JP2005059089A - Laser welding method of galvanized steel sheet - Google Patents

Laser welding method of galvanized steel sheet Download PDF

Info

Publication number
JP2005059089A
JP2005059089A JP2003296410A JP2003296410A JP2005059089A JP 2005059089 A JP2005059089 A JP 2005059089A JP 2003296410 A JP2003296410 A JP 2003296410A JP 2003296410 A JP2003296410 A JP 2003296410A JP 2005059089 A JP2005059089 A JP 2005059089A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
molten metal
laser
laser welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003296410A
Other languages
Japanese (ja)
Inventor
Atsushi Kurobe
淳 黒部
Tsutomu Azuma
努 東
Hiroshi Asada
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003296410A priority Critical patent/JP2005059089A/en
Publication of JP2005059089A publication Critical patent/JP2005059089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding method in which generation of blowholes is suppressed by eliminating a harmful effect of zinc vapor that is produced in laser welding of a galvanized steel sheet. <P>SOLUTION: In laser welding of an object to be welded in which galvanized steel sheets are combined with each other or in which a galvanized steel sheet is combined with other metal, by containing Al in the molten metal formed, a vapor-like zinc produced at the time of welding by lowering viscosity of the molten metal is made easy to discharge from in the molten metal, and as a result the blowholes are suppressed from remaining in the molten metal. As a means to contain Al, a galvanized steel sheet containing Al is used, or metallic Al is separately supplied to a laser emitting zone preliminarily or during the irradiation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、亜鉛系めっき鋼板同士あるいは亜鉛系めっき鋼板と他の金属を重ね合わせた状態でレーザ溶接する方法に関する。   The present invention relates to a method of laser welding in a state where galvanized steel sheets or galvanized steel sheets and other metals are overlapped.

亜鉛系めっき鋼板は、非常に優れた耐食性を有していることから、建材,家電,自動車などの多くの産業分野で使用されている。またその鋼板を用いた部品を接合する方法としては、従来、亜鉛系めっき鋼板をプレスなどで成形した後、スポット溶接かアーク溶接で接合することが一般的であった。しかし、近年、生産効率や設計の自由度を高めるために、レーザ溶接に置き換える傾向が多くなっている。
ところで、亜鉛系めっき鋼板をレーザ溶接しようとすると、溶接部やその周辺部のめっき層の亜鉛が蒸気化して溶接部に入り込み、ブローホールといった欠陥が発生する場合がある。それらの欠陥は、例えば図1に示すように、亜鉛系めっき鋼板1同士、あるいは亜鉛系めっき鋼板と他の金属板1’を密接して重ね合わせた被溶接材2の上方より、レーザ光3を照射して溶接する場合に、重ね合わせた板間4からの亜鉛蒸気の発生で多くなる傾向がある。そのため、重ね合わせた鋼板の板間にスペーサを挿入して隙間を形成し、その隙間から亜鉛蒸気を逃がすといった方法が採られている。
Zinc-based galvanized steel sheets are used in many industrial fields such as building materials, home appliances, and automobiles because they have excellent corrosion resistance. In addition, as a method of joining parts using the steel plate, conventionally, after forming a zinc-based plated steel plate with a press or the like, it is generally joined by spot welding or arc welding. However, in recent years, there is an increasing tendency to replace with laser welding in order to increase production efficiency and design freedom.
By the way, when attempting to laser weld a zinc-based plated steel sheet, zinc in the welded portion and the plating layer around the welded portion may vaporize and enter the welded portion, which may cause defects such as blow holes. For example, as shown in FIG. 1, these defects are caused by the laser beam 3 from above the welded material 2 in which the zinc-based plated steel plates 1 or between the zinc-based plated steel plates and another metal plate 1 ′ are closely overlapped. When welding is performed, there is a tendency to increase due to the generation of zinc vapor from the overlapped plates 4. For this reason, a method is adopted in which a spacer is inserted between the stacked steel plates to form a gap, and zinc vapor is released from the gap.

しかしながら、スペーサの挿入にはかなりの手間がかかるため、溶接箇所が多い場合には生産時間の増加を招いてしまうという問題がある。そのため、スペーサなしで亜鉛蒸気発生によるブローホールといった欠陥の発生量を低減させる方法が、これまでに数多く提案されている。
例えば、特許文献1では、レーザ光の出力を制御して、ピークの低いパルスの第1のレーザ光とピークの高いパルスの第2のレーザ光とを被溶接部位に交互に照射し、第1のレーザ光により亜鉛めっき層を除去し、第2のレーザ光により両鋼板の溶接を行う方法が提案されている。また、特許文献2では、レーザ光を照射すべき中心線上に予め間隔をあけて局所的にスポット溶接を行い、板間に熱歪みによる隙間を形成した後、上記中心線に沿ってレーザ光を連続的に照射し、前記隙間から亜鉛蒸気を逃しつつ溶接する方法が提案されている。さらに、特許文献3,4では、予め亜鉛めっき鋼板の表面に凹凸や窪みを形成し、その隙間から発生する亜鉛蒸気を逃がしつつ亜鉛めっき鋼板をレーザ溶接する方法が提案されている。
However, since it takes a considerable amount of time to insert the spacer, there is a problem in that the production time is increased when there are many welds. For this reason, many methods have been proposed so far to reduce the amount of defects such as blow holes due to the generation of zinc vapor without spacers.
For example, in Patent Document 1, by controlling the output of laser light, the first laser light having a low peak pulse and the second laser light having a high peak pulse are alternately irradiated to the welded part, A method has been proposed in which the galvanized layer is removed with the laser beam and the two steel plates are welded with the second laser beam. Moreover, in patent document 2, after carrying out spot welding locally on the centerline which should irradiate a laser beam, and forming the clearance gap between plates by a thermal strain, a laser beam is irradiated along the said centerline. There has been proposed a method of welding while continuously irradiating and escaping zinc vapor from the gap. Further, Patent Documents 3 and 4 propose a method in which irregularities and depressions are formed in advance on the surface of a galvanized steel sheet, and the galvanized steel sheet is laser-welded while releasing zinc vapor generated from the gap.

特開平4−251684号公報JP-A-4-251684 特開平7−80669号公報Japanese Patent Laid-Open No. 7-80669 特開2002−361455号公報JP 2002-361455 A 特開2002−346780号公報JP 2002-346780 A

しかしながら、特許文献1で提案された方法では、レーザ光出力を調整する必要があり、しかも被溶接箇所を2回照射することになるため、設備コストが増加するとともに時間もかかり結果的にコストが高くなる。また、特許文献2の方法も、複数回のレーザ照射を行わなければならず、時間もコストもかかる。さらに、特許文献3,4で提案された方法も、凹凸や窪みの形成のために別途の工程を必要とするため、時間もコストもかかる。
本発明は、このような問題を解消すべく案出されたものであり、亜鉛系めっき鋼板をレーザ溶接する際に、発生する亜鉛蒸気の弊害を除去して、ブローホールの発生を抑制したレーザ溶接方法を提供することを目的とする。
However, in the method proposed in Patent Document 1, it is necessary to adjust the laser light output, and further, since the welded portion is irradiated twice, the equipment cost increases and it takes time, resulting in cost. Get higher. Further, the method of Patent Document 2 also needs to perform laser irradiation a plurality of times, which takes time and cost. Furthermore, the methods proposed in Patent Documents 3 and 4 also require a separate process for forming irregularities and depressions, and thus take time and cost.
The present invention has been devised to solve such problems, and eliminates the harmful effects of zinc vapor generated during laser welding of galvanized steel sheets and suppresses the generation of blowholes. An object is to provide a welding method.

本発明の亜鉛系めっき鋼板のレーザ溶接方法は、その目的を達成するため、亜鉛系めっき鋼板同士あるいは亜鉛系めっき鋼板と他の金属を組み合わせた被溶接体をレーザ溶接する際に、レーザ照射により生成された溶融金属中にAlを含ませることを特徴とする。
溶融金属中にAlを含ませる手段としては、めっき層としてAlを含む亜鉛系めっきを施した鋼板を用いることができる。また、予めめっき層上にあるいは他の金属表面に別途Al被覆層を形成してもよい。さらに、被溶接体のレーザ照射面にAlを載置するか、または被溶接材間に予めAlを板状,箔状,線状,粉末状で介在させていても、あるいはレーザ照射時に照射部位の溶融金属に線状あるいは粉末状のAl材を供給・添加してもよい。
In order to achieve the object, the laser welding method of the galvanized steel sheet according to the present invention uses laser irradiation when laser welding the galvanized steel sheets to each other or a welded body in which the galvanized steel sheet and other metals are combined. It is characterized by including Al in the produced molten metal.
As a means for including Al in the molten metal, a steel plate having a zinc-based plating containing Al as a plating layer can be used. Further, an Al coating layer may be separately formed on the plating layer or on another metal surface in advance. Further, Al is placed on the laser irradiation surface of the object to be welded, or Al is preliminarily interposed between the materials to be welded in the form of a plate, foil, wire, or powder, or the irradiation site at the time of laser irradiation A linear or powdery Al material may be supplied to or added to the molten metal.

本発明者等は、亜鉛系めっき鋼板をレーザ溶接する際、図1に示したように亜鉛系めっき鋼板1,1を重ね合わせた状態の被溶接材2の上方から、レーザ光3を与えて溶接する場合でのブローホール発生状況を観察・検討した。その結果、ブローホールの発生量は、レーザ溶接中に溶融金属内に入り込むAl量、すなわち、溶融金属内に含有されるAl量に左右されることを見出して本発明に到った。
レーザ溶接では、亜鉛系めっき鋼板のめっき原板である母材鋼板も溶融されてしまう。母材鋼板の主成分である鉄が溶融状態にある場合、様々な金属成分が添加されるとその粘性が変化することが知られている。図2に、溶融状態にある鉄の粘性に対する種々の添加金属の影響を示す。溶融状態の鉄の粘性に対しては、Alは大きく影響し、微量なAlが添加されてもその粘性は急激に低下する傾向がある。本発明はその傾向を最大限に活用して、レーザ溶接の際に生成される溶融金属中にAlを含ませることにより、溶融金属の粘性を低下させ、溶接の際に生成された蒸気状の亜鉛を溶融金属内から排出しやすくし、結果的に溶接金属内にブローホールの残存を抑制することができたものである。このため、簡単な方法でブローホールのない良好な品質の溶接継手を得ることができる。
When laser welding the zinc-based plated steel sheet, the present inventors apply laser light 3 from above the workpiece 2 in a state where the zinc-based plated steel sheets 1 and 1 are overlapped as shown in FIG. We observed and examined the blowhole occurrence in welding. As a result, the inventors have found that the amount of blowholes generated depends on the amount of Al entering the molten metal during laser welding, that is, the amount of Al contained in the molten metal.
In laser welding, the base material steel plate that is the plating base plate of the zinc-based plated steel plate is also melted. It is known that when iron, which is a main component of a base steel plate, is in a molten state, the viscosity changes when various metal components are added. FIG. 2 shows the effect of various additive metals on the viscosity of iron in the molten state. Al greatly affects the viscosity of iron in a molten state, and even when a small amount of Al is added, the viscosity tends to decrease rapidly. The present invention makes the best use of the tendency to reduce the viscosity of the molten metal by including Al in the molten metal generated during laser welding, thereby reducing the viscosity of the vapor generated during welding. Zinc can be easily discharged from the molten metal, and as a result, the remaining blowholes in the weld metal can be suppressed. For this reason, it is possible to obtain a welded joint of good quality without blowholes by a simple method.

図1に示した、継手およびレーザ光の照射態様において、板厚が0.8mmで片面めっきの厚みが20μmの亜鉛系めっき鋼板1,1を用い、種々の方法でAlを添加、介在あるいは挿入してレーザ溶接を行った場合の、ブローホールの発生量を調査した。
まず、亜鉛系めっき鋼板のめっき層に含有させるAl量を変えてレーザ溶接を行った。そして発生するブローホール量の推移を溶接部の上面からX線検査を行って求めた。その結果を図3に示す。ブローホールの発生量はめっき層に含まれるAl量が増加するほど減少する傾向にあることがわかった。
ブローホール発生量の低下原因を探るため溶接部に含まれるAl量を溶接していない部分との比率で見たところ、図4に示すように、亜鉛系めっき鋼板1,1のめっき層に含まれるAl量が増加するとともに、溶接部に含まれるAl量も増加することがわかった。
In the coupling and laser light irradiation mode shown in FIG. 1, zinc-plated steel sheets 1 and 1 having a plate thickness of 0.8 mm and a single-side plating thickness of 20 μm are used, and Al is added, interposed or inserted in various ways. Then, the amount of blow holes generated when laser welding was performed was investigated.
First, laser welding was performed by changing the amount of Al contained in the plated layer of the galvanized steel sheet. And the transition of the blowhole amount to generate | occur | produce was calculated | required by performing X-ray inspection from the upper surface of a welding part. The result is shown in FIG. It was found that the amount of blowholes tended to decrease as the amount of Al contained in the plating layer increased.
In order to investigate the cause of the decrease in the amount of blowholes generated, the amount of Al contained in the welded portion is compared with the portion that is not welded. As shown in FIG. It has been found that the amount of Al contained in the weld increases as the amount of Al increases.

上記したように、レーザ溶接では、亜鉛系めっき鋼板1,1のめっき原板である母材鋼板も溶融されてしまう。母材鋼板の主成分である鉄が溶融状態にある場合、図2にみられるように、添加された金属成分の種類および量に応じてその粘性が変化する。その変化に対するAlの影響は他の金属成分と比べて格段に大きい。そして、微量なAlの添加であっても、その粘性を急激に低下させる。
亜鉛系めっき鋼板1,1のめっき層にAlを含有させてレーザ溶接した場合、そのめっき層内のAlが溶融した母材鋼板に入り込み、その粘性を低下させることによって、図5に示すように、溶接の際に板間4から発生した蒸気状の亜鉛5が溶融金属6内から排出しやすくなる。そのため、溶接部7に残るブローホール8の発生量を少なくすることができている。
As described above, in the laser welding, the base steel plate that is the plating base plate of the zinc-based plated steel plates 1 and 1 is also melted. When iron, which is the main component of the base steel sheet, is in a molten state, the viscosity changes according to the type and amount of the added metal component as seen in FIG. The influence of Al on the change is much larger than other metal components. And even if it is addition of a trace amount Al, the viscosity is reduced rapidly.
As shown in FIG. 5, when the plating layer of the galvanized steel sheets 1, 1 is laser welded with Al, the Al in the plating layer enters the molten base steel sheet and lowers its viscosity. The vaporous zinc 5 generated from the inter-plate space 4 during welding is easily discharged from the molten metal 6. Therefore, the amount of blowholes 8 remaining in the welded portion 7 can be reduced.

次に、亜鉛系めっき鋼板1とめっきを施していない冷延鋼板1’とを図1に示した状態でレーザ溶接を行った。その際にも、亜鉛系めっき鋼板のめっき層に含有させるAl量を種々変化させて発生するブローホール量の推移比較した。その結果、図3に示した傾向と同様な傾向を示したが、板間に存在するめっき層の厚み、すなわち亜鉛の量が、亜鉛系めっき鋼板1,1同士を溶接した場合よりも少ないため、ブローホール発生量は少なくなっている。
亜鉛系めっき鋼板1とめっきを施していない冷延鋼板1’とのレーザ溶接でブローホール発生量が、亜鉛系めっき鋼板1,1同士の場合と同様の傾向を示したのも、溶融金属6内にAlが混入してその粘性が低下したことが原因である。
Next, laser welding was performed on the zinc-based plated steel sheet 1 and the cold-rolled steel sheet 1 ′ not plated in the state shown in FIG. Even in that case, the transition comparison of the amount of blowholes generated by variously changing the amount of Al contained in the plated layer of the zinc-based plated steel sheet was compared. As a result, although the same tendency as the tendency shown in FIG. 3 was shown, the thickness of the plating layer existing between the plates, that is, the amount of zinc is smaller than when the zinc-based plated steel plates 1 and 1 are welded together. The amount of blowholes is decreasing.
In the molten metal 6, the amount of blow holes generated by laser welding between the galvanized steel sheet 1 and the cold-rolled steel sheet 1 ′ that has not been plated showed the same tendency as in the case of the galvanized steel sheets 1, 1. This is because Al is mixed in and the viscosity is lowered.

さらに、亜鉛系めっき鋼板1,1同士を図1に示した状態に設置してレーザ溶接する際に、レーザ光3の照射位置にAl板を載置して溶接した。その際のブローホール発生量も、Al板の板厚が増加するほど減少する傾向を示し、図3に示した状態と同じ傾向を示していた。
さらにまた、亜鉛系めっき鋼板のレーザ光3照射位置のめっき層上にAlを溶射により被覆した鋼板を用いて同様にレーザ溶接したところ、ブローホール発生量も、被覆したAlの溶射膜厚が増加するほど減少する傾向を示していた。図3に示した傾向と同じであった。レーザ光3照射位置のAl被覆は、片面,両面ともに行ったが、ブローホール発生量の減少傾向は同一であるものの、発生したブローホール数の絶対数は両面に被覆した方が少なくなる傾向であった。
これらの場合も、溶融金属6内にAlが混入して蒸気化した亜鉛5が溶融金属6から排出しやすくなったことが原因である。
Furthermore, when the galvanized steel sheets 1 and 1 were installed in the state shown in FIG. 1 and laser welding was performed, an Al plate was placed on the irradiation position of the laser beam 3 and welded. The amount of blowholes generated at that time also tended to decrease as the thickness of the Al plate increased, indicating the same tendency as in the state shown in FIG.
Furthermore, when laser welding was similarly performed using a steel sheet coated with Al on the coating layer of the zinc-based plated steel sheet at the laser beam 3 irradiation position, the amount of blowholes generated also increased the sprayed film thickness of the coated Al. It showed a tendency to decrease the more. The tendency was the same as shown in FIG. Al coating at the laser beam 3 irradiation position was performed on one side and both sides, but the decrease in blowhole generation was the same, but the absolute number of blowholes generated tends to be smaller when coated on both sides. there were.
In these cases as well, the reason is that zinc 5 evaporated by mixing Al in the molten metal 6 is easily discharged from the molten metal 6.

予め、Alを存在させておくのではなく、レーザ溶接中にレーザで溶融された溶融金属部に、線状,粉末状のAl材を別途供給・添加しても、同様の作用・効果を発揮することができる。
上記で示したような傾向は、図1に示したようなZn系めっき鋼板同士、あるいは溶融Zn系めっき鋼板と他の金属を重ね合わせた被溶接材の上面からレーザ光を照射して溶接する場合に限らず、重ね合わせすみ肉溶接や突合せ継手溶接でも同じであることを、本発明者は確認している。
Rather than having Al present in advance, the same action and effect can be achieved even if linear and powdered Al material is separately supplied and added to the molten metal part melted by laser during laser welding. can do.
The above-described tendency is that welding is performed by irradiating laser beams from the upper surfaces of the welded materials in which the Zn-based plated steel plates as shown in FIG. The present inventor has confirmed that the same applies not only to cases but also to overlay fillet welding and butt joint welding.

板厚が0.8mm,板幅が50mm,全長が200mmで、めっき付着量が片面120g/m2のZn−Al系めっき鋼板1,1同士を、図1に示すように密接して重ね合わせてレーザ溶接を行った。この際、Zn−Al系めっき鋼板として、めっき層中のAl濃度が、6質量%,10質量%,20質量%,30質量%,55質量%,70質量%および80質量%の7種類のめっき鋼板を準備した。なお、めっき鋼板の原板である母材鋼板は、C:0.037質量%,Si:0.002質量%,Mn:0.26質量%,S:0.011質量%,Al:0.04質量%を有する冷延鋼板である。
ビームモードがマルチモードのYAGレーザ溶接機を用い、レーザ出力を2.5kW,焦点距離を200mm,溶接速度を2m/minの溶接条件とした。また、レーザビームの焦点位置を上側のZn−Al系めっき鋼板1の表面とし、焦点位置でのレーザビームスポット系を0.6mmとした。
溶接したサンプルは、溶接ビード上面よりX線検査を行って、ブローホールの個数を計測した。ブローホール発生量は、溶接ビードの100mm当りの個数として表し、結果を図6の実線で示す。
ブローホール発生量は、めっき層中に含まれているAl量が多くなるほど少なくなっている。また、溶接部7に含まれるAl量も、図7の実線で示すように、めっき層中に含まれているAl量が多くなるほど増加する傾向が見られた。
As shown in FIG. 1, Zn—Al-based plated steel sheets 1 and 1 having a plate thickness of 0.8 mm, a plate width of 50 mm, a total length of 200 mm, and a plating adhesion amount of 120 g / m 2 on one side are closely stacked. Laser welding was performed. At this time, as the Zn-Al-based plated steel sheet, the Al concentration in the plating layer is 7 kinds of 6 mass%, 10 mass%, 20 mass%, 30 mass%, 55 mass%, 70 mass% and 80 mass%. A plated steel sheet was prepared. In addition, the base material steel plate which is an original plate of a plated steel plate is C: 0.037 mass%, Si: 0.002 mass%, Mn: 0.26 mass%, S: 0.011 mass%, Al: 0.04. It is a cold-rolled steel sheet having a mass%.
A YAG laser welder with a beam mode of multimode was used, and the laser output was 2.5 kW, the focal length was 200 mm, and the welding speed was 2 m / min. The focal position of the laser beam was the surface of the upper Zn-Al-based plated steel sheet 1 and the laser beam spot system at the focal position was 0.6 mm.
The welded sample was subjected to X-ray inspection from the upper surface of the weld bead, and the number of blow holes was measured. The blowhole generation amount is expressed as the number of weld beads per 100 mm, and the result is shown by a solid line in FIG.
The amount of blowholes generated decreases as the amount of Al contained in the plating layer increases. Further, as shown by the solid line in FIG. 7, the amount of Al contained in the welded portion 7 tended to increase as the amount of Al contained in the plating layer increased.

板厚が0.8mm,板幅が50mm,全長が200mmで、めっき付着量が片面120g/m2のZn−Al系めっき鋼板1と、同寸法の冷延鋼板1’を、図1に示すように密接して重ね合わせてレーザ溶接を行った。この際のZn−Al系めっき鋼板としても、めっき層中のAl濃度が、6質量%,10質量%,20質量%,30質量%,55質量%,70質量%および80質量%の7種類のめっき鋼板を準備した。なお、めっき鋼板、冷延鋼板とも、原板は実施例1と同じものである。
ビームモードがマルチモードのYAGレーザ溶接機を用い、レーザ出力を2.5kW,焦点距離を200mm,溶接速度を2m/minの溶接条件とした。また、レーザビームの焦点位置を上側のZn−Al系めっき鋼板1の表面とし、焦点位置でのレーザビームスポット系を0.6mmとした。
溶接したサンプルは、溶接ビード上面よりX線検査を行って、ブローホールの個数を計測した。ブローホール発生量は、溶接ビードの100mm当りの個数として表し、結果を図6の破線で示す。
ブローホール発生量は、めっき層中に含まれているAl量が多くなるほど少なくなり、実施例1のZn−Al系めっき鋼板同士をレーザ溶接した場合よりもブローホール数が少なくなっている。また、溶接部7に含まれるAl量も、図7の破線で示すように、めっき層中に含まれているAl量が多くなるほど増加する傾向が見られた。
FIG. 1 shows a Zn—Al-based plated steel sheet 1 having a plate thickness of 0.8 mm, a sheet width of 50 mm, a total length of 200 mm, and a coating adhesion amount of 120 g / m 2 on one side, and a cold-rolled steel sheet 1 ′ having the same dimensions. Thus, laser welding was performed by overlapping closely. As the Zn-Al-based plated steel sheet at this time, the Al concentration in the plating layer is 7 types of 6 mass%, 10 mass%, 20 mass%, 30 mass%, 55 mass%, 70 mass% and 80 mass%. A plated steel sheet was prepared. In addition, both the plated steel plate and the cold-rolled steel plate are the same as those in Example 1.
A YAG laser welder with a beam mode of multimode was used, and the laser output was 2.5 kW, the focal length was 200 mm, and the welding speed was 2 m / min. The focal position of the laser beam was the surface of the upper Zn-Al-based plated steel sheet 1 and the laser beam spot system at the focal position was 0.6 mm.
The welded sample was subjected to X-ray inspection from the upper surface of the weld bead, and the number of blow holes was measured. The blowhole generation amount is expressed as the number of weld beads per 100 mm, and the result is indicated by a broken line in FIG.
The amount of blowholes generated decreases as the amount of Al contained in the plating layer increases, and the number of blowholes is smaller than when laser welding the Zn—Al-based plated steel sheets of Example 1 to each other. Further, as shown by the broken line in FIG. 7, the amount of Al contained in the welded portion 7 tended to increase as the amount of Al contained in the plating layer increased.

板厚が0.8mm,板幅が50mm,全長が200mmで、めっき付着量が片面120g/m2のZnめっき鋼板1,1同士を、図1に示すように密接して重ね合わせてレーザ溶接を行った。この際、上側のZnめっき鋼板上に、板幅が50mm,全長が200mmで、板厚を、0.05mm,0.1mm,0.15mmのAl板を各々載せて、Al板の表面をレーザ照射面とした。なお、めっき鋼板の原板は実施例1と同じものである。
ビームモードがマルチモードのYAGレーザ溶接機を用い、レーザ出力を2.5kW,焦点距離を200mm,溶接速度を2m/minの溶接条件とした。また、レーザビームの焦点位置を上側のAl板1の表面とし、焦点位置でのレーザビームスポット系を0.6mmとした。
溶接したサンプルは、溶接ビード上面よりX線検査を行って、ブローホールの個数を計測した。ブローホール発生量は、溶接ビードの100mm当りの個数として表し、結果を図8の実線で示す。
ブローホール発生量は、Al板の板厚が大きくなるほど少なくなっている。また、溶接部7に含まれるAl量も、図9の実線で示すように、Al板の板厚が大きくなるほど増加する傾向が見られた。
Laser welding with a plate thickness of 0.8 mm, a plate width of 50 mm, a total length of 200 mm, and Zn-plated steel plates 1 and 1 having a coating adhesion amount of 120 g / m 2 on one side are closely stacked as shown in FIG. Went. At this time, an Al plate having a plate width of 50 mm, a total length of 200 mm, and a plate thickness of 0.05 mm, 0.1 mm, and 0.15 mm was placed on the upper Zn-plated steel plate, and the surface of the Al plate was laser-treated. The irradiated surface was used. The original plate of the plated steel plate is the same as that in Example 1.
A YAG laser welder with a beam mode of multimode was used, and the laser output was 2.5 kW, the focal length was 200 mm, and the welding speed was 2 m / min. The focal position of the laser beam was the surface of the upper Al plate 1 and the laser beam spot system at the focal position was 0.6 mm.
The welded sample was subjected to X-ray inspection from the upper surface of the weld bead, and the number of blow holes was measured. The blowhole generation amount is expressed as the number of weld beads per 100 mm, and the result is shown by a solid line in FIG.
The amount of blowhole generation decreases as the thickness of the Al plate increases. Further, as shown by the solid line in FIG. 9, the amount of Al contained in the welded portion 7 tended to increase as the plate thickness of the Al plate increased.

板厚が0.8mm,板幅が50mm,全長が200mmで、めっき付着量が片面120g/m2のZnめっき鋼板1と、同寸法の冷延鋼板1’を、図1に示すように密接して重ね合わせてレーザ溶接を行った。この際、めっき鋼板の板間に、板幅が50mm,全長が200mmで、板厚を、0.05mm,0.1mm,0.15mmのAl板を各々挿入し、めっき鋼板の表面をレーザ照射面とした。なお、この実施例で用いためっき鋼板,冷延鋼板とも原板は実施例1と同じものである。
ビームモードがマルチモードのYAGレーザ溶接機を用い、レーザ出力を2.5kW,焦点距離を200mm,溶接速度を2m/minの溶接条件とした。また、レーザビームの焦点位置を上側のAl板1の表面とし、焦点位置でのレーザビームスポット系を0.6mmとした。
溶接したサンプルは、溶接ビード上面よりX線検査を行って、ブローホールの個数を計測した。ブローホール発生量は、溶接ビードの100mm当りの個数として表し、結果を図8の破線で示す。
ブローホール発生量は、Al板の板厚が大きくなるほど少なくなり、実施例3のZnめっき鋼板同士をレーザ溶接した場合よりもブローホール数が少なくなっている。また、溶接部7に含まれるAl量も、図9の破線で示すように、Al板の板厚が大きくなるほど増加する傾向が見られた。
As shown in FIG. 1, a Zn-plated steel plate 1 having a plate thickness of 0.8 mm, a plate width of 50 mm, a total length of 200 mm, and a plating adhesion amount of 120 g / m 2 on one side, and a cold-rolled steel plate 1 ′ having the same dimensions as shown in FIG. Then, laser welding was performed by superimposing them. At this time, an Al plate having a plate width of 50 mm, a total length of 200 mm, and a plate thickness of 0.05 mm, 0.1 mm, and 0.15 mm was inserted between the plates of the plated steel plate, and the surface of the plated steel plate was irradiated with laser. The surface. In addition, both the plated steel plate and cold-rolled steel plate used in this example are the same as those in Example 1.
A YAG laser welder with a beam mode of multimode was used, and the laser output was 2.5 kW, the focal length was 200 mm, and the welding speed was 2 m / min. The focal position of the laser beam was the surface of the upper Al plate 1 and the laser beam spot system at the focal position was 0.6 mm.
The welded sample was subjected to X-ray inspection from the upper surface of the weld bead, and the number of blow holes was measured. The blowhole generation amount is expressed as the number of weld beads per 100 mm, and the result is indicated by a broken line in FIG.
The amount of blow holes generated decreases as the plate thickness of the Al plate increases, and the number of blow holes is reduced as compared with the case where the Zn-plated steel plates of Example 3 are laser welded together. Further, as shown by the broken line in FIG. 9, the amount of Al contained in the welded portion 7 tended to increase as the plate thickness of the Al plate increased.

比較例Comparative example

比較例として、めっき層にAlを含んでいないZnめっき鋼板1,1を用いて実施例1と同様の条件でのレーザ溶接を行った。前記Znめっき鋼板の母材も実施例と同じであり、片面のめっき付着量も同一の120g/m2とした。また溶接したサンプルは実施例と同じ方法でブローホール発生量を測定した。
その結果、図6の黒丸のプロットで示すように、ブローホール発生量はめっき層にAlを含ませたZn−Alめっき鋼板をレーザ溶接した場合よりも多くなった。また溶接部に含まれるAl量は図7の黒丸のプロットで示すように、めっき原板である母材のAl含有量と同じであり、増加していないことがわかった。
As a comparative example, laser welding was performed under the same conditions as in Example 1 using Zn-plated steel sheets 1 and 1 that did not contain Al in the plating layer. The base material of the Zn-plated steel sheet was also the same as in the example, and the amount of plating adhesion on one side was set to the same 120 g / m 2 . The welded sample was measured for blowhole generation by the same method as in the example.
As a result, as shown by the black circle plots in FIG. 6, the amount of blowholes generated was larger than when laser welding was performed on a Zn—Al plated steel sheet in which Al was contained in the plating layer. Further, it was found that the Al content contained in the welded portion was the same as the Al content of the base material, which is the plating original plate, and did not increase, as shown by the black circle plot in FIG.

レーザ溶接する態様の一例を示す概略図Schematic showing an example of a mode for laser welding 溶融金属の粘性に及ぼす含有金属成分の影響を示す図Diagram showing the effect of contained metal components on the viscosity of molten metal めっき層中に含まれるAl量に対するブローホール発生量を示す図The figure which shows the amount of blowhole generation to the amount of Al contained in the plating layer 溶接部と母材部に含まれているAl量を比較した図Diagram comparing the amount of Al contained in the weld and base metal 亜鉛蒸気とブローホールの発生状況を説明する図で、(a)が溶融状態を、(b)が凝固状態を示すIt is a figure explaining the generation | occurrence | production situation of zinc vapor | steam and a blowhole, (a) shows a molten state, (b) shows a solidification state. 本実施例での、Al含有量の違いによるブローホール発生量の違いを説明する図The figure explaining the difference in the amount of blowhole generations by the difference in Al content in a present Example 本実施例での、溶接部に含まれるAl量を母材のAl量との比率で示した図The figure which showed the amount of Al contained in a welding part in a present Example by the ratio with the amount of Al of a base material. Al板を載置、挿入した場合での、Al量の違いによるブローホール発生量の違いを説明する図The figure explaining the difference in the amount of blowhole generation by the difference in the amount of Al when placing and inserting the Al plate Al板を載置、挿入した場合での、溶接部に含まれるAl量を母材のAl量との比率で示した図The figure which showed the amount of Al contained in the welded part in the case of placing and inserting the Al plate as a ratio with the amount of Al of the base material

符号の説明Explanation of symbols

1:亜鉛系めっき鋼板 1’:亜鉛系めっき鋼板以外の金属 2:被溶接材
3:レーザ光 4:板間 5:亜鉛蒸気 6:溶融金属 7:溶接部
8:ブローホール
1: Zinc-based plated steel sheet 1 ': Metal other than zinc-based plated steel sheet 2: Welded material
3: Laser beam 4: Between plates 5: Zinc vapor 6: Molten metal 7: Welded part
8: Blow hole

Claims (5)

亜鉛系めっき鋼板同士あるいは亜鉛系めっき鋼板と他の金属を組み合わせた被溶接体をレーザ溶接する際に、レーザ照射により生成された溶融金属中にAlを含ませることを特徴とする亜鉛系めっき鋼板のレーザ溶接方法。   Zinc-based galvanized steel sheet characterized by including Al in molten metal generated by laser irradiation when welding welded objects in which galvanized steel sheets or zinc-plated steel sheets and other metals are combined. Laser welding method. 溶融金属中にAlを含ませる手段として、Alを含む亜鉛系めっきを施した鋼板を用いる請求項1に記載の亜鉛系めっき鋼板のレーザ溶接方法。   The laser welding method for a zinc-based plated steel sheet according to claim 1, wherein a steel sheet subjected to zinc-based plating containing Al is used as means for including Al in the molten metal. 溶融金属中にAlを含ませる手段として、予めめっき層上にあるいは他の金属表面に別途Al被覆層を形成する請求項1に記載の亜鉛系めっき鋼板のレーザ溶接方法。   The method for laser welding a zinc-based plated steel sheet according to claim 1, wherein an Al coating layer is separately formed on the plating layer or on another metal surface in advance as a means for including Al in the molten metal. 溶融金属中にAlを含ませる手段として、被溶接体のレーザ照射面に予め板状,箔状,線状,粉末状のAlを載置するか、または被溶接材間に予め板状,箔状,線状,粉末状のAlを介在させる請求項1に記載の亜鉛系めっき鋼板のレーザ溶接方法。   As means for including Al in the molten metal, plate-like, foil-like, wire-like, or powder-like Al is previously placed on the laser irradiation surface of the welded body, or a plate-like, foil is placed between the materials to be welded. The method for laser welding a zinc-based plated steel sheet according to claim 1, wherein Al in the form of a wire, wire, or powder is interposed. 溶融金属中にAlを含ませる手段として、レーザ照射時に照射部位の溶融金属に線状あるいは粉末状のAl材を供給・添加する請求項1に記載の亜鉛系めっき鋼板のレーザ溶接方法。   The laser welding method for galvanized steel sheets according to claim 1, wherein as a means for including Al in the molten metal, a linear or powdery Al material is supplied to and added to the molten metal at the irradiation site during laser irradiation.
JP2003296410A 2003-08-20 2003-08-20 Laser welding method of galvanized steel sheet Pending JP2005059089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296410A JP2005059089A (en) 2003-08-20 2003-08-20 Laser welding method of galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296410A JP2005059089A (en) 2003-08-20 2003-08-20 Laser welding method of galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2005059089A true JP2005059089A (en) 2005-03-10

Family

ID=34372330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296410A Pending JP2005059089A (en) 2003-08-20 2003-08-20 Laser welding method of galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2005059089A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324230A (en) * 2004-05-14 2005-11-24 Toyota Motor Corp LAP MELT WELDING METHOD FOR GALVANIZED STEEL SHEET, AND Fe BASED FILLER METAL
JP2007307591A (en) * 2006-05-19 2007-11-29 Nisshin Steel Co Ltd Method for manufacturing building member
JP2008049362A (en) * 2006-08-23 2008-03-06 Nisshin Steel Co Ltd Laser beam welding method of galvanized steel sheet
JP2008238182A (en) * 2007-03-26 2008-10-09 Fuji Electric Device Technology Co Ltd Laser welding member and laser welding method
CN101508058B (en) * 2009-03-09 2011-04-20 华中科技大学 Galvanized steel sheet lap-over laser welding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005324230A (en) * 2004-05-14 2005-11-24 Toyota Motor Corp LAP MELT WELDING METHOD FOR GALVANIZED STEEL SHEET, AND Fe BASED FILLER METAL
JP4622305B2 (en) * 2004-05-14 2011-02-02 トヨタ自動車株式会社 Method of lap fusion welding of Zn-plated steel sheet and Fe-based filler material
JP2007307591A (en) * 2006-05-19 2007-11-29 Nisshin Steel Co Ltd Method for manufacturing building member
JP2008049362A (en) * 2006-08-23 2008-03-06 Nisshin Steel Co Ltd Laser beam welding method of galvanized steel sheet
JP2008238182A (en) * 2007-03-26 2008-10-09 Fuji Electric Device Technology Co Ltd Laser welding member and laser welding method
CN101508058B (en) * 2009-03-09 2011-04-20 华中科技大学 Galvanized steel sheet lap-over laser welding method

Similar Documents

Publication Publication Date Title
US11198195B2 (en) Welded blank assembly and method
EP2666579B1 (en) Hybrid laser arc welding process and apparatus
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
JP5110642B2 (en) Manufacturing method of welded section steel
US20090095720A1 (en) Shielding gas for hybrid welding and hybrid welding method using the same
JP2009262186A (en) Method of laser welding metal plated plate
JP2010023047A (en) Laser beam welding method for thin plate
JP2011083781A (en) Method for manufacturing h-section steel by laser welding
KR102061471B1 (en) Laser Brazing Method and Manufacturing Method of Lap Joint Member
JP5088920B2 (en) Manufacturing method for building components
JP2006281279A (en) Different material joining method using laser welding
JP2004298964A (en) EDGE JOINT OF Sn- OR Pb-BASED GALVANIZED STEEL SHEET AND ITS LASER WELDING METHOD
JP2011224655A (en) Method for manufacturing laser welded steel pipe
JP4978121B2 (en) Butt joining method of metal plates
JP3767375B2 (en) Method of lap welding of galvanized steel sheet and welded thin sheet
JP5473171B2 (en) Manufacturing method for building components
JP2008049362A (en) Laser beam welding method of galvanized steel sheet
JP2005059089A (en) Laser welding method of galvanized steel sheet
KR101008078B1 (en) Hybrid Welding Method
JP2008105037A (en) Laser welding method of galvanized steel sheet
JP2008194730A (en) Method for manufacturing fuel tank, and fuel tank
CN112351855A (en) Method for joining plated steel sheets and joined structure
JP7267770B2 (en) Method for joining plated steel sheets and joining structure
JP4046324B2 (en) Arc welding method for Zn-plated steel sheet
JP2006116600A (en) Method for joining different materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127