JP2011083781A - Method for manufacturing h-section steel by laser welding - Google Patents

Method for manufacturing h-section steel by laser welding Download PDF

Info

Publication number
JP2011083781A
JP2011083781A JP2009236217A JP2009236217A JP2011083781A JP 2011083781 A JP2011083781 A JP 2011083781A JP 2009236217 A JP2009236217 A JP 2009236217A JP 2009236217 A JP2009236217 A JP 2009236217A JP 2011083781 A JP2011083781 A JP 2011083781A
Authority
JP
Japan
Prior art keywords
laser
welding
welded
web material
section steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009236217A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sakurada
康弘 桜田
Toru Ienari
徹 家成
Takefumi Nakako
武文 仲子
Hiroshi Asada
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2009236217A priority Critical patent/JP2011083781A/en
Publication of JP2011083781A publication Critical patent/JP2011083781A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a H-section steel excellent in shape accuracy by one pass laser welding with high productivity when manufacturing a welded H-section steel by welding T-shaped welding joints at two places. <P>SOLUTION: When the welded H-section steel is manufactured by laser welding the T-shaped welding joints at the two places where a flange material is pressed to both ends of a web material, two laser heads are arranged at the one side of the web material. The T-shaped joints at the two places positioned at the vertical surface of the web material and the flange material for forming the welded H-section steel are made to be mutual fulcrums. One laser head is tilted at an upperstream side in a welding direction and the other laser head is tilted at a downstream side in the welding direction, the two laser heads are mutually tilted and positioned at the web material side to the flange material surface, and cross portions at the two places are simultaneously laser welded on the same line L by the two laser heads. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レーザ光を熱源としたレーザ溶接によってウェブ材とフランジ材を溶接接合した溶接H形鋼を製造する方法に関する。   The present invention relates to a method of manufacturing a welded H-section steel in which a web material and a flange material are welded together by laser welding using a laser beam as a heat source.

建築物の躯体を構成する梁等に用いられているH形鋼は、熱間圧延で所定の断面形状に成形した後、必要に応じ後めっき,後塗装等を施すことにより製造されてきた。
しかし、近年の住宅の高耐久化、低コスト化に対応し、H形鋼を形作るウェブ材やフランジ材に表面処理鋼板、特にZnをめっき金属中に含んだZn系めっき鋼板を用い、連続的に高周波溶接で接合する方法で製造した溶接H形鋼が用いられるようになっている。
H-section steel used for beams and the like constituting a building frame has been manufactured by hot-rolling into a predetermined cross-sectional shape, followed by post-plating, post-coating, etc. as necessary.
However, in response to the recent increase in durability and cost of housing, surface-treated steel sheets, especially Zn-based plated steel sheets containing Zn in the plated metal, are used continuously for the web material and flange material forming H-section steel. A welded H-section steel manufactured by a method of joining by high frequency welding is used.

溶接H形鋼は、通常、連続的に送り込まれるめっき鋼帯等の素板を上下左右のロールで位置決めし、加圧しながら高周波溶接することにより製造されている。しかし、高周波溶接法を採用した場合、加熱されるフランジ材とウェブ材とのT字継手部付近や材料と電極との接触部も加熱されるために、溶接部だけでなく電極と接触する部分においても材料のめっき層がダメージを受けることになる。したがって、ダメージを受けた部分の耐食性を確保するため、広い範囲に渡って補修塗料を塗布する必要がある。   The welded H-section steel is usually manufactured by positioning a base plate such as a plated steel strip that is continuously fed with upper and lower, left and right rolls and performing high-frequency welding while applying pressure. However, when the high frequency welding method is adopted, the vicinity of the T-joint portion of the heated flange material and the web material and the contact portion between the material and the electrode are also heated, so that the portion that contacts the electrode as well as the welded portion In this case, the plated layer of the material is damaged. Therefore, it is necessary to apply the repair paint over a wide range in order to ensure the corrosion resistance of the damaged part.

高周波溶接には、上記のような問題の他に、電極自身の摩耗が激しく、短時間で電極を交換する必要が生じるという問題もある。電極の短時間での交換は、溶接コストの上昇や生産効率の低下を招くという問題を含んでいる。また、高周波溶接は大きな溶接電流を与える必要があるために、溶接機が大型となり非常に高価であるため設備投資が大きくなるという問題も含んでいる。
さらに、被溶接形鋼に、サイズ的な制約が加わる。すなわち、高周波溶接では電極を材料表面に接触させる必要があるが、電極ホルダーがH形鋼のフランジ部に接触しやすくなるため、小型品の溶接は困難となる。W80mm×H80mm程度のサイズが限界となり、それ以下のサイズのH型鋼を高周波溶接法で製造することは困難である。
In addition to the above-described problems, the high-frequency welding has a problem that the electrode itself is severely worn and the electrode needs to be replaced in a short time. The replacement of the electrodes in a short time includes a problem that the welding cost increases and the production efficiency decreases. Moreover, since it is necessary to apply a large welding current in high-frequency welding, there is a problem that equipment investment is increased because the welding machine is large and very expensive.
Furthermore, size restrictions are added to the welded shape steel. That is, in high-frequency welding, it is necessary to bring the electrode into contact with the material surface. However, since the electrode holder easily comes into contact with the flange portion of the H-shaped steel, it is difficult to weld a small product. A size of about W80 mm × H80 mm is the limit, and it is difficult to manufacture an H-shaped steel having a size smaller than that by high-frequency welding.

一方で、フランジ材とウェブ材とのT字継手部にレーザ光を照射するレーザ溶接法を採用することも提案されている。
例えば特許文献1では、図1(a)に示すように、1箇所ずつ4回のレーザ溶接を施している。また特許文献2では、図1(b)に示すように、2箇所同時にレーザ溶接する工程を2回施している。上記各特許文献で提案された方法では、多数回の溶接工程を必要とするため、生産性が低くなっている。
On the other hand, it has also been proposed to employ a laser welding method in which a T-shaped joint portion between a flange material and a web material is irradiated with laser light.
For example, in patent document 1, as shown to Fig.1 (a), the laser welding of 4 times is performed one place. Moreover, in patent document 2, as shown in FIG.1 (b), the process of carrying out laser welding of two places simultaneously is performed twice. The methods proposed in each of the above patent documents require a large number of welding steps, and thus the productivity is low.

そこで、本発明者等は、フランジ材にウェブ材の端部を垂直に押し当てたT字状継手部に、図2に示すように、片側のみからレーザ光を照射してすみ肉溶接を2回行って溶接H形鋼を製造することを提案した(特許文献3,4参照)。
この方法でも2工程必要となって、必ずしも生産性は良くない。
Accordingly, the present inventors have performed fillet welding by irradiating a laser beam from only one side to a T-shaped joint portion in which the end portion of the web material is pressed vertically against the flange material, as shown in FIG. It has been proposed to manufacture a welded H-section steel by going back (see Patent Documents 3 and 4).
Even this method requires two steps, and the productivity is not always good.

特開平11−123575号公報Japanese Patent Laid-Open No. 11-123575 特開2005−21912号公報JP 2005-21912 A 特開2007−307591号公報JP 2007-307591 A 特願2007−293921号Japanese Patent Application No. 2007-293921

上記特許文献1〜4で提案された製造方法によると、工程数が多いために生産性が低くなっている。
生産性を高めるためには、4台のレーザヘッドを用い、4箇所の溶接を一度に行うことが想定される。しかしながら、4台のレーザヘッドの設置は多大な設備投資を必要とするばかりでなく、小型サイズのH形鋼を製造しようとする場合にあっては、図3に示すように、レーザヘッドが干渉して、レーザ光の焦点合わせに不具合を生じやすくなる。
According to the manufacturing methods proposed in Patent Documents 1 to 4, productivity is low due to the large number of processes.
In order to increase productivity, it is assumed that four laser heads are used and four locations are welded at once. However, the installation of the four laser heads not only requires a large capital investment, but when a small-sized H-shaped steel is to be manufactured, the laser heads interfere with each other as shown in FIG. As a result, a problem is likely to occur in focusing the laser beam.

また、特許文献3,4で提案したような片側のみからレーザ光を照射する方法を活用して2台のレーザヘッドの設置することも、レーザヘッドの干渉を伴うことになる。
レーザヘッドの干渉をなくすために、図4、5に示すように、2つずつに分割して溶接することが想定されるが、4箇所の溶接が2箇所ずつに分けて行われるため、熱変形により溶接位置がずれるおそれがある。溶接位置のずれが起きなくても熱変形が残存し、製品形状が劣ることがある。
In addition, the installation of two laser heads using the method of irradiating laser light from only one side as proposed in Patent Documents 3 and 4 also involves interference of the laser heads.
In order to eliminate the interference of the laser head, as shown in FIGS. 4 and 5, it is assumed that the welding is divided into two parts, but the four weldings are performed in two parts. There is a possibility that the welding position shifts due to deformation. Even if the welding position does not shift, thermal deformation remains and the product shape may be inferior.

本発明は、このような問題を解消すべく案出されたものであり、レーザ溶接により2箇所のT字継手部を形成して溶接H形鋼を製造するに際に、1パスで形状精度に優れたH形鋼を生産性よく製造することを目的とする。   The present invention has been devised to solve such a problem. When a welded H-section steel is manufactured by forming two T-shaped joints by laser welding, the shape accuracy is obtained in one pass. The purpose is to produce an H-shaped steel with excellent productivity.

本発明のレーザ溶接によるH形鋼の製造方法は、その目的を達成するため、ウェブ材の両端部にフランジ材を押し当てた2箇所のT字状継手部をレーザ溶接して溶接H形鋼を製造する際、2つのレーザヘッドをウェブ材の片面側に配置し、前記溶接H形鋼を形作るウェブ材及びフランジ材の垂直な面に位置する2箇所のT字継手部を互いの支点として、一方のレーザヘッドを溶接方向の上流側に傾斜させ、他方のレーザヘッドを溶接方向の下流側に傾斜させて、さらにフランジ材面に対して互いにウェブ材側に傾斜させた2つのレーザヘッドで前記2箇所のT字継手部を同時にレーザ溶接することを特徴とする。
この際、ウェブ材の両端部にフランジ材を押圧しつつ、T字継手部にレーザ光を照射することが好ましい。
In order to achieve the object, the method for producing H-shaped steel by laser welding according to the present invention laser welds two T-shaped joint portions in which a flange material is pressed against both ends of a web material to weld H-shaped steel. When two laser heads are arranged on one side of the web material, the web material forming the welded H-shaped steel and the two T-shaped joints located on the vertical surfaces of the flange material are used as mutual fulcrums. Two laser heads in which one laser head is inclined to the upstream side in the welding direction, the other laser head is inclined to the downstream side in the welding direction, and is further inclined to the web material side with respect to the flange material surface. The two T-joint portions are laser welded simultaneously.
Under the present circumstances, it is preferable to irradiate a laser beam to a T-shaped joint part, pressing a flange material to the both ends of a web material.

本発明方法では、フランジ材にウェブ材の端部を垂直に押し当てて形作られた2つのT字状継手部にレーザ光を照射する2つのレーザヘッドが、ウェブ材の片面側に、かつ溶接H形鋼を形作るウェブ材及びフランジ材の垂直な面に位置する2箇所のT字継手部を互いの支点として、一方のレーザヘッドを溶接方向の上流側に傾斜させ、他方のレーザヘッドを溶接方向の下流側に傾斜させて、さらにフランジ材面に対して互いにウェブ材側に傾斜させて配置されている。このため、2つのレーザヘッドが互いに干渉しあうことがない。
2つのレーザヘッドが互いに干渉しあうことがないため、同一方向からの片側1パス溶接により2箇所の溶接を同一線上で行うことが可能になり、形状精度の優れた溶接H形鋼が簡便に製造できる。
したがって、本発明により、めっき鋼板を素材としたH形鋼であっても、最小限の溶接部補修のみで高耐食性を備えた形状精度に優れた溶接H形鋼を低コストで製造することが可能となる。
In the method of the present invention, two laser heads that irradiate two T-shaped joint portions formed by vertically pressing the end portions of the web material against the flange material are welded to one side of the web material and welded. Using two T-shaped joints located on the vertical surfaces of the web material and the flange material forming the H-shaped steel as fulcrums, one laser head is inclined upstream in the welding direction, and the other laser head is welded. Inclined to the downstream side in the direction and further inclined to the web material side with respect to the flange material surface. For this reason, the two laser heads do not interfere with each other.
Since the two laser heads do not interfere with each other, it is possible to perform welding at two locations on the same line by one-pass welding on one side from the same direction, and a welded H-section steel with excellent shape accuracy can be easily obtained. Can be manufactured.
Therefore, according to the present invention, it is possible to manufacture a welded H-section steel having high shape accuracy and high corrosion resistance at a low cost with only minimal weld repair even if it is an H-section steel made of a plated steel sheet. It becomes possible.

特許文献1,2で提案されたレーザ溶接法を説明する図The figure explaining the laser welding method proposed by patent documents 1, 2 特許文献3,4で提案されたレーザ溶接法を説明する図The figure explaining the laser welding method proposed by patent documents 3 and 4 複数のレーザヘッドが干渉する態様を説明する図The figure explaining the aspect which a several laser head interferes 複数のレーザヘッドを分割配置する形態を説明する図The figure explaining the form which divides and arranges a plurality of laser heads 複数のレーザヘッドを分割配置する他の形態を説明する図The figure explaining the other form which divides and arranges a plurality of laser heads 特許文献3,4で提案された方法を採用する時のレーザヘッド分割配置形態を説明する図The figure explaining the laser head division arrangement form when adopting the method proposed by patent documents 3 and 4 溶接後の熱変形を説明する図Diagram explaining thermal deformation after welding 溶接後の形状矯正の一例を説明する図The figure explaining an example of shape correction after welding 本発明方法におけるレーザヘッド配置形態を説明する図The figure explaining the laser head arrangement form in the method of the present invention 本発明方法におけるレーザヘッドの配置手順を説明する図The figure explaining the arrangement | positioning procedure of the laser head in this invention method

本発明者等は、鋼板を素材として2つのT字状の溶接継手部を備えたH形鋼をレーザ溶接法で製造する際に、生産性よく、かつ形状精度の高い溶接H形鋼を製造する手段について検討を重ねてきた。
前記したように、4台のレーザヘッドを用い、4箇所の溶接を一度に行うことも想定されるが、4台のレーザヘッドの設置は多大な設備投資を必要とするばかりでなく、小型サイズのH形鋼を製造しようとする場合にあっては、レーザヘッドが干渉して、レーザ光の焦点合わせに不具合を生じやすくなる。
The inventors of the present invention produce a welded H-shaped steel with high productivity and high shape accuracy when manufacturing an H-shaped steel with two T-shaped welded joints using a steel plate as a raw material. We have been studying the means to do this.
As described above, it is assumed that four laser heads are used and four locations are welded at one time. However, the installation of the four laser heads requires not only a large capital investment but also a small size. When trying to manufacture the H-shaped steel, the laser head interferes and the laser beam focusing is liable to occur.

レーザヘッドの干渉をなくすために、図4、5に示すように、2つずつに分割して溶接することが想定されるが、4箇所の溶接が2箇所ずつずれて行われるため、すなわち同一線上で同時に行われないため、熱変形により溶接位置がずれるおそれがある。溶接位置のずれが起きなくても熱変形が残存し、製品形状が劣ることがある。
また、図5に見られるように、片側1パス溶接で2箇所溶接する場合は、相反する方向から溶接することになり、後述のように安全上好ましくない。
In order to eliminate the interference of the laser head, as shown in FIGS. 4 and 5, it is assumed that the welding is divided into two parts, but the welding is performed at two places, that is, the same, that is, the same. Since they are not performed simultaneously on the wire, the welding position may shift due to thermal deformation. Even if the welding position does not shift, thermal deformation remains and the product shape may be inferior.
Further, as seen in FIG. 5, when welding at two locations by one-pass welding on one side, welding is performed from opposite directions, which is not preferable for safety as described later.

また、特許文献3,4で提案したような片側のみからレーザ光を照射する方法を活用すべく、レーザヘッドの干渉を防ぐために2台のレーザヘッドを、ウェブ材を挟んだ位置に設置して、2箇所の溶接を同時にレーザ溶接することも想定される(図6参照)。
しかしながら、図6(a)のように左右方向で溶接する場合は片側が上向きになり、図6(b)のように上下方向でも片側は上向きになって、スパッタが飛散したり、レーザ光が誤射された場合等を考慮すると、安全上好ましくない。
さらに片側のみからのレーザ光を照射する方法におけるT字継ぎ手部の溶接部は片側からの溶融のために厳密には非対称な溶接部となっており、溶接熱による変形量も表ビード側と裏ビード側では図7に示すように異なるため、2つのレーザヘッドをウェブ材を挟んだ位置に設置して溶接を行うと、左右非対称な形状となる(図7(b)参照)。
Also, in order to utilize the method of irradiating laser light from only one side as proposed in Patent Documents 3 and 4, two laser heads are installed at positions sandwiching the web material in order to prevent interference of the laser heads. It is also assumed that two locations are laser welded simultaneously (see FIG. 6).
However, when welding in the left-right direction as shown in FIG. 6 (a), one side faces upward, and as shown in FIG. 6 (b), one side also faces upward, so that spatter is scattered or laser light is emitted. Considering the case of misfiring, it is not preferable for safety.
Furthermore, the welded portion of the T-shaped joint in the method of irradiating laser light from only one side is strictly an asymmetrical welded portion due to melting from one side, and the amount of deformation due to welding heat is also different from that on the front bead side. Since the bead side is different as shown in FIG. 7, when the two laser heads are installed at positions sandwiching the web material and welded, the shape becomes asymmetrical (see FIG. 7B).

溶接後にフランジ部の熱変形による形状不良を矯正する場合には、一例としては図8に示すようにテーパー状のロールをフランジ間に挿入することで形状矯正が可能である。変形が左右対称であれば上下ロールが同一線上に配置することができ、上下ロールの押込み量をコントロールすることで簡易に形状矯正が可能で、形状精度の優れた溶接H形鋼が容易に得られる(図8(a)参照)。しかし、変形が左右非対称な場合には同一線上に矯正ロールを配置することができないために曲がりやねじれ等の発生要因となり易くなり、さらには左右の変形量が異なるために形状矯正が難しくなる(図8(b)参照)。   When correcting the shape defect due to thermal deformation of the flange after welding, as an example, the shape can be corrected by inserting a tapered roll between the flanges as shown in FIG. If the deformation is symmetrical, the upper and lower rolls can be placed on the same line, and the shape can be easily corrected by controlling the push amount of the upper and lower rolls, and a welded H-section steel with excellent shape accuracy can be easily obtained. (See FIG. 8A). However, when the deformation is asymmetrical, the correction roll cannot be arranged on the same line, so that it becomes easy to cause bending or twisting, and further, the shape correction becomes difficult because the left and right deformation amounts are different ( (Refer FIG.8 (b)).

そこで、本発明者等は、2つのレーザヘッドを、互いに干渉しないように、フランジ材及びウェブ材に垂直な面に対して互いに反対側に傾斜させて、すなわち、一方を溶接ラインの進行方向に傾け、他方を溶接ラインの後方に傾けて配置し、2つのT字状の継手部を同時に(ライン方向に対して垂直な同一線上で)溶接することとした。傾ける角度は垂直な面に対して反対側に同じ角度とすることが好ましい。
さらに、2つのT字状の継手部をライン方向に対して垂直な同一線L上で溶接するために、各レーザヘッドの向きを前記フランジ材及びウェブ材に垂直な面がそれぞれフランジ材とウェブ材が交差する部位に向くように、2つのレーザヘッドを配置することとした。図9を参照されたい。
このように、2つのレーザヘッドを傾斜配置することにより、レーザヘッドは互いに干渉し合うことはなく、また、2箇所の溶接が同一線上で同時に行えるため熱変形に起因した弊害の発生を抑制することができる。
Therefore, the inventors of the present invention inclined the two laser heads on the opposite sides with respect to the surfaces perpendicular to the flange material and the web material so as not to interfere with each other, that is, one of them is in the traveling direction of the welding line. The other side is inclined and arranged behind the welding line, and the two T-shaped joint portions are welded simultaneously (on the same line perpendicular to the line direction). The tilting angle is preferably the same angle on the opposite side with respect to the vertical plane.
Furthermore, in order to weld two T-shaped joints on the same line L perpendicular to the line direction, the direction of each laser head is perpendicular to the flange material and web material, respectively. Two laser heads are arranged so as to face the crossing portions of the materials. See FIG.
In this way, by arranging the two laser heads in an inclined manner, the laser heads do not interfere with each other, and since two locations can be welded simultaneously on the same line, the occurrence of harmful effects due to thermal deformation is suppressed. be able to.

次に、2つのレーザヘッドを傾斜配置する好ましい手順について説明する。
まず、図10(a)に示すように、フランジ材及びウェブ材に垂直な面Fを想定し、その面Fの上流側及び下流側に、当該面を挟んで2つのレーザヘッドA,Bを配置する。次に、2つのレーザヘッドA,Bを、それぞれ、フランジ材及びウェブ材の長手方向に垂直な面Fがウェブ材と交差する部位に向くように10〜25°の角度で傾斜させる(図10(b)参照)。このときの傾斜角は、必ずしも同一とする必要はないが、フランジ材及びウェブ材に垂直な面Fに対して相等しい角度とすることが好ましい。その後、2つのレーザヘッドA,Bを、それぞれフランジに対して10°程度の角度で相反する方向に傾斜させ、その後に、それぞれ逆の方向にフランジ材及びウェブ材に垂直な面Fとフランジ材が交差する部位まで平行移動させる(図10(c)参照)。
Next, a preferred procedure for arranging the two laser heads in an inclined manner will be described.
First, as shown in FIG. 10A, assuming a surface F perpendicular to the flange material and the web material, two laser heads A and B are sandwiched between the surface F on the upstream side and the downstream side of the surface F. Deploy. Next, the two laser heads A and B are respectively inclined at an angle of 10 to 25 ° so that the plane F perpendicular to the longitudinal direction of the flange material and the web material faces the portion intersecting the web material (FIG. 10). (See (b)). The inclination angles at this time are not necessarily the same, but are preferably equal to the plane F perpendicular to the flange material and the web material. Thereafter, the two laser heads A and B are inclined in directions opposite to each other at an angle of about 10 ° with respect to the flange, and then the surface F and the flange material perpendicular to the flange material and the web material in opposite directions, respectively. Is moved parallel to the crossing point (see FIG. 10C).

なお、2つのレーザヘッドA,Bを、溶接ラインの進行方向前後に傾斜させるにあたっては、進行方向の前後の傾斜角が垂直に対して同一角でなくても良い。例えば、一方は垂直で他方を溶接ライン進行方向の前後どちらかに傾斜させてもよい。いずれにしても、傾斜角はそれぞれ進行方向の前後25度程度以内で2つのレーザヘッドが干渉しない最小角とすることが好ましい。
そして、2つのレーザヘッドA,Bがフランジ材及びウェブ材に垂直な面Fとフランジ材とが交差する部位に向けられた後にレーザ溶接を開始すればよい。
In tilting the two laser heads A and B forward and backward in the direction of travel of the welding line, the forward and backward tilt angles in the forward direction may not be the same angle with respect to the vertical. For example, one may be vertical and the other may be inclined either before or after the welding line traveling direction. In any case, it is preferable that the inclination angle is set to the minimum angle at which the two laser heads do not interfere with each other within about 25 degrees before and after the traveling direction.
Then, laser welding may be started after the two laser heads A and B are directed to the portion where the flange material and the surface F perpendicular to the web material intersect with the flange material.

ところで、レーザ溶接法では高出力のレーザが使用される。このため、被接合金属が溶融されるのであるが、部分的に蒸発・飛散され、被溶接金属が僅かに減少する。また、被溶接金属同士は当接されているが、端面が面出し加工されていない場合には僅かに隙間があり、被溶接金属の減少と被溶接金属間の隙間の影響で接合金属が不足する。これらの現象に加え、溶接点にはシールドガスが噴きつけられていることから溶融池にはガス圧がかかり、また、重力の影響もあって溶接継手部に窪みが形成されることがある。この結果、所定の接合強度が得られないこともある。   By the way, a high-power laser is used in the laser welding method. For this reason, although the metal to be joined is melted, it is partially evaporated and scattered, and the metal to be welded is slightly reduced. Also, the welded metals are in contact with each other, but there is a slight gap when the end face is not chamfered, and there is a shortage of joint metal due to the reduction of the welded metal and the effect of the gap between the welded metals. To do. In addition to these phenomena, a shield gas is sprayed at the welding point, so that a gas pressure is applied to the molten pool, and a depression may be formed in the weld joint due to the influence of gravity. As a result, a predetermined bonding strength may not be obtained.

そこで、本発明にあっては、ウェブ材を押圧することによりウェブ材自身を多く溶融させ、継手部における接合金属の不足を補って接合強度を高くすることが好ましい。
ウェブ材の押圧方法や押圧量には制限はないが、スクイズロールによりフランジ材をウェブ材の端部に押圧することが好ましい。押圧量としては、フランジ材間隔を0.3〜0.5mm程度減ずるように押圧することが好ましい。
Therefore, in the present invention, it is preferable to melt the web material itself by pressing the web material to compensate for the shortage of the joining metal in the joint portion and increase the joining strength.
Although there is no restriction | limiting in the pressing method and pressing amount of a web material, It is preferable to press a flange material to the edge part of a web material with a squeeze roll. As the pressing amount, it is preferable to press the flange material so as to reduce the distance between the flange members by about 0.3 to 0.5 mm.

前記した通り、レーザ光を熱源とした溶接法では、狭い断面積で深い溶融金属領域を形成することができる。したがって、レーザ溶接法はめっき鋼板、特にZn系めっき鋼板、さらにはZn−Al系やZn−Al−Mg系めっきを施した鋼板を素材とした溶接構造物の製造に適している。
このため、本発明のレーザ溶接によるH形鋼の製造方法は、Zn系めっき鋼板、特にZn−Al系やZn−Al−Mg系のめっきを施した鋼板を素材としたH形鋼の製造に好適に用いられる。
As described above, with the welding method using laser light as a heat source, a deep molten metal region can be formed with a narrow cross-sectional area. Therefore, the laser welding method is suitable for manufacturing a welded structure made of a plated steel plate, particularly a Zn-based plated steel plate, and further a steel plate subjected to Zn-Al-based or Zn-Al-Mg-based plating.
For this reason, the manufacturing method of H-section steel by laser welding of the present invention is used for manufacturing H-section steel made of Zn-based plated steel sheets, particularly steel sheets plated with Zn-Al-based or Zn-Al-Mg-based materials. Preferably used.

実施例1;
板厚が2.3mmで引張強さが400N/mm2の鋼板にZn−6%Al−3%Mg合金めっき層を片面当り付着量が90g/m2で設けた溶融めっき鋼板を素材とした。板幅80mmにカットした素材をフランジ材に、製品高さから2枚のフランジ厚みを除した板幅75.4mmにカットした素材をウェブ材として、フランジ材を垂直に、ウェブ材を水平に、断面形状がH形状になるようにバイス等で固定し、80mm×80mmの溶接H形鋼を作製した。溶接方法はフランジ材をウェブ材の端部に垂直に押し当てて形作られた2つのT字状継手部にレーザ光を同時に照射する方法で、しかも2つのレーザヘッドは、H形を形作るウェブ材およびフランジ材の垂直な面に位置する2箇所のT字継手部を支点として、一方のレーザヘッドをラインの進行方向に15度傾け、他方のレーザヘッドを溶接ラインの後方に15度傾けて配置し、しかも垂直に配置したフランジ材に対して互いにウェブ側に10度傾斜させて配置し、各レーザヘッドの向きをそれぞれフランジ材とウェブ材が交差する部位に向くように配置して、被ウェブ材の幅方向全域に渡ってすみ肉溶接を2箇所同時に実施した。溶接時のレーザ出力は、それぞれ4.0kW,溶接速度が4.0m/min,シールドガスをアルゴンとして20リットル/min供給した。
Example 1;
A hot-dip galvanized steel sheet in which a Zn-6% Al-3% Mg alloy plating layer was applied to a steel sheet having a thickness of 2.3 mm and a tensile strength of 400 N / mm 2 at an adhesion amount of 90 g / m 2 per side was used as a material. . A material cut to a plate width of 80 mm is used as a flange material, a material cut to a plate width of 75.4 mm obtained by dividing the thickness of two flanges from the product height is used as a web material, the flange material is vertical, the web material is horizontal, It fixed with a vise etc. so that a cross-sectional shape might become H shape, and produced 80 mm x 80 mm welded H-section steel. The welding method is a method in which two T-shaped joints formed by pressing a flange material perpendicularly to the end of a web material are simultaneously irradiated with laser light, and the two laser heads are web materials that form an H shape. And two T-shaped joints located on the vertical surface of the flange material, with one laser head tilted 15 degrees in the line traveling direction and the other laser head tilted 15 degrees rearward of the welding line In addition, the flange members are arranged so as to be inclined by 10 degrees toward the web side with respect to the vertically arranged flange material, and the direction of each laser head is arranged so as to face the portion where the flange material and the web material intersect, Two fillet welds were performed simultaneously across the entire width direction of the material. Laser power during welding was 4.0 kW, welding speed was 4.0 m / min, and shielding gas was supplied at 20 liters / min as argon.

実施例2;
実施例1においてはワイヤー等の装填材を使用しないことから、溶接継手部に窪みが形成されると想定される。そこで、溶接継手部における溶接金属の不足を補う手法として溶接点近傍をロール等によって5kN程度の押圧をかけて、しかもレーザ光の照射位置はロールとフランジの接点よりライン入側に3〜6mm程度の位置を照射した方が継手部は溶融状態で押圧が最もかかるロール接点を通過するために、ロールによる押圧が効果的に働く。この際、ロールによって押圧されることでH形鋼の高さは0.3〜0.5mm程度小さくなるため、ウェブ材は予め製品寸法に0.5mm程度加えた値から2枚のフランジ厚みを除した板幅に設定しておく必要がある。その他の溶接方法や溶接条件は実施例1と同じである。
Example 2;
In Example 1, since a loading material such as a wire is not used, it is assumed that a recess is formed in the welded joint. Therefore, as a method to compensate for the lack of weld metal in the welded joint, the vicinity of the welding point is pressed by a roll or the like by about 5 kN, and the irradiation position of the laser beam is about 3 to 6 mm from the contact point of the roll and the flange to the line entry side. When the position is irradiated, the joint portion passes through the roll contact point that is most pressed in the molten state, so that the pressing by the roll works effectively. At this time, since the height of the H-shaped steel is reduced by about 0.3 to 0.5 mm by being pressed by the roll, the web material has two flange thicknesses from a value obtained by adding about 0.5 mm to the product dimensions in advance. It is necessary to set to the board width divided. Other welding methods and welding conditions are the same as those in the first embodiment.

そして、実施例1と2で製造したH形鋼の横断面を目視観察したところ、実施例1で製造されたH形鋼では、フランジ材とウェブ材の交差点にごく僅かな窪みが認められた。一方、実施例2で製造されたH形鋼では、フランジ材とウェブ材の交差点の外側にはみ出すように溶接ビードが僅かではあるが形成されており、窪みは全く認められなかった。   And when the cross section of the H-section steel manufactured in Examples 1 and 2 was visually observed, in the H-section steel manufactured in Example 1, a very slight depression was observed at the intersection of the flange material and the web material. . On the other hand, in the H-shaped steel produced in Example 2, a weld bead was formed so as to protrude outside the intersection of the flange material and the web material, and no dent was observed at all.

Claims (2)

ウェブ材の両端部にフランジ材を押し当てた2箇所のT字状継手部をレーザ溶接して溶接H形鋼を製造する際、2つのレーザヘッドをウェブ材の片面側に配置し、前記溶接H形鋼を形作るウェブ材及びフランジ材の垂直な面に位置する2箇所のT字継手部を互いの支点として、一方のレーザヘッドを溶接方向の上流側に傾斜させ、他方のレーザヘッドを溶接方向の下流側に傾斜させて、さらにフランジ材の面に対して互いにウェブ材側に傾斜させた2つのレーザヘッドで前記2箇所のT字継手部を同時にレーザ溶接することを特徴とするレーザ溶接によるH形鋼の製造方法。   When manufacturing a welded H-shaped steel by laser welding the two T-shaped joints with the flange material pressed against both ends of the web material, two laser heads are arranged on one side of the web material, and the welding is performed. Using two T-shaped joints located on the vertical surfaces of the web material and the flange material forming the H-shaped steel as fulcrums, one laser head is inclined upstream in the welding direction, and the other laser head is welded. Laser welding, wherein the two T-joints are simultaneously laser welded by two laser heads which are inclined to the downstream side in the direction and further inclined to the web material side with respect to the surface of the flange material. Manufacturing method of H-section steel. ウェブ材の両端部にフランジ材を押圧しつつ、T字継手部にレーザ光を照射する請求項1に記載のレーザ溶接によるH形鋼の製造方法。   The manufacturing method of the H-section steel by laser welding according to claim 1, wherein the T-joint portion is irradiated with laser light while pressing the flange material against both ends of the web material.
JP2009236217A 2009-10-13 2009-10-13 Method for manufacturing h-section steel by laser welding Pending JP2011083781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009236217A JP2011083781A (en) 2009-10-13 2009-10-13 Method for manufacturing h-section steel by laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009236217A JP2011083781A (en) 2009-10-13 2009-10-13 Method for manufacturing h-section steel by laser welding

Publications (1)

Publication Number Publication Date
JP2011083781A true JP2011083781A (en) 2011-04-28

Family

ID=44077131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009236217A Pending JP2011083781A (en) 2009-10-13 2009-10-13 Method for manufacturing h-section steel by laser welding

Country Status (1)

Country Link
JP (1) JP2011083781A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135792A (en) * 2010-12-27 2012-07-19 Nisshin Steel Co Ltd Method for manufacturing laser-welded h-section steel
CN103192189A (en) * 2013-04-12 2013-07-10 深圳中集专用车有限公司 Semitrailer girder structure and welding process thereof
JP5662546B1 (en) * 2013-11-14 2015-01-28 日新製鋼株式会社 Welded section manufacturing apparatus and manufacturing method
EP2783788A3 (en) * 2013-03-27 2015-06-17 General Electric Company Welding process and welding system
JP6310605B1 (en) * 2017-08-08 2018-04-11 日新製鋼株式会社 Laser-welded section and manufacturing method thereof
KR20180108646A (en) 2016-02-16 2018-10-04 닛신 세이코 가부시키가이샤 Laser welded steel and its manufacturing method
US10293438B2 (en) 2015-03-31 2019-05-21 Nisshin Steel Co., Ltd. Device and method for manufacturing welded shaped steel
JP2020104144A (en) * 2018-12-27 2020-07-09 古河電気工業株式会社 Welding equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281429A (en) * 1995-04-17 1996-10-29 Daido Steel Co Ltd Method for fillet-welding stainless steel and manufacture of stainless steel shapes
JP2002210576A (en) * 2001-01-16 2002-07-30 Nippon Steel Corp Method for welding thin steel plate with resultant yag laser beam
JP2009119485A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Manufacturing method of welded section steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281429A (en) * 1995-04-17 1996-10-29 Daido Steel Co Ltd Method for fillet-welding stainless steel and manufacture of stainless steel shapes
JP2002210576A (en) * 2001-01-16 2002-07-30 Nippon Steel Corp Method for welding thin steel plate with resultant yag laser beam
JP2009119485A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Manufacturing method of welded section steel

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135792A (en) * 2010-12-27 2012-07-19 Nisshin Steel Co Ltd Method for manufacturing laser-welded h-section steel
EP2783788A3 (en) * 2013-03-27 2015-06-17 General Electric Company Welding process and welding system
CN103192189A (en) * 2013-04-12 2013-07-10 深圳中集专用车有限公司 Semitrailer girder structure and welding process thereof
RU2639196C2 (en) * 2013-11-14 2017-12-20 Ниссин Стил Ко., Лтд. Device and method to produce welded steel profile
US10583527B2 (en) 2013-11-14 2020-03-10 Nippon Steel Nisshin Co., Ltd. Device and method for manufacturing welded shaped steel
CN105705294A (en) * 2013-11-14 2016-06-22 日新制钢株式会社 Device and method for manufacturing welded shaped steel
KR20160085323A (en) 2013-11-14 2016-07-15 닛신 세이코 가부시키가이샤 Device and method for manufacturing welded shaped steel
US20160250716A1 (en) * 2013-11-14 2016-09-01 Nisshin Steel Co., Ltd. Device and method for manufacturing welded shaped steel
TWI594831B (en) * 2013-11-14 2017-08-11 日新製鋼股份有限公司 Manufacturing apparatus and manufacturing method of welded shape steel
EP3069815A4 (en) * 2013-11-14 2017-09-27 Nisshin Steel Co., Ltd. Device and method for manufacturing welded shaped steel
JP5662546B1 (en) * 2013-11-14 2015-01-28 日新製鋼株式会社 Welded section manufacturing apparatus and manufacturing method
WO2015072158A1 (en) 2013-11-14 2015-05-21 日新製鋼株式会社 Device and method for manufacturing welded shaped steel
US10293438B2 (en) 2015-03-31 2019-05-21 Nisshin Steel Co., Ltd. Device and method for manufacturing welded shaped steel
KR20180108646A (en) 2016-02-16 2018-10-04 닛신 세이코 가부시키가이샤 Laser welded steel and its manufacturing method
US10603746B2 (en) 2016-02-16 2020-03-31 Nippon Steel Nisshin Co., Ltd. Laser-welded shaped steel and method for producing same
WO2019031013A1 (en) * 2017-08-08 2019-02-14 日新製鋼株式会社 Laser-welded shaped steel and method for manufacturing same
JP2019030890A (en) * 2017-08-08 2019-02-28 日新製鋼株式会社 Laser welding shaped steel and method for manufacture the same
JP6310605B1 (en) * 2017-08-08 2018-04-11 日新製鋼株式会社 Laser-welded section and manufacturing method thereof
JP2020104144A (en) * 2018-12-27 2020-07-09 古河電気工業株式会社 Welding equipment
JP7246922B2 (en) 2018-12-27 2023-03-28 古河電気工業株式会社 welding equipment

Similar Documents

Publication Publication Date Title
JP5110642B2 (en) Manufacturing method of welded section steel
JP2011083781A (en) Method for manufacturing h-section steel by laser welding
JP5224349B2 (en) Laser welding method for thin plate
JP5496152B2 (en) Combined welding method of laser welding and arc welding of T type joint
KR101554800B1 (en) Method of manufacturing laser welded steel pipe
JP5601003B2 (en) Laser arc combined welding method and butt welding metal plate groove
CN103418916A (en) Hybrid laser arc welding process and apparatus
JP5658579B2 (en) Laser welded section steel
JP5088920B2 (en) Manufacturing method for building components
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JP5473171B2 (en) Manufacturing method for building components
US10144091B2 (en) Laser welded shaped steel
JP5656220B2 (en) Manufacturing method of laser welded H-section steel
JP2011224655A (en) Method for manufacturing laser welded steel pipe
JP2012223799A (en) Method of manufacturing welded joint
JP5177745B2 (en) Laminated laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
JP4931506B2 (en) Dissimilar material joining method
JP5803160B2 (en) Laser welded steel pipe manufacturing method
WO2019244605A1 (en) Method for joining plated steel sheet and joint structure
JP2001276989A (en) Laser lap welding method for plating steel plate
JP2008178894A (en) Both-side welding method
JP2005059089A (en) Laser welding method of galvanized steel sheet
JP7230606B2 (en) Composite welding method for galvanized steel sheets
JPH06254689A (en) Laser beam welding method for beltlike metals
JP2019051542A (en) Plasma keyhole welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140127