トーチ狙い位置における溶融池表面を原点とすると、この原点から開先底のコーナー部までの距離の二乗r2は、ビード高さhとトーチ-開先壁間距離Lとを用いて、以下の式(4)で表される(図23)。 Assuming that the surface of the molten pool at the torch target position is the origin, the square r 2 of the distance from this origin to the corner of the groove bottom is as follows using the bead height h and the distance L between the torch and the groove wall. It is represented by the equation (4) (FIG. 23).
r2=h2+L2 (4) r 2 = h 2 + L 2 (4)
式(2)によって算出されるHGと、式(4)によって算出されるr2とを、それぞれ融合不良LFの発生に影響を及ぼすパラメータとして判定モデルを作成した。HGとr2とを変化させるために、ビード幅WBおよび溶着断面積ARの異なる溶接条件でビードオンプレート溶接を実施し、各溶接条件でのビード幅WBおよび溶着断面積ARを計測した。次に、それらの溶接条件で開先溶接を実施し、融合不良LFの発生の有無を判定した。実験方法および試験体の形状は、前述の通りとした。また、開先試験体のルート幅WR=14mm、トーチ狙い位置P=0mm、トーチ-開先壁間距離L=7mmで、これらは一定とした。 A judgment model was created using the HG calculated by the equation (2) and the r 2 calculated by the equation (4) as parameters affecting the occurrence of the fusion defective LF. In order to change HG and r 2 , bead-on-plate welding is performed under different welding conditions of bead width WB and welding cross-sectional area AR, and bead width WB and welding cross-sectional area AR under each welding condition. Was measured. Next, groove welding was performed under those welding conditions, and it was determined whether or not fusion defect LF was generated. The experimental method and the shape of the test piece were as described above. Further, the root width WR of the groove test piece was 14 mm, the torch aiming position P = 0 mm, and the distance between the torch and the groove wall L = 7 mm, which were constant.
各溶接条件におけるビード幅WBおよび溶着断面積ARから算出される、開先壁への入熱HGおよび距離の二乗r2と、開先溶接での融合不良LFの判定結果とを、図24に示す。凡例は、融合不良無し(〇)、片側の開先壁で融合不良(◇)、両側の開先壁で融合不良(×)である。横軸のHGの値が大きいほど開先壁への溶接入熱が大きいことを示し、縦軸のr2の値が大きいほど熱源と開先底のコーナー部とが遠くなることを示す。図24において、たとえば同じr2=70mm2程度の条件で比較すると、HG=0.8kJ/mm・mmでは両側の開先壁で融合不良LFが生じたが、HG=12.5kJ/mm・mm以上の条件では融合不良LFは 生じなかった。つまりHGが大きい条件ほど融合不良LFが生じにくいといえる。また、同じHG=10kJ/mm・mm程度の条件で比較すると、r2=75mm2では片側の開先壁で融合不良LFが生じたが、r2=63mm2では融合不良LFは生じなかった。すなわち、開先壁への入熱HGごとに融合不良LFが生じない距離の二乗r2の限界値が存在するといえる。図24中に示すように、ビードオンプレート溶接で得られたビード幅WBおよび溶着断面積ARから、開先壁への入熱HGおよび距離の二乗r2を導出し、融合不良LFの判定条件を求めることができた。 The bead width WB and the welded cross-sectional area AR calculated under each welding condition are the squared r2 of the heat input HG and the distance to the groove wall, and the determination result of the fusion failure LF in the groove welding. It is shown in FIG. The legend is no fusion failure (〇), fusion failure on one groove wall (◇), and fusion failure on both side groove walls (×). The larger the HG value on the horizontal axis, the larger the welding heat input to the groove wall, and the larger the value of r2 on the vertical axis, the farther the heat source and the corner of the groove bottom are. In FIG. 24, for example, when compared under the same conditions of r 2 = 70 mm 2 , fusion failure LF occurred on the groove walls on both sides at HG = 0.8 kJ / mm · mm, but HG = 12.5 kJ /. No fusion failure LF occurred under the condition of mm · mm or more. In other words, it can be said that the larger the HG is, the less likely it is that poor fusion LF will occur. Further, when compared under the same conditions of HG = 10 kJ / mm · mm, fusion failure LF occurred at the groove wall on one side at r 2 = 75 mm 2 , but fusion failure LF did not occur at r 2 = 63 mm 2 . rice field. That is, it can be said that there is a limit value of the square r 2 of the distance at which the fusion failure LF does not occur for each heat input HG to the groove wall. As shown in FIG. 24, from the bead width WB and the welded cross-sectional area AR obtained by bead-on-plate welding, the heat input HG to the groove wall and the square r 2 of the distance are derived, and the fusion failure LF is derived. I was able to find the judgment conditions for.
各溶接条件での開先の溶融幅(溶込んだ深さ)WGの計測結果を図25に示す。色が濃く明度が低いプロット程、WGが大きいことを示している。ここでの溶融幅WGは、両開先壁での平均値である。両側で 融合不良LFとなった条件ではWG=0mm、片側で融合不良LFとなった条件ではWG=0.1~0.3mmと小さな値となった。一方、融合不良LFが生じなかった条件ではWG=0.3mm以上の値となった。また、開先壁への入熱HGが大きくなり、かつ距離の二乗r2が小さくなると、溶融幅はWG=0.9mmまで増加した。 FIG. 25 shows the measurement results of the melting width (melting depth) WG of the groove under each welding condition. The darker the color and the lower the brightness, the larger the WG . The melting width WG here is an average value at both groove walls. WG = 0 mm under the condition of poor fusion LF on both sides, and WG = 0.1 to 0.3 mm under the condition of poor fusion LF on one side, which were small values. On the other hand, under the condition that no fusion failure LF occurred, the value was WG = 0.3 mm or more. Further, when the heat input HG to the groove wall became large and the squared r2 of the distance became small, the melting width increased to WG = 0.9 mm.
[融合不良の生じないトーチ-開先壁間距離L]
上述のように、基準条件(EN比0.5、溶接電流600A、電圧33V、溶接速度30cm/min)のもとで、溶接欠陥が生じないトーチ-開先壁間距離Lの範囲(4mm<L≦7.5mm)を求めることができた。しかし、これは基準条件下のものであり、溶接条件が変われば、溶接欠陥が生じないトーチ-開先壁間距離Lの範囲も変化する。そこで、以下においては、融合不良判定モデル上でトーチ-開先壁間距離Lの影響を評価し、溶接条件に応じた融合不良の生じないトーチ-開先壁間距離Lの範囲をモデルから決定する。
[Distance L between torch and groove wall that does not cause fusion failure]
As described above, under the reference conditions (EN ratio 0.5, welding current 600A, voltage 33V, welding speed 30cm / min), the range of the distance L between the torch and the groove wall where welding defects do not occur (4mm < L ≦ 7.5 mm) could be obtained. However, this is a reference condition, and if the welding conditions change, the range of the distance L between the torch and the groove wall where welding defects do not occur also changes. Therefore, in the following, the influence of the torch-groove wall distance L is evaluated on the fusion defect determination model, and the range of the torch-groove wall distance L where fusion failure does not occur according to the welding conditions is determined from the model. do.
図13で示したところの、トーチ-開先壁間距離Lを、図25においてプロットした。この図25において、凡例は、良好(●)、アンダカット(▲)、開先溝の片側で融合不良(◆)、開先溝の両側で融合不良(×)である。上述の式(2)、式(4)より、L>4mmの範囲では1/L2項の影響は小さいため、判定モデル上でLを変化させるとほぼ2次曲線に近い形となる。上述の実験では、図13に示したように、L=5~6mmにおいて溶融幅WG=1.5mmで極大となり、そのときに融合不良は生じなかった。ところが、これよりもLが大きくなるにつれてWGは減少し、L=8mmでは開先溝の片側で、L=9mmでは開先溝の両側で、それぞれ融合不良が生じた。また、L=4mmでは、融合不良は生じなかったが、溶融幅WGが減少した。これらの実験結果を判定モデルと比較すると、判定モデル上ではL=5~6mmでR2が極小となり、WGが大きい領域にプロットされ、融合不良の生じない判定となった。これに対し、この範囲よりもLが大きくなるにつれて、開先壁への入熱HGは減少し、距離の二乗r2は増加し、WGが小さい領域にプロットされ、L=8mm以上では融合不良の判定となった。一方、トーチ-開先壁間距離L=4mmでは、開先壁への入熱HGは増加するが、あわせて距離の二乗r2も増加し、プロットはWGが小さい領域(融合不良側)に近づいた。以上より、Lを変化させた実験結果と判定モデルの結果とは一致した。作成した判定モデルを用いることで、融合不良の生じないLの範囲を算出することができた。 The torch-groove wall distance L, as shown in FIG. 13, is plotted in FIG. 25. In FIG. 25, the legend is good (●), undercut (▲), poor fusion (◆) on one side of the groove groove, and poor fusion (×) on both sides of the groove groove. From the above equations (2) and (4), the influence of the 1 / L term 2 is small in the range of L> 4 mm, so when L is changed on the judgment model, the shape becomes almost a quadratic curve. In the above experiment, as shown in FIG. 13, the maximum was achieved at the melting width WG = 1.5 mm at L = 5 to 6 mm, and no fusion failure occurred at that time. However, as L became larger than this, WG decreased, and fusion failure occurred on one side of the groove groove at L = 8 mm and on both sides of the groove groove at L = 9 mm. Further, at L = 4 mm, no fusion failure occurred, but the melting width WG decreased. Comparing these experimental results with the judgment model, on the judgment model, R 2 was minimized at L = 5 to 6 mm, and WG was plotted in a large region, and it was judged that fusion failure did not occur. On the other hand, as L becomes larger than this range, the heat input HG to the groove wall decreases, the squared r2 of the distance increases, and the WG is plotted in a small region, where L = 8 mm or more. It was judged that the fusion was poor. On the other hand, when the distance between the torch and the groove wall is L = 4 mm, the heat input HG to the groove wall increases, but the squared r2 of the distance also increases, and the plot shows the region where the WG is small (the fusion failure side). ) Was approached. From the above, the experimental results in which L was changed and the results of the determination model were in agreement. By using the created judgment model, it was possible to calculate the range of L in which fusion failure does not occur.
判定モデルを用いて、溶接条件に対応したトーチ-開先壁間距離Lの範囲を決定した。実験結果より、上述の基準条件では、ビード幅WB=26.5mm、溶着断面積AR=64.6mm2であった。また、式(1)より、入熱量Q=4.0kJ/mmであった。アーク溶接では、ビード幅および溶着断面積は溶接入熱に比例するため、それぞれの値だけを変化させるのは難しい。一方、前述のように、デジタル波形制御電源を用いた場合は、EN比によって、溶接入熱一定で溶着断面積ARを±20%程度変化させることができる。そこで、デジタル波形制御電源により入熱量Q、ビード幅WB、溶着断面積ARを単独で変化させることが可能な範囲を±20%として、基準条件から溶接部の形状を変化させ、各トーチ-開先壁間距離Lでの開先壁への入熱HGおよび距離の二乗r2の値を算出した。その結果を判定モデル上にプロットしたものを図26~28に示す。ここで、入熱量Qまたはビード幅WBが小さい条件では曲線が全体的に左側にシフトし、融合不良LFの生じないLの範囲は5mm≦L≦6mmまで狭くなる。一方、これらが大きい条件では、曲線は右側にシフトし、4mm≦L≦7.5mmで融合不良は生じない(図26、図27)。溶着断面積ARが小さい条件では、曲線は全体的に下側にシフトし、4mm<L≦7.5mmで融合不良LFは生じず、これに対し溶着断面積ARが大きい条件では、上側にシフトし、いずれのLでも融合不良が生じる(図28)。以上のように、判定モデルを用いることで、ビードオンプレート溶接での入熱量Q、ビード幅WB、溶着断面積ARから、極狭開先SAWでの適正な溶接条件範囲と、それに対応したLの範囲とを決定できる。また、入熱量Qとビード幅WBとを大きくするとともに、溶着断面積ARを小さくして、判定モデル上で曲線を右下へシフトさせると、融合不良の生じないトーチ-開先壁間距離Lの範囲を広げることができる。 Using the determination model, the range of the torch-groove wall distance L corresponding to the welding conditions was determined. From the experimental results, under the above-mentioned reference conditions, the bead width WB = 26.5 mm and the welding cross-sectional area AR = 64.6 mm 2 . Further, from the formula (1), the heat input amount Q = 4.0 kJ / mm. In arc welding, the bead width and the weld cross-sectional area are proportional to the heat input to the weld, so it is difficult to change only the respective values. On the other hand, as described above, when the digital waveform control power supply is used, the welding cross-sectional area AR can be changed by about ± 20% with a constant welding heat input depending on the EN ratio. Therefore, the shape of the welded portion is changed from the reference condition by setting the range in which the heat input Q, the bead width WB , and the welding cross-sectional area AR can be changed independently by the digital waveform control power supply to ± 20%, and each torch. -The values of the heat input HG to the groove wall and the squared r2 of the distance at the distance L between the groove walls were calculated. The plots of the results on the judgment model are shown in FIGS. 26 to 28. Here, under the condition that the heat input amount Q or the bead width WB is small, the curve shifts to the left as a whole, and the range of L where the fusion defective LF does not occur is narrowed to 5 mm ≦ L ≦ 6 mm. On the other hand, under the condition that these are large, the curve shifts to the right side, and fusion failure does not occur in 4 mm ≦ L ≦ 7.5 mm (FIGS. 26 and 27). Under the condition that the welded cross-sectional area AR is small, the curve shifts downward as a whole, and no fusion failure LF occurs when 4 mm < L ≦ 7.5 mm, whereas under the condition that the welded cross-sectional area AR is large, the upper side. In any L, fusion failure occurs (FIG. 28). As described above, by using the judgment model, the appropriate welding condition range at the ultra-narrow groove SAW and the corresponding range from the heat input amount Q, bead width WB , and welding cross-sectional area AR in bead-on-plate welding. It is possible to determine the range of L. Further, when the heat input Q and the bead width WB are increased and the welding cross-sectional area AR is decreased to shift the curve to the lower right on the judgment model, the torch-groove wall where fusion failure does not occur. The range of the distance L can be expanded.
[一般化]
上述の式(2)は、一般化して次のように書き換えることができる。
[Generalization]
The above equation (2) can be generalized and rewritten as follows.
HG=C1×Q(C2×WB-L) (2a) HG = C1 x Q (C2 x WB -L) (2a)
すなわち、HGはQと(WB-L)との積で表すことができる。この式(2a)において、C1は任意の数、C2は0.5≦C2≦1の範囲の任意の数とすることができる。 That is, HG can be expressed by the product of Q and ( WB −L). In this formula (2a), C1 can be an arbitrary number, and C2 can be an arbitrary number in the range of 0.5 ≦ C2 ≦ 1.
また、上述の式(4)は、式(3)を代入したうえで、一般化して次のように書き換えることができる。 Further, the above equation (4) can be generalized and rewritten as follows after substituting the equation (3).
R=(AR/L)C3+(L)C3 (4a) R = (AR / L) C3 + (L) C3 (4a)
Rは、溶融池表面から開先底のコーナー部までの一般化した距離であって、式(4a)に示されるように、(AR/L)のべき乗と、(L)のべき乗との和で表すことができる。C3は、0<C3<5の範囲の任意の数とすることができる。
R is a generalized distance from the surface of the molten pool to the corner of the groove bottom, and is the power of (AR / L) and the power of ( L ) as shown in equation (4a). It can be expressed as a sum. C3 can be any number in the
図29は、開先壁への入熱HGを横軸、原点としての溶融池表面から開先底のコーナー部までの距離Rを縦軸としたうえで、C1=1、C2=0.5、C3=1としたときの、極狭開先溶接時の融合不良判定モデル例である。図24の場合と同様に、破線で示した判定線よりも下ならば融合不良は生じず、判定線よりも上では融合不良となる。図29において、判定線は、実験結果で一部融合不良となった結果および融合不良となった結果から、最小二乗法により求めた。なお、判定線は、他の適宜の手法によって求めることもできる。 In FIG. 29, the horizontal axis is the heat input HG to the groove wall, and the vertical axis is the distance R from the surface of the molten pool as the origin to the corner of the groove bottom, and C1 = 1 and C2 = 0. 5. This is an example of a fusion defect determination model at the time of extremely narrow groove welding when C3 = 1. Similar to the case of FIG. 24, if it is below the determination line shown by the broken line, no fusion failure occurs, and if it is above the determination line, fusion failure occurs. In FIG. 29, the determination line was obtained by the least squares method from the result of partial fusion failure and the result of fusion failure in the experimental results. The determination line can also be obtained by another appropriate method.
上述の繰り返しになるが、ビード幅WBと溶着断面積ARとは溶接条件によって一意に求まる。これに対し、トーチ-開先壁間距離Lは、溶接中の変動によって常に変化する可能性がある。たとえば、ビード幅WB=26.5mm、溶着断面積AR=64.6mm2の条件下で、Lだけが変化した場合には、融合不良判定モデル上では図30において実線で表されるようになる。ここでも、同様に、L=4~7.5mmの範囲では融合不良は生じないが、Lが8mm以上である場合には融合不良が生じる。図30において、L=8mmというのは、ほぼ判定線上に存在するため、融合不良となった。 To repeat the above, the bead width WB and the welded cross-sectional area AR are uniquely obtained depending on the welding conditions. On the other hand, the distance L between the torch and the groove wall may always change due to fluctuations during welding. For example, when only L changes under the conditions of bead width WB = 26.5 mm and welding cross-sectional area AR = 64.6 mm 2 , it is represented by a solid line in FIG. 30 on the fusion defect determination model. become. Here, similarly, fusion failure does not occur in the range of L = 4 to 7.5 mm, but fusion failure occurs when L is 8 mm or more. In FIG. 30, L = 8 mm is almost on the determination line, so that the fusion is poor.
上記の条件下で、溶着断面積ARだけを変化させたときの融合不良の判定の様子を図31に示す。ここでは、溶着断面積AR=77.4mm2の条件下ではL=4~7mmの範囲で、またAR=64.6mm2の条件下ではL=4~7.5mmの範囲で、さらにAR=51.7mm2の条件下ではL=4~8mmの範囲で、それぞれ融合不良は発生しない。 FIG. 31 shows a state of determination of fusion failure when only the welding cross-sectional area AR is changed under the above conditions. Here, under the condition of welding cross-sectional area AR = 77.4 mm 2, the range is L = 4 to 7 mm, and under the condition of AR = 64.6 mm 2 , the range is L = 4 to 7.5 mm. Under the condition of AR = 51.7 mm 2 , no fusion failure occurs in the range of L = 4 to 8 mm.
このように,溶接中に変動するトーチ-開先壁間距離Lに対して、判定モデル上で判定線より下となるように溶接条件を常に制御することで、融合不良を確実に防止することができる。 In this way, for the torch-groove wall distance L that fluctuates during welding, the welding conditions are always controlled so as to be below the judgment line on the judgment model, thereby reliably preventing fusion defects. Can be done.
図32は、同様に入熱量Qだけを変化させた溶接条件での融合不良判定の様子を示す。ここでは、Q=4.8kJ/mmの条件下ではL=4~8mmの範囲で、またQ=4.0kJ/mmの条件下ではL=4~7.5mmの範囲で、さらにQ=3.2kJ/mmの条件下ではL=4~7mmの範囲で、それぞれ融合不良は発生しない判定となる。 FIG. 32 shows a state of fusion failure determination under welding conditions in which only the heat input amount Q is similarly changed. Here, under the condition of Q = 4.8 kJ / mm, the range is L = 4 to 8 mm, and under the condition of Q = 4.0 kJ / mm, the range is L = 4 to 7.5 mm, and further, Q = 3. Under the condition of .2 kJ / mm, it is judged that fusion failure does not occur in the range of L = 4 to 7 mm.
図33は、同様にビード幅WBだけを変化させた溶接条件のもとでの融合不良判定の様子を示す。ここでは、WB=32.0mmの条件下ではL=4~9mmの範囲で、またWB=26.5mmの条件下ではL=4~7.5mmの範囲で、さらにWB=21.0mmの条件下ではL=4~6mmの範囲で、いずれも融合不良は発生しない判定となる。 FIG. 33 shows a state of fusion failure determination under welding conditions in which only the bead width WB is similarly changed. Here, under the condition of WB = 32.0 mm, the range is L = 4 to 9 mm, and under the condition of WB = 26.5 mm, the range is L = 4 to 7.5 mm, and further, WB = 21. Under the condition of 0 mm, it is judged that no fusion failure occurs in the range of L = 4 to 6 mm.
[溶接装置]
図34は、本発明の実施の形態の極狭開先サブマージアーク溶接装置を示す。ここで41は溶接対象、42はシングルトーチ構造の溶接トーチである。溶接トーチ42は、走行台車43に搭載されることで、溶接対象41に設けられた極狭開先44の長さ方向に沿って溶接方向45へ移動可能である。溶接トーチ42は、1軸スライダ46に取り付けられることで、極狭開先44の幅方向に位置調節できるように構成されている。47はレーザセンサで、溶接トーチ42と一体化されることで、1軸スライダ46によって溶接トーチ42と一緒に極狭開先44の幅方向に移動されるように構成されている。そしてレーザセンサ47は、溶接個所よりも前方で極狭開先44を認識し、現在のトーチ42の位置と、トーチ42から左右の開先壁までの距離L1、L2とを計測する。また図34において、48はデジタル溶接電源、49は制御装置(PC)である。制御装置49は、各溶接条件でのビード幅WBと溶着断面積ARとをあらかじめデータベースとして保有しておき、以下の処理1と処理2とを行うアルゴリズムを有する。
[Welding equipment]
FIG. 34 shows an ultranarrow groove submerged arc welding apparatus according to an embodiment of the present invention. Here, 41 is a welding target, and 42 is a welding torch having a single torch structure. By mounting the
すなわち、処理1では、制御装置49は、計測された距離L1、L2の値にもとづき、融合不良とならない条件を融合不良判定モデルから選定して、溶接電源48に、EN比、溶接電流、電圧の値を指示するとともに、走行台車43に溶接速度の値を指示する。
That is, in the
処理2では、制御装置49は、トーチ42の狙い位置が常に開先の中心(L1=L2)となり、かつL1、L2>4mmとなるように、1軸スライダ46による溶接トーチ42の移動量ΔLを決定する。すなわち制御装置49は、現在のトーチ狙い位置と目的の狙い位置との差を移動量として1軸スライダ46に指示することで、トーチ狙い位置が常に適正となるように制御する。
In the
デジタル溶接電源48にて制御される溶接条件は、以下の範囲とすることが適切である。すなわち、EN比:0.0~1.0、溶接電流:400~800[A]、溶接電圧:20~40[V]、溶接速度:30~81[cm/min]とすることが適切である。
It is appropriate that the welding conditions controlled by the digital
[溶接のフロー]
図34の溶接装置を用いた溶接工程を図35のフローチャートを参照しながら説明する。図35のステップS11で工程が開始されたなら、まずステップS12において、図34のレーザセンサ47により溶接対象41の開先44のデータを取得する。このレーザセンサ47による取得データは制御装置49に送られ、制御装置49は、ステップS13において、トーチ42から左右の開先壁までの距離L1、L2のデータを取得する。そして制御装置49は、ステップS14において、上述の融合不良判定モデルを用いて、取得された距離L1、L2のデータの条件下で融合不良が生じるかどうかを判断する。
[Welding flow]
The welding process using the welding apparatus of FIG. 34 will be described with reference to the flowchart of FIG. If the process is started in step S11 of FIG. 35, first, in step S12, the data of the
ステップS14において融合不良が生じると判断された場合には、ステップS15において、溶接条件の変更すなわち新たな溶接条件の選定を行う。そして、その選定結果を受けて、ステップS16では、溶接電源48において設定されるべきEN比に変更があったかどうかが判断される。変更があった場合は、溶接電源48においてEN比の設定値を変更するように制御装置49が制御する(ステップS17)。ステップS16においてEN比の設定値に変更がなかった場合およびステップS17において溶接電源48でのEN比の設定値の変更が行われた場合には、次に、ステップS18で、溶接電源48において設定されるべき溶接電流に変更があったかどうかが判断される。変更があった場合は、溶接電源48において溶接電流の設定値を変更するように制御装置49が制御する(ステップS19)。ステップS18において溶接電流の設定値に変更がなかった場合およびステップS19において溶接電源48での電流の設定値の変更が行われた場合には、次に、ステップS20で、溶接電源48において設定されるべき電圧に変更があったかどうかが判断される。変更があった場合は、溶接電源48において電圧の設定値を変更するように制御装置49が制御する(ステップS21)。ステップS20において電圧の設定値に変更がなかった場合およびステップS21において溶接電源48での電圧の設定値の変更が行われた場合には、次に、ステップS22で、走行台車43において設定されるべき溶接速度に変更があったかどうかが判断される。変更があった場合は、走行台車43の移動速度すなわちその移動量の設定値を変更するように制御装置49が制御する(ステップS23)。
If it is determined in step S14 that a fusion defect occurs, the welding conditions are changed, that is, new welding conditions are selected in step S15. Then, in response to the selection result, in step S16, it is determined whether or not the EN ratio to be set in the
ステップS22において溶接速度に変更がなかった場合と、ステップS23において走行台車43の移動量の設定値の変更が行われた場合と、前述のステップS14において融合不良判定モデルを用いて判定した結果、融合不良は生じないと判定された場合とには、ステップS24において、ステップS13で取得した距離L1、L2のデータから、制御装置49によって、L1とL2とが等しいかどうかが判断される。L1とL2とが等しいと判断された場合には、ステップS12に戻って、それ以後の工程を繰り返す。L1とL2とが等しくないと判断された場合には、ステップS25において、これを等しくするように、制御装置49から1軸スライダ46に、それに対応した移動量ΔLが指示される。L1とL2とが等しくなるように1軸スライダ46が移動量ΔLだけ溶接トーチ42を移動させたなら、同様にステップS12に戻って、それ以後の工程を繰り返す。
As a result of determination in step S22 when the welding speed is not changed, in step S23 when the set value of the movement amount of the traveling
上記した各溶接パラメータの影響度について説明する。EN比が大きくなると、ビードオンプレート溶接時のビード幅WBは減少し、溶着断面積ARは増加する。溶接電流が大きくなると、ビード幅WB、溶着断面積ARはともに増加する。電圧が高くなると、ビード幅WBは増加するが溶着断面積ARは変化しない。溶接速度が大きくなると、ビード幅WBはやや減少し、溶着断面積ARは減少する。 The degree of influence of each of the above welding parameters will be described. When the EN ratio becomes large, the bead width WB at the time of bead-on-plate welding decreases, and the welding cross-sectional area AR increases. As the welding current increases, both the bead width WB and the welded cross-sectional area AR increase. As the voltage increases, the bead width WB increases but the welded cross-sectional area AR does not change. As the welding speed increases, the bead width WB decreases slightly and the welding cross-sectional area AR decreases.
41 溶接対象
42 溶接トーチ
43 走行台車
46 1軸スライダ
47 レーザセンサ
48 デジタル溶接装置
49 制御装置
WB ビード幅
AR 溶着断面積
L トーチ-開先壁間距離
Q 溶接入熱
HG 開先壁への入熱
R 溶融池表面から開先底のコーナー部までの一般化した距離
41
Claims (8)
前記溶接条件から溶接入熱Qを求め、
溶接時の開先壁への入熱HGを、前記溶接入熱Qと、前記ビード幅WBと、トーチ-開先壁間距離Lとを用いて表し、
トーチ狙い位置における溶融池表面から開先底のコーナー部までの一般化した距離Rを、前記溶着断面積ARと前記トーチ-開先壁間距離Lとを用いて表し、
前記入熱HGと距離Rとで形成されるHG-R平面に、実験的に求めた開先溶接時の融合不良の有無の表示をプロットし、
この開先溶接時の融合不良の有無の表示がプロットされたHG-R平面に、開先壁における融合不良の有無を基準とする判定線を引き、
前記判定線よりも融合不良の無い領域となるように溶接条件を設定して開先溶接を行うことを特徴とする極狭開先サブマージアーク溶接方法。 Under predetermined welding conditions, bead-on-plate welding is performed on the same material as the object to be welded, and the bead width WB and welding cross-sectional area AR at the time of the bead-on-plate welding are measured.
Welding heat input Q is obtained from the above welding conditions.
The heat input HG to the groove wall at the time of welding is expressed by using the welding heat input Q, the bead width WB , and the distance L between the torch and the groove wall.
The generalized distance R from the surface of the molten pool to the corner of the groove bottom at the torch target position is expressed using the welding cross-sectional area AR and the distance L between the torch and the groove wall.
An experimentally obtained display of the presence or absence of fusion failure during groove welding was plotted on the HG -R plane formed by the heat input HG and the distance R.
A judgment line based on the presence or absence of fusion failure on the groove wall is drawn on the HGR plane on which the display of the presence or absence of fusion failure during groove welding is plotted.
An ultra-narrow groove submerged arc welding method characterized in that groove welding is performed by setting welding conditions so that the region is free from fusion defects from the determination line.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020133448A JP7481940B2 (en) | 2020-08-06 | 2020-08-06 | Extremely narrow gap submerged arc welding method and extremely narrow gap submerged arc welding device |
PCT/JP2021/025541 WO2022030162A1 (en) | 2020-08-06 | 2021-07-07 | Ultra-narrow-gap submerged arc welding method and ultra-narrow-gap submerged arc welding device |
CN202180058879.3A CN116209535A (en) | 2020-08-06 | 2021-07-07 | Submerged arc welding method and submerged arc welding device for extremely narrow groove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020133448A JP7481940B2 (en) | 2020-08-06 | 2020-08-06 | Extremely narrow gap submerged arc welding method and extremely narrow gap submerged arc welding device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022029879A true JP2022029879A (en) | 2022-02-18 |
JP7481940B2 JP7481940B2 (en) | 2024-05-13 |
Family
ID=80118014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020133448A Active JP7481940B2 (en) | 2020-08-06 | 2020-08-06 | Extremely narrow gap submerged arc welding method and extremely narrow gap submerged arc welding device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7481940B2 (en) |
CN (1) | CN116209535A (en) |
WO (1) | WO2022030162A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114669834B (en) * | 2022-05-07 | 2024-07-19 | 中国铁建重工集团股份有限公司 | Groove welding method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62214869A (en) * | 1986-03-14 | 1987-09-21 | Mitsubishi Heavy Ind Ltd | Automatic welding method |
JPS6330175A (en) * | 1986-07-23 | 1988-02-08 | Kawasaki Steel Corp | Automatic profiling device for narrow gap submerged arc welding machine |
JPH0675787B2 (en) * | 1986-09-30 | 1994-09-28 | 株式会社安川電機 | Multi-layer welding method |
JP2011200920A (en) * | 2010-03-26 | 2011-10-13 | Ihi Corp | Method and apparatus for submerged arc welding |
JP2013233592A (en) * | 2012-04-09 | 2013-11-21 | Jfe Steel Corp | Narrow bevel welding method of steel |
JP2018001275A (en) * | 2016-06-28 | 2018-01-11 | リンカーン グローバル,インコーポレイテッド | Welding waveform for stainless steel applications |
JP2018075583A (en) * | 2016-11-07 | 2018-05-17 | 株式会社Ihi | Welding device and welding method |
-
2020
- 2020-08-06 JP JP2020133448A patent/JP7481940B2/en active Active
-
2021
- 2021-07-07 WO PCT/JP2021/025541 patent/WO2022030162A1/en active Application Filing
- 2021-07-07 CN CN202180058879.3A patent/CN116209535A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62214869A (en) * | 1986-03-14 | 1987-09-21 | Mitsubishi Heavy Ind Ltd | Automatic welding method |
JPS6330175A (en) * | 1986-07-23 | 1988-02-08 | Kawasaki Steel Corp | Automatic profiling device for narrow gap submerged arc welding machine |
JPH0675787B2 (en) * | 1986-09-30 | 1994-09-28 | 株式会社安川電機 | Multi-layer welding method |
JP2011200920A (en) * | 2010-03-26 | 2011-10-13 | Ihi Corp | Method and apparatus for submerged arc welding |
JP2013233592A (en) * | 2012-04-09 | 2013-11-21 | Jfe Steel Corp | Narrow bevel welding method of steel |
JP2018001275A (en) * | 2016-06-28 | 2018-01-11 | リンカーン グローバル,インコーポレイテッド | Welding waveform for stainless steel applications |
JP2018075583A (en) * | 2016-11-07 | 2018-05-17 | 株式会社Ihi | Welding device and welding method |
Also Published As
Publication number | Publication date |
---|---|
JP7481940B2 (en) | 2024-05-13 |
CN116209535A (en) | 2023-06-02 |
WO2022030162A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4998703B2 (en) | Control system for vertical position welding equipment | |
JP5110642B2 (en) | Manufacturing method of welded section steel | |
KR20120104325A (en) | A welding process and a welding arrangement | |
WO2017212916A1 (en) | Resistance spot welding method | |
WO2022030162A1 (en) | Ultra-narrow-gap submerged arc welding method and ultra-narrow-gap submerged arc welding device | |
JP2013111654A (en) | Welding system, welding process, and welded article | |
CN107921569A (en) | Stand to narrow groove gas-shielded arc welding method | |
US4816641A (en) | Automatic arc-welding method | |
KR101473639B1 (en) | Large volume butt joint welding apparatus and the method thereof | |
US4187410A (en) | Method of multi-pass narrow groove arc welding | |
MXPA96004219A (en) | Method for joining metal components with improved perception and control of the voltage of a | |
CN110177643B (en) | Single-sided submerged arc welding method and single-sided submerged arc welding device | |
RU2497644C2 (en) | Multiarc welding of welded blanks | |
US5945014A (en) | Method of arc welding heavy steel plates | |
KR101608975B1 (en) | Tandem GMAW device for welding thick plate | |
JP6092163B2 (en) | Welding apparatus and welding method | |
JP6004623B2 (en) | Two-electrode differential welding method | |
KR20130029624A (en) | Butt joint welding apparatus and the method thereof | |
CN115703163A (en) | Multi-electrode single-side submerged arc welding method | |
JP2021154298A (en) | Gas shield arc-welding method and gas shield arc-welding device | |
CN107635706B (en) | Welding method and welding device | |
KR101214181B1 (en) | Copper Shoe Used in Butt Welding and Butt Welding Method Using the Same | |
JP2020075263A (en) | Welding method | |
JP2007030015A (en) | Steel plate connection welding method | |
US20200368842A1 (en) | One-side submerged arc welding method and one-side submerged arc welding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210622 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230912 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7481940 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |