JP5110642B2 - Manufacturing method of welded section steel - Google Patents

Manufacturing method of welded section steel Download PDF

Info

Publication number
JP5110642B2
JP5110642B2 JP2007293921A JP2007293921A JP5110642B2 JP 5110642 B2 JP5110642 B2 JP 5110642B2 JP 2007293921 A JP2007293921 A JP 2007293921A JP 2007293921 A JP2007293921 A JP 2007293921A JP 5110642 B2 JP5110642 B2 JP 5110642B2
Authority
JP
Japan
Prior art keywords
welding
flange
welded
web material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007293921A
Other languages
Japanese (ja)
Other versions
JP2009119485A (en
Inventor
康弘 桜田
武文 仲子
博 朝田
正二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007293921A priority Critical patent/JP5110642B2/en
Publication of JP2009119485A publication Critical patent/JP2009119485A/en
Application granted granted Critical
Publication of JP5110642B2 publication Critical patent/JP5110642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

本発明は、レーザー光を熱源としたレーザー溶接によってT字状の溶接継手部を形成した溶接形鋼を製造する方法に関する。   The present invention relates to a method for manufacturing a welded steel having a T-shaped welded joint formed by laser welding using a laser beam as a heat source.

建築物の躯体を構成する梁等に用いられているT形鋼やH形鋼等の形鋼は、熱間圧延で所定の断面形状に成形した後、必要に応じ後めっき,後塗装等を施すことにより製造されてきた。
しかし、近年の住宅の高耐久化、低コスト化に対応し、形鋼を形作るウェブ材やフランジ材に表面処理鋼板、特にZnをめっき金属中に含んだZn系めっき鋼板を用い、連続的に高周波溶接で接合する方法で製造した溶接形鋼が用いられるようになっている。
Shaped steels such as T-shaped steel and H-shaped steel used for the beams that make up the building frame are molded into a predetermined cross-sectional shape by hot rolling, followed by post-plating and post-coating as necessary. Have been manufactured by applying.
However, in response to the recent increase in durability and cost of housing, surface-treated steel sheets, especially Zn-based plated steel sheets containing Zn in the plating metal, are used continuously for the web material and flange material forming the shape steel. A welded section steel manufactured by a method of joining by high frequency welding is used.

溶接形鋼は、通常、連続的に送り込まれるめっき鋼帯等の素板を上下左右のロールで位置決めし、加圧しながら高周波溶接することにより製造されている。この製造方法は、例えば特許文献1等で紹介されているように、フランジ材とウェブ材といった材料表面に溶接電流を通電するための電極を接触させて連続的にフランジ材とウェブ材を溶接している。しかし、高周波溶接の場合は、加熱されるフランジ材とウェブ材とのT字継手部付近や材料と電極との接触部も加熱されるために材料のめっき層がダメージを受けることになる。したがって、ダメージを受けた部分の耐食性を確保するため、広い範囲に渡って補修塗料を塗布する必要がある。   The welded shape steel is usually manufactured by positioning a base plate such as a plated steel strip continuously fed with upper, lower, left and right rolls and performing high-frequency welding while applying pressure. In this manufacturing method, for example, as introduced in Patent Document 1, etc., the flange material and the web material are continuously welded by contacting an electrode for supplying a welding current to the surface of the material such as the flange material and the web material. ing. However, in the case of high-frequency welding, the vicinity of the T-shaped joint between the heated flange material and the web material and the contact portion between the material and the electrode are also heated, so that the plated layer of the material is damaged. Therefore, it is necessary to apply the repair paint over a wide range in order to ensure the corrosion resistance of the damaged part.

高周波溶接には、上記のような問題の他に、電極自身の摩耗が激しく、短時間で電極を交換する必要が生じるという問題もある。すなわち、高周波溶接では電極を材料表面に接触させながら材料を移動させている。そして、電極には銅合金が用いられているため、接触部で電極と材料のめっき金属との反応が起こって電極の摩耗が激しくなり、電極の交換頻度が多くなるのである。電極の短時間での交換は、溶接コストの上昇や生産効率の低下を招くという問題を含んでいる。また、高周波溶接は大きな溶接電流を与える必要があるために、溶接機が大型となり非常に高価であるため設備投資が大きくなるという問題も含んでいる。
さらに、被溶接形鋼に、サイズ的な制約が加わる。すなわち、高周波溶接では電極を材料表面に接触させる必要があるが、電極ホルダーがH形鋼のフランジ部に接触しやすくなるため、小型品の溶接は困難となる。W80mm×H80mm程度のサイズが限界となり、それ以下のサイズのH型鋼を高周波溶接法で製造することは困難である。
In addition to the above-described problems, the high-frequency welding has a problem that the electrode itself is severely worn and the electrode needs to be replaced in a short time. That is, in high frequency welding, the material is moved while the electrode is in contact with the material surface. And since a copper alloy is used for an electrode, reaction with an electrode and the metal plating metal of a material occurs in a contact part, and wear of an electrode becomes intense, and the exchange frequency of an electrode increases. The replacement of the electrodes in a short time includes a problem that the welding cost increases and the production efficiency decreases. Moreover, since it is necessary to apply a large welding current in high-frequency welding, there is a problem that equipment investment is increased because the welding machine is large and very expensive.
Furthermore, size restrictions are added to the welded shape steel. That is, in high-frequency welding, it is necessary to bring the electrode into contact with the material surface. However, since the electrode holder easily comes into contact with the flange portion of the H-shaped steel, it is difficult to weld a small product. A size of about W80 mm × H80 mm is the limit, and it is difficult to manufacture an H-shaped steel having a size smaller than that by high-frequency welding.

このような高周波溶接での電極及び設備投資の問題を避けるために、この溶接方法とは別に、フランジとウェブとのT字継手部を溶融溶接する溶接H形鋼の製造方法がある。この溶接H形鋼の製造方法は、例えば特許文献2等で紹介されているように、図1に示すフランジ1とウェブ2とのT字継手部3a〜3dを上下片側ずつ、つまり、継手部3aと3bの組合せと継手部3cと3dの組合せで材料を反転させて溶接している。
通常、溶接は材料がZn系めっき鋼板であるためにCO溶接やMAG溶接といった消耗電極式、つまり溶接ワイヤーを用いたアーク溶接が適用されている。この方法であれば、電極損耗による交換作業がなくなり、設備投資も比較的低くすることができるメリットがある。
In order to avoid the problem of electrode and equipment investment in such high-frequency welding, there is a manufacturing method of welded H-section steel that melt-welds the T-shaped joint portion of the flange and the web separately from this welding method. For example, as disclosed in Patent Document 2 and the like, this welded H-shaped steel manufacturing method is such that the T-shaped joint portions 3a to 3d of the flange 1 and the web 2 shown in FIG. The material is reversed and welded by the combination of 3a and 3b and the combination of the joint portions 3c and 3d.
Normally, since welding is made of a Zn-based plated steel sheet, consumable electrode type such as CO 2 welding or MAG welding, that is, arc welding using a welding wire is applied. This method is advantageous in that the replacement work due to electrode wear is eliminated and the capital investment can be relatively low.

上記のようなアーク溶接法を用いると、アングルやガゼットプレート、或いは柱のベースプレート等の建築部材も同様に、容易に製造することができる。
しかし、このような溶接が施されると、高周波溶接に比べて溶接速度が非常に遅く、生産性が低下する。さらに、加熱領域が広くなるために材料のめっき層が蒸発する損傷領域も広くなって溶接後の補修塗料の塗布量が多くなるという問題がある。また、2箇所のT字継手部を同時に溶接するため2台の溶接トーチを必要とするばかりでなく、反り等の変形を防止するために、溶接条件の細かな調整・管理が必要であり、管理項目や管理工程時間が増加する問題もある。
When the arc welding method as described above is used, building members such as an angle, a gusset plate, or a column base plate can be easily manufactured.
However, when such welding is performed, the welding speed is very slow compared to high-frequency welding, and productivity is reduced. Further, since the heating area is widened, the damaged area where the plating layer of the material evaporates is widened, and there is a problem that the application amount of the repair paint after welding is increased. Moreover, not only two welding torches are required to weld two T-joints at the same time, but in order to prevent deformation such as warpage, fine adjustment and management of welding conditions are necessary. There is also a problem that management items and management process time increase.

一方で、ステンレス鋼を中心として、フランジとウェブとのT字継手部にレーザー光を照射するレーザー溶接法を採用することも提案されている。例えば特許文献3,4参照。
しかしながら、特許文献3,4で提案されたレーザー溶接法もステンレス鋼の溶接を目的としているために、めっき鋼板を素材とするときの問題点は全く考慮されていない。単に熱歪みによる変形を抑制し、溶接後の矯正を省こうとするに主眼が置かれているのみである。このため、Zn系めっき鋼板を素材としてH形鋼等の形鋼をレーザー溶接法により得ようとするとき、照射領域が広くなり、それに伴ってめっき層が蒸発する損傷領域も広くなって溶接後の補修塗料の塗布量が多くなるという問題は解消されない。
On the other hand, it has also been proposed to employ a laser welding method in which laser light is irradiated to a T-shaped joint portion between a flange and a web centering on stainless steel. For example, see Patent Documents 3 and 4.
However, since the laser welding methods proposed in Patent Documents 3 and 4 are also intended for the welding of stainless steel, the problems when using a plated steel sheet as a material are not taken into consideration at all. The main focus is simply on suppressing deformation due to thermal distortion and eliminating correction after welding. For this reason, when trying to obtain a shape steel such as H-section steel by using a Zn-based plated steel sheet as a raw material, the irradiation area becomes wider, and the damaged area where the plating layer evaporates becomes wider along with it. The problem that the amount of the repair paint applied increases is not solved.

そこで、本発明者等は、T字継手部を備えためっき鋼板製の形鋼を溶接法で製造する際に、補修塗料の塗布量を抑えても耐食性が劣ることがなく、溶接工程時間の短縮を図ることができる製造方法を提供するために、特許文献5で、ともにZn系めっきが施されためっき鋼板からなるフランジ材にウェブ材の端部を垂直に押し当ててT字状の溶接継手部を形成した溶接形鋼を製造する際、溶接法としてレーザー光を照射するレーザー溶接法を用い、前記レーザー光を、押し当てたウェブ材端部にフランジ材に対して30度以下の傾斜角度で、当該ウェブ材が板厚方向全域にわたって溶融されるように照射するレーザー溶接方法を提案した。   Therefore, the present inventors, when producing a steel plate made of plated steel plate with a T-shaped joint portion by a welding method, the corrosion resistance is not inferior even if the application amount of the repair paint is suppressed, and the welding process time is reduced. In order to provide a manufacturing method that can be shortened, in Patent Document 5, both ends of the web material are pressed vertically against a flange material made of a plated steel sheet plated with Zn, and a T-shaped welding is performed. When manufacturing a welded steel having a joint, a laser welding method of irradiating a laser beam as a welding method is used, and the laser beam is inclined at an angle of 30 degrees or less with respect to the flange material at the pressed web material end. A laser welding method has been proposed in which the web material is irradiated at an angle so that the web material is melted throughout the plate thickness direction.

特開平8−150411号公報JP-A-8-150411 特開平2−15876号公報JP-A-2-15876 特開平10−99982号公報Japanese Patent Application Laid-Open No. 10-99982 特開2005−21912号公報JP 2005-21912 A 特願2006−139775号Japanese Patent Application No. 2006-139775

特許文献5で提案した溶接方法によると、押し当てた側のウェブ材端部に当該ウェブ材が板厚方向全域にわたって溶融されるようにレーザー光を照射しているため、溶融領域を狭く、かつ深くすることができる。その結果、形状精度良く溶接接合できるばかりでなく、被溶接鋼板がめっき鋼板であってもめっき層が蒸発する損傷領域を極力狭くすることができるため、溶接後の補修塗料の塗布量の低減効果が発揮される。また、溶融領域を深くすることができるため、片側からの溶接のみでも、所要の溶接強度を備えた形材を簡便に製造することができる。   According to the welding method proposed in Patent Literature 5, since the web material is irradiated to the end of the web material on the pressed side so that the web material is melted over the entire plate thickness direction, the melting region is narrowed, and Can be deep. As a result, not only can welding be performed with good shape accuracy, but even if the steel plate to be welded is a plated steel plate, the damage area where the plating layer evaporates can be made as narrow as possible, thus reducing the amount of repair paint applied after welding. Is demonstrated. In addition, since the melting region can be deepened, it is possible to easily manufacture a shape member having a required welding strength only by welding from one side.

しかしながら、特許文献5による溶接方法では、被溶接部にレーザー光を照射して被溶接部の板厚方向全域を溶融させているので、場合によっては照射エネルギーにより、図2(a)に示すように、溶接部表面が窪むことがある。溶接部に窪みがあると応力集中を受けやすく、用途によっては強度不足になることもある。
本発明は、このような問題を解消すべく案出されたものであり、T字継手部を備えた溶接形鋼をレーザー溶接法で製造するに際に、溶接部に窪みがなく、接合強度の高い溶接形鋼を簡便な方法で製造することを目的とする。
However, in the welding method according to Patent Document 5, the welded portion is irradiated with laser light to melt the entire area of the welded portion in the plate thickness direction, and depending on the case, depending on the irradiation energy, as shown in FIG. In addition, the surface of the weld may be recessed. If there is a dent in the welded part, it is easy to receive stress concentration, and depending on the application, the strength may be insufficient.
The present invention has been devised to solve such a problem. When a welded steel having a T-shaped joint is manufactured by a laser welding method, there is no depression in the weld, and the joint strength is improved. The purpose is to produce a welded steel having a high height by a simple method.

本発明の溶接形鋼の製造方法の製造方法は、その目的を達成するため、いずれも鋼板からなるフランジ材にウェブ材の端部を垂直に押し当てたT字状継手部をレーザー溶接して溶接形鋼を製造する際、ウェブ材の端部とフランジ材とを互いに押圧しつつ、ウェブ材端部の接合部にレーザー光をフランジ材の表面に接触せずにウェブ材の端部のみに当たるように片側からのみ照射することを特徴とする。
なお、本発明では「ウェブ材の端部とフランジ材とを互いに押圧しつつ」を要件としているが、この要件は「固定したフランジ材にウェブ材の端部を、圧をかけて押し付ける」形態、「固定したウェブ材の端部にフランジ材を、圧をかけて押し付ける」形態、及び「フリーのフランジ材とフリーのウェブ材の端部を、互いに両方から圧をかけて近づける」形態を含むものである。
In order to achieve the object, the manufacturing method of the welded shape steel manufacturing method of the present invention laser welds a T-shaped joint portion in which the end portion of the web material is vertically pressed against a flange material made of a steel plate. When manufacturing welded steel, the end of the web material and the flange material are pressed against each other, and the laser beam is applied to only the end of the web material without contacting the surface of the flange material at the joint of the web material end. Thus, it irradiates only from one side .
In the present invention, it is a requirement that “the end of the web member and the flange member are pressed against each other”, but this requirement is a form of “pressing the end of the web member against the fixed flange member while applying pressure”. , "Flange material is pressed against the end of the fixed web material under pressure" and "Free flange material and free web material edge are pressed close to each other" It is a waste.

ウェブ材の端部をフランジ材に押圧する手段としては、スクイズロールを用いることが好ましい。
また、レーザー光は、フランジ材に対して30度以下の傾斜角度で、ウェブ材端部の接合部に照射することが好ましい。
この溶接方法により、2枚のフランジ材の間に1枚のウェブ材の両端をT字継手により接合した溶接H形鋼が製造される。
さらに、本発明では、フランジ材及びウェブ材として、Zn系めっき、好ましくはZnとAlを含む合金めっき、さらに好ましくはZnとAl及びMgを含む合金めっきが施されためっき鋼板を用いた溶接形鋼が製造される。
As means for pressing the end of the web material against the flange material, it is preferable to use a squeeze roll.
Moreover, it is preferable that a laser beam is irradiated to the junction part of a web material edge part with the inclination angle of 30 degrees or less with respect to a flange material.
By this welding method, a welded H-section steel is manufactured in which both ends of one web member are joined by T-shaped joints between two flange members.
Furthermore, in the present invention, as the flange material and the web material, a weld type using a plated steel sheet on which Zn-based plating, preferably alloy plating containing Zn and Al, and more preferably alloy plating containing Zn, Al and Mg, is applied. Steel is produced.

本発明方法では、フランジ材にウェブ材の端部を垂直に押し当てて形作られたT字状継手部にレーザー光を照射し、当該継手部を溶融させて溶接接合する際に、ウェブ材の端部をフランジ材に押圧しつつレーザー光を照射している。このため、溶融部が継手部から押出される形態となり、溶融部の固化後、接合金属が継手部の外領域まで広がった形態となる。したがって、接合部の窪み形成が抑制されるばかりか、かえって接合部の断面積を拡げ、接合強度は大きくなる。また、レーザー溶接の採用により、溶融領域を狭く、かつ深くすることができるので、めっき鋼板、特に亜鉛系めっき鋼板を素材とした形鋼であっても、めっき層の蒸発を抑制した溶接接合を行うことができる。しかもサイズの小さい溶接形鋼が容易に製造できる。
したがって、本発明により、めっき鋼板を素材とした形鋼であっても、最小限の溶接部補修のみで高強度、高耐食性を備えた溶接形鋼を低コストで製造することが可能となる。
In the method of the present invention, when a T-shaped joint portion formed by vertically pressing the end portion of the web material against the flange material is irradiated with laser light to melt and weld the joint portion, Laser light is irradiated while pressing the end against the flange material. For this reason, it becomes a form by which a fusion | melting part is extruded from a joint part, and after a solidification | solidification of a fusion | melting part, it becomes a form which the joint metal spread to the outer region of the joint part. Therefore, not only the formation of a depression in the joint portion is suppressed, but also the cross-sectional area of the joint portion is increased, and the joint strength is increased. In addition, by adopting laser welding, the melting region can be narrowed and deepened, so welding joints that suppress the evaporation of the plated layer can be achieved even for shaped steel plates, especially galvanized steel plates. It can be carried out. In addition, a welded steel with a small size can be easily manufactured.
Therefore, according to the present invention, it is possible to produce a welded shape steel having high strength and high corrosion resistance at a low cost only by repairing a welded portion, even if it is a shape steel made of a plated steel sheet.

本発明者等は、T形鋼やH形鋼等、鋼板を素材としてT字状の溶接継手部を備えた形鋼をレーザー溶接法で製造する際に、溶接継手部に形成されやすい窪みの発生原因とそれをなくす手段について検討を重ねてきた。
レーザー溶接法では高出力のガスレーザーが使用される。このため、被接合金属が溶融されるのであるが、部分的に蒸発・飛散され、被溶接金属が僅かに減少する。また、被溶接金属同士は当接されているが、端面が面出し加工されていない場合には僅かに隙間があり、被溶接金属の減少と被溶接金属間の隙間の影響で接合金属が不足する。これらの現象に加え、溶接点にはシールドガスが噴きつけられていることから溶融池にはガス圧がかかり、また、重力の影響もあり、図2の(a)に見られるように、溶接継手部に窪みが形成されると想定される。
The inventors of the present invention, when manufacturing a steel having a T-shaped welded joint using a steel plate as a raw material, such as a T-shaped steel and an H-shaped steel, by a laser welding method, We have been studying the cause and the means to eliminate it.
In laser welding, a high-power gas laser is used. For this reason, although the metal to be joined is melted, it is partially evaporated and scattered, and the metal to be welded is slightly reduced. Also, the welded metals are in contact with each other, but there is a slight gap when the end face is not chamfered, and there is a shortage of joint metal due to the reduction of the welded metal and the effect of the gap between the welded metals. To do. In addition to these phenomena, because the shield gas is sprayed at the welding point, gas pressure is applied to the molten pool, and there is also the influence of gravity. As shown in FIG. It is assumed that a recess is formed in the joint.

継手部における接合金属の不足を補うには、当該領域に金属を補充する必要がある。
本発明は、ウェブ材を押圧することによりウェブ材自身を多く溶融させ、継手部における接合金属の不足を補おうとするものである。
通常通り、図3に示すように、フランジ材1とウェブ材2のT字継手部3にレーザートーチ5から傾斜角度α(このαについては後記する。)でレーザー4を照射する。本発明では、この際、ウェブ材2を図3中、矢印方向に押圧する。このため、ウェブ材2自身が通常よりも多く溶融され、押圧力により、溶融された接合金属が接合領域から僅かにはみ出すような形態となる。レーザー照射が終わり、溶融された接合金属が凝固した後には、図2の(b)に見られるように、窪みはなく、かえって断面積は大きくなり、結果的に接合強度は上昇する。
押圧量としては3〜5kNの押圧をかけて、0.3〜0.5mm程度押圧することが好ましい。
In order to compensate for the shortage of joining metal in the joint portion, it is necessary to replenish the region with metal.
The present invention melts a large amount of the web material itself by pressing the web material, and makes up for the shortage of joining metal in the joint portion.
As shown in FIG. 3, the laser 4 is irradiated from the laser torch 5 to the T-shaped joint portion 3 of the flange member 1 and the web member 2 at an inclination angle α (this α will be described later). In the present invention, the web material 2 is pressed in the direction of the arrow in FIG. For this reason, the web material 2 itself is melted more than usual, and the molten joining metal slightly protrudes from the joining region by the pressing force. After the laser irradiation is finished and the molten bonding metal is solidified, as shown in FIG. 2 (b), there is no dent, and the cross-sectional area is increased, resulting in an increase in bonding strength.
The pressing amount is preferably about 0.3 to 0.5 mm by applying a pressure of 3 to 5 kN.

ウェブ材の押圧方法には制限はないが、溶接点近傍を選択的に押圧する必要があり、図4に示すように、スクイズロール6により、フランジ材1をウェブ材2の端部に押圧することが好ましい。なお、図4では、ウェブ材2を2枚のフランジ材1で挟んだ状態でラインに乗せ、双方が平坦な一対のスクイズロール6で2枚のフランジ材の間隔を狭くするように流してH形鋼を製造している。スクイズロール6の近傍に配したレーザートーチ5からレーザー光4を照射して溶接している。図4ではレーザートーチ5は一個しか配置していないが、反体側のフランジ材と溶接すべく、もう一個のレーザートーチを配置しておくと、H型鋼の2枚のフランジ材を同時に接合することが可能となる。
その他の手法としては図5に示すようなテーパーが設けられたスクイズブロック8によって押圧させる方法がある。しかしながら、この手法ではフランジ材がスクイズブロック8に摺動するため、フランジ部に擦り傷などが発生する可能性がある。
Although there is no restriction | limiting in the pressing method of a web material, it is necessary to selectively press the vicinity of a welding point, and the flange material 1 is pressed to the edge part of the web material 2 with the squeeze roll 6, as shown in FIG. It is preferable. In FIG. 4, the web material 2 is put on a line with the two flange materials 1 sandwiched between them, and a pair of flat squeeze rolls 6 are used so as to narrow the distance between the two flange materials. Manufactures shape steel. Laser welding is performed by irradiating a laser beam 4 from a laser torch 5 disposed in the vicinity of the squeeze roll 6. In FIG. 4, only one laser torch 5 is arranged. However, if another laser torch is arranged for welding with the flange member on the opposite side, two flange members of H-shaped steel can be joined simultaneously. Is possible.
As another method, there is a method of pressing with a squeeze block 8 provided with a taper as shown in FIG. However, in this method, since the flange material slides on the squeeze block 8, there is a possibility that the flange portion will be scratched.

フランジ材とその板幅方向の凡そ中央に垂直に端部を押し当てたウェブ材からなるT形鋼を製造する場合には、フランジ材に当接するロールとして平坦なロールを、ウェブ材に当接するロールとしてV形溝を有するVロールを配したスクイズロールを用い、ウェブ材をフランジ材側に押圧しつつ、スクイズロールの近傍に配したレーザートーチからレーザー光を照射して溶接することが好ましい。   When manufacturing a T-shaped steel made of a web material having an end pressed perpendicularly to the center of the flange material and its plate width direction, a flat roll is brought into contact with the web material as a roll in contact with the flange material. It is preferable to use a squeeze roll provided with a V roll having a V-shaped groove as a roll, and irradiate a laser beam from a laser torch provided in the vicinity of the squeeze roll while welding the web material toward the flange material.

レーザー光は非常に狭く、かつ高いエネルギー密度を有しており、焦点距離も比較的長い。したがって、この熱源を溶接法に用いると、狭い断面積で深い溶融金属領域を形成することができる。このため、ウェブ材とフランジ材の溶接接合に際し、例えば図3のように、T字継手部の片側のみからのレーザー光照射で十分に溶接接合することができ、溶接作業の省力化にも資することになる。   Laser light is very narrow, has a high energy density, and has a relatively long focal length. Therefore, when this heat source is used in the welding method, a deep molten metal region can be formed with a narrow cross-sectional area. For this reason, when welding the web material and the flange material, for example, as shown in FIG. 3, it can be sufficiently welded and joined by laser light irradiation from only one side of the T-shaped joint portion, which contributes to labor saving of welding work. It will be.

レーザー光照射により形成される溶融金属領域をより狭く、かつ深くするためには、図3にてαで示す照射角度を小さくすることが好ましい。具体的には30度以下、好ましくは10〜20度とする。この角度αが20度を上回ると、ウェブ材の板厚方向の溶け込み深さが狭く浅くなって十分な接合強度を得ることができ難くなる。またこの角度が10度を下回ると、フランジ材表面にレーザー光が接触してしまい、被溶接材がめっき鋼板の場合、めっき金属の損傷領域が広がってしまう危険性がある。
なお、レーザー光がフランジ表面に接触せず、ウェブの板厚方向の溶け込み深さを深くするためには、図3に示したようにレーザー光4の材料への照射位置、いわゆる狙い位置を、ウェブ2の端部からδで示す僅かな量で移動させた位置にすることが好ましい。また、溶接トーチとフランジの干渉を避けるために、長焦点のレーザー溶接が適している。
In order to make the molten metal region formed by laser beam irradiation narrower and deeper, it is preferable to reduce the irradiation angle indicated by α in FIG. Specifically, it is 30 degrees or less, preferably 10 to 20 degrees. If the angle α exceeds 20 degrees, the penetration depth in the plate thickness direction of the web material becomes narrow and shallow, and it becomes difficult to obtain sufficient bonding strength. When this angle is less than 10 degrees, the laser beam comes into contact with the surface of the flange material, and when the material to be welded is a plated steel plate, there is a risk that the damaged area of the plated metal is expanded.
In order to increase the penetration depth in the thickness direction of the web without the laser beam contacting the flange surface, the irradiation position of the material of the laser beam 4 as shown in FIG. It is preferable that the web 2 be moved from the end of the web 2 by a small amount indicated by δ. Also, long focus laser welding is suitable to avoid interference between the welding torch and the flange.

前記した通り、レーザー光を熱源とした溶接法では、狭い断面積で深い溶融金属領域を形成することができる。したがって、レーザー溶接法はめっき鋼板、特にZn系めっき鋼板、さらにはZn−Al系やZn−Al−Mg系めっきを施した鋼板を素材とした溶接構造物の製造に適している。
このため、本発明の溶接形鋼の製造方法、Zn系めっき鋼板、特にZn−Al系やZn−Al−Mg系のめっきを施した鋼板を素材とした形鋼の製造に好適に用いられる。
As described above, in the welding method using laser light as a heat source, a deep molten metal region can be formed with a narrow cross-sectional area. Therefore, the laser welding method is suitable for manufacturing a welded structure made of a plated steel plate, particularly a Zn-based plated steel plate, and further a steel plate subjected to Zn-Al-based or Zn-Al-Mg-based plating.
For this reason, it is used suitably for the manufacturing method of the welded shape steel of this invention, and the manufacture of the shape steel which used as a raw material the Zn-plated steel plate, especially the steel plate which gave the plating of Zn-Al type and Zn-Al-Mg type.

板厚が2.3mmで引張強さが400N/mm2の鋼板にZn−6%Al−3%Mg合金めっき層を片面当り付着量が90g/m2で設けた溶融めっき鋼板を素材とした。板幅80mmにカットした素材をフランジ材に、板幅76mmにカットした素材をウェブ材として、図4に示すように流し、80mm×80mmの溶接H形鋼を作製した。
なお、この際、フランジ材の外面間の距離が80mmになるようにスクイズロールで押圧した。溶接は、被溶接フランジ材表面に対してレーザートーチ5を10度傾斜させて、片側のみから、被ウェブ材の幅方向全域に渡ってすみ肉溶接を実施した。溶接時のレーザー出力は4.0kW,溶接速度が4m/min,シールドガスをアルゴンとして20リットル/min供給した。
そして、製造したH形鋼の横断面を目視観察したところ、フランジ材とウェブ材の交差点の外側にはみ出すように、溶接ビードが僅かではあるが形成されていた。窪みは全く認められなかった。
A hot-dip galvanized steel sheet in which a Zn-6% Al-3% Mg alloy plating layer was applied to a steel sheet having a thickness of 2.3 mm and a tensile strength of 400 N / mm 2 at an adhesion amount of 90 g / m 2 per side was used as a material. . A material cut to a plate width of 80 mm was used as a flange material, and a material cut to a plate width of 76 mm was used as a web material to flow as shown in FIG. 4 to produce a welded H-section steel of 80 mm × 80 mm.
In addition, it pressed with the squeeze roll so that the distance between the outer surfaces of a flange material might be set to 80 mm in this case. For welding, fillet welding was carried out over the entire width direction of the web material from only one side by tilting the laser torch 5 by 10 degrees with respect to the surface of the flange material to be welded. The laser output during welding was 4.0 kW, the welding speed was 4 m / min, and the shielding gas was supplied at 20 liters / min as argon.
And when the cross section of the manufactured H-section steel was visually observed, a weld bead was formed although it was slightly so as to protrude outside the intersection of the flange material and the web material. No dent was observed.

溶接H形鋼の構成を示す模式図Schematic diagram showing the configuration of the welded H-section steel T字溶接部の断面形状、(a)従来例、(b)本発明例Cross-sectional shape of T-shaped weld, (a) Conventional example, (b) Invention example レーザー溶接によるT字継手部の溶接状況を示す模式図Schematic diagram showing the welding situation of T-joint by laser welding アプセット方法の一実施態様を示す模式図Schematic diagram showing one embodiment of the upset method アプセット方法の他の実施態様を示す模式図Schematic diagram showing another embodiment of the upset method

符号の説明Explanation of symbols

1:フランジ材 2:ウェブ材 3,3a,3b,3c,3d:T字継手部 4:レーザー光 5:レーザートーチ 6:スクイズロール
7:引張用チャック 8:スクイズブロック
α:傾斜角度 δ:狙い位置
1: Flange material 2: Web material 3, 3a, 3b, 3c, 3d: T-shaped joint portion 4: Laser light 5: Laser torch 6: Squeeze roll
7: Chuck for tension 8: Squeeze block α: Inclination angle δ: Target position

Claims (5)

いずれも鋼板からなるフランジ材にウェブ材の端部を垂直に押し当てたT字状継手部をレーザー溶接して溶接形鋼を製造する際、ウェブ材の端部とフランジ材とを互いに押圧しつつ、ウェブ材端部の接合部にレーザー光をフランジ材の表面に接触せずにウェブ材の端部のみに当たるように片側からのみ照射することを特徴とする溶接形鋼の製造方法。 In both cases, when manufacturing a welded steel by laser welding a T-shaped joint part in which the end of the web material is pressed perpendicularly to the flange material made of a steel plate, the end of the web material and the flange material are pressed against each other. On the other hand, a method for producing a welded shape steel, wherein a laser beam is irradiated only from one side so that a laser beam is applied to only the end of the web material without contacting the surface of the flange material at the joint of the web material end. ウェブ材の端部をフランジ材に押圧する手段として、スクイズロールを用いる請求項1に記載の溶接形鋼の製造方法。   The method for manufacturing a welded steel according to claim 1, wherein a squeeze roll is used as means for pressing the end of the web material against the flange material. フランジ材に対して30度以下の傾斜角度で、ウェブ材端部の接合部にレーザー光を照射する請求項1又は2に記載の溶接形鋼の製造方法。   The manufacturing method of the welded shape steel according to claim 1 or 2, wherein the laser beam is irradiated to the joint portion of the end portion of the web material at an inclination angle of 30 degrees or less with respect to the flange material. 溶接形鋼が、2枚のフランジ材の間に1枚のウェブ材の両端をT字継手により接合したH形鋼である請求項1〜3のいずれかに記載の溶接形鋼の製造方法。   The method for producing a welded shape steel according to any one of claims 1 to 3, wherein the welded shape steel is an H-shape steel in which both ends of one web material are joined by T-shaped joints between two flange materials. フランジ材及びウェブ材が、Zn系めっきが施されためっき鋼板である請求項1〜4のいずれかに記載の溶接形鋼の製造方法。   The method for manufacturing a welded shape steel according to any one of claims 1 to 4, wherein the flange material and the web material are plated steel sheets to which Zn-based plating is applied.
JP2007293921A 2007-11-13 2007-11-13 Manufacturing method of welded section steel Expired - Fee Related JP5110642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293921A JP5110642B2 (en) 2007-11-13 2007-11-13 Manufacturing method of welded section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293921A JP5110642B2 (en) 2007-11-13 2007-11-13 Manufacturing method of welded section steel

Publications (2)

Publication Number Publication Date
JP2009119485A JP2009119485A (en) 2009-06-04
JP5110642B2 true JP5110642B2 (en) 2012-12-26

Family

ID=40812236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293921A Expired - Fee Related JP5110642B2 (en) 2007-11-13 2007-11-13 Manufacturing method of welded section steel

Country Status (1)

Country Link
JP (1) JP5110642B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072158A1 (en) 2013-11-14 2015-05-21 日新製鋼株式会社 Device and method for manufacturing welded shaped steel
CN110744188A (en) * 2019-10-22 2020-02-04 沃得精机(中国)有限公司 Beam structure of laser cutting machine and assembly welding method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083781A (en) * 2009-10-13 2011-04-28 Nisshin Steel Co Ltd Method for manufacturing h-section steel by laser welding
JP5656220B2 (en) * 2010-12-27 2015-01-21 日新製鋼株式会社 Manufacturing method of laser welded H-section steel
JP5658579B2 (en) * 2011-01-28 2015-01-28 日新製鋼株式会社 Laser welded section steel
JP5869972B2 (en) * 2012-06-22 2016-02-24 株式会社神戸製鋼所 Laser-arc combined welding method
TWI579092B (en) * 2012-07-26 2017-04-21 日新製鋼股份有限公司 Laser welded shaped steel
RU2606682C2 (en) * 2012-07-26 2017-01-10 Ниссин Стил Ко., Лтд. Shaped part made by laser welding
GB2521363A (en) * 2013-12-17 2015-06-24 Eaton Ind Netherlands Bv Method for producing a housing for medium voltage switchgear and such a housing
JP6040272B2 (en) 2015-03-31 2016-12-07 日新製鋼株式会社 Welded shape steel manufacturing apparatus and welded shape steel manufacturing method
KR102035954B1 (en) 2016-02-16 2019-10-23 닛테츠 닛신 세이코 가부시키가이샤 Laser welding section steel and manufacturing method
JP6310605B1 (en) * 2017-08-08 2018-04-11 日新製鋼株式会社 Laser-welded section and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8310630D0 (en) * 1983-04-20 1983-05-25 British Shipbuilders Eng Laser welding
JPH05131282A (en) * 1991-11-11 1993-05-28 Amada Co Ltd Method and device for laser beam welding
JP2671758B2 (en) * 1993-06-25 1997-10-29 住友金属工業株式会社 Welding bead shaping method and apparatus for hot dip galvanized H-section steel
JPH08150411A (en) * 1994-11-28 1996-06-11 Kawasaki Steel Corp Manufacture of welded wide flange shape
JPH1099982A (en) * 1996-09-30 1998-04-21 Topy Ind Ltd Laser beam welding method
JPH11315345A (en) * 1998-04-30 1999-11-16 Kawasaki Steel Corp Welded wide flange shape
JP2000061673A (en) * 1998-08-18 2000-02-29 Nippon Steel Corp Fillet welding method
JP2005021912A (en) * 2003-06-30 2005-01-27 Nippon Steel Corp Laser beam welding method for shape steel
JP2007253181A (en) * 2006-03-22 2007-10-04 Tokyu Car Corp Laser beam welding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072158A1 (en) 2013-11-14 2015-05-21 日新製鋼株式会社 Device and method for manufacturing welded shaped steel
CN105705294A (en) * 2013-11-14 2016-06-22 日新制钢株式会社 Device and method for manufacturing welded shaped steel
CN105705294B (en) * 2013-11-14 2017-06-16 日新制钢株式会社 Weld the manufacture device and manufacture method of shaped steel
US10583527B2 (en) 2013-11-14 2020-03-10 Nippon Steel Nisshin Co., Ltd. Device and method for manufacturing welded shaped steel
CN110744188A (en) * 2019-10-22 2020-02-04 沃得精机(中国)有限公司 Beam structure of laser cutting machine and assembly welding method thereof
CN110744188B (en) * 2019-10-22 2021-08-17 沃得精机(中国)有限公司 Beam structure of laser cutting machine and assembly welding method thereof

Also Published As

Publication number Publication date
JP2009119485A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP5110642B2 (en) Manufacturing method of welded section steel
JP5224349B2 (en) Laser welding method for thin plate
KR101554800B1 (en) Method of manufacturing laser welded steel pipe
US7038160B2 (en) Method for producing permanent integral connections of oxide-dispersed (ODS) metallic materials or components of oxide-dispersed (ODS) metallic materials by welding
JP2011083781A (en) Method for manufacturing h-section steel by laser welding
JP5088920B2 (en) Manufacturing method for building components
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JP5954009B2 (en) Manufacturing method of welded steel pipe
US7968816B2 (en) Weld fairing apparatus and welding method using the same
JP3767369B2 (en) Method of lap welding of thin steel plates and welded thin steel plates
JP5473171B2 (en) Manufacturing method for building components
US11982307B2 (en) Method for joining plated steel sheet and joint structure
JP4978121B2 (en) Butt joining method of metal plates
JP2011224655A (en) Method for manufacturing laser welded steel pipe
JP5656220B2 (en) Manufacturing method of laser welded H-section steel
JP4931506B2 (en) Dissimilar material joining method
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JP4518892B2 (en) Dissimilar material joining method
JP4337721B2 (en) High energy density beam welding product, high energy density beam welding method, and welding auxiliary device used therefor
JP2009045628A (en) Laser welding method for steel plate
JP2018099734A (en) Aluminum structural member
RU2684735C1 (en) Method for hybrid laser-arc welding of steel pipes with outer layer of plating
JP5724294B2 (en) Laser welded steel pipe manufacturing method
JP4337722B2 (en) High energy density beam welding product, high energy density beam welding method, and welding auxiliary device for high energy density beam welding
JP2005059089A (en) Laser welding method of galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees