JP2008178894A - Both-side welding method - Google Patents

Both-side welding method Download PDF

Info

Publication number
JP2008178894A
JP2008178894A JP2007014424A JP2007014424A JP2008178894A JP 2008178894 A JP2008178894 A JP 2008178894A JP 2007014424 A JP2007014424 A JP 2007014424A JP 2007014424 A JP2007014424 A JP 2007014424A JP 2008178894 A JP2008178894 A JP 2008178894A
Authority
JP
Japan
Prior art keywords
welding
penetration
joint
accelerator
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007014424A
Other languages
Japanese (ja)
Other versions
JP4871747B2 (en
Inventor
Akiyoshi Imanaga
昭慈 今永
Eiji Ashida
栄次 芦田
Takeshi Obana
健 尾花
Xiangjun Luo
湘軍 羅
Hiroo Koide
宏夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007014424A priority Critical patent/JP4871747B2/en
Publication of JP2008178894A publication Critical patent/JP2008178894A/en
Application granted granted Critical
Publication of JP4871747B2 publication Critical patent/JP4871747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a both-side welding method which is effective for obtaining a sound welded joint part with deep penetration and no blow hole or insufficient melting by melt-sealing before application of a penetration accelerator and front and rear both-side welding after the application, while being a roughly I-joint or a roughly T-joint with no groove applied, and requiring no penetration welding for forming a back bead. <P>SOLUTION: The both-side welding method comprises steps of applying the penetration accelerator on front and rear sides of the roughly I-joint or the roughly T-joint comprising a stainless steel material or a low carbon steel material, and executing a non-consumable electrode arc welding. In the method, the front or the both front and rear sides of the joint is melt-sealed with a tacking condition of small energy before applying the penetration accelerator, fusion welding is conducted to the penetration depth within a specific range by the execution of the arc welding after applying the penetration accelerator on the front side of the joint after melt-sealing, thereafter fusion welding is conducted to the penetration depth within a specific range by the execution of the arc welding after applying the penetration accelerator on the rear side of the remaining joint on the opposite side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ステンレス鋼材又は低炭素鋼材からなる継手部の表面及び裏面に溶け込み促進剤を塗布してアーク溶接する両面溶接方法に関する。   The present invention relates to a double-sided welding method in which a welding accelerator is applied to the front and back surfaces of a joint portion made of a stainless steel material or a low carbon steel material and arc welding is performed.

溶け込みの深い溶接が可能な溶け込み促進剤(又はフラックス剤)やこれを用いた溶接方法や溶接継手が提案されている。   There have been proposed a penetration accelerator (or a fluxing agent) capable of deep welding and a welding method and welded joint using the same.

例えば、特許文献1に記載の溶接方法,溶接継手では、ステンレス鋼母材表面に金属酸化物の粉末と溶媒とを混合してなる溶け込み促進剤を塗布した後にTIG溶接することが提案されている。   For example, in the welding method and welded joint described in Patent Document 1, it has been proposed to perform TIG welding after applying a penetration accelerator formed by mixing a metal oxide powder and a solvent to the surface of a stainless steel base material. .

また、特許文献2に記載の深溶け込みアーク溶接用フラックス及びこれを用いた溶接方法では、Cr23を含まない金属酸化物であり、TiO2とSiO2との混合比を1対1にした混合酸化物のフラックスを用いることが提案されている。 Further, the deep penetration arc welding flux described in Patent Document 2 and the welding method using the same are metal oxides not containing Cr 2 O 3 , and the mixing ratio of TiO 2 and SiO 2 is 1: 1. It has been proposed to use a mixed oxide flux.

特許文献3に記載のTIG溶接方法では、金属酸化物を6質量%以上含有するフラックスを内包したフラックス入りワイヤを溶加材として使用し、溶融金属中に前記金属酸化物を0.05 〜3g/分供給しながらTIG溶接することが提案されている。   In the TIG welding method described in Patent Document 3, a flux-cored wire including a flux containing 6% by mass or more of a metal oxide is used as a filler material, and 0.05 to 3 g of the metal oxide is contained in a molten metal. It has been proposed to perform TIG welding while supplying at a minute / minute.

また、特許文献4に記載のTIG溶接装置及び方法では、不活性ガスからなる第1のシールドガスを、電極を囲むように被溶接物に向けて流し、前記第1のシールドガスの周辺側に、酸化性ガスを含む第2のシールドガスを被溶接物に向けて流すことが提案されている。さらに、特許文献5には、サブマージアーク溶接に促進剤(フラックス剤)を使用することが提案されている。   Further, in the TIG welding apparatus and method described in Patent Document 4, the first shield gas made of an inert gas is caused to flow toward the work piece so as to surround the electrode, and the first shield gas is moved to the peripheral side of the first shield gas. It has been proposed to flow a second shield gas containing an oxidizing gas toward the workpiece. Further, Patent Document 5 proposes the use of an accelerator (flux agent) for submerged arc welding.

一方、特許文献6は、筆者らが発明出願した溶接方法及びその溶接構造物であり、溶け込み促進剤を塗布した継手部の表面側と裏面側とからの両面深溶け込み溶接の施工によって、接合不足のない深い溶け込み形状の健全な溶接部が得られることを提案した。   On the other hand, Patent Document 6 is a welding method and its welded structure filed by the present inventors, and is insufficiently bonded due to the double-sided deep penetration welding from the front side and the back side of the joint applied with the penetration accelerator. It was proposed that a sound weld with a deep penetration shape can be obtained.

特許文献1及び特許文献2に記載の方法は、溶け込み促進剤を塗布した継手部材の表面側からのアーク溶接によって裏面側に裏ビードが形成するように溶接施工している。このため、特に、突合せ継手部にギャップがあったり、そのギャップが変化していたりすると、アーク溶接によって形成する裏面側の裏ビードの幅が大きく変化したり、出過ぎたりして溶接部の品質を悪化させる可能性がある。また、板厚が6mmを越えるI型継手の溶接では、溶融池が保持できなく(例えば溶融池に作用する表面張力<重力)なるために裏側に溶け落ち易く、裏当て材なしでの裏ビード形成が困難である。開先継手における2層目の溶接時には、前層(1層目)の溶接時に加熱反応した溶け込み促進剤(金属酸化物のフラックス剤)の一部が溶接ビード表面に固着(スラブ固着)しているため、アーク溶接直下の溶融プールが開先幅方向に広がりにくく、溶融すべき開先両壁面まで溶けずに融合不良になる可能性がある。さらに、表面側からのみの片面溶け込み溶接であって、表面側と裏面側とから交互にアーク溶接する両面溶け込み溶接と異なる。この両面溶け込み溶接は実施例に全く記載されていない。   In the methods described in Patent Document 1 and Patent Document 2, welding is performed so that a back bead is formed on the back surface side by arc welding from the surface side of the joint member to which the penetration accelerator is applied. For this reason, in particular, if there is a gap in the butt joint or if the gap changes, the width of the back bead on the back side formed by arc welding will change greatly, or it will come out too much, and the quality of the weld will be reduced. May be exacerbated. Also, in welding of I-type joints with a plate thickness exceeding 6 mm, the molten pool cannot be retained (for example, surface tension acting on the molten pool <gravity), so it easily melts down on the back side, and the back bead without a backing material It is difficult to form. During welding of the second layer in the groove joint, a part of the penetration accelerator (metal oxide flux agent) that was heated during the welding of the previous layer (first layer) is fixed to the surface of the weld bead (slab fixing). Therefore, the molten pool directly under the arc welding is difficult to spread in the groove width direction, and there is a possibility of poor fusion without melting the both wall surfaces of the groove to be melted. Furthermore, it is single-sided penetration welding only from the front surface side, and is different from double-sided penetration welding in which arc welding is alternately performed from the front surface side and the back surface side. This double-sided penetration welding is not described at all in the examples.

また、特許文献2の場合には、Cr23を含まないTiO2とSiO2との混合酸化物
(溶け込み促進剤)を継手表面に塗布した後にアーク溶接を行うようにしている。しかしながら、上述したような溶接上の問題があり、また、表面側と裏面側とから交互に溶接する両面溶け込み溶接と異なり、その実施例も記載されていない。
In the case of Patent Document 2, arc welding is performed after a mixed oxide (penetration accelerator) of TiO 2 and SiO 2 not containing Cr 2 O 3 is applied to the joint surface. However, there is a problem in welding as described above, and unlike double-sided penetration welding in which welding is alternately performed from the front surface side and the back surface side, the example thereof is not described.

そして、金属酸化物の膜(5μm以上)を形成した開先継手部の表面又は裏面(非開先側の面)からTIG溶接して裏ビードを形成させている。また、I型突合せ継手では表面側からのTIG溶接によって裏面側に裏ビードが形成するようにしている。このため、突合せ継手部にギャップがあったり、そのギャップが変化していたりすると、アーク溶接によって形成する裏面側の裏ビードの幅が大きく変化したり、出過ぎたりして溶接部の品質を悪化させる可能性がある。また、板厚が6mmを越えるI型継手の溶接では、溶融池が保持できなくなるために裏側に溶け落ち易く、裏当て材なしでの裏ビード形成が困難である。また、金属酸化物の塗布膜厚が薄いと、所望の深さまで溶け込まずに浅い溶け込みに成り易い。開先継手における2層目の溶接時には、前層の溶接時に加熱反応した溶け込み促進剤の一部が溶接ビード表面に固着しているため、アーク溶接直下の溶融プールが開先幅方向に広がりにくく、溶融すべき開先両壁面まで溶けずに融合不良となる可能性がある。逆V開先,逆Y開先及びX開先の場合は、両面溶け込み溶接であるが、裏面側に裏ビードを形成させており、また、I開先の場合には、片面溶け込み溶接によって裏面側に裏ビードを形成させている。   And the back bead is formed by TIG welding from the front surface or back surface (surface on the non-groove side) of the groove joint portion on which the metal oxide film (5 μm or more) is formed. In the I-type butt joint, a back bead is formed on the back surface side by TIG welding from the front surface side. For this reason, if there is a gap in the butt joint or if the gap has changed, the width of the back bead on the back side formed by arc welding will change greatly, or it will come out too much and the quality of the weld will deteriorate. there is a possibility. In addition, in the welding of an I-type joint having a plate thickness exceeding 6 mm, the molten pool cannot be held, so that it easily melts down to the back side, and it is difficult to form a back bead without a backing material. Moreover, when the coating thickness of the metal oxide is thin, the metal oxide is not melted to a desired depth and is likely to become shallow. During welding of the second layer in the groove joint, part of the penetration accelerator that has been heated and reacted during the welding of the previous layer adheres to the surface of the weld bead, so that the molten pool directly under arc welding does not easily spread in the groove width direction. There is a possibility that poor fusion occurs without melting up to both wall surfaces of the groove to be melted. In the case of reverse V groove, reverse Y groove and X groove, double side penetration welding is used, but a back bead is formed on the back side. In the case of I groove, the back side is formed by single side penetration welding. A back bead is formed on the side.

特許文献3の場合には、金属酸化物を6%以上含有したフラックス入りワイヤを所定量供給しながらTIG溶接して深溶け込み部を得るようにしている。特に、板厚9mmのI型突合せ継手を溶接試験して溶け込み深さの測定結果を示している。しかしながら、フラックス入りワイヤは、ポロシティなどの溶接欠陥発生の大きな要因である湿気に弱いため、特殊な乾燥室などに保管して常に品質管理する必要がある。また、フラックス入りワイヤの送給量の増減によって溶け込み深さが大きく変化するばかりでなく、同時にビード幅やビード余盛高さも大きく変化し易い。表面側から片面溶け込み溶接した試験結果を示しているが、表面側と裏面側とから交互に溶接する両面溶け込み溶接と異なり、その実施例も記載されていない。   In the case of Patent Document 3, a deep penetration portion is obtained by TIG welding while supplying a predetermined amount of flux-cored wire containing 6% or more of a metal oxide. In particular, a measurement result of a penetration depth is shown by performing a welding test on an I-type butt joint having a thickness of 9 mm. However, flux-cored wires are vulnerable to moisture, which is a major factor in the occurrence of weld defects such as porosity, and therefore must be stored in a special drying room or the like for quality control at all times. Moreover, not only does the penetration depth change greatly due to the increase or decrease in the feed amount of the flux-cored wire, but at the same time, the bead width and bead surplus height are also likely to change greatly. Although the test result of one-side penetration welding from the front side is shown, unlike the double-side penetration welding in which welding is alternately performed from the front side and the back side, the example is not described.

特許文献4の場合には、酸化性ガス(O2ガスやCO2ガス)と不活性ガス(Arガス)との混合ガスをアーク溶接部分に流して溶け込み深さを増加するようにしている。前記溶け込み促進剤は使用されていない。また、溶け込み深さと酸素濃度,二酸化炭素濃度との関係を開示しているが、継手部材と異なる平板上での溶け込み結果である。継手部材の両面溶け込み溶接については全く実施されていない。 In the case of Patent Document 4, a mixed gas of an oxidizing gas (O 2 gas or CO 2 gas) and an inert gas (Ar gas) is caused to flow through the arc welding portion to increase the penetration depth. The penetration accelerator is not used. Moreover, although the relationship between a penetration depth, oxygen concentration, and a carbon dioxide concentration is disclosed, it is a penetration result on a flat plate different from the joint member. The double-sided penetration welding of the joint member is not performed at all.

特許文献5記載のサブマージアーク溶接の場合には、大量のフラックス剤を供給使用し、このフラックス剤の中で溶接ワイヤにアークを発生させ、それを埋もれさせてアーク溶接を行うもので、非消耗電極方式のアーク溶接とは全く異なる溶接法である。   In the case of submerged arc welding described in Patent Document 5, a large amount of flux agent is supplied and used, an arc is generated in the welding wire in this flux agent, and arc welding is performed by burying it. This is a welding method completely different from the electrode type arc welding.

一方、特許文献6は、筆者らが発明出願した溶接方法及びその溶接構造物であるが、溶け込み促進剤の塗布後に溶接した溶融底部に微小なポロシティ(ブローホール)が発生することがあり、また、溶け込み形状の曲りや片寄りによる溶け不足が発生することがあった。この発生原因を調査した結果、塗布時に溶け込み促進剤の一部が継手部のギャップ内に入り込み、溶接時に溶融池内から浮上できずに溶融低部又はその近傍に閉じ込められて固着することが判明した。また、溶け込み促進剤の塗布膜厚が溶接左右方向に大きく変化していると、溶接時に溶融池が幅広及び溶け込みが浅くなると同時に膜厚の薄い側に片寄って曲ることが判明した。   On the other hand, Patent Document 6 is a welding method and a welded structure that the inventors have applied for an invention, and microporosity (blowhole) may be generated in the welded bottom portion after application of the penetration accelerator, In some cases, the melted shape was insufficiently melted due to bending or misalignment. As a result of investigating the cause of this occurrence, it was found that a part of the penetration accelerator penetrates into the gap of the joint part during application, and cannot be lifted from the molten pool during welding and is trapped and fixed in the molten low part or in the vicinity thereof. . Further, it has been found that when the coating thickness of the penetration accelerator changes greatly in the left-right direction of the welding, the weld pool is widened and the penetration becomes shallower at the time of welding, and at the same time, the weld pool bends toward the thinner side.

このため、有効な防止対策を種々検討した。その結果、上記ポロシティ発生防止に最も有効な対策は、溶け込み促進剤を塗布する以前に継手部の表面又は裏面又は表裏両面を小エネルギの仮付け条件で溶融封止して、塗布時に溶け込み促進剤がギャップ内に入り込まないようにすることであり、塗布前に施工する前記溶融封止により、塗布部の溶接時に溶け込み促進剤の巻き込みによるポロシティが発生しないことを確認した。また、上記溶け不足防止に最も有効な対策は、前記溶け込み促進剤を継手部の溶接線方向に1回以上往復塗布して溶接線左右方向の膜厚を20μm以上形成することであり、溶接部に片寄りや曲りのないほぼ左右対称形状の深い溶け込みが形成することを確認した。   For this reason, various effective preventive measures were examined. As a result, the most effective measure to prevent the occurrence of porosity is to melt and seal the surface or back or both sides of the joint part under low energy temporary conditions before applying the penetration accelerator, It was confirmed that no porosity was generated by the inclusion of the penetration accelerator during welding of the coated portion by the melt sealing applied before coating. Further, the most effective measure for preventing the melting shortage is to form the film thickness of 20 μm or more in the left and right direction of the weld line by applying the penetration accelerator once or more times in the weld line direction of the joint part. It was confirmed that a deep penetration of almost symmetrical shape with no deviation or bending was formed.

特開2000−102890号公報JP 2000-102890 A 特開2002−120088号公報Japanese Patent Laid-Open No. 2002-120088 特開2001−219274号公報JP 2001-219274 A 特開2004−298963号公報JP 2004-298963 A 特開2001−239394号公報JP 2001-239394 A 特開2006−231359号公報JP 2006-231359 A

本発明は、開先加工を施さない略I型継手又は略T型継手のままで、裏ビード形成の裏波溶接を行う必要がなく、溶け込み促進剤塗布前の溶融封止及び塗布後の表裏両面溶接によってブローホールや溶け不足のない深い溶け込みの健全な溶融接合部を得るのに有効な両面溶接方法を提供することを目的とする。   In the present invention, it is not necessary to carry out reverse wave welding for forming a back bead while maintaining a substantially I-shaped joint or a substantially T-shaped joint that is not subjected to groove processing, and melt sealing before application of a penetration accelerator and front and back after application. An object of the present invention is to provide a double-sided welding method effective for obtaining a sound fusion joint having a deep penetration without blowholes or lack of melting by double-sided welding.

本発明は、上記目的を達成するために、ステンレス鋼材又は低炭素鋼材からなる略I型継手部又は略T型継手部の表面側及び裏面側に溶け込み促進剤を塗布して非消耗電極方式のアーク溶接を施工する両面溶接方法において、前記溶け込み促進剤を塗布する以前に、前記継手部の表面又は裏面又は表裏両面を小エネルギの仮付け条件で溶融封止しておくことを特徴とする両面溶接方法を提案する。   In order to achieve the above-mentioned object, the present invention applies a non-consumable electrode method by applying a melting accelerator to the front side and the back side of a substantially I-type joint part or a substantially T-type joint part made of stainless steel material or low-carbon steel material. In the double-sided welding method for performing arc welding, before applying the penetration accelerator, both surfaces of the joint part are melt-sealed under low energy temporary attachment conditions on the front surface, back surface, or both front and back surfaces. We propose a welding method.

また、本発明は、上記目的を達成するために、ステンレス鋼材又は低炭素鋼材からなる略I型継手部又は略T型継手部の表面側及び裏面側に溶け込み促進剤を塗布して非消耗電極方式のアーク溶接を施工する両面溶接方法において、前記溶け込み促進剤を塗布する以前に前記継手部の表面又は表裏両面を小エネルギの仮付け条件で溶融封止し、前記溶融封止後の前記継手部の表面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合し、その後に、反対側の残り継手部の裏面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合することを特徴とする両面溶接方法を提案する。   In order to achieve the above object, the present invention is a non-consumable electrode by applying a penetration accelerator to the front side and the back side of a substantially I-type joint part or a substantially T-type joint part made of stainless steel or low carbon steel material. In the double-sided welding method in which arc welding is performed, the surface of the joint part or both front and back surfaces are melt-sealed under a low energy temporary condition before applying the penetration accelerator, and the joint after the melt-sealing After applying the penetration accelerator to the surface side of the part, after melting and joining to the penetration depth of a specific range by the construction of the arc welding, then after applying the penetration accelerator to the back side of the remaining joint part on the opposite side A double-sided welding method is proposed, characterized by performing melt welding to a specific range of penetration depth by the arc welding.

また、本発明は、上記目的を達成するために、ステンレス鋼材又は低炭素鋼材からなる略I型継手部又は略T型継手部の表面側及び裏面側に溶け込み促進剤を塗布して非消耗電極方式のアーク溶接を施工する両面溶接方法において、前記溶け込み促進剤を塗布する以前に前記継手部の表面又は表裏両面を小エネルギの仮付け条件で溶融封止する封止工程と、前記溶融封止後の前記継手部の表面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合する第1の溶接工程と、反対側の残り継手部の裏面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合する第2の溶接工程とを備えることを特徴とする両面溶接方法を提案する。   In order to achieve the above object, the present invention is a non-consumable electrode by applying a penetration accelerator to the front side and the back side of a substantially I-type joint part or a substantially T-type joint part made of stainless steel or low carbon steel material. In a double-sided welding method for performing arc welding of a method, a sealing step of melt-sealing the surface of the joint part or both front and back surfaces with a low energy temporary condition before applying the penetration accelerator, and the melt-sealing A first welding step in which the welding accelerator is applied to the surface side of the subsequent joint part and then melt-bonded to a specific range of penetration depth by the arc welding, and the back side of the remaining joint part on the opposite side The present invention proposes a double-sided welding method comprising: a second welding step in which a melt accelerator is applied and then melt-bonded to a specific range of penetration depth by arc welding.

特に、前記継手部はギャップや段差又はこのギャップ及び段差の両方が不規則に形成されており、前記溶融封止は少なくとも前記ギャップの形成部分及びこの近傍に施し又は特定箇所の長さ部分又は溶接線の全長部分に施すとよい。   In particular, the joint portion has gaps or steps, or both of the gaps and steps are irregularly formed, and the fusion sealing is performed at least in the gap forming portion and in the vicinity thereof, or a length portion of a specific portion or welding. It is good to apply to the entire length of the line.

また、前記溶け込み促進剤は少なくとも継手部の溶接線方向に1回以上往復塗布して溶接線左右方向の膜厚を20μm以上形成するとよい。   The penetration accelerator may be applied at least once in the weld line direction of the joint portion to form a film thickness of 20 μm or more in the left-right direction of the weld line.

すなわち、本発明の両面溶接方法では、前記溶け込み促進剤を塗布する前に、前記継手部の表面又は裏面又は表裏両面を小エネルギの仮付け条件で溶融封止しておくことにより、塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時のブローホール(ポロシティ)発生要因をなくすことができる。また、前記溶融封止後の前記継手部の表面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合することにより、継手の裏側まで溶かすことなく、ポロシティのない健全な溶け込み部を特定深さまで形成することができる。その後に、反対側の残り継手部の裏面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合することより、表裏両面から各々溶融接合した先端部分同士を逆さま方向に重なり合わせることができる。また、手間のかかる開先加工を施さない略I型突合せ継手や略T型継手のままであっても、裏ビード形成の裏波溶接を行う必要がなく、前記両面溶接によって確実に溶融接合でき、ポロシティのない健全な深い溶け込みの溶接断面を得ることができる。さらに、溶け込みが浅い従来のTIG溶接では不可能であった深い両面溶け込み溶接が可能になり、熱変形の低減や溶接パス数の削減を図ることができる。   That is, in the double-sided welding method of the present invention, before applying the penetration accelerator, by melting and sealing the front surface or back surface or both front and back surfaces of the joint part under low energy temporary attachment conditions, The accelerator does not enter the gap, and the cause of blowhole (porosity) generation during welding can be eliminated. In addition, after applying the penetration accelerator to the surface side of the joint after the melt sealing, the porosity is not melted to the back side of the joint by melting and joining to a specific range of penetration depth by the arc welding. It is possible to form a sound penetration portion with no specific depth. After that, by applying the penetration accelerator on the back side of the remaining joint portion on the opposite side and then melt-bonding to a specific range of penetration depth by the arc welding construction, the tip portions melt-bonded from both the front and back sides, respectively. Can be overlapped upside down. Moreover, even if it is a substantially I-type butt joint or a substantially T-shaped joint that does not require time-consuming groove processing, there is no need to perform back wave welding for forming a back bead, and it can be reliably melt-bonded by the double-sided welding. It is possible to obtain a welded section with a sound deep penetration without porosity. Furthermore, deep double-sided penetration welding, which was impossible with conventional TIG welding with shallow penetration, is possible, and thermal deformation can be reduced and the number of welding passes can be reduced.

前記アーク溶接は、下向き姿勢又は立向き姿勢又は横向き姿勢で各々施工することにより、前記溶け込み促進剤に含有している金属酸化物の加熱反応(例えば、金属酸化物から酸素が解離し、その解離した酸素の一部が溶融金属内に溶解する化学反応)によってアーク直下の溶融金属(溶融プール)の対流が深さ方向に変化して溶融促進する結果、溶け込み深さが深くなる。この溶け込み深さは、溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚や溶接姿勢に対応した所定範囲の溶け込み深さになるように適正な溶接入熱条件を事前に決めればよい。なお、前記溶け込み促進剤は、例えばTiO2,SiO2,Cr23などの金属酸化物の粉末と溶媒を混合したフラックス溶剤であり、既に公知技術の市販品を使用すればよい。 The arc welding is performed in a downward posture, a vertical posture, or a horizontal posture, so that the heat reaction of the metal oxide contained in the penetration accelerator (for example, oxygen dissociates from the metal oxide and the dissociation thereof). As a result of the convection of the molten metal (molten pool) immediately below the arc changing in the depth direction and promoting the melting by a chemical reaction in which part of the oxygen dissolved in the molten metal), the penetration depth increases. This penetration depth can be adjusted depending on the welding heat input conditions such as welding current and welding speed, and it is possible to adjust the penetration depth appropriately so that the penetration depth is within a predetermined range corresponding to the plate thickness and welding position of the joint member. What is necessary is just to determine a thermal condition in advance. The penetration accelerator is a flux solvent obtained by mixing a metal oxide powder such as TiO 2 , SiO 2 , Cr 2 O 3 and a solvent, and a commercially available product that is already known may be used.

前記溶け込み促進剤を塗布する以前に前記継手部の表面又は表裏両面を小エネルギの仮付け条件で溶融封止する封止工程により、上述したように、塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。また、前記溶融封止後の前記継手部の表面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合する第1の溶接工程により、上述したように、継手の裏側まで溶かすことなく、ポロシティのない健全な溶け込み部を特定深さまで形成することができる。さらに、反対側の残り継手部の裏面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さまで溶融接合する第2の溶接工程により、上述したように、表裏両面から各々溶融接合した先端部分同士を逆さま方向に重なり合わせることができる。また、手間のかかる開先加工を施さない略I型突合せ継手や略T型継手のままであっても、裏ビード形成の裏波溶接を行う必要がなく、前記両面溶接によって確実に溶融接合でき、ポロシティのない健全な深い溶け込みの溶接断面を得ることができる。   Before applying the penetration accelerator, as described above, the penetration accelerator does not enter the gap at the time of application by the sealing process of melting and sealing the surface or both sides of the joint part under low energy temporary attachment conditions. The cause of porosity generation during welding can be eliminated. In addition, as described above, by the first welding step of melting and joining to a specific range of penetration depth by applying the arc welding after applying the penetration accelerator on the surface side of the joint after the fusion sealing, Without melting to the back side of the joint, a sound penetration portion without porosity can be formed to a specific depth. Furthermore, after applying the penetration accelerator to the back side of the remaining joint portion on the opposite side, after the second welding process of melting and joining to the penetration depth in a specific range by the arc welding, as described above, from both the front and back sides The respective melt bonded end portions can be overlapped in the upside down direction. Moreover, even if it is a substantially I-type butt joint or a substantially T-shaped joint that does not require time-consuming groove processing, there is no need to perform back wave welding for forming a back bead, and it can be reliably melt-bonded by the double-sided welding. It is possible to obtain a welded section with a sound deep penetration without porosity.

前記継手部はギャップや段差又はこのギャップ及び段差の両方が不規則に形成されており、前記溶融封止は、少なくとも前記ギャップの形成部分及びこの近傍に施し又は特定箇所の長さ部分又は溶接線の全長部分に施すことにより、上述したように、塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。   The joint portion has gaps or steps, or both of the gaps and steps are irregularly formed, and the fusion sealing is performed at least in the gap forming portion and in the vicinity thereof, or a length portion of a specific portion or a weld line. By applying to the full length portion, as described above, the penetration accelerator does not enter the gap at the time of application, and the porosity generation factor at the time of welding can be eliminated.

前記溶け込み促進剤は少なくとも継手部の溶接線方向に1回以上往復塗布して溶接線左右方向の膜厚を20μm以上形成することにより、溶接時に深い溶け込みが得られると同時に、片寄りや曲りのないほぼ左右対称形状の溶け込み断面を得ることができる。   The penetration accelerator is reciprocally applied at least once in the weld line direction of the joint portion to form a film thickness of 20 μm or more in the left-right direction of the weld line. It is possible to obtain a penetration section having almost no symmetrical shape.

以上述べたように、本発明の両面溶接方法によれば、手間のかかる開先加工を施さない略I型突合せ継手や略T型継手のままであっても、裏ビード形成の裏波溶接を行う必要がなく、溶け込み促進剤塗布前の溶融封止及び塗布後の表裏両面溶接によってポロシティや溶け不足のない深い溶け込みの健全な溶融接合部を得ることができる。また、溶接部材継手の組立作業が容易になると共に、従来の溶接施工と比べて熱変形の低減や溶接パス数の削減が図れ、大幅な工数低減及びコスト低減が可能となる。   As described above, according to the double-sided welding method of the present invention, the back bead forming back wave welding can be performed even when the substantially I-type butt joint or the substantially T-shaped joint is not subjected to laborious groove processing. It is not necessary to carry out, and a sound fusion joint with deep penetration without porosity and lack of melting can be obtained by fusion sealing before application of the penetration accelerator and front and back double-side welding after application. Further, the assembly work of the welded member joint is facilitated, and thermal deformation can be reduced and the number of welding passes can be reduced as compared with the conventional welding construction, so that the man-hour and cost can be greatly reduced.

以下、本発明の内容について、図1〜図8の実施例を用いて具体的に説明する。   Hereinafter, the contents of the present invention will be specifically described with reference to the embodiments shown in FIGS.

図1は、本発明の両面溶接方法に係わるI型継手の溶接手順概要及び溶け込み形状の一実施例を示す説明図である。図1(1)に示すように、継手部材1a,1b,2a,2bは、板厚Tが4mm以上16mm以下のステンレス鋼又は低炭素鋼であり、例えば長尺の円筒管を製造するために、1枚の平板を円筒管状に曲げ成形加工して平板端面同士を互いに突合せてI型継手部3を形成する。或いは2枚の平板の端面同士を突合せてI型継手部3を形成することもできる。このI型継手部3にはギャップGや段差b(目違いとも称す)が不規則に形成されている。突合せ精度を緩和することによって、継手合わせの作業が容易なり、組立時間を大幅に短縮することができる。なお、板厚が4mmより薄過ぎると、溶け込み深さを所定深さに止めることが難しく、裏側まで溶けてしまう可能性があるので好ましくない。一方、板厚が16mmより厚過ぎると、350Aを越える大電流及び35kJ/cmを越える大入熱量が必要になる。   FIG. 1 is an explanatory view showing an example of a welding procedure outline and penetration shape of an I-type joint according to the double-sided welding method of the present invention. As shown in FIG. 1 (1), the joint members 1a, 1b, 2a, 2b are stainless steel or low carbon steel having a plate thickness T of 4 mm or more and 16 mm or less. For example, in order to manufacture a long cylindrical tube One flat plate is bent into a cylindrical tube and the flat plate end surfaces are butted together to form the I-shaped joint portion 3. Alternatively, the I-type joint portion 3 can be formed by abutting the end faces of two flat plates. The I-shaped joint 3 is irregularly formed with gaps G and steps b (also referred to as misinterpretations). By relieving the butt accuracy, the joint matching operation becomes easy, and the assembly time can be greatly shortened. If the plate thickness is too thin, it is not preferable because the depth of penetration is difficult to stop at a predetermined depth and the back side may melt. On the other hand, if the plate thickness is more than 16 mm, a large current exceeding 350 A and a large heat input exceeding 35 kJ / cm are required.

図1(2)に示すように、溶け込み促進剤4a(金属酸化物入りのフラック溶剤)を塗布する以前に、ギャップG部分及びその近傍の継手表面を小エネルギの仮付け条件で溶融封止(溶融封止部17a)する。溶融封止部17aの溶け込み深さdは1mm以下又は1mm程度あればよい。この溶融封止の施工20によって塗布時に溶け込み促進剤4aがギャップG内に入り込まず、溶接時のブローホール(ポロシティ)発生要因をなくすことができる。前記溶融封止の施工20は、少なくとも前記ギャップGの形成部分及びこの近傍に施し又は特定箇所の長さ部分又は溶接線の全長部分に施すとよい。前記溶融封止によって溶接線(溶接位置)が分かりにくい場合には、溶接すべき溶接線から少し離れた位置に溶接線と平行な目視線(けがき線)を予めけがいておくとよい。このけがき線を目印に溶接時のトーチ位置決めや溶接線位置の倣い調整を容易に行うことができる。   As shown in FIG. 1 (2), before applying the penetration accelerator 4a (a metal solvent-containing flack solvent), the gap G and the joint surface in the vicinity thereof are melt-sealed under low energy tacking conditions (melting). Sealing part 17a). The penetration depth d of the melt-sealed portion 17a may be 1 mm or less or about 1 mm. The melt-sealing construction 20 prevents the penetration accelerator 4a from entering the gap G at the time of application, and eliminates the cause of blow hole (porosity) generation during welding. The fusion sealing operation 20 may be performed at least in the gap G forming portion and in the vicinity thereof, or in the length portion of the specific portion or the entire length portion of the weld line. When the weld line (welding position) is difficult to understand due to the fusion sealing, a visual line (scribing line) parallel to the weld line may be scratched in advance at a position slightly away from the weld line to be welded. Using this marking line as a mark, it is possible to easily perform positioning of the torch during welding and copying adjustment of the position of the welding line.

図1(3)に示すように、上記溶融封止20の終了後に、溶融封止部17aの表面及びI型継手部3の表面側に溶け込み促進剤4aを塗布21する。この溶け込み促進剤4aは、例えばTiO2,SiO2,Cr23などの金属酸化物の粉末と溶媒を混合したフラックス溶剤であり、既に公知技術の市販品を使用して塗布すればよい。特に、刷毛などで溶け込み促進剤4aを塗布する場合には、I型継手部3の溶接線方向に1回以上往復塗布して溶接線方向の塗布膜厚を20μm以上形成するとよい。I型継手部3のギャップG内には事前の溶融封止によって溶け込み促進剤4aが入り込まない。このため、溶接時に溶け込み促進剤の巻き込みによるポロシティは発生しなくなる。 As shown in FIG. 1 (3), after the melt sealing 20 is completed, a melt accelerator 4 a is applied 21 to the surface of the melt sealing portion 17 a and the surface side of the I-type joint portion 3. The penetration accelerator 4a is a flux solvent obtained by mixing a metal oxide powder such as TiO 2 , SiO 2 , Cr 2 O 3 and a solvent, and may be applied using a commercially available product already known in the art. In particular, when the penetration accelerator 4a is applied with a brush or the like, the coating thickness in the weld line direction is preferably 20 μm or more by reciprocating at least once in the weld line direction of the I-type joint portion 3. The penetration accelerator 4a does not enter the gap G of the I-type joint portion 3 by prior melt sealing. For this reason, the porosity by the penetration of a penetration accelerator during welding does not occur.

このようにして塗布した溶け込み促進剤4aが乾燥した後に、図1(4)に示すように、アーク溶接によって特定範囲の溶け込み深さH2まで溶融接合22(第1の溶接工程)を施工する。非消耗性のタングステンを電極5に使用するアーク溶接であり、特定範囲の溶け込み深さH1まで溶融接合するようにしている。この溶融接合22により、溶け込み促進剤4aに含有している金属酸化物の加熱反応(例えば、金属酸化物から酸素が解離し、その解離した酸素の一部が溶融金属内に溶解する化学反応)によってアーク直下の溶融プール8aの対流が内向き方向及び深さ方向に変化して溶融を促進する。その結果、従来のTIG溶接結果と比べて、溶け込み深さが約2〜3倍深く、ビード幅が狭い溶融接合部8bを得ることができる。また、溶融プール8aに片寄りや曲りのないほぼ左右対称形状の深い溶け込みとポロシティのない健全な品質を得ることができる。   After the penetration accelerator 4a applied in this manner is dried, as shown in FIG. 1 (4), the melt bonding 22 (first welding process) is applied to the penetration depth H2 in a specific range by arc welding. This is arc welding using non-consumable tungsten for the electrode 5, and is melt-bonded to a specific range of penetration depth H1. By this fusion bonding 22, a heating reaction of the metal oxide contained in the penetration accelerator 4a (for example, a chemical reaction in which oxygen is dissociated from the metal oxide and a part of the dissociated oxygen is dissolved in the molten metal). As a result, the convection of the molten pool 8a directly under the arc changes in the inward direction and the depth direction to promote melting. As a result, compared to the conventional TIG welding result, it is possible to obtain a melt-bonded portion 8b having a penetration depth that is about two to three times deeper and a narrow bead width. In addition, it is possible to obtain a sound quality with no deep porosity and no porosity in the melt pool 8a having a substantially bilaterally symmetric shape without any deviation or bending.

溶融接合部8bの溶け込み深さH1は、板厚Tの1/2以上9/10以下の範囲に形成するとよい。継手部材の裏面1b,2bまで溶かすことなく、溶け込み深さH1まで溶融した溶融接合部8b及び余盛りビードのある溶接表面を確実に得ることができる。なお、溶け込み深さH1が板厚Tの1/2より小さ過ぎると、板厚中央まで溶けていないことになり、反対側(裏面側)の残り継手部3bを溶融接合した時に、接合不足(溶け不足)が発生する可能性があるので好ましくない。反対に、溶け込み深さH1が板厚Tの9/10より大き過ぎると、裏側まで溶ける可能性があるので好ましくない。I型継手部3に大きな隙間(ギャップG)があったりすると、裏側まで溶けてしまい、表側のビード形状を悪化させることがある。この溶け込み深さH1は、溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚Tや溶接姿勢に対応した所定範囲の溶け込み深さ(0.5×T≦H1≦0.9×T)になるように適正な溶接条件を事前に決めて、アーク溶接による溶融接合22を施工するとよい。   The penetration depth H1 of the melt-bonded portion 8b is preferably formed in the range of 1/2 or more and 9/10 or less of the plate thickness T. Without melting up to the back surfaces 1b and 2b of the joint member, it is possible to reliably obtain the welded surface having the melted joint portion 8b and the surplus bead melted to the penetration depth H1. If the penetration depth H1 is too smaller than ½ of the plate thickness T, it has not melted to the center of the plate thickness, and when the remaining joint portion 3b on the opposite side (back side) is melt-bonded, the bonding is insufficient ( This is not preferable because there is a possibility that melting will be insufficient. On the other hand, if the penetration depth H1 is too larger than 9/10 of the plate thickness T, there is a possibility of melting to the back side, which is not preferable. If there is a large gap (gap G) in the I-type joint 3, it melts to the back side, which may deteriorate the bead shape on the front side. The penetration depth H1 can be adjusted according to the welding heat input conditions such as welding current and welding speed, and the penetration depth (0.5 × T) within a predetermined range corresponding to the thickness T and welding posture of the joint member. It is advisable to determine the appropriate welding conditions in advance so that ≦ H1 ≦ 0.9 × T), and to perform the melt bonding 22 by arc welding.

なお、この溶融接合22によって形成された溶接ビード表面の一部にアンダーカットや凹みが生じていた場合には、溶接不良部分及びこの近傍をワイヤ送りのアークで再溶融して溶け込みの浅い余盛りビードを形成することにより、前記アンダーカットや凹みが補修され、健全な溶接部分と類似の品質に改善することができる。   In addition, when an undercut or a dent has occurred on a part of the surface of the weld bead formed by the melt bonding 22, the welding failure portion and the vicinity thereof are remelted by a wire feed arc and the superposition of shallow penetration is obtained. By forming the bead, the undercut and the dent are repaired, and the quality can be improved to be similar to a sound welded portion.

溶接後の裏側は、溶接時の熱収縮によって初期のギャップGがない状態に成り易い。裏側の継手部にギャップGがない状態であれば、溶融封止の工程を省略することができ、継手裏面に溶け込み促進剤を塗布する工程25に進むとよい。裏側の継手部にギャップGがあれば、図1(2)に示したように、ギャップG部分及びこの近傍の継手表面を溶融封止するとよい。また、下向き姿勢に変更する場合は継手部材1a,1b,2a,2bを事前に裏返し反転すればよい。   The back side after welding tends to be in a state where there is no initial gap G due to thermal shrinkage during welding. If there is no gap G in the joint portion on the back side, the step of melting and sealing can be omitted, and it is preferable to proceed to step 25 of applying a penetration accelerator to the back surface of the joint. If there is a gap G in the joint portion on the back side, the gap G portion and the joint surface in the vicinity thereof may be melt-sealed as shown in FIG. Moreover, what is necessary is just to invert and reverse joint member 1a, 1b, 2a, 2b beforehand, when changing to a downward attitude | position.

図1(5)に示すように、残り継手部の裏面側に溶け込み促進剤4bを塗布25する。刷毛などで溶け込み促進剤4bを塗布する場合には、上述したように、I型継手部3の溶接線方向に1回以上往復塗布して溶接線方向の塗布膜厚を20μm以上形成するとよい。このようにして塗布した溶け込み促進剤4bが乾燥した後に、図1(6)に示すように、アーク溶接によって特定範囲の溶け込み深さH2まで溶融接合26(第2の溶接工程)を施工する。この溶融接合26により、図1(6)(7)に示すように、残り継手部3bの裏面側に形成した溶融接合部9bの先端部分と、反対側の継手表面側に形成済みの溶融接合部8bの先端部分とを逆さま方向に重なり合わせることができる。溶け不足やポロシティなど欠陥のない溶融接合部9bが得られる。   As shown in FIG. 1 (5), a melt accelerator 4b is applied 25 to the back side of the remaining joint. When applying the penetration accelerator 4b with a brush or the like, as described above, it is preferable that the coating thickness in the weld line direction is 20 μm or more by reciprocating at least once in the weld line direction of the I-type joint portion 3. After the penetration accelerator 4b applied in this manner is dried, as shown in FIG. 1 (6), the melted joint 26 (second welding process) is applied to the penetration depth H2 in a specific range by arc welding. As shown in FIGS. 1 (6) and (7), the melt joint 26 is formed on the tip side of the melt joint portion 9b formed on the back surface side of the remaining joint portion 3b and on the joint surface side on the opposite side. The tip portion of the portion 8b can be overlapped in the upside down direction. A melt-bonded portion 9b having no defects such as insufficient melting and porosity can be obtained.

裏面側の溶融接合部9bの溶け込み深さH2は、表側の溶け込み深さH1と同程度であり、板厚Tの1/2以上9/10以下の範囲に形成するとよい。溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚Tや溶接姿勢に対応した所定範囲の溶け込み深さ(0.5×T≦H2≦0.9×T)になるように適正な溶接条件を事前に決めて、ワイヤ送りのアーク溶接による溶融接合26を実施するとよい。また、ワイヤ送りなしのアーク溶接を行うこともできる。   The penetration depth H2 of the melt-bonding portion 9b on the back surface side is approximately the same as the penetration depth H1 on the front side, and is preferably formed in a range of 1/2 or more and 9/10 or less of the plate thickness T. The welding depth can be adjusted according to the welding heat input conditions such as welding current and welding speed, and the penetration depth (0.5 × T ≦ H2 ≦ 0.9 ×) corresponding to the plate thickness T and welding position of the joint member. It is preferable to determine the appropriate welding conditions in advance so as to satisfy T) and to perform the melt bonding 26 by wire-feed arc welding. Moreover, arc welding without wire feeding can also be performed.

図2は、溶け込み促進剤の継手ギャップ部への浸入及びポロシティの溶融接合部への発生を示す説明図である。図2(1)に示すように、I型継手部3には、ギャップGや段差bが不規則に形成されている。ギャップG部分の継手表面を事前に溶融封止しない状態のままで、図2(2)に示すように、溶け込み促進剤(金属酸化物入りのフラックス溶剤)を塗布すると、溶け込み促進剤の一部がギャップG部分に入り込む。この状態でアーク溶接による溶融接合を施工22すると、図2(3)に示すように、ギャップC低部に残っていた溶け込み促進剤が溶融池内から浮上できずに溶融低部又はその近傍に閉じ込めらて固着し、溶け込み促進剤の巻き込みによる欠陥(ポロシティ34)が溶接内部に発生する。このような溶接欠陥が発生した場合には、溶接部の品質検査で規定されているポロシティの大きさや個数を超えると不合格に至り、前記欠陥部分及びその近傍を補修溶接しなければならない。ポロシティ34の発生を未然防止するためには、発生要因をなくすことであり、図1で説明したように、溶け込み促進剤を塗布する以前に継手ギャップG部分及びこの近傍を溶融封止するとよい。この溶融封止によって、塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時に溶け込み促進剤の巻き込みによるポロシティ34発生を防止することができる。   FIG. 2 is an explanatory view showing the penetration of the penetration accelerator into the joint gap part and the generation of the porosity in the molten joint part. As shown in FIG. 2 (1), gaps G and steps b are irregularly formed in the I-type joint 3. When a penetration accelerator (a flux solvent containing a metal oxide) is applied as shown in FIG. 2 (2) while the joint surface of the gap G is not melt-sealed in advance, a part of the penetration accelerator is removed. Enter the gap G. When melt joining by arc welding is performed 22 in this state, as shown in FIG. 2 (3), the penetration accelerator remaining in the gap C lower part cannot be lifted from the molten pool and is confined in the molten lower part or its vicinity. Then, the defects (porosity 34) due to the penetration of the penetration accelerator are generated inside the weld. When such a welding defect occurs, if the size and number of porosity defined by the quality inspection of the welded part are exceeded, it will be rejected and the defect part and its vicinity must be repaired and welded. In order to prevent the occurrence of the porosity 34, the generation factor is eliminated. As described with reference to FIG. 1, the joint gap G portion and its vicinity may be melt-sealed before applying the penetration accelerator. By this fusion sealing, the penetration accelerator does not enter the gap during application, and generation of porosity 34 due to the penetration of the penetration accelerator during welding can be prevented.

図3は、溶け込み促進剤の塗布膜厚変化と溶け込みの形状変化を示す説明図である。実験の結果、溶接線35方向に塗布した溶け込み促進剤4aの膜厚が大きく変化していると、溶け込み形状(深さ,ビード幅,曲り)が変化することが判明した。なお、溶接線35左右の膜厚変化は、溶け込み促進剤の塗布及び乾燥後に溶接線35に沿って片方の塗布部を薄く削り取ることによって作ることができる。溶接線左側の塗布膜厚が薄い場合は、図3(1)に示すように、アーク溶接時に溶融プール8aが幅広く及び溶け込みHL が浅く(HL <H1)なると同時に、膜厚の薄い左側に片寄って曲る。反対に、溶接線右側の塗布膜厚が薄い場合は、図3(3)に示すように、アーク溶接時に溶融プール8aが幅広く及び溶け込みHR が浅く(HR <H1)なると同時に、膜厚の薄い右側に片寄って曲る。この理由については、溶接線方向の塗布膜厚が大きく変化していると、溶接幅方向(外向き方向)の対流が生じて深さ方向(内向き方向)の対流を乱し、溶融プールが左右アンバランスな状態に至り、膜厚の薄い側に広がって片寄り、溶け込みが歪で浅い形状になるものと考えられる。曲り形状の溶け込み深さHL,HRが浅く、板厚Tの半分以下に成り易い。継手裏側の溶接でも上記の浅い溶け込み及び曲りが生じると、板厚中央部に溶け不足の欠陥が発生して不合格に至る可能性が高いので好ましくない。 FIG. 3 is an explanatory diagram showing changes in the coating thickness of the penetration accelerator and changes in the shape of the penetration. As a result of the experiment, it was found that the penetration shape (depth, bead width, bending) changes when the film thickness of the penetration accelerator 4a applied in the direction of the weld line 35 changes greatly. The film thickness change on the left and right of the weld line 35 can be made by thinly scraping off one application portion along the weld line 35 after application and drying of the penetration accelerator. When the coating film thickness on the left side of the weld line is thin, as shown in FIG. 3 (1), the melt pool 8a is wide and the penetration H L becomes shallow (H L <H1) at the same time as arc welding. Bend away. On the other hand, when the coating film thickness on the right side of the weld line is thin, as shown in FIG. 3 (3), at the time of arc welding, the molten pool 8a is wide and the penetration H R becomes shallow (H R <H1). Gently lean to the right side of the. For this reason, if the coating film thickness in the weld line direction changes significantly, convection in the weld width direction (outward direction) occurs, disturbing convection in the depth direction (inward direction), and the molten pool It is considered that the left and right unbalanced state is reached, spreads to the thin film side, is offset, and melts into a shallow shape due to distortion. The penetration depths H L and H R of the bent shape are shallow and tend to be less than half of the plate thickness T. If the above-mentioned shallow penetration and bending occur even in the welding on the back side of the joint, there is a high possibility that a defect insufficiently melted in the central portion of the plate thickness will lead to a failure.

これに対して、塗布膜厚が左右ほぼ均等な場合には、図3(2)に示すように、溶融接合部に片寄りや曲りのないほぼ左右対称形状の深い溶け込みを得ることができる。また、継手裏側の溶接でも深い溶け込みが得られ、溶け不足のない健全な両面溶け込みの溶融接合部を確保することができる。   On the other hand, when the coating film thickness is substantially equal to the left and right, as shown in FIG. 3B, a deep penetration having a substantially bilaterally symmetric shape with no deviation or bending can be obtained at the melt bonded portion. Further, deep welding can be obtained even by welding on the back side of the joint, and a sound double-sided melt-bonded portion without lack of melting can be secured.

図4は、溶け込み促進剤の塗布膜厚と溶け込み深さ及びビード幅の関係を示す一実施例である。溶接試験は塗布膜厚の異なる試験片(板厚10.6〜12mm)を複数準備し、溶接電流280A、溶接速度が70mm/min 一定で行った。横軸は溶接線左右方向の塗布膜厚α(平均膜厚)であり、微小厚さ測定装置で測定した値である。縦軸は溶接部の溶け込み深さH1とビード幅wであり、溶接断面の拡大写真から測定した値である。塗布膜厚αが厚くなるに従って、溶け込み深さH1は増加し、ビード幅wは減少している。特に、塗布膜厚αが20μm以下の薄い領域では、溶け込み深さH1及びビードwの変化が大きくなっている。20μm以上の領域では、溶け込み深さH1及びビードwの変化が小さく、70μm以上の厚い領域の値とあまり変わらず、ほぼ飽和する状態になっている。溶け込み深さH1及びビードwは、溶接電流や溶接速度及び板厚の大きさによっても変化するが、溶け込み促進剤の塗布膜厚の及ぼす影響については、図4に示した実施例の特性と類似する特性になるものと考えられる。   FIG. 4 is an example showing the relationship between the coating thickness of the penetration accelerator, the penetration depth, and the bead width. In the welding test, a plurality of test pieces (plate thickness: 10.6 to 12 mm) having different coating thicknesses were prepared, and the welding current was 280 A and the welding speed was constant at 70 mm / min. The horizontal axis represents the coating film thickness α (average film thickness) in the left-right direction of the weld line, which is a value measured with a minute thickness measuring device. The vertical axis represents the penetration depth H1 and the bead width w of the weld, which are values measured from an enlarged photograph of the weld cross section. As the coating film thickness α increases, the penetration depth H1 increases and the bead width w decreases. In particular, in the thin region where the coating film thickness α is 20 μm or less, the changes in the penetration depth H1 and the bead w are large. In the region of 20 μm or more, the change in the penetration depth H1 and the bead w is small, and is almost the same as the value of the thick region of 70 μm or more. The penetration depth H1 and the bead w vary depending on the welding current, welding speed, and plate thickness, but the effect of the penetration accelerator on the coating thickness is similar to the characteristics of the embodiment shown in FIG. It is thought that it becomes the characteristic to do.

溶け込み促進剤の塗布膜厚αを20μm以上形成することにより、溶接時に深い溶け込みが得られると同時に、片寄りや曲りのないほぼ左右対称形状の溶け込み断面を得ることができる。溶け込み促進剤の塗布時に溶接線方向に1回以上往復塗布すれば、溶接線左右方向の膜厚を確実に20μm以上形成することができる。また、塗布回数を増加すれば、膜厚をさらに厚くでき、溶接時の溶け込み深さをより安定に得ることができる。   By forming the coating film thickness α of the penetration accelerator to be 20 μm or more, deep penetration can be obtained during welding, and at the same time, a substantially symmetric penetration cross section without deviation or bending can be obtained. If it is applied once or more in the weld line direction at the time of application of the penetration accelerator, the film thickness in the left-right direction of the weld line can be reliably formed to 20 μm or more. Moreover, if the frequency | count of application | coating is increased, a film thickness can be made still thicker and the penetration depth at the time of welding can be obtained more stably.

図5は、両面溶接の板厚と溶接電流及び裏側の溶け込み深さの関係を検討した結果の一実施例であり、図中には、下向き姿勢で両面溶接した板厚別(6,9,12,16mm)の断面写真と、溶け込み促進剤なしで両面溶接した9mm板の断面写真とを示している。9mm板のI型突合せ部を表裏両面から従来のTIG溶接(溶け込み促進剤なし溶接)を行った場合は、図5中に示した断面写真のように、溶け込み深さが浅い(例えば2mm程度)ため、板厚中央部分に接合不足が発生する結果になっている。これに対して、溶け込み促進剤を使用する本発明の両面溶接方法の場合には、図5に示したように、板厚T(4〜16mm)に対応した適正な溶接電流Iを出力させて特定範囲の溶け込み深さまで各々溶融接合することによって、開先加工なしの突合せ継手であっても、また、継手部にギャップや段差があったりなかったりする継手部材であっても、各板厚の中央部分又はこの近傍で確実に重ね合わせ接合でき、溶け不足やポロシティやアンダーカットのない品質良好な溶接断面を得ることができる。なお、図5中には、板厚16mmまでの断面写真を示したが、溶接電流が350Aより高い500A程度まで出力可能な溶接電源を使用して両面溶接を施工すれば、板厚20mm程度まで両面溶融接合が可能である。   FIG. 5 shows an example of the results of studying the relationship between the thickness of the double-sided welding, the welding current, and the penetration depth on the back side. In the figure, according to the thickness (6, 9, 12) , 16 mm) and a cross-sectional photograph of a 9 mm plate welded on both sides without a penetration accelerator. When conventional TIG welding (welding without penetration accelerator) is performed on both sides of the I-type butted portion of a 9 mm plate, the penetration depth is shallow (eg, about 2 mm) as shown in the cross-sectional photograph shown in FIG. As a result, insufficient bonding occurs in the central portion of the plate thickness. On the other hand, in the case of the double-sided welding method of the present invention using a penetration accelerator, an appropriate welding current I corresponding to the plate thickness T (4 to 16 mm) is output as shown in FIG. Even if it is a butt joint without groove processing or a joint member with or without a gap or a step in the joint by melting and joining each to a specific range of penetration depth, It is possible to surely overlap and bond at the central portion or in the vicinity thereof, and to obtain a welded section having good quality without melting, porosity and undercut. In addition, although the cross-sectional photograph to plate thickness 16mm was shown in FIG. 5, if double-sided welding is performed using the welding power source which can output welding current to about 500A higher than 350A, plate thickness will be about 20mm. Double-sided melt bonding is possible.

図6は、本発明の両面溶接方法に係わるI型継手の溶接手順概要及び溶け込み形状の他の一実施例を示す説明図である。図6(1)に示すように、溶け込み促進剤4aを塗布
21する以前に、ギャップG部分とその近傍又は特定箇所の長さ部分の継手表面を小エネルギの仮付け条件で溶融封止(溶融封止部17a)する。溶融封止部17aの溶け込み深さdは1mm以下又は1mm程度あればよい。この溶融封止の施工20によって塗布時に溶け込み促進剤4aがギャップG内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。
FIG. 6 is an explanatory view showing another embodiment of the welding procedure of the I-type joint and the penetration shape according to the double-sided welding method of the present invention. As shown in FIG. 6 (1), before applying the penetration accelerator 4a 21, the gap G portion and the joint surface in the vicinity thereof or the length portion of a specific portion are melt-sealed under a low energy tacking condition (melting) Sealing part 17a). The penetration depth d of the melt-sealed portion 17a may be 1 mm or less or about 1 mm. The melt sealing construction 20 prevents the penetration accelerator 4a from entering the gap G at the time of application, and eliminates the cause of porosity generation during welding.

図6(2)に示すように、上記溶融封止20の終了後に、溶融封止部17a,17b表面及び継手表面側に溶け込み促進剤4aを塗布21する。塗布時に溶接線方向の塗布膜厚を20μm以上形成するとよく、I型継手部3のギャップG内には事前の溶融封止によって溶け込み促進剤4aに入り込まない。このため、溶接時に溶け込み促進剤4aの巻き込みによるポロシティは発生しなくなる。   As shown in FIG. 6 (2), after the fusion sealing 20 is completed, the melt accelerator 4a is applied 21 to the surfaces of the fusion sealing portions 17a and 17b and the joint surface. The coating film thickness in the weld line direction is preferably formed to 20 μm or more at the time of application, and does not enter the penetration accelerator 4a into the gap G of the I-type joint portion 3 by prior melt sealing. For this reason, the porosity by the entrainment of the penetration accelerator 4a does not occur during welding.

前記溶け込み促進剤4aの乾燥後に、図6(3)に示すように、ワイヤ送りのアーク溶接による溶融接合22(第1の溶接工程)を施工し、特定範囲の溶け込み深さH1まで溶融接合する。表面側の溶融接合部8bの溶け込み深さH1は、板厚Tの1/2以上9/
10以下の範囲に形成するとよい。溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材1a,1b,2a,2bの板厚(4≦T≦16)や溶接姿勢に対応した特定範囲の溶け込み深さ(0.5×T≦H1≦0.9×T)になるように適正な溶接条件を設定して、ワイヤ送りのアーク溶接による溶融接合22を施工するとよい。
After the penetration accelerator 4a is dried, as shown in FIG. 6 (3), a melt bonding 22 (first welding process) is performed by wire-feed arc welding, and the fusion bonding is performed to a specific depth of penetration H1. . The penetration depth H1 of the melt-bonding portion 8b on the surface side is not less than 1/2 of the plate thickness T and 9 /
It is good to form in the range of 10 or less. It can be adjusted according to the welding heat input conditions such as welding current and welding speed, and the penetration depth within a specific range corresponding to the plate thickness (4 ≦ T ≦ 16) and welding position of the joint members 1a, 1b, 2a, 2b An appropriate welding condition is set so as to satisfy (0.5 × T ≦ H1 ≦ 0.9 × T), and the fusion bonding 22 by wire feed arc welding may be performed.

この溶融接合22により、継手部材の裏面1b,2bまで溶かすことなく、特定範囲の溶け込み深さH1まで確実に溶接できると共に、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がない健全な溶融接合部8bを得ることができる。特に、溶接ワイヤ7を溶接進行方向の後方からアーク溶接部分に送給することによって、広範囲の溶接電流(例えば100A〜350A)を出力させるアーク溶接であっても、アーク溶接部分の溶融プール8a内に溶接ワイヤ7がスムーズに入り、大きな溶滴にならずに安定して溶融することができる。また、I型継手部3にギャップGや段差bがあったりなかったりする継手部材であっても、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部8bを得ることができる。   By this fusion joining 22, it is possible to reliably weld to a penetration depth H1 within a specific range without melting up to the back surfaces 1b and 2b of the joint member, and a healthy fusion joining in which no porosity is generated due to the penetration of a penetration accelerator inside the weld. Part 8b can be obtained. In particular, even in the case of arc welding that outputs a wide range of welding current (for example, 100 A to 350 A) by feeding the welding wire 7 to the arc welding portion from the rear in the welding direction, the inside of the molten pool 8a of the arc welding portion. Thus, the welding wire 7 smoothly enters and can be stably melted without forming large droplets. Moreover, even if it is a joint member in which the gap G and the level | step difference b do not exist in the I-type joint part 3, the fusion | melting junction part 8b with an undercut and a dent and a surplus bead can be obtained on a welding surface.

前記溶融接合22の終了後に、図6(4)に示すように、継手部材1a,1b,2a,2bを裏返し反転24する。反転終了後に、図6(5)に示すように、残り継手部3bのギャップG部分及びその近傍又は特定箇所の長さ部分の継手裏面を小エネルギの仮付け条件で溶融封止24(溶融封止部17b)する。この溶融封止の施工24によって塗布時に溶け込み促進剤4bがギャップG内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。図6(6)に示すように、溶融封止24の終了後に、溶融封止部17b表面及び継手裏面側に溶け込み促進剤4bを塗布25する。   After the end of the melt bonding 22, the joint members 1a, 1b, 2a, 2b are turned upside down 24 as shown in FIG. 6 (4). After the reversal, as shown in FIG. 6 (5), the gap G portion of the remaining joint portion 3b and the back surface of the joint in the vicinity thereof or the length portion of the specific portion are melt-sealed 24 (melt-sealed) under the low energy temporary attachment condition. Stop part 17b). The melt-sealing construction 24 prevents the penetration accelerator 4b from entering the gap G at the time of application, thereby eliminating the cause of porosity generation during welding. As shown in FIG. 6 (6), after the fusion sealing 24 is completed, the melting accelerator 4 b is applied 25 to the surface of the fusion sealing portion 17 b and the back side of the joint.

そして、前記溶け込み促進剤4bの乾燥後に、図6(7)に示すように、ワイヤ送りのアーク溶接による溶融接合26(第2の溶接工程)を施工し、特定範囲の溶け込み深さ
H2まで溶融接合する。裏面側の溶融接合部9bの溶け込み深さH2は、板厚Tの1/2以上9/10以下の範囲に形成するとよい。この溶融接合26によって、図6(7)(8)に示すように、継手裏面側に形成した溶融接合部9bの先端部分と、反対側の継手表面側に形成済みの溶融接合部8bの先端部分とを逆さま方向に重なり合わせる89ことができる。溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がなく、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部8b,9bを得ることができる。また、裏面側の前記溶融接合26によって、表面側に形成済みの溶融接合部8bの先端部分が再溶融されるため、前記溶融接合部8bの先端部分に微小なポロシティが残存していた場合でも溶融消滅することが可能である。前記溶け込みが浅い従来のTIG溶接では不可能であった深い両面溶け込み溶接が可能になり、熱変形の低減や溶接パス数の削減を図ることができる。特に、継手部材の裏返し反転作業が容易な小型構造物の溶接に適用すると大幅な工数低減及びコスト低減が可能となる。
Then, after the penetration accelerator 4b is dried, as shown in FIG. 6 (7), a melted joint 26 (second welding process) is performed by wire-feed arc welding to melt to a penetration depth H2 in a specific range. Join. The penetration depth H2 of the melt-bonded portion 9b on the back surface side is preferably formed in the range of 1/2 or more and 9/10 or less of the plate thickness T. As shown in FIGS. 6 (7) and 8 (8), by this melt bonding 26, the front end portion of the melt joint portion 9 b formed on the joint back surface side and the front end of the melt joint portion 8 b formed on the opposite joint surface side. 89 can be overlapped with each other upside down. It is possible to obtain melt-bonded portions 8b and 9b having no excess cut or dent on the weld surface and having a surplus bead without generating porosity due to the penetration of a penetration accelerator in the weld. In addition, since the front end portion of the melt-bonded portion 8b formed on the front surface side is remelted by the melt-bonding 26 on the back surface side, even when a minute porosity remains at the front-end portion of the melt-bonded portion 8b. It can melt and disappear. Deep double-sided penetration welding, which was impossible with conventional TIG welding with shallow penetration, is possible, and thermal deformation can be reduced and the number of welding passes can be reduced. In particular, when applied to welding of a small structure in which the joint member can be easily turned over, it is possible to significantly reduce man-hours and costs.

なお、前記アーク溶接のアーク6は、シールドガス雰囲気内で非消耗性の電極5(タングステンを主成分とするタングステン合金の電極)先端部と継手部材との間に発生させると共に、溶融接合22,26に適した溶接電流を給電すればよい。図示していないシールドガスは、非消耗性電極5の外周に配備するガスノズルから不活性ガスのArガスを流せばよい。また、Arガスを主成分とするAr+HeやAr+H2 の混合ガスを使用することも可能である。さらに、二重シールド構造の溶接トーチを使用するのであれば、例えば、非消耗性電極5近傍の周囲に不活性ガスのArガスやHeガスを流し、その外周囲に前記混合ガス、あるいはO2ガスやCO2ガスの酸化性ガスとArガスとの混合ガスを流しながら前期アーク溶接をしてもかまわない。 The arc welding arc 6 is generated between the tip of the non-consumable electrode 5 (a tungsten alloy electrode containing tungsten as a main component) and the joint member in a shield gas atmosphere, What is necessary is just to supply the welding current suitable for 26. For the shielding gas (not shown), an inert Ar gas may be flowed from a gas nozzle provided on the outer periphery of the non-consumable electrode 5. It is also possible to use a mixed gas of Ar + He or Ar + H 2 mainly containing Ar gas. Further, if a welding torch having a double shield structure is used, for example, an inert gas such as Ar gas or He gas is flowed around the non-consumable electrode 5 and the mixed gas or O 2 is flowed around the outer periphery thereof. The first stage arc welding may be performed while flowing a mixed gas of gas or CO 2 oxidizing gas and Ar gas.

図7は、立向き姿勢でのI型継手の溶接手順概要及び溶け込み形状を示す一実施例の説明図である。図6との主な相違点は、下向き姿勢と異なる立向き姿勢の継手部材1a,
1b,2a,2bであり、継手表面及び継手裏面を溶融封止した後に、前記溶け込み促進剤4a,4bを塗布し、ワイヤ送りのアーク溶接による溶融接合22,26を各々の施工することである。横向き姿勢の継手部材であってもよい。すなわち、図7(1)に示すように、立向き姿勢又は横向き姿勢に設置されている略I型継手部3の表面1a,2aを小エネルギの仮付け条件で溶融封止する。この溶融封止の施工20によって塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。
FIG. 7 is an explanatory diagram of an embodiment showing an outline of a welding procedure and a penetration shape of an I-shaped joint in a standing posture. The main difference from FIG. 6 is that the joint member 1a has a vertical posture different from the downward posture.
1b, 2a, and 2b, and after melt-sealing the joint surface and the joint back surface, the penetration accelerators 4a and 4b are applied, and the melt joints 22 and 26 by wire-feed arc welding are applied respectively. . A joint member in a lateral orientation may be used. That is, as shown in FIG. 7 (1), the surfaces 1a and 2a of the substantially I-shaped joint portion 3 installed in the standing posture or the lateral posture are melt-sealed under a low energy tacking condition. This melt-sealing construction 20 prevents the penetration accelerator from entering the gap during application and eliminates the cause of porosity generation during welding.

図7(2)に示すように、前記溶融封止の終了後に、溶け込み促進剤4aを溶接線方向に1回以上往復塗布21して溶接線左右方向の膜厚を20μm以上形成する。継手部材
1a,1b,2a,2bは、板厚Tが4mm以上16mm以下のステンレス鋼又は低炭素鋼である。前記略I型継手部3は端面に小さな面取り加工(例えば1mm以下)がされていてもよい。そして、塗布した溶け込み促進剤4aが乾燥した後に、図7(3)に示すように、立向き姿勢又は横向き姿勢でI型継手部3の表面側(左側面)からワイヤ送りのアーク溶接による溶融接合22(第1の溶接工程)を施工し、特定範囲の溶け込み深さ(0.5×T≦H1≦0.9×T)まで溶融接合22する。
As shown in FIG. 7 (2), after the fusion sealing is completed, the penetration accelerator 4a is reciprocally applied 21 at least once in the welding line direction to form a film thickness in the horizontal direction of the welding line of 20 μm or more. The joint members 1a, 1b, 2a, 2b are stainless steel or low carbon steel having a plate thickness T of 4 mm or more and 16 mm or less. The substantially I-shaped joint portion 3 may have a small chamfering process (for example, 1 mm or less) on the end surface. Then, after the applied penetration accelerator 4a is dried, as shown in FIG. 7 (3), melting by wire welding arc welding from the surface side (left side surface) of the I-type joint portion 3 in a standing posture or a lateral posture. The joining 22 (first welding step) is performed, and the melt joining 22 is performed up to a specific range of penetration depth (0.5 × T ≦ H1 ≦ 0.9 × T).

この溶融接合22により、継手部材の裏面1b,2bまで溶かすことなく、特定範囲の溶け込み深さH1まで確実に溶接できると共に、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がない健全な溶融接合部8bを得ることができる。また、I型継手部3にギャップGや段差があったりなかったりする継手部材1a,1b,2a,2bであっても、上述したように、溶接ワイヤ7を溶接進行方向の後方からアーク溶接部分に送給することによって、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部8bを得ることができる。なお、この溶融接合22によって形成された溶接ビード表面の一部にアンダーカットや凹みが生じていた場合には、溶接不良部分及びこの近傍を再溶融して溶け込みの浅い余盛りビードを形成することにより、前記アンダーカットや凹みが補修され、健全な溶接部分と類似の品質に改善することができる。   By this fusion joining 22, it is possible to reliably weld to a penetration depth H1 within a specific range without melting up to the back surfaces 1b and 2b of the joint member, and a healthy fusion joining in which no porosity is generated due to the penetration of a penetration accelerator inside the weld. Part 8b can be obtained. Moreover, even if it is the joint members 1a, 1b, 2a, 2b where the I-type joint part 3 has or does not have a gap G or a step, as described above, the welding wire 7 is connected to the arc welding part from the rear in the welding progress direction. , The welded surface 8b can be obtained without any undercuts or dents on the welding surface. In addition, when an undercut or a dent has occurred in a part of the surface of the weld bead formed by the melt-bonding 22, re-melting the poorly welded portion and its vicinity to form a shallow weld bead. Thus, the undercut and the dent are repaired, and the quality can be improved to be similar to a sound welded portion.

次に、継手部材を反転しない固定状態のままで、図7(4)に示すように、溶け込み促進剤4bを塗布する以前に、反対側の継手裏面のギャップG及びその近傍を溶融封止24(溶融封止部17b)する。上述したように、溶融封止の施工24によって塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。   Next, with the joint member in a fixed state where it is not reversed, as shown in FIG. 7 (4), before applying the penetration accelerator 4b, the gap G on the opposite side of the joint back surface and its vicinity are melt sealed 24. (Melt sealing portion 17b). As described above, the melt-sealing construction 24 prevents the penetration accelerator from entering the gap at the time of application, thereby eliminating the cause of porosity generation at the time of welding.

図7(5)に示すように、前記溶融封止24の終了後に、溶融封止部17b表面及び継手裏面側に溶け込み促進剤4bを塗布25する。そして、この溶け込み促進剤4bが乾燥した後に、図7(6)に示すように、立向き姿勢又は横向き姿勢のままでI型継手部3の裏面側(右側面)からワイヤ送りのアーク溶接による溶融接合26(第2の溶接工程)を施工し、特定範囲の溶け込み深さH2まで溶融接合26する。裏側の溶け込み深さH2は、表側の溶け込み深さH1と同程度であり、板厚Tの1/2以上9/10以下の範囲に形成するとよい。溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材1a,1b,2a,2bの板厚(4≦T≦16)や溶接姿勢に対応した特定範囲の溶け込み深さ(0.5×T≦H2≦0.9×T)になるように適正な溶接条件を設定して、ワイヤ送りのアーク溶接による溶融接合26を施工するとよい。   As shown in FIG. 7 (5), after the fusion sealing 24 is completed, the melt accelerator 4b is applied 25 to the surface of the fusion sealing portion 17b and the back side of the joint. Then, after the penetration accelerator 4b is dried, as shown in FIG. 7 (6), the wire feed arc welding is performed from the back surface side (right side surface) of the I-type joint portion 3 in the standing posture or the lateral posture. The fusion bonding 26 (second welding process) is performed, and the fusion bonding 26 is performed up to a penetration depth H2 in a specific range. The penetration depth H2 on the back side is approximately the same as the penetration depth H1 on the front side, and is preferably formed within a range of 1/2 to 9/10 of the plate thickness T. It can be adjusted according to the welding heat input conditions such as welding current and welding speed, and the penetration depth within a specific range corresponding to the plate thickness (4 ≦ T ≦ 16) and welding position of the joint members 1a, 1b, 2a, 2b It is preferable to set an appropriate welding condition so as to satisfy (0.5 × T ≦ H2 ≦ 0.9 × T) and to perform the fusion bonding 26 by wire feed arc welding.

この溶融接合26により、図7(6)(7)に示すように、継手裏面側に形成した溶融接合部9bの先端部分と、反対側の継手表面側に形成済みの溶融接合部8bの先端部分とを相互に重なり合わせる89ことができる。また、上述したように、ギャップG部分の溶融封止20,24及び溶接ワイヤ7送りのアーク溶接による溶融接合22,26によって、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がなく、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部8b,9bを得ることができる。なお、前記裏面側(右側面)の溶融接合26を先に行い、その後に前記表面側(左側面)の溶融接合22を行うように変更してもかまわない。特に、継手部材の裏返し反転作業が困難な大型構造物の溶接に適用すると大幅な工数低減及びコスト低減が可能となる。   As shown in FIGS. 7 (6) and 7 (7), by this melt bonding 26, the tip end portion of the melt joint portion 9 b formed on the joint back surface side and the tip end of the melt joint portion 8 b formed on the opposite joint surface side. 89 can be overlapped with each other. Further, as described above, the melt seals 20 and 24 in the gap G portion and the melt joints 22 and 26 by the arc welding of the welding wire 7 feed, there is no generation of porosity due to the penetration of the penetration accelerator inside the weld, and the welding surface Therefore, it is possible to obtain the melt-bonded portions 8b and 9b having no overcuts or dents and having a surplus bead. It should be noted that the rear surface side (right side surface) fusion bonding 26 may be performed first, and then the front surface side (left side surface) fusion bonding 22 may be performed. In particular, when applied to welding of large structures where it is difficult to turn the joint member upside down, it is possible to significantly reduce man-hours and costs.

また、本発明の両面溶接方法では、溶け込み促進剤4aを塗布する以前にI型継手部3の表面又は表裏両面を小エネルギの仮付け条件で溶融封止20,24する封止工程と、前記溶融封止20後の前記I型継手部3の表面側に前記溶け込み促進剤4aを塗布した後にアーク溶接の施工によって特定範囲の溶け込み深さH1まで溶融接合22する第1の溶接工程と、反対側の残り継手部の裏面側に溶け込み促進剤4bを塗布した後に前記アーク溶接の施工によって特定範囲の溶け込み深さH2まで溶融接合26する第2の溶接工程とを備えるとすることもできる。   Further, in the double-sided welding method of the present invention, before applying the penetration accelerator 4a, a sealing step of melting and sealing the surface or both sides of the I-type joint part 3 under low energy temporary attachment conditions, Contrary to the first welding process in which the welding accelerator 4a is applied to the surface side of the I-type joint 3 after the melt sealing 20 and then melt-bonded 22 to a specific depth of penetration H1 by arc welding. It is also possible to include a second welding step in which the melt accelerator 26 is applied to the back surface side of the remaining joint portion on the side and then melt-bonded 26 to the penetration depth H2 in a specific range by the arc welding.

このように構成及び実施することにより、手間のかかる開先加工を施さない略I型突合せ継手又は略T継手のままであっても、裏ビード形成の裏波溶接を行う必要がなく、また、継手部3,3bにギャップGや段差bがあったりなかったりする継手部材1a,1b,2a,2bであっても、上述したように、ギャップG部分及びその近傍の溶融封止20,24及び溶接ワイヤ7送りのアーク溶接による溶融接合22,26によって、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がなく、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部8b,9bを得ることができる。さらに、溶け込みが浅い従来のTIG溶接では不可能であった深い両面溶け込み溶接が可能になり、熱変形の低減や溶接パス数の削減を図ることができる。   By constructing and carrying out in this way, it is not necessary to perform back wave welding for back bead formation, even if it is a substantially I-type butt joint or a substantially T joint that does not require laborious groove processing, Even in the joint members 1a, 1b, 2a, and 2b where the joint portions 3 and 3b have the gap G and the step b, as described above, the gap G portion and the melt seals 20 and 24 in the vicinity thereof, Melting joints 22 and 26 by arc welding with 7-wire welding wire eliminate the occurrence of porosity due to the penetration of a penetration accelerator inside the weld, and weld joints 8b and 9b have no undercuts or dents on the weld surface and have extra bead. Can be obtained. Furthermore, deep double-sided penetration welding, which was impossible with conventional TIG welding with shallow penetration, is possible, and thermal deformation can be reduced and the number of welding passes can be reduced.

図8は、本発明の両面溶接方法による略T型継手の溶接手順概要及び溶け込み形状を示す一実施例の説明図である。図1,図5〜図7との主な相違点は、継手形状が略I型継手と異なる略T型継手の形状である。溶接の姿勢については、上記と同様に下向き姿勢又は立向き姿勢である。図8(1)に示すように、溶け込み促進剤4aを塗布21する以前に、ギャップG部分とその近傍又は特定箇所の長さ部分の継手表面を小エネルギの仮付け条件で溶融封止20(溶融封止部17a)する。上述したように、この溶融封止の施工20によって塗布時に溶け込み促進剤がギャップ内に入り込まず、溶接時のポロシティ発生要因をなくすことができる。   FIG. 8 is an explanatory view of an embodiment showing an outline of a welding procedure and a penetration shape of a substantially T-shaped joint by the double-side welding method of the present invention. The main difference from FIGS. 1 and 5 to 7 is the shape of a substantially T-shaped joint whose joint shape is different from a substantially I-shaped joint. About the attitude | position of welding, it is a downward attitude | position or an upright attitude | position similarly to the above. As shown in FIG. 8 (1), before applying the penetration accelerator 4 a 21, the joint surface of the gap G portion and the vicinity thereof or a length portion of a specific portion is melt sealed 20 ( Melting and sealing part 17a). As described above, the melt sealing construction 20 does not allow the penetration accelerator to enter the gap at the time of application, thereby eliminating the cause of porosity generation at the time of welding.

図8(2)に示すように、上記溶融封止20の終了後に、溶融封止17a表面及びT型継手部32の立板表面30aに溶け込み促進剤4aを塗布21する。略T型継手部は、立板30a,30bの板厚Tが4mm以上16mm以下のステンレス鋼又は炭素鋼である。また、前記略T型継手部32は立板端面に小さな面取り加工がされていてもよい。   As shown in FIG. 8 (2), after completion of the melt sealing 20, the melt accelerator 4 a is applied 21 to the surface of the melt sealing 17 a and the standing plate surface 30 a of the T-shaped joint portion 32. The substantially T-shaped joint portion is made of stainless steel or carbon steel having a plate thickness T of 4 mm to 16 mm. Further, the substantially T-shaped joint portion 32 may have a small chamfering process on the end face of the standing plate.

そして、塗布した溶け込み促進剤4aが乾燥した後に、図8(3)に示すように、下向き姿勢又は立向き姿勢で表面側(左側面)からワイヤ送りのアーク溶接による溶融接合
22(第1の溶接工程)を施工し、特定範囲の溶け込み深さ(0.5×T≦H1≦0.9×T)まで溶融接合22する。立板裏面30bまで溶かすことなく、特定範囲の溶け込み深さH1まで確実に溶接できると共に、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がない健全な溶融接合部18bを得ることができる。また、T型継手部32にギャップGがあったりなかったりするT型継手の溶接であっても、上述したように、ギャップG部分の溶融封止と溶接ワイヤ7送りのアーク溶接とによって、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がなく、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部18bを得ることができる。
Then, after the applied penetration accelerator 4a is dried, as shown in FIG. 8 (3), in the downward posture or the standing posture, the fusion bonding 22 (first first) by wire feed arc welding from the surface side (left side surface). Welding process) is performed, and melt bonding 22 is performed to a specific range of penetration depth (0.5 × T ≦ H1 ≦ 0.9 × T). Without melting up to the standing plate back surface 30b, it is possible to reliably weld up to the penetration depth H1 in a specific range, and it is possible to obtain a sound fusion bonded portion 18b in which no porosity is generated due to the penetration of the penetration accelerator inside the weld. Further, even when welding a T-shaped joint with or without a gap G in the T-shaped joint portion 32, as described above, welding is performed by fusion sealing of the gap G portion and arc welding of the welding wire 7 feed. There is no generation of porosity due to the inclusion of a penetration accelerator inside, and it is possible to obtain a melt-bonded portion 18b having no overcut or dent on the weld surface and having a surplus bead.

次に、継手部材を反転24しない状態のままで、図8(4)(5)に示すように、表面側と反対側の残り継手の裏面部を溶融封止24した後に、前記溶け込み促進剤4bを塗布25する。そして、溶け込み促進剤4bが乾燥した後に、図8(6)に示すように裏面側(右側面)からワイヤ送りのアーク溶接による溶融接合26(第2の溶接工程)を施工し、特定範囲の溶け込み深さ(0.5×T≦H2≦0.9×T)まで溶融接合26する。   Next, with the joint member remaining in a state where it is not inverted 24, as shown in FIGS. 8 (4) and (5), the back surface portion of the remaining joint opposite to the front surface side is melt-sealed 24, and then the penetration accelerator is used. 4b is applied 25. Then, after the penetration accelerator 4b is dried, as shown in FIG. 8 (6), a melt bonding 26 (second welding process) is performed by wire-feed arc welding from the back surface side (right side surface). The melt bonding 26 is performed up to the penetration depth (0.5 × T ≦ H2 ≦ 0.9 × T).

この溶融接合26によって、図8(6)(7)に示すように、継手裏面側に形成した溶融接合部19bの先端部分と、反対側の継手表面側に形成済みの溶融接合部18bの先端部分とを相互に重なり合わせる89ことができる。また、溶接内部に溶け込み促進剤の巻き込みによるポロシティの発生がなく、溶接表面にアンダーカットや凹みがなく余盛りビードのある溶融接合部18b,19bを得ることができる。溶け込みが浅い従来のTIG溶接では不可能であった深い両面溶け込み溶接が可能になり、熱変形の低減や溶接パス数の削減を図ることができる。特に、継手部材の裏返し反転作業が不要な大型構造物の溶接に適用すると大幅な工数低減及びコスト低減が可能となる。   As shown in FIGS. 8 (6) and 7 (7), by this melt bonding 26, the tip end portion of the melt joint portion 19 b formed on the joint back surface side and the tip end of the melt joint portion 18 b formed on the opposite joint surface side. 89 can be overlapped with each other. Further, no porosity is generated due to the penetration of the penetration accelerator in the inside of the weld, and it is possible to obtain the melt-joined portions 18b and 19b having an undercut or a dent and a surplus bead on the weld surface. Deep double-sided penetration welding, which was impossible with conventional TIG welding with shallow penetration, is possible, and thermal deformation can be reduced and the number of welding passes can be reduced. In particular, when applied to welding of large structures that do not require the work of turning the joint member upside down, it is possible to significantly reduce man-hours and costs.

溶接による熱変形(反り変形)は、加熱と冷却(溶融凝固)によって溶接側に反り変形が生じ、溶接入熱が大きく、溶接パスが多くなると増加する。特に、開先を有する片面の多パス溶接の場合に反り変形が大きくなる。この溶接による熱変形(反り変形)を低減するためには、(1)溶接パスや入熱量を低減すること、(2)片面溶接から両面溶接に変更すること、(3)開先継手をI型継手やT型継手にすること、によって達成できる。   Thermal deformation (warp deformation) due to welding causes warp deformation on the welding side due to heating and cooling (melting and solidification), and increases when the welding heat input is large and the number of welding paths increases. In particular, warpage deformation increases in the case of multi-pass welding on one side having a groove. In order to reduce the thermal deformation (warp deformation) due to this welding, (1) to reduce the welding path and heat input, (2) to change from single-sided welding to double-sided welding, and (3) groove joint I This can be achieved by forming a mold joint or a T-shaped joint.

図1〜図8に示した実施例は、上記(1)〜(3)の条件を満足しており、継手部材の表裏両面から各々の溶融接合部をほぼ均等に形成させることによって熱変形の低減を達成できる。また、溶接パス数の低減については、継手部材の表面側の1パス溶接、裏面側の1パス溶接の合計2パスでよいため、従来の開先継手の多パス溶接と比べて溶接パス数を確実に削減することができる。   The embodiment shown in FIGS. 1 to 8 satisfies the above conditions (1) to (3), and the thermal deformation of each of the joints is substantially uniform by forming the molten joints from both the front and back surfaces of the joint member. Reduction can be achieved. In addition, the number of welding passes can be reduced by a total of two passes, one pass welding on the front side of the joint member and one pass welding on the back side. It can be surely reduced.

参考に、図9は、従来のTIG溶接によるI型継手の浅溶け込み形状の一例を示す断面図である。また、図10は、従来のTIG溶接によるU型開先継手の多パス溶接形状の断面図である。図9 (1)(2) に示すように、I型継手部3を表裏両面から従来のTIG溶接を行った場合は、溶融接合部10a,10bの溶け込み深さH3が浅い(例えば2mm程度)ため、板厚中央部分に接合不足が発生することになり、例えば、板厚が4mmを超える継手部材に適用することができない。このため、開先加工した継手部に多パス溶接するのが一般的である。例えば、図10(1)(2)に示すように、U型開先継手部33を設け、その底部に裏ビードを形成させる初層裏波溶接11を施工し、その後に、開先上部まで複数積層12する多パス溶接を施工している。   For reference, FIG. 9 is a cross-sectional view showing an example of a shallow penetration shape of a conventional I-type joint by TIG welding. FIG. 10 is a cross-sectional view of a multi-pass weld shape of a U-shaped groove joint by conventional TIG welding. As shown in FIGS. 9 (1) and (2), when the conventional TIG welding is performed on the I-type joint 3 from both the front and back surfaces, the penetration depth H3 of the melt-bonded portions 10a and 10b is shallow (for example, about 2 mm). For this reason, insufficient bonding occurs in the central portion of the plate thickness, and for example, it cannot be applied to a joint member having a plate thickness exceeding 4 mm. For this reason, it is common to perform multi-pass welding on a grooved joint. For example, as shown in FIGS. 10 (1) and 10 (2), a U-shaped groove joint portion 33 is provided, and the first layer back wave welding 11 for forming a back bead at the bottom is applied, and thereafter, to the top of the groove. Multi-pass welding with multiple layers 12 is performed.

このように多パス溶接が必要であるばかりでなく、熱変形も増加する結果に成り易い。図示していないが、V開先継手の場合には、前記U開先継手と比べて均一な裏ビードが形成しにくため、開先底部の初層裏波溶接11や開先上部までの多パス溶接による積層12を施工し、さらに、裏側の裏ビード部及び未溶融部分をガウジング(裏アツリ作業)した後に、裏側から数パスの溶接を施工することもある。   Thus, not only multi-pass welding is required, but thermal deformation tends to increase. Although not shown, in the case of the V groove joint, it is difficult to form a uniform back bead as compared with the U groove joint. After stacking 12 by multi-pass welding, and further gouging the back bead portion and the unmelted portion on the back side, a few passes of welding may be applied from the back side.

図11は、従来のTIG溶接によるT型開先継手の多パス溶接形状の断面図である。また、図12は、従来のTIG溶接によるレ型開先継手の多パス溶接形状の断面図である。図11及び図12に示すように、レ開先15の底部に裏ビードを形成させる初層裏波溶接
11を施工した後に、両面開先の上部まで複数積層13a,13bする多パス溶接か又は片面開先の上部まで複数積層14する多パス溶接を施工している。このため、溶接作業に多くの工数及び時間を要し、また、熱変形も増加する結果に成り易い。
FIG. 11 is a cross-sectional view of a multi-pass weld shape of a T-shaped groove joint by conventional TIG welding. Further, FIG. 12 is a cross-sectional view of a multi-pass weld shape of a conventional groove joint by TIG welding. As shown in FIG. 11 and FIG. 12, after performing the first layer back wave welding 11 for forming the back bead on the bottom of the groove 15, multi-pass welding in which a plurality of layers 13 a and 13 b are stacked up to the top of the double-sided groove or Multi-pass welding is performed in which a plurality of layers 14 are laminated up to the upper part of the single-sided groove. For this reason, many man-hours and time are required for the welding operation, and thermal deformation is likely to increase.

これに対して、本発明の両面溶接方法では、上述したように、溶け込みが浅い従来の
TIG溶接では不可能であった深い両面溶け込み溶接が可能になり、開先加工なしの略I型継手や略T型継手のままであっても、溶け不足やポロシティのない品質良好な溶接金属部を得ることができる。また、溶接部材継手の組立作業が容易になると共に、従来の溶接施工と比べて熱変形の低減や溶接パス数の削減が図れ、大幅な工数低減及びコスト低減が可能となる。
In contrast, in the double-sided welding method of the present invention, as described above, deep double-sided penetration welding, which was impossible with conventional TIG welding with shallow penetration, is possible. Even if it is a substantially T-shaped joint, it is possible to obtain a weld metal part with good quality without melting or porosity. Further, the assembly work of the welded member joint is facilitated, and thermal deformation can be reduced and the number of welding passes can be reduced as compared with the conventional welding construction, so that the man-hour and cost can be greatly reduced.

本発明の両面溶接方法に係わるI型継手の溶接手順概要及び溶け込み形状の一実施例を示す説明図である。It is explanatory drawing which shows one Example of the welding procedure outline | summary of the I-type joint concerning the double-sided welding method of this invention, and a penetration shape. 溶け込み促進剤の継手ギャップ部への浸入及びポロシティの溶融接合部への発生を示す説明図である。It is explanatory drawing which shows the penetration | invasion to the joint gap part of a penetration accelerator, and generation | occurrence | production to the fusion-bonding part of a porosity. 溶け込み促進剤の塗布膜厚変化と溶け込みの形状変化を示す説明図である。It is explanatory drawing which shows the coating film thickness change of a penetration accelerator, and the shape change of a penetration. 溶け込み促進剤の塗布膜厚と溶け込み深さ及びビード幅の関係を示す一実施例である。It is one Example which shows the relationship between the coating film thickness of a penetration accelerator, a penetration depth, and a bead width. 両面溶接の板厚と溶接電流及び裏側の溶け込み深さの関係を検討した結果の一実施例であり、図中には、両面溶接した板厚別(6,9,12,16mm)の断面写真と、溶け込み促進剤なしで両面溶接した9mm板の断面写真とを示している。It is one example of the result of examining the relationship between the plate thickness of double-sided welding, the welding current, and the penetration depth on the back side. In the figure, cross-sectional photographs (6, 9, 12, 16 mm) according to the thickness of the double-sided welds are shown. 2 shows a cross-sectional photograph of a 9 mm plate welded on both sides without a penetration accelerator. 本発明の両面溶接方法に係わるI型継手の溶接手順概要及び溶け込み形状の他の一実施例を示す説明図である。It is explanatory drawing which shows another Example of the welding procedure outline | summary of the I-type joint concerning the double-sided welding method of this invention, and a penetration shape. 立向き姿勢でのI型継手の溶接手順概要及び溶け込み形状を示す一実施例の説明図である。It is explanatory drawing of one Example which shows the welding procedure outline | summary and penetration shape of an I-shaped joint in a standing posture. 本発明の両面溶接方法によるT型継手の溶接手順概要及び溶け込み形状を示す一実施例の説明図である。It is explanatory drawing of one Example which shows the welding procedure outline | summary and penetration shape of the T-shaped joint by the double-sided welding method of this invention. 従来のTIG溶接によるI型継手の浅溶け込み形状の一例を示す断面図である。It is sectional drawing which shows an example of the shallow penetration shape of the I-type coupling by the conventional TIG welding. 従来のTIG溶接によるU型開先継手の多パス溶接形状の断面図である。It is sectional drawing of the multipass welding shape of the U-shaped groove joint by the conventional TIG welding. 従来のTIG溶接によるT型開先継手の多パス溶接形状の断面図である。It is sectional drawing of the multipass welding shape of the T type groove joint by the conventional TIG welding. 従来のTIG溶接によるレ型開先継手の多パス溶接形状の断面図である。It is sectional drawing of the multipass welding shape of the ladle type groove joint by the conventional TIG welding.

符号の説明Explanation of symbols

1a,2a 継手部材の表面
1b,2b 継手部材の裏面
3 I型継手部
3b 残り継手部
4a,4b 溶け込み促進剤
5 非消耗性電極
6 アーク
7 溶接ワイヤ
8a,9a,18a,19a 溶融プール
8b,9b,18b,19b 溶融接合部
10a,10b 従来溶接の溶融接合部
11 初層裏波溶接
12〜14 積層
15 レ開先
16 溶接進行方向
17a,17b 溶融封止部
30a T型継手の立板表面
30b T型継手の立板裏面
31a,31b T型継手の横板
32 T型継手部
33 U型開先継手部
34 ポロシティ
35 溶接線
H1〜H3 溶け込み深さ
G ギャップ
T 板厚
1a, 2a Joint member surfaces 1b, 2b Joint member back surface 3 I-type joint part 3b Remaining joint parts 4a, 4b Penetration accelerator 5 Non-consumable electrode 6 Arc 7 Welding wires 8a, 9a, 18a, 19a Molten pool 8b, 9b, 18b, 19b Melt joints 10a, 10b Melt joint 11 of conventional welding 11 First layer back wave welding 12-14 Lamination 15 Leve 16 Welding direction 17a, 17b Melting seal 30a Standing plate surface of T-type joint 30b Standing plate back surface 31a of T type joint, 31b Horizontal plate 32 of T type joint 32 T type joint part 33 U type groove joint part 34 Porosity 35 Welding line H1 to H3 Penetration depth G Gap T Thickness

Claims (5)

ステンレス鋼材又は低炭素鋼材からなる略I型継手部又は略T型継手部の表面側及び裏面側に溶け込み促進剤を塗布して非消耗電極方式のアーク溶接を施工する両面溶接方法において、
前記溶け込み促進剤を塗布する以前に、前記継手部の表面又は裏面又は表裏両面を溶融封止することを特徴とする両面溶接方法。
In a double-sided welding method in which a welding accelerator is applied to the front side and the back side of a substantially I-type joint part or a substantially T-type joint part made of stainless steel material or low-carbon steel material, and arc welding of a non-consumable electrode method is performed,
A double-sided welding method characterized by melting and sealing the front surface, the back surface, or both front and back surfaces of the joint before applying the penetration accelerator.
ステンレス鋼材又は低炭素鋼材からなる略I型継手部又は略T型継手部の表面側及び裏面側に溶け込み促進剤を塗布して非消耗電極方式のアーク溶接を施工する両面溶接方法において、
前記溶け込み促進剤を塗布する以前に、前記継手部の表面又は表裏両面を溶融封止し、
前記溶融封止後の前記継手部の表面側に前記溶け込み促進剤を塗布し、
促進剤の塗布後に前記アーク溶接の施工によって溶融接合し、
反対側の残り継手部の裏面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって溶融接合することを特徴とする両面溶接方法。
In a double-sided welding method in which a welding accelerator is applied to the front side and the back side of a substantially I-type joint part or a substantially T-type joint part made of stainless steel material or low-carbon steel material, and arc welding of a non-consumable electrode method is performed,
Before applying the penetration accelerator, melt and seal the surface or both sides of the joint,
Applying the penetration accelerator to the surface side of the joint after the melt sealing,
After application of the accelerator, it is melt-bonded by the arc welding construction,
A double-sided welding method characterized in that after the penetration accelerator is applied to the back side of the remaining joint portion on the opposite side, fusion bonding is performed by the arc welding.
ステンレス鋼材又は低炭素鋼材からなる略I型継手部又は略T型継手部の表面側及び裏面側に溶け込み促進剤を塗布して非消耗電極方式のアーク溶接を施工する両面溶接方法において、
前記溶け込み促進剤を塗布する前に、前記継手部の表面又は表裏両面を溶融封止する封止工程と、前記溶融封止後の前記継手部の表面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって溶融接合する第1の溶接工程と、反対側の残り継手部の裏面側に前記溶け込み促進剤を塗布した後に前記アーク溶接の施工によって溶融接合する第2の溶接工程とを備えることを特徴とする両面溶接方法。
In a double-sided welding method in which a welding accelerator is applied to the front side and the back side of a substantially I-type joint part or a substantially T-type joint part made of stainless steel material or low-carbon steel material, and arc welding of a non-consumable electrode method is performed,
Before applying the penetration accelerator, a sealing step of melting and sealing the surface or both sides of the joint part, and after applying the penetration accelerator to the surface side of the joint part after the fusion sealing A first welding step in which the fusion welding is performed by arc welding, and a second welding step in which the melting accelerator is applied to the back side of the remaining joint portion on the opposite side and then melt-bonded by the arc welding. A double-sided welding method characterized by that.
請求項1〜3に記載の両面溶接方法において、前記継手部はギャップや段差又は前記ギャップ及び前記段差の両方が不規則に形成されており、前記溶融封止が少なくとも前記ギャップの形成部分又は溶接線に施されることを特徴とする両面溶接方法。   4. The double-sided welding method according to claim 1, wherein the joint portion is formed with a gap or a step or both of the gap and the step irregularly, and the fusion seal is at least the gap forming portion or the weld. A double-sided welding method characterized by being applied to a wire. 請求項1〜3に記載の両面溶接方法において、前記溶け込み促進剤は少なくとも継手部の溶接線方向に1回以上往復塗布され、溶接線左右方向の膜厚を20μm以上形成することを特徴とする両面溶接方法。   The double-sided welding method according to any one of claims 1 to 3, wherein the penetration accelerator is reciprocally applied at least once in the weld line direction of the joint part to form a film thickness of 20 μm or more in the left-right direction of the weld line. Double-side welding method.
JP2007014424A 2007-01-25 2007-01-25 Double-side welding method Expired - Fee Related JP4871747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014424A JP4871747B2 (en) 2007-01-25 2007-01-25 Double-side welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014424A JP4871747B2 (en) 2007-01-25 2007-01-25 Double-side welding method

Publications (2)

Publication Number Publication Date
JP2008178894A true JP2008178894A (en) 2008-08-07
JP4871747B2 JP4871747B2 (en) 2012-02-08

Family

ID=39723187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014424A Expired - Fee Related JP4871747B2 (en) 2007-01-25 2007-01-25 Double-side welding method

Country Status (1)

Country Link
JP (1) JP4871747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125490A (en) * 2008-11-28 2010-06-10 Hitachi-Ge Nuclear Energy Ltd Welding method of i-shaped joint, the i-shaped weld joint, and welding structure using the same
CN101979206A (en) * 2010-11-30 2011-02-23 惠生(南通)重工有限公司 Process for welding super-thick low-alloy high-strength plates
JP2016049548A (en) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 Tandem arc welding method, tandem arc welding device and tandem arc welding system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160582A (en) * 1981-03-31 1982-10-02 Mitsubishi Heavy Ind Ltd Welding method by energy beam
JPH08112684A (en) * 1994-10-13 1996-05-07 Ishikawajima Harima Heavy Ind Co Ltd Deep penetration forming method and welding method using this method
JPH0947878A (en) * 1995-07-31 1997-02-18 Chiyoda Corp Tack welding method of stainless steel tube
JP2001071141A (en) * 1999-08-31 2001-03-21 Kobe Steel Ltd Gas shielded arc welding method
JP2006231359A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Welding method and structure welded by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160582A (en) * 1981-03-31 1982-10-02 Mitsubishi Heavy Ind Ltd Welding method by energy beam
JPH08112684A (en) * 1994-10-13 1996-05-07 Ishikawajima Harima Heavy Ind Co Ltd Deep penetration forming method and welding method using this method
JPH0947878A (en) * 1995-07-31 1997-02-18 Chiyoda Corp Tack welding method of stainless steel tube
JP2001071141A (en) * 1999-08-31 2001-03-21 Kobe Steel Ltd Gas shielded arc welding method
JP2006231359A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Welding method and structure welded by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125490A (en) * 2008-11-28 2010-06-10 Hitachi-Ge Nuclear Energy Ltd Welding method of i-shaped joint, the i-shaped weld joint, and welding structure using the same
CN101979206A (en) * 2010-11-30 2011-02-23 惠生(南通)重工有限公司 Process for welding super-thick low-alloy high-strength plates
JP2016049548A (en) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 Tandem arc welding method, tandem arc welding device and tandem arc welding system

Also Published As

Publication number Publication date
JP4871747B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2013001934A1 (en) Hybrid welding method for t-joint using laser beam welding and arc welding
JP5153368B2 (en) T-type joint penetration welding method and penetration welded structure
JP2004306084A (en) Composite welding method of laser welding and arc welding
JP2009119485A (en) Manufacturing method of welded section steel
JP5318543B2 (en) Laser-arc combined welding method
US20080206586A1 (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP2011083781A (en) Method for manufacturing h-section steel by laser welding
JP2006231359A (en) Welding method and structure welded by the method
JP5164870B2 (en) Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same
JP4871747B2 (en) Double-side welding method
JP2007196266A (en) Both-side welding method and weld structure thereby
JP5416422B2 (en) Laser-arc combined welding method
JP6382593B2 (en) Welding method
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JP2016075586A (en) Method for repairing poor weld zone of metal cask weld structure and metal cask provided with heat transfer copper fins
JP6322561B2 (en) Temporary welding construction method for metal cask welded structure and metal cask with heat transfer fin
US20190358725A1 (en) Single-sided submerged arc welding method and single-sided submerged arc welding device
JP5121420B2 (en) Hybrid welding joint
JP2008238265A (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP5268594B2 (en) Welding method of type I joint, type I welded joint, and welded structure using the same
JP2008200750A (en) One side arc spot welding method
JP2009050914A (en) Welding method
JP2004160467A (en) Welding joint composed of different metals and production method used for the same
JP2001038472A (en) Welding method of stainless steel clad plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4871747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees