JP2016075586A - Method for repairing poor weld zone of metal cask weld structure and metal cask provided with heat transfer copper fins - Google Patents

Method for repairing poor weld zone of metal cask weld structure and metal cask provided with heat transfer copper fins Download PDF

Info

Publication number
JP2016075586A
JP2016075586A JP2014206404A JP2014206404A JP2016075586A JP 2016075586 A JP2016075586 A JP 2016075586A JP 2014206404 A JP2014206404 A JP 2014206404A JP 2014206404 A JP2014206404 A JP 2014206404A JP 2016075586 A JP2016075586 A JP 2016075586A
Authority
JP
Japan
Prior art keywords
welding
repair
mig
tig
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014206404A
Other languages
Japanese (ja)
Other versions
JP6386330B2 (en
JP2016075586A5 (en
Inventor
昭慈 今永
Akiyoshi Imanaga
昭慈 今永
健 尾花
Takeshi Obana
健 尾花
湘 多羅沢
Sho Tarasawa
湘 多羅沢
国彦 鈴木
Kunihiko Suzuki
国彦 鈴木
宏夫 小出
Hiroo Koide
宏夫 小出
健 平沼
Takeshi Hiranuma
健 平沼
一樹 小林
Kazuki Kobayashi
一樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014206404A priority Critical patent/JP6386330B2/en
Publication of JP2016075586A publication Critical patent/JP2016075586A/en
Publication of JP2016075586A5 publication Critical patent/JP2016075586A5/ja
Application granted granted Critical
Publication of JP6386330B2 publication Critical patent/JP6386330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for repairing a poor weld zone of a metal cask weld structure and a metal cask provided with heat transfer fins capable of ensuring excellent repair weldability of a poor weld zone, ensuring the elimination of the poor weld zone such as an excessive undercut or an insufficient throat by unique repair work, and obtaining a high-quality repaired weld bead and a high-quality repaired cross-sectional part.SOLUTION: A method for repairing a poor weld zone of a metal cask weld structure, comprises performing repair welding for thickening a poor weld zone generated in the course of welding a plurality of heat transfer copper fins made of copper and disposed to be inclined between a copper inner cylinder and a copper outer cylinder disposed outside of the inner cylinder or a poor weld zone detected in a quality inspection process after welding, from above a weld bead part having the poor weld zone, by using a weld torch identical to or similar in type to a TIG-MIG weld torch or a MIG weld torch used in a welding process and a weld wire and shield gas identical in component as a weld wire and shield gas used in the welding process, traveling the TIG-MIG weld torch or the MIG weld torch in the same direction as the weld direction at the time of work in the weld process, and performing composite welding that is a combination of preceding TIG welding and subsequent MIG welding.SELECTED DRAWING: Figure 16

Description

本発明は金属キャスク溶接構造物の溶接不良部補修方法及び伝熱銅フィン付き金属キャスクに係り、特に、原子力発電所等から発生する使用済燃料を輸送又は貯蔵若しくは輸送及び貯蔵し、かつ、鋼製の内筒及び外筒に銅製の伝熱フィンが直接溶接するものに好適な金属キャスク溶接構造物の溶接不良部補修方法及び伝熱銅フィン付き金属キャスクに関する。   The present invention relates to a method for repairing a defective weld portion of a metal cask welded structure and a metal cask with a heat transfer copper fin, and in particular, transports or stores or transports and stores spent fuel generated from a nuclear power plant and the like, and steel. The present invention relates to a method for repairing a poorly welded portion of a metal cask welded structure suitable for welding a copper heat transfer fin directly to an inner cylinder and an outer cylinder, and a metal cask with a heat transfer copper fin.

一般に、原子力発電所の原子炉で一定期間使用された複数の燃料は、原子炉から取り出され、使用済燃料冷却プール等に一時保管される。使用済燃料冷却プールで所定期間冷却された使用済燃料は、再資源として活用するため、金属キャスクと呼ばれる放射性物質収納容器に収納され、再処理施設で再処理されるまで中間貯蔵施設に搬入して保管される。   In general, a plurality of fuels used for a certain period in a nuclear power plant nuclear reactor are taken out of the nuclear reactor and temporarily stored in a spent fuel cooling pool or the like. Spent fuel that has been cooled in the spent fuel cooling pool for a specified period of time is stored in a radioactive material storage container called a metal cask to be used as a resource, and then transported to an intermediate storage facility until it is reprocessed at the reprocessing facility. Stored.

使用済燃料の集合体を運搬、貯蔵する金属キャスクは、使用済燃料を収納する内筒(内筒容器や容器本体或いは胴本体ともいう)、外部からの衝撃を吸収する外筒及び内筒を密閉する複数の蓋等を有している。   A metal cask that transports and stores spent fuel assemblies consists of an inner cylinder (also called an inner cylinder container, a container body, or a trunk body) that stores spent fuel, and an outer cylinder and an inner cylinder that absorb impact from the outside. It has a plurality of lids to be sealed.

使用済燃料は、高レベルの放射性物質を含んでいることから崩壊熱を発生しているため、内筒と外筒の間には、使用済燃料集合体から発生する崩壊熱を内筒及び外筒の外側へ逃がすために複数の伝熱フィンが配備されており、これら複数の伝熱フィンは、内筒及び外筒にそれぞれ溶接されている。   Since spent fuel contains a high level of radioactive material, it generates decay heat, so the decay heat generated from the spent fuel assembly is transferred between the inner and outer cylinders between the inner and outer cylinders. A plurality of heat transfer fins are provided for escape to the outside of the cylinder, and the plurality of heat transfer fins are welded to the inner cylinder and the outer cylinder, respectively.

通常、内筒及び外筒の材料には、剛性及び遮蔽性等の性能が良い炭素鋼材やステンレス鋼材等が使用され、一方、伝熱フィンの材料には、主に熱伝導の良い銅材が使用されており、また、2種類の金属を予め接合した銅クラッド鋼材等も使用されている。   Usually, carbon steel materials and stainless steel materials with good performance such as rigidity and shielding properties are used as the material of the inner cylinder and the outer cylinder, while copper materials with good heat conduction are mainly used as the material of the heat transfer fins. Moreover, the copper clad steel material etc. which joined two types of metals previously are also used.

上述した金属キャスクの内筒の外面及び外筒の内面に伝熱フィンを溶接する技術が、例えば、特許文献1乃至5に開示されている。また、金属キャスクではないが、車両構造体の摩擦撹拌接合部の欠陥部を補修する方法や、原子炉圧力容器のクラッド部と内部構造物との溶接部付近に発生した欠陥部を補修溶接する方法、亀裂に追従させながらアーク溶接で補修溶接する方法が特許文献6乃至8に開示されている。   The technique which welds a heat-transfer fin to the outer surface of the inner cylinder of the metal cask mentioned above and the inner surface of an outer cylinder is disclosed by patent documents 1 thru | or 5, for example. In addition, although it is not a metal cask, it repairs and welds defects that occur in the vicinity of welds between the cladding of the reactor pressure vessel and the internal structure, as well as repairing defects in the friction stir welds of vehicle structures. Patent Documents 6 to 8 disclose a method and repair welding by arc welding while following a crack.

特許文献1には金属製容器の製造方法について記載され、純銅製のMIGワイヤからMIGアークを発生させる溶接工程と、MIGアークを取り囲むように同軸上に配置されたプラズマ電極からプラズマアークを発生させるプラズマ溶接工程とを並行して行い、MIG溶接工程及びプラズマ溶接工程では、銅製の伝熱フィンと水平面のなす角を15〜20度とし、伝熱フィンと炭素鋼製の内筒のなす角を75度以上に配置して、MIGアーク及びプラズマアークを下向きに発生させることが開示されている。   Patent Document 1 describes a method for manufacturing a metal container. A welding process for generating a MIG arc from a pure copper MIG wire, and a plasma arc from a plasma electrode arranged coaxially so as to surround the MIG arc are generated. The plasma welding process is performed in parallel. In the MIG welding process and the plasma welding process, the angle between the copper heat transfer fin and the horizontal plane is 15 to 20 degrees, and the angle between the heat transfer fin and the carbon steel inner cylinder is It is disclosed that the MIG arc and the plasma arc are generated downward by arranging them at 75 degrees or more.

また、特許文献2には複合溶接方法及び複合溶接用の溶接トーチについて記載され、先行側でTIGアークを発生させ、後行側でMIGアークを発生させて溶接するものであり、TIG電流をMIG電流よりも大きく設定し、TIG電極とMIG電極とに継続してアークを発生させると共に、両アーク間の距離を20mm以下にすることが開示されている。更に、シールドガスとして、ArガスとH2ガスとの混合ガスや、ArガスとHeガスとの混合ガス及びAr+H2+Heとの混合ガスを使用することが開示されている。   Patent Document 2 describes a composite welding method and a welding torch for composite welding, in which a TIG arc is generated on the leading side and a MIG arc is generated on the trailing side and welding is performed. It is disclosed that the current is set to be larger than the current, an arc is continuously generated at the TIG electrode and the MIG electrode, and the distance between both arcs is set to 20 mm or less. Furthermore, it is disclosed that a mixed gas of Ar gas and H2 gas, a mixed gas of Ar gas and He gas, and a mixed gas of Ar + H2 + He is used as the shielding gas.

また、特許文献3には放射性物質用金属キャスクについて記載され、胴本体から径方向外方に延びて外筒に伝熱させる伝熱フィンを備え、この伝熱フィンは2種類の金属板を接合したクラッド材から構成され、かつ、クラッド材の一方の金属は胴本体及び外筒を同種の金属材料、他方は熱伝導の良好な良伝熱材料で構成されており、胴本体(及び/又は外筒)とこれと同種金属のクラッド部位とを直接溶接することが開示されている。   Patent Document 3 describes a metal cask for a radioactive substance, and includes a heat transfer fin that extends radially outward from a trunk body and transfers heat to an outer cylinder. The heat transfer fin joins two types of metal plates. And one metal of the clad material is made of the same metal material for the trunk body and the outer cylinder, and the other is made of a good heat transfer material with good heat conduction, and the trunk body (and / or It is disclosed that an outer tube) and a clad region of the same metal are directly welded.

また、特許文献4には溶接方法について記載され、溶接後熱処理を必要とする鋼製の母材と銅製の母材とをMIGトーチ等の溶接手段によって溶接する溶接工程と、溶接手段と所定距離離れた後方位置に配置されたアーク溶接トーチや高周波コイル或いはレーザ等の加熱手段によって、溶接工程で生じた溶接ビード上を加熱(溶融も含む)して、鋼製の母材の溶接熱影響部まで熱処理する熱処理工程を備えており、更に、溶接工程の前に、溶接手段より所定距離先行する前方位置に配置されたTIGトーチやYAGレーザ、或いは高周波コイル等の加熱手段によって、溶接工程の前に、熱伝導率の高い銅製の母材を予熱することが開示されている。   Patent Document 4 describes a welding method, a welding process of welding a steel base material and a copper base material requiring heat treatment after welding by a welding means such as a MIG torch, and the welding means and a predetermined distance. The welding heat-affected zone of the steel base metal is heated (including melting) on the welding bead generated in the welding process by a heating means such as an arc welding torch, a high-frequency coil, or a laser arranged at a rearward position. And before the welding process, by a heating means such as a TIG torch, a YAG laser, or a high-frequency coil arranged at a front position ahead of the welding means by a predetermined distance before the welding process. Discloses preheating a copper base material having high thermal conductivity.

また、特許文献5には放射性物質収納容器について記載され、銅製の伝熱フィンの両端部に平行部が各々形成されており、この平行部を容器本体外周面及び外筒内周面に沿って配置し、銅合金ワイヤを用いたMIG溶接又はMIGブレイジングによって、容器本体外周面及び外筒内周面と伝熱フィンの平行先端部とが溶接されていることが開示されている。   Patent Document 5 describes a radioactive substance storage container, and parallel portions are formed at both ends of the copper heat transfer fins, and the parallel portions are formed along the outer peripheral surface of the container main body and the inner peripheral surface of the outer cylinder. It is disclosed that the outer peripheral surface of the container body and the inner peripheral surface of the outer cylinder and the parallel tip portions of the heat transfer fins are welded by MIG welding or MIG brazing using a copper alloy wire.

また、特許文献6には摩擦撹拌接合部の補修方法について記載され、摩擦撹拌接合によって形成した接合ビードに含まれる欠陥を研削除去して補修領域を形成する工程と、継手部材の母材(アルミ合金)と同材料の溶接棒を用いるTIG溶接によって補修ビードを形成する工程とを備えることが開示されている。   Further, Patent Document 6 describes a method for repairing a friction stir welded portion, and includes a step of grinding and removing defects contained in a weld bead formed by friction stir welding to form a repair region, and a base material (aluminum for a joint member). And a step of forming a repair bead by TIG welding using a welding rod of the same material.

一方、特許文献7には原子炉圧力容器の補修方法について記載され、溶接部とクラッド部を含む欠陥部を機械的に切取って除去した後に、クラッドの残存厚さが3.2mm未満の時には、テンパービード工法による肉盛溶接にて除去部を補修し、クラッドの残存厚さが3.2mm以上の時には、通常の肉盛溶接にて除去部を補修することが開示されている。   On the other hand, Patent Document 7 describes a method for repairing a reactor pressure vessel. When a defective portion including a welded portion and a clad portion is mechanically cut out and removed, the remaining thickness of the clad is less than 3.2 mm. It is disclosed that the removed portion is repaired by overlay welding using a temper bead method, and when the remaining thickness of the clad is 3.2 mm or more, the removed portion is repaired by ordinary overlay welding.

また、特許文献8には亀裂補修方法について記載され、横向き姿勢で亀裂補修溶接を実施する時に、構造部材の亀裂部を撮像する監視カメラと、溶接ヘッドを駆動制御すると共に、亀裂部に追従させる溶接制御手段を備えた亀裂補修溶接装置を用いて、ワイヤ供給ノズルから金属酸化物を含むフラックス入りワイヤを溶接進行方向と直交する方向の溶融池上方から挿入し、亀裂を除去することなく亀裂に追従させながらアーク溶接(TIG溶接)で補修溶接することが開示されている。   Patent Document 8 describes a crack repair method. When performing crack repair welding in a lateral orientation, a surveillance camera that images a crack portion of a structural member and a welding head are driven and controlled, and the crack portion is tracked. Using a crack repair welding device equipped with a welding control means, a flux-cored wire containing metal oxide is inserted from above the molten pool in a direction perpendicular to the welding progress direction from the wire supply nozzle, and the crack is removed without removing the crack. It is disclosed that repair welding is performed by arc welding (TIG welding) while following.

特開2009−178727号公報JP 2009-178727 A 特開2013−158826号公報JP 2013-158826 A 特開2007−205931号公報JP 2007-205931 A 特開2002−361469号公報JP 2002-361469 A 特開2008−82906号公報JP 2008-82906 A 特開2002−59289号公報JP 2002-59289 A 特開2000−275384号公報JP 2000-275384 A 特開2005−21953号公報Japanese Patent Laid-Open No. 2005-21953

しかしながら、上述した特許文献1では、MIGアーク及びプラズマアークをほぼ同軸上に発生させているため、両アークに作用する電磁力は相殺し合うが、MIGワイヤ(消耗電極)及びプラズマ電極(非消耗電極)の両極性を正極(プラス)、母材側を負極(マイナス)にしていることから、プラズマ電極が消耗されて損傷し易いため、長時間稼働が必要な溶接線の長い長尺部材の溶接には適さないし、溶接途中でプラズマ電極が消耗すると、不安定なアーク挙動に変化して溶接ビード形成に悪影響を及ぼし、溶接不良に至る場合がある。また、純銅は熱伝導率の高い材料であるが、銅材と鋼材との異材溶接は相性が悪く、固溶し難い性質があるため、純銅製のMIGワイヤを用いて銅と鋼継手部を溶接して鋼側の溶込みが深くなると、溶接割れ(凝固割れ)が発生し易くなる。また、特許文献1には、SiCuワイヤを使用することや、溶接欠陥(又は溶接不良)の発生及びその溶接不良部を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   However, in Patent Document 1 described above, since the MIG arc and the plasma arc are generated almost coaxially, the electromagnetic forces acting on both arcs cancel each other, but the MIG wire (consumable electrode) and the plasma electrode (non-consumable) Since the polarity of the electrode is positive (plus) and the base metal side is negative (minus), the plasma electrode is easily consumed and damaged, so long members with long weld lines that require long-term operation It is not suitable for welding, and if the plasma electrode is consumed during welding, it may change to unstable arc behavior and adversely affect weld bead formation, leading to poor welding. Pure copper is a material with high thermal conductivity, but the dissimilar welding of copper and steel has poor compatibility and is difficult to dissolve. Therefore, pure copper MIG wire is used to connect copper and steel joints. If the penetration on the steel side becomes deeper after welding, weld cracks (solidification cracks) are likely to occur. Further, Patent Document 1 does not apply to the use of SiCu wires, the occurrence of welding defects (or defective welding), and repair welding of defective welding parts, and there is no description at all. There is no suggestion.

また、特許文献2では、TIG電流をMIG電流よりも大きく、かつ、両アーク間の距離を20mm以下に設定して溶接することで、アークの硬直性及び安定性が向上すると考えられるが、両アーク間距離が長いと、離れ合う両アークで形成される溶融プールが細長く不安定な形状となり、不均一なビード形状(蛇行ビード)になり易い。また、HeガスやH2ガスとArガスとの混合ガスを使用することが記載されているが、検証試験では、Arガスのみ使用の溶接結果が記載されている。また、検証試験には、ステンレス鋼の母材を用いた溶接結果が記載されている。この溶接に使用された溶接ワイヤの材質は記載されていないが、母材と同系のステンレス系の溶接ワイヤであろうと推定される。このため、特許文献2には、特許文献1の場合と同様に、SiCuワイヤを使用することや銅と鋼との異材継手部や隅肉継手部を溶接すること、或いはアンダーカットやのど厚不足等の溶接不良部(溶接欠陥部)を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   Further, in Patent Document 2, it is considered that the rigidity and stability of the arc are improved by welding with the TIG current larger than the MIG current and the distance between both arcs set to 20 mm or less. When the distance between the arcs is long, the molten pool formed by the two arcs that are separated from each other has an elongated and unstable shape, and tends to have an uneven bead shape (meandering bead). Further, although it is described that He gas or a mixed gas of H2 gas and Ar gas is used, in the verification test, a welding result using only Ar gas is described. In the verification test, a welding result using a stainless steel base material is described. Although the material of the welding wire used for this welding is not described, it is presumed that it will be a stainless steel welding wire similar to the base material. For this reason, as in the case of Patent Document 1, in Patent Document 2, the use of a SiCu wire, welding of a dissimilar joint part or fillet joint part of copper and steel, or undercut or insufficient throat thickness Repair welding of defective welds (weld defects) such as these is not applied outside the scope of the subject and is neither described nor suggested.

また、特許文献3では、銅クラッド鋼材の鋼部と鋼製の胴体又は外筒とを溶接するように構成していることから、鋼材同士のMAG溶接やCO溶接等が施工可能となるが、伝熱フィンに銅クラッド鋼材を使用しているため、製造コストが高く、重量が重くなるという問題がある。また、銅クラッド鋼材の銅側の板厚が薄いことから、除熱性能に限界があるため、より高い除熱性能が必要な伝熱フィンには適さない。また、特許文献3には、特許文献1及び2の場合と同様に、SiCuワイヤを使用することや銅材と鋼材との異材継手部を溶接すること、或いはアンダーカットやのど厚不足等の溶接不良部を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。 In Patent Document 3, because it is configured to weld the steel section and steel body or barrel of copper clad steel, although MAG welding and CO 2 welding of steel materials to each other becomes possible construction Since the copper clad steel material is used for the heat transfer fin, there is a problem that the manufacturing cost is high and the weight is increased. Further, since the copper-side thickness of the copper clad steel material is thin, there is a limit to the heat removal performance, so it is not suitable for heat transfer fins that require higher heat removal performance. Also, in Patent Document 3, as in Patent Documents 1 and 2, the use of a SiCu wire, welding of a dissimilar joint between a copper material and a steel material, or welding such as undercut or insufficient throat thickness. Repair welding of defective parts has not been applied outside the scope, and is neither described nor suggested.

また、特許文献4では、溶接手段の他に、この溶接手段の後方位置及び/又は前方位置にアーク溶接トーチや高周波コイル、或いはレーザ等の加熱手段を設ける構成であるため、装置の大型化、溶接対象物との干渉による溶接不可の部位発生、高周波コイルの電磁力の影響によるアーク挙動の不安定化、レーザ照射の反射の影響による加熱不足等の問題が予想される。また、特許文献4では、第1の溶接手段のMIG溶接トーチによって、Niの溶接ワイヤを用いて伝熱フィンと本体胴とを溶接し、第2の溶接手段のMIG溶接トーチによって、溶接ビードと伝熱フィンとを溶接するようにしており、同種の溶接トーチ、同種の溶接ワイヤは使用されていない。また、SiCuワイヤを使用することや、アンダーカットやのど厚不足等の溶接不良部を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   Moreover, in patent document 4, since it is the structure which provides heating means, such as an arc welding torch, a high frequency coil, or a laser, in the back position and / or the front position of this welding means, the enlargement of an apparatus, Problems such as generation of unweldable parts due to interference with the welding object, instability of arc behavior due to the influence of electromagnetic force of the high-frequency coil, and insufficient heating due to the reflection of laser irradiation are expected. In Patent Document 4, the heat transfer fin and the main body are welded using a Ni welding wire by the MIG welding torch of the first welding means, and the weld bead is welded by the MIG welding torch of the second welding means. The heat transfer fin is welded, and the same kind of welding torch and the same kind of welding wire are not used. In addition, use of SiCu wire and repair welding of defective welds such as undercuts and insufficient throat thickness are not applied outside the scope of the subject, and are neither described nor suggested.

また、特許文献5では、板幅の広い銅板を使用すると共に、銅板幅方向の両端部に平行部を設けるための曲げ成形等の加工が必要な構造であり、製造コストが高くなるという問題がある。また、容器本体外周面及び外筒内周面に平行部を密着させて重ね隅肉継手部を形成し、この重ね隅肉継手部をMIG溶接又はMIGブレイジングするようにしているため、大きな溶接入熱量が必要となり、更に、銅側の溶接ビード止端部に発生し易いアンダーカット等の凹みによって、溶接部ののど厚不足や有効断面積不足に至る場合がある。また、特許文献5には、アンダーカットやのど厚不足の溶接不良部(溶接欠陥部)を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   Moreover, in patent document 5, while using a copper plate with a wide plate | board width, it is a structure which needs the process of bending forming etc. in order to provide a parallel part in the both ends of a copper plate width direction, and there exists a problem that manufacturing cost becomes high. is there. In addition, since the overlapped fillet joint is formed by bringing the parallel part into close contact with the outer peripheral surface of the container body and the inner peripheral surface of the outer cylinder, and this overlapped fillet joint is subjected to MIG welding or MIG brazing, a large welding input is obtained. The amount of heat is required, and further, a dent such as an undercut that is likely to occur at the weld bead toe on the copper side may lead to a lack of throat thickness or an insufficient effective cross-sectional area of the weld. Further, in Patent Document 5, repair welding of an undercut or poorly welded portion (weld defect portion) with insufficient throat thickness is not applied outside the object, and is not described or suggested at all.

一方、特許文献6では、銅材や鋼材と異なるアルミ合金を母材とする継手部材の摩擦撹拌接合であり、アーク溶接(溶融接合)と異なる固相接合法であることから、銅と鋼との異材継手に適用することはできない。また、接合ビードに含まれる割れやピット等の欠陥部をグラインダ加工等で切削除去して補修領域を形成しており、事前に切削加工する作業が必要となる。また、母材(アルミ合金)と同材料の溶接棒を用いたTIG溶接によって補修ビードを形成しており、MIG溶接の適用は美観上の問題から避けている。また、特許文献6には、SiCuワイヤを用いて本溶接することや、同一のSiCuワイヤを用いて、アンダーカットやのど厚不足の溶接不良部(溶接欠陥部)を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   On the other hand, in patent document 6, since it is a friction stir welding of the joint member which uses the aluminum alloy different from a copper material and steel materials as a base material, and it is a solid phase joining method different from arc welding (melting joining), It cannot be applied to different types of joints. In addition, the repair area is formed by cutting and removing defective portions such as cracks and pits included in the joining bead by grinder processing or the like, and it is necessary to perform cutting work in advance. Further, the repair bead is formed by TIG welding using a welding rod of the same material as the base material (aluminum alloy), and application of MIG welding is avoided due to aesthetic problems. In addition, in Patent Document 6, for the main welding using a SiCu wire, or for repair welding a poorly welded part (welding defect part) having an undercut or a throat thickness short using the same SiCu wire, It has not been applied outside the scope and has not been described or suggested.

また、特許文献7では、溶接部とクラッド部を含む欠陥部(亀裂や欠損等の原子炉特有の欠陥)を機械的に切取って除去しており、事前に切削加工する作業が必要となる。また、欠陥部を除去した後に、クラッド部の残存高さの違いに応じて、テンパービード工法による肉盛溶接にするか、通常の肉盛溶接にするかを使い分けして除去部を補修するようにしている。肉盛溶接(補修溶接)にはTIG溶接が採用され、かつ、多層多パスの補修溶接が必要になるため、多くの時間と手間及び費用が掛かるという問題がある。補修溶接に使用される溶接ワイヤの材質は記載されていないが、クラッドの材質がNi基合金であることから、これと同種のNi基合金系の溶接ワイヤであろうと推定される。このため、CuSiワイヤ等の銅系ワイヤを使用して、クラッド部の欠陥部を補修溶接することは不可能ある。また、特許文献7には、特許文献6の場合と同様に、SiCuワイヤを使用することや銅と鋼との異材継手部や隅肉継手部を溶接すること、或いはアンダーカットやのど厚不足等の溶接不良部を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   Moreover, in patent document 7, the defect part (defects peculiar to nuclear reactors, such as a crack and a defect | defect) including a weld part and a clad part is cut off mechanically, and the operation | work which cuts in advance is needed. . In addition, after removing the defective part, depending on the difference in the remaining height of the clad part, it is necessary to repair the removed part by properly using overlay welding by the temper bead method or normal overlay welding I have to. Since overlay welding (repair welding) employs TIG welding and requires multi-pass multi-pass repair welding, there is a problem that much time, labor, and cost are required. Although the material of the welding wire used for repair welding is not described, since the material of the clad is a Ni-based alloy, it is presumed that the welding wire of the same type as this is used. For this reason, it is impossible to repair-weld a defective part of a clad part using copper system wires, such as CuSi wire. Moreover, in patent document 7, like the case of patent document 6, using a CuCu wire, welding the dissimilar-metal joint part and fillet joint part of copper and steel, or undercut, throat thickness lack, etc. The repair welding of the poorly welded part is not applied outside the scope, and is neither described nor suggested.

また、特許文献8では、割れ等の亀裂部を撮像する監視カメラと、その亀裂部に追従させる溶接制御手段及び補修する溶接ヘッドとによって、亀裂部を補修溶接することができる。しかしながら、補修すべき構造部材が原子炉等の放射線環境下で使用される機器であること、補修姿勢が横向き姿勢であること、溶込み深さ促進性の金属酸化物を含むフラックスワイヤを溶接方向と直交する方向の溶融池上方から挿入して補修溶接を施工するようにしていることから、特殊な構造部材で平面的な部材面の亀裂補修への適用に限定されるものと考えられる。また、溶込み深さ促進性の金属酸化物を含むフラックスワイヤを使用するため、銅と鋼との異材継手部の本溶接やその欠陥部の補修溶接には適用することができない。また、特許文献8には、特許文献6及び7の場合と同様に、SiCuワイヤを使用することや、割れ及び亀裂と異なるアンダーカットやのど厚不足の溶接不良部(溶接欠陥部)を補修溶接することについては、対象外で適用されておらず、全く記載も示唆もされていない。   Moreover, in patent document 8, a crack part can be repair-welded with the monitoring camera which images a crack part, such as a crack, the welding control means to track the crack part, and the welding head to repair. However, the structural member to be repaired is a device used in a radiation environment such as a nuclear reactor, the repair posture is a horizontal posture, and a flux wire containing a penetration depth promoting metal oxide is welded in the welding direction. Since repair welding is performed by inserting from above the molten pool in a direction perpendicular to the weld pool, it is considered that the present invention is limited to application to crack repair of a planar member surface with a special structural member. In addition, since a flux wire containing a penetration depth promoting metal oxide is used, it cannot be applied to main welding of a dissimilar joint between copper and steel or repair welding of a defective portion thereof. Also, in Patent Document 8, as in Patent Documents 6 and 7, the use of SiCu wire, undercuts different from cracks and cracks, and repairs welds with poor throat thickness (weld defects) are repaired. This is not applicable outside the scope of the report and is neither described nor suggested.

本発明は上述の点に鑑みなされたもので、その目的とするところは、溶接不良部の補修溶接性に優れ、独自の補修施工によってアンダーカット過大やのど厚不足等の溶接不良部を確実に消滅させ、品質良好な補修溶接ビード及び補修断面部を得ることができる金属キャスク溶接構造物の溶接不良部補修方法及び伝熱銅フィン付き金属キャスクを提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is excellent in repair weldability of poorly welded portions, and reliably prevents defective welded portions such as excessive undercuts and insufficient throat thickness by original repair work. An object of the present invention is to provide a method for repairing a defective weld portion of a metal cask welded structure and a metal cask with heat transfer copper fins that can be extinguished and obtain a repair weld bead and a repair cross section having good quality.

本発明の金属キャスク溶接構造物溶接不良部の補修方法は、上記目的を達成するために、放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンをそれぞれ溶接する本溶接工程の過程で発生する溶接不良部、又は溶接後の品質検査工程で検出される溶接不良部を、補修工程で補修溶接する金属キャスク溶接構造物の溶接不良部補修方法であって、前記補修工程で溶接不良部を補修する際に、前記本溶接工程で使用したTIG−MIG溶接トーチ又はMIG溶接トーチと同一又は同種の溶接トーチ、同一成分の溶接ワイヤ及びシールドガスをそれぞれ使用すると共に、前記本溶接工程で施工した時の溶接方向と同一方向に前記TIG−MIG溶接トーチ又は前記MIG溶接トーチを走行させ、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、前記溶接不良部を有する溶接ビード部の上から肉盛するように、少なくとも前記溶接不良部に補修溶接を施工して補修ビードを形成することを特徴とする。   In order to achieve the above object, a method for repairing a defective welded portion of a metal cask welded structure according to the present invention includes a steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, and an outer side of the inner cylinder. A poorly welded portion that occurs in the course of the main welding process in which a plurality of copper heat transfer copper fins that are arranged at substantially equal intervals in the circumferential direction between the steel outer cylinders arranged coaxially are welded, Or it is a welding defective part repair method of a metal cask welded structure in which a welding defective part detected in a quality inspection process after welding is repaired and welded in a repairing process, and when repairing a defective welding part in the repairing process, While using the same or the same type of welding torch, welding wire and shield gas of the same component as the TIG-MIG welding torch or MIG welding torch used in the main welding process, and the welding direction when constructed in the main welding process, Same At least so that the TIG-MIG welding torch or the MIG welding torch travels in the direction, and is overlaid from above the weld bead portion having the weld failure portion by composite welding of the preceding TIG and the subsequent MIG or MIG welding. A repair bead is formed by performing repair welding on the poorly welded portion.

また、本発明の伝熱銅フィン付き金属キャスクは、上記目的を達成するために、放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置する鋼製の外筒と、前記内筒器と前記外筒との間の周方向に略等間隔に傾斜配備する銅製の複数の伝熱銅フィンとを備え、鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって1パスずつ溶接施工する本溶接工程が行われて形成される伝熱銅フィン付き金属キャスクであって、前記本溶接工程の過程で発生する溶接不良部、又は溶接後の品質検査工程で検出される溶接不良部が、上記の金属キャスク溶接構造物の溶接不良部補修方法を用いて補修溶接されていることを特徴とする。   Further, in order to achieve the above object, the metal cask with the heat transfer copper fin of the present invention has a steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, and a coaxial shape outside the inner cylinder. A steel outer cylinder, and a plurality of copper heat transfer copper fins inclined at substantially equal intervals in the circumferential direction between the inner cylinder and the outer cylinder, the steel inner cylinder Each inner joint side wide-angle inclined fillet joint portion formed by abutting one end face portions of the heat transfer copper fins at a substantially equal interval in the longitudinal direction of the outer surface, or the longitudinal direction of the inner surface of the outer tube Each of the other end face portions of the heat transfer copper fins of a predetermined number of each at a substantially equal interval, and each of the wide-angle inclined fillet joint portions on the outer cylinder side, or both surfaces of the inner cylinder and the outer cylinder The fillet joints formed in each of the above are connected by composite welding of preceding TIG and subsequent MIG or MIG welding. A metal cask with a heat transfer copper fin formed by a main welding process in which welding is performed one pass at a time, and is detected in a defective weld portion generated in the process of the main welding process or in a quality inspection process after welding. The defective welded portion is repair welded by using the method for repairing a defective welded portion of the metal cask welded structure.

本発明によれば、溶接不良部の補修溶接性に優れ、独自の補修施工によってアンダーカット過大やのど厚不足等の溶接不良部を確実に消滅させ、品質良好な補修溶接ビード及び補修断面部を得ることができる。   According to the present invention, repair weldability of defective welded parts is excellent, and original repair work reliably eliminates welded defective parts such as excessive undercuts and insufficient throat thickness, and provides repair weld beads and repair cross-sections with good quality. Can be obtained.

本発明の実施例1に係わる伝熱銅フィン付き金属キャスクの構造を示す斜視図である。It is a perspective view which shows the structure of the metal cask with a heat-transfer copper fin concerning Example 1 of this invention. 図1中のA部を拡大した継手溶接構造を示す部分斜視図である。It is a fragmentary perspective view which shows the joint welding structure which expanded the A section in FIG. 本発明の実施例1に係わる金属キャスク用伝熱銅フィンの溶接方法の手順の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the procedure of the welding method of the heat transfer copper fin for metal casks concerning Example 1 of this invention. 本発明の実施例1に係わる金属キャスク用伝熱銅フィンの溶接方法の他の手順概要を示すフローチャートである。It is a flowchart which shows the other procedure outline | summary of the welding method of the heat transfer copper fin for metal casks concerning Example 1 of this invention. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける内筒外面と伝熱銅フィンの端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the inner cylinder outer surface and the end surface part of a heat-transfer copper fin in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention. 図5に示した内筒側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the inner cylinder shown in FIG. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける内筒側の検査工程での合否判定及び補修溶接工程を溶接不良部を補修した補修溶接部の形状と共に示すフローチャートである。It is a flowchart which shows the pass / fail determination in the inspection process of the inner cylinder side in a metal cask with a heat-transfer copper fin concerning Example 1 of this invention, and a repair welding process with the shape of the repair welding part which repaired the poor weld part. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける外筒内面と伝熱銅フィンの端面部との隅肉継手部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the fillet joint part of the outer cylinder inner surface and end surface part of a heat-transfer copper fin in the metal cask with a heat-transfer copper fin concerning Example 1 of this invention. 図8に示した外筒側の隅肉継手部に溶接した溶接部の形状を示す部分斜視図である。It is a fragmentary perspective view which shows the shape of the welding part welded to the fillet joint part by the side of the outer cylinder shown in FIG. 本発明の実施例1に係わる伝熱銅フィン付き金属キャスクにおける外筒側の検査工程での合否判定及び補修溶接工程を溶接不良部を補修した補修溶接部の形状と共に示すフローチャートである。It is a flowchart which shows the pass / fail determination in the test | inspection process of the outer cylinder side in a metal cask with a heat-transfer copper fin concerning Example 1 of this invention, and the repair welding process with the shape of the repair welding part which repaired the poor weld part. 本発明の実施例1に係わる一体構造のTIG−MIG溶接トーチの概略構成及びトーチ配置を示す図である。It is a figure which shows schematic structure and torch arrangement | positioning of the TIG-MIG welding torch of the integral structure concerning Example 1 of this invention. 図11の状態からTIGアークとMIGアークで溶融プールを形成した状態を示す図である。It is a figure which shows the state which formed the molten pool by the TIG arc and the MIG arc from the state of FIG. 本発明の実施例2に係わるMIG溶接トーチの概略構成及びトーチ配置を示す斜視図である。It is a perspective view which shows schematic structure and torch arrangement | positioning of the MIG welding torch concerning Example 2 of this invention. 本発明の実施例3に係わるTIG−MIG溶接トーチの概略構成及び溶接ビード部の上から肉盛するようにTIG−MIG補修溶接するトーチ配置の一実施例を示す図である。It is a figure which shows one Example of the torch arrangement | positioning which carries out TIG-MIG repair welding so that it may build up from the schematic structure of the TIG-MIG welding torch concerning Example 3 of this invention, and a weld bead part. 本発明の実施例4に係わるTIG−MIG溶接トーチの概略構成及び溶接ビード部の上から肉盛するようにTIG補修溶接するトーチ配置の一実施例を示す図である。It is a figure which shows one Example of the torch arrangement | positioning which carries out TIG repair welding so that it may build up from the schematic structure of the TIG-MIG welding torch concerning Example 4 of this invention, and a weld bead part. 本発明の実施例5に係わるMIG溶接トーチの概略構成及び溶接ビード部の上から肉盛するようにMIG補修溶接するトーチ配置の一実施例を示す斜視図である。It is a perspective view which shows one Example of the schematic structure of the MIG welding torch concerning Example 5 of this invention, and the torch arrangement | positioning which carries out MIG repair welding so that it may build up from on a weld bead part. 本発明の実施例6に係わる補修試験方法及び溶接ビード部の上から肉盛するように補修溶接するトーチ配置の一実施例を示す斜視図である。It is a perspective view which shows one Example of the torch arrangement | positioning which repair-welds so that it may build up from the repair test method concerning Example 6 of this invention, and a weld bead part. 本発明の実施例6に係わる溶接模擬欠陥部のTIG補修試験片の一実施例を示す斜視図である。It is a perspective view which shows one Example of the TIG repair test piece of the welding simulation defect part concerning Example 6 of this invention. 本発明の実施例6に係わる溶接模擬欠陥部のTIG−MIG補修試験片の一実施例を示す斜視図である。It is a perspective view which shows one Example of the TIG-MIG repair test piece of the welding simulation defect part concerning Example 6 of this invention. 本発明の実施例6に係わる溶接(補修)速度及びワイヤ送り速度を変化させた時のワイヤ溶着断面積を示す特性図である。It is a characteristic view which shows the wire welding cross section when changing the welding (repair) speed | rate and wire feed speed concerning Example 6 of this invention. 本発明の実施例6に係わるTIG−MIG複合溶接した後の本溶接ビードの上からTIG補修溶接した時の代表的な補修ビード及び補修有無部の溶接断面の試験結果の写真を示す図である。It is a figure which shows the photograph of the test result of the welding cross section of a typical repair bead and the repair presence or absence part when carrying out TIG repair welding from the top of this welding bead after TIG-MIG composite welding concerning Example 6 of this invention. . 本発明の実施例6に係わるTIG−MIG複合溶接した後の本溶接ビードの上からTIG補修溶接又はTIG−MIG補修溶接した時のトーチ位置のシフト量と補修前後ののど厚の関係を示す特性図である。The characteristic which shows the relationship between the amount of shift of the torch position and the throat thickness before and after repair when TIG repair welding or TIG-MIG repair welding is performed on the main weld bead after TIG-MIG composite welding according to Example 6 of the present invention. FIG. 本発明の実施例6に係わるTIG−MIG複合溶接した後の本溶接ビードの上からTIG補修溶接又はTIG−MIG補修溶接した時のトーチ位置のシフト量と補修前後のビード積層高さの関係を示す特性図である。The relationship between the shift amount of the torch position when the TIG repair welding or the TIG-MIG repair welding is performed on the main weld bead after the TIG-MIG composite welding according to Example 6 of the present invention and the bead stack height before and after the repair are shown. FIG. 本発明の実施例6に係わるTIG−MIG複合溶接した後の本溶接ビードの上からTIG−MIG補修溶接した時の代表的な補修ビード及び補修有無部の溶接断面の試験結果の写真を示す図である。The figure which shows the photograph of the test result of the welding cross section of a typical repair bead and the repair presence or absence part at the time of TIG-MIG repair welding from on the main welding bead after TIG-MIG composite welding concerning Example 6 of this invention. It is.

以下、図示した実施例に基づいて本発明の金属キャスク溶接構造物の溶接不良部の補修方法及びこれを用いた金属キャスク溶接構造物について説明する。   Hereinafter, based on the illustrated embodiment, a method for repairing a poorly welded portion of a metal cask welded structure of the present invention and a metal cask welded structure using the same will be described.

図1に、本実施例に係わる金属キャスク溶接構造物の構造を、図2に、図1中のA部を拡大した溶接構造をそれぞれ示す。   FIG. 1 shows a structure of a metal cask welded structure according to the present embodiment, and FIG. 2 shows a welded structure in which a portion A in FIG. 1 is enlarged.

該図において、内筒1は、その内部に放射性物質を有する複数の使用済燃料(図示せず)の集合体等を収納する容器であり、強度の高い炭素鋼等の鋼製の鋼材が用いられている。この内筒1の外側には、内筒1と同種材の鋼製の外筒2が内筒1を取り囲むように同軸状に配置されている(金属キャスク全体の強度及び剛性は、強度の高い鋼製の厚板の内筒1と外筒2及びこれらで形成する容器を密閉する複数の蓋(図示せず)等によって十分に確保されている)。内筒1の外面と外筒2の内面の間には、円周方向に略等間隔に、数十枚(所定枚数をN枚という)の伝熱銅フィン3が傾斜して配備されている。   In the figure, an inner cylinder 1 is a container for storing an assembly of a plurality of spent fuels (not shown) having radioactive materials therein, and made of steel such as carbon steel having high strength. It has been. On the outside of the inner cylinder 1, a steel outer cylinder 2 made of the same material as the inner cylinder 1 is arranged coaxially so as to surround the inner cylinder 1 (the strength and rigidity of the entire metal cask is high in strength). It is sufficiently secured by a plurality of lids (not shown) for sealing the inner cylinder 1 and the outer cylinder 2 of steel thick plates and the container formed by these. Between the outer surface of the inner cylinder 1 and the inner surface of the outer cylinder 2, dozens of heat transfer copper fins 3 (in a predetermined number called N) are inclined and arranged at substantially equal intervals in the circumferential direction. .

これらN枚の伝熱銅フィン3は、熱伝導率の高い純銅等の銅製の銅板材が用いられており、銅製の伝熱銅フィン3を用いることで、使用済燃料集合体から発生する崩壊熱を内筒1及び外筒2の外側へ逃がすための除熱性能を高めることができると共に、軽量化及びコスト低減にも寄与することができる。   These N heat transfer copper fins 3 are made of a copper plate made of copper such as pure copper having a high thermal conductivity. By using the copper heat transfer copper fins 3, collapse occurs from the spent fuel assembly. While the heat removal performance for releasing heat to the outside of the inner cylinder 1 and the outer cylinder 2 can be enhanced, it can also contribute to weight reduction and cost reduction.

図2に示すように、N枚の伝熱銅フィン3の片方の各端面部には、内筒1側の各隅肉継手部5で溶接された内側溶接部(溶接ビード及びその溶接断面部)7が形成されており、また、他方の各端面部には、外筒2側の各隅肉継手部8で溶接された外側溶接部(溶接ビード及びその溶接断面部)10が形成されている。この伝熱銅フィン3の内側溶接部7及び外側溶接部10については、特に強度は要求されないが、収納・保管する物質の性質上、高い信頼性を確保する必要がある。   As shown in FIG. 2, an inner welded portion (weld bead and its weld cross section) welded by each fillet joint portion 5 on the inner cylinder 1 side is provided on each end surface portion of the N heat transfer copper fins 3. ) 7 is formed, and outer end welds (weld beads and weld cross sections thereof) 10 welded at the fillet joints 8 on the outer tube 2 side are formed on the other end face portions. Yes. The inner welded portion 7 and the outer welded portion 10 of the heat transfer copper fin 3 are not particularly required in strength, but it is necessary to ensure high reliability due to the nature of the material to be stored and stored.

溶接すべきN枚の伝熱銅フィン3の各隅肉継手部5、8の内筒1と伝熱銅フィン3、外筒2と伝熱銅フィン3とのそれぞれの角度θ1は、内筒1の外面又は外筒2の内面若しくは内筒1及び外筒2の両面に対して、θ1=120度±15度(105≦θ1≦135度)の範囲の広角に傾斜して形成されている。   The angle θ1 between the inner cylinder 1 and the heat transfer copper fin 3 of each fillet joint portion 5 and 8 of the N heat transfer copper fins 3 to be welded, and the outer cylinder 2 and the heat transfer copper fin 3 is determined by the inner cylinder. 1 and the inner surface of the outer tube 2 or both surfaces of the inner tube 1 and the outer tube 2 are inclined at a wide angle in a range of θ1 = 120 degrees ± 15 degrees (105 ≦ θ1 ≦ 135 degrees). .

また、N枚の伝熱銅フィン3が隣接する各空間4は、樹脂材等のレジン(図示せず)を充填配備する場所である。これらのレジンは、使用済燃料の集合体から法線状に放出される放射線を遮蔽する物質であり、溶接終了後に、N枚の伝熱銅フィン3の傾斜面に沿って、レジンが各空間4の内部にそれぞれ充填されるものである。伝熱銅フィン3を広角に傾斜して配備することで、溶接時の作業性が容易になると共に、伝熱銅フィン3の傾斜面に沿って充填されるレジンの傾斜配備によって、放射線の遮蔽性能を高めることができる。   Each space 4 adjacent to the N heat transfer copper fins 3 is a place where a resin (not shown) such as a resin material is filled and arranged. These resins are substances that shield radiation emitted from the assembly of spent fuel in a normal line, and after welding, the resin is placed in each space along the inclined surface of the N heat transfer copper fins 3. 4 is filled in each. By arranging the heat transfer copper fins 3 to be inclined at a wide angle, workability during welding is facilitated, and radiation is shielded by the inclined arrangement of the resin filled along the inclined surfaces of the heat transfer copper fins 3. Performance can be increased.

本実施例における伝熱銅フィン3の両端面部を内筒1及び外筒2の両面に溶接する方法について、以下に説明する。   A method of welding both end surface portions of the heat transfer copper fin 3 in this embodiment to both surfaces of the inner cylinder 1 and the outer cylinder 2 will be described below.

図3は、本実施例に係わる金属キャスク溶接構造物の溶接手順概要の一実施例を示すフローチャートであり、図4は、他の金属キャスク溶接構造物の溶接手順概要の一実施例を示すフローチャートである。   FIG. 3 is a flowchart showing an embodiment of a welding procedure outline of a metal cask welded structure according to the present embodiment, and FIG. 4 is a flowchart showing an embodiment of a welding procedure outline of another metal cask welded structure. It is.

図3及び図4に示したフローチャートの主な相違点は、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103及び各隅肉継手の仮組工程を含む外筒2側の溶接工程110の施工内容を、内筒1側のN箇所の溶接の繰り返し溶接工程105及び外筒2側のN箇所の溶接の繰り返し溶接工程112と、内筒1側の少数単位での溶接及び検査の繰り返し溶接工程106及び外筒2側の少数単位での溶接及び検査の繰り返し溶接工程113とに区分けしたことである。   The main differences between the flowcharts shown in FIGS. 3 and 4 are that the first welding process 103 on the inner cylinder 1 side including the temporary assembly process for each fillet joint and the outer cylinder including the temporary assembly process for each fillet joint. The construction contents of the welding process 110 on the 2 side are expressed in the number of units on the inner cylinder 1 side by the repeated welding process 105 on the N side welding on the inner cylinder 1 side and the welding process 112 on the outer cylinder 2 side by the repeated welding process 112. And the repeated welding process 106 of welding and inspection and the repeated welding process 113 of welding and inspection in a small number of units on the outer cylinder 2 side.

例えば、図3に示すように、伝熱銅フィン3の溶接手順(その1)99では、溶接前にワイヤ溶着断面積Awを決定するワイヤ溶着断面積決定工程102と、所定枚数(N枚)の伝熱銅フィン3の片方端面部を内筒1側に各々突合せて隅肉継手部5をN箇所形成、又はN箇所形成すると共に仮付(例えば、仮付溶接)して仮組した後に、そのN箇所の隅肉継手部5−1、5−2・・・5−Nに繰り返し溶接する各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103及び内筒1側のN箇所の溶接の繰り返し溶接工程105と、その後に行う内筒1側の溶接品質の検査工程107の終了後で、N枚の伝熱銅フィン3の他方の端面部を外筒2側に各々突合せて隅肉継手部8をN箇所形成、又はN箇所形成すると共に仮付溶接して仮組した後に、そのN箇所の隅肉継手部8−1、8−2・・・8−Nに繰り返し溶接する各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110及びN箇所の溶接の繰り返し溶接工程112と、を備えている。   For example, as shown in FIG. 3, in the welding procedure (No. 1) 99 of the heat transfer copper fin 3, a wire welding sectional area determining step 102 for determining the wire welding sectional area Aw before welding, and a predetermined number (N). After one end face part of each heat transfer copper fin 3 is abutted to the inner cylinder 1 side to form fillet joint part 5 at N places, or at N places and temporarily attached (for example, by tack welding) The first welding process 103 and the inner cylinder on the inner cylinder 1 side including the temporary assembly process of each fillet joint that is repeatedly welded to the N fillet joint parts 5-1, 5-2,... After the repeat welding step 105 of welding N places on the 1 side and the subsequent inspection step 107 for welding quality on the inner tube 1 side, the other end surface portion of the N heat transfer copper fins 3 is attached to the outer tube 2. The fillet joints 8 are formed at N locations by butting each other, or N locations are formed and temporarily welded and temporarily assembled. The second welding step 110 on the outer tube 2 side including the temporary assembly step of each fillet joint repeatedly welded to the fillet joint portions 8-1, 8-2,. A repeated welding step 112.

そして、隅肉継手部8をN箇所形成すると共に仮付溶接して仮組した後に、そのN箇所の隅肉継手部8−1、8−2・・・8−Nに1パスずつ繰り返し溶接(連続溶接)することで、各隅肉継手部の仮組作業と溶接作業とをそれぞれ効率良く行うことができる。   Then, N fillet joints 8 are formed and temporarily welded and temporarily assembled, and then repeatedly welded to the N fillet joints 8-1, 8-2,. By performing (continuous welding), the temporary assembly work and welding work of each fillet joint can be performed efficiently.

一方、図4に示すように、伝熱銅フィン3の溶接手順(その2)100においては、溶接前にワイヤ溶着断面積Awを決定するワイヤ溶着断面積決定工程102の後に行う各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103では、内筒1側のN箇所の隅肉継手部5−1、5−2・・・5−Nに1パスずつ繰り返し溶接(連続溶接)するN箇所の溶接の繰り返し溶接工程105と、1〜5箇所程度に分割した隅肉継手部に溶接すると共に、その溶接後の溶接部を検査するように、溶接と検査の両作業を繰り返す少数単位での溶接及び検査の繰り返し溶接工程106とに分けている。   On the other hand, as shown in FIG. 4, in the welding procedure (No. 2) 100 of the heat transfer copper fin 3, each fillet joint to be performed after the wire welding sectional area determining step 102 for determining the wire welding sectional area Aw before welding. In the first welding step 103 on the inner tube 1 side including the temporary assembly step, welding is repeatedly performed one pass at a time at the N fillet joint portions 5-1, 5-2,. (Continuous welding) Both welding and inspection are carried out so that welding is repeated at the N-point welding repeated welding step 105 and the fillet joint portion divided into about 1 to 5 locations, and the welded portion after the welding is inspected. It is divided into a welding process 106 of repeated welding and inspection in a small number of units that repeat the work.

例えば、少数単位に分割して溶接及び検査を繰り返す少数単位での溶接及び検査の繰り返し溶接工程106では、所定枚数(N枚)の伝熱銅フィン3を内筒1の外面に取り付て隅肉継手部をN箇所形成、又はN箇所形成すると共に仮付溶接して仮組した後に、そのN箇所の隅肉継手部5−1、5−2・・・5−Nを予め1〜5箇所程度に分割し、その分割した1〜5箇所の隅肉継手部5−1〜5−5に1パスずつ溶接すると共に、その溶接部を検査するように、隅肉継手部の溶接と検査とを繰り返すようにしている。   For example, in the repeated welding process 106 of welding and inspection in a small number of units, which is divided into a small number of units and repeats welding and inspection, a predetermined number (N) of heat transfer copper fins 3 are attached to the outer surface of the inner cylinder 1 to form a corner. After forming N joints or forming N joints and performing temporary assembly by temporary welding, the fillet joints 5-1, 5-2,... Dividing into about 1 part and welding to the fillet joint part 5-1 to 5-5 of the divided parts one by one and welding and inspection of the fillet joint part so as to inspect the welded part And so on.

一方、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110では、内筒1側の場合と同様に、外筒2側のN箇所の隅肉継手部8−1、8−2・・・8−Nに1パスずつ繰り返し溶接(連続溶接)する外筒2側のN箇所の溶接の繰り返し溶接工程112と、1〜5箇所程度に分割した隅肉継手部に1パスずつ溶接すると共に、その溶接部を検査するように、溶接と検査の両作業を繰り返す少数単位での溶接及び検査の繰り返し溶接工程113とに分けている。   On the other hand, in the second welding step 110 on the outer tube 2 side including the temporary assembly step of each fillet joint, N fillet joint portions 8-1 on the outer tube 2 side are provided, as in the case of the inner tube 1 side. 8-2... 8-N repeated welding process (continuous welding) one pass at a time for N places on the outer cylinder 2 side, and a fillet joint portion divided into about 1 to 5 places. In addition to welding one pass at a time, in order to inspect the welded portion, the welding and inspection are repeated in a small number of units in which both welding and inspection operations are repeated, and the welding process 113 is repeated.

例えば、外筒2側でも溶接と検査を繰り返す少数単位での溶接及び検査の繰り返し溶接工程113には、内筒2側の場合と同様であり、外筒2側に形成したN箇所の隅肉継手部8−1、8−2・・・8−Nを予め1〜5箇所程度に分割し、その分割した1〜5箇所の隅肉継手部8−1〜8−5に1パスずつ溶接すると共に、その溶接部を検査するように、隅肉継手部の溶接と検査とを繰り返すようにしている。   For example, the repeated welding process 113 of the minority unit that repeats welding and inspection on the outer cylinder 2 side is similar to the case of the inner cylinder 2 side, and N fillets formed on the outer cylinder 2 side are the same. The joint portions 8-1, 8-2... 8 -N are divided into about 1 to 5 locations in advance, and welded to the divided 1 to 5 fillet joint portions 8-1 to 8-5 one pass at a time. At the same time, the welding and inspection of the fillet joint are repeated so as to inspect the weld.

このように、二通りある作業(連続溶接又は溶接と検査の繰り返し)の何れかを選択することで、溶接優先の作業効率向上又は検査優先の溶接品質向上を図ることができる。   In this way, by selecting one of two types of operations (continuous welding or repetition of welding and inspection), it is possible to improve work efficiency with priority on welding or improvement in welding quality with priority on inspection.

一方、内筒1側及び外筒2側の検査工程107及び114は、上述したように、本溶接した各溶接部の品質を検査する工程である。この内筒1側及び外筒2側の検査工程107及び114は、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103と内筒1側のN箇所の溶接の繰り返し溶接工程105の終了後、又は各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、内筒1側のN箇所の溶接の繰り返し溶接工程105、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110、外筒2側のN箇所の溶接の繰り返し溶接工程112の終了後の必要箇所に設けられている。更に、内筒1側及び外筒2側の検査工程107及び114では、各溶接部の品質を各々検査すると共に、その検査で不合格となった溶接部分及びその近傍部を補修する補修溶接工程109、116を備えている。   On the other hand, the inspection processes 107 and 114 on the inner cylinder 1 side and the outer cylinder 2 side are processes for inspecting the quality of each welded part that has been welded as described above. The inspection processes 107 and 114 on the inner cylinder 1 side and the outer cylinder 2 side are performed by the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint and the welding of N places on the inner cylinder 1 side. After the end of the repeated welding process 105, or the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, the repeated welding process 105 for welding N points on the inner cylinder 1 side, and each fillet joint The second welding process 110 on the outer cylinder 2 side including the temporary assembly process, and the necessary welding position after the repeated welding process 112 of N places on the outer cylinder 2 side are provided. Further, in the inspection steps 107 and 114 on the inner cylinder 1 side and the outer cylinder 2 side, the quality of each welded portion is inspected, and the repaired welding step of repairing the welded portion that has failed the inspection and its vicinity. 109 and 116 are provided.

また、溶接と検査との両作業を繰り返し行う場合の内筒1側の検査工程117及び外筒2側の検査工程120では、該当する溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚L1やビード高さH1や溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。   Further, in the inspection process 117 on the inner cylinder 1 side and the inspection process 120 on the outer cylinder 2 side when both the welding and inspection operations are repeatedly performed, whether or not the weld bead is well formed in the corresponding welded portion, Inspection / confirmation of welding quality, such as whether or not there are defects such as cracks and undercuts, and whether or not the throat thickness L1, bead height H1, penetration depth c, etc. are satisfied.

この溶接品質の検査を行う内筒1側の検査工程117及び外筒2側の検査工程120で不合格となった場合には、不合格の溶接部分及びその近傍部を補修溶接工程119及び122で補修するようにしている。   When the inspection process 117 on the inner cylinder 1 side and the inspection process 120 on the outer cylinder 2 side for inspecting the welding quality fail, repair welding processes 119 and 122 are performed on the rejected welded part and its vicinity. I am trying to repair it.

これらの補修溶接工程109、116、119及び122では、例えば、隅肉継手部を本溶接した時の溶接条件と略同一の補修溶接条件、又は補修溶接条件よりもMIG電圧や入熱量を増加した他の補修溶接条件を使用して、1パス肉盛して補修溶接することで、欠陥部(溶接不良部)を容易に消滅できるように肉盛補修することができる。   In these repair welding processes 109, 116, 119, and 122, for example, the MIG voltage and the heat input amount are increased more than the repair welding conditions or repair welding conditions that are substantially the same as the welding conditions when the fillet joint is main welded. By using other repair welding conditions and performing one-pass overlay and repair welding, the overlay repair can be performed so that the defective portion (welding failure portion) can be easily eliminated.

なお、溶接不良部の補修方法については、別の実施例(図7、図10、図14〜16)を用いて後述する。   In addition, the repair method of a poor weld part is later mentioned using another Example (FIG. 7, FIG. 10, FIG. 14-16).

最初に、溶接前に行うワイヤ溶着断面積決定工程102では、所定の隅肉継手部5に形成すべき内側溶接部7ののど厚L1が伝熱銅フィン3の板厚T1以上(L1≧T1)になるように、ワイヤ送り速度Wf又は該ワイヤ送り速度Wfとワイヤ径d及び所定の溶接速度Vからワイヤ溶着断面積Awを算出して決定する。   First, in the wire welding cross-sectional area determination step 102 performed before welding, the throat thickness L1 of the inner welded portion 7 to be formed on the predetermined fillet joint 5 is equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L1 ≧ T1). The wire welding cross-sectional area Aw is calculated and determined from the wire feed speed Wf or the wire feed speed Wf, the wire diameter d, and the predetermined welding speed V.

なお、内側溶接部7(又は外側溶接部10)ののど厚L1とは、図3及び図4のワイヤ溶着断面積Awの決定工程102中に示すように、伝熱銅フィン3側の溶融底部から溶接ビード表面までの最小距離のことである。また、ワイヤ溶着断面積Awの決定工程102の箇所に図示した隅肉継手部5の内側溶接部7は、内筒1の外面に伝熱銅フィン3の一方の端面部を溶接して形成することを想定して描いているが、外筒2の内面に伝熱銅フィン3の他方の端面部を溶接して他方の外側溶接部10を形成することも想定内であり、図2に示した溶接構造と同様であることから省略している。   The throat thickness L1 of the inner welded portion 7 (or outer welded portion 10) is the molten bottom portion on the heat transfer copper fin 3 side, as shown in the wire welding cross-sectional area Aw determination step 102 in FIGS. This is the minimum distance from the weld bead surface. Moreover, the inner side welding part 7 of the fillet joint part 5 shown in the location of the determination process 102 of the wire welding cross-sectional area Aw is formed by welding one end surface part of the heat transfer copper fin 3 to the outer surface of the inner cylinder 1. However, it is also assumed that the other end surface portion of the heat transfer copper fin 3 is welded to the inner surface of the outer cylinder 2 to form the other outer welded portion 10, which is shown in FIG. 2. It is omitted because it is similar to the welded structure.

次に、図3及び図4に示す各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103では、本溶接前に所定枚数(N枚)の伝熱銅フィン3を内筒1側に仮付溶接して仮組するようにしている。例えば、図5に示すように、鋼製の内筒1の外面に所定枚数(N枚)の伝熱銅フィン3の片方の各端面部を突き合せて広角形状の各隅肉継手部5−1、5−2・・・5−Nを略等間隔に各々形成、又は各々形成すると共に、仮付(例えば、仮付溶接)して仮組する。   Next, in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint shown in FIGS. 3 and 4, a predetermined number (N) of heat transfer copper fins 3 are attached before the main welding. The inner cylinder 1 is temporarily welded to be temporarily assembled. For example, as shown in FIG. 5, each end face part of one side of a predetermined number (N) of heat transfer copper fins 3 is abutted against the outer surface of the steel inner cylinder 1, and each fillet joint part 5- 1, 5-2,..., 5-N are formed at substantially equal intervals, or are formed at the same time, and are temporarily assembled (for example, by temporary welding).

図5中の右側に示すように、隅肉継手部5−1、5−2・・・5−Nを形成及び仮組する場合には、例えば、TIG溶接等の溶接法によって仮付溶接し、所定長さX1の仮付部(k1、k2・・・kp)を所定間隔X2毎に形成して、隅肉継手部を仮組すると良い。仮付溶接すべき仮付長さX1は、15mm以上50mm以下(15≦X1≦50mm)の範囲であり、仮付間の距離間隔X2は、200mm以上600mm以下(200≦X2≦600mm)の範囲にすると良い。   As shown on the right side in FIG. 5, when forming and temporarily assembling fillet joint portions 5-1, 5-2... 5-N, for example, temporary welding is performed by a welding method such as TIG welding. It is preferable to temporarily assemble the fillet joint portion by forming the temporary attachment portions (k1, k2,... Kp) having a predetermined length X1 at predetermined intervals X2. The tacking length X1 to be tack welded is in the range of 15 mm to 50 mm (15 ≦ X1 ≦ 50 mm), and the distance interval X2 between the tacks is in the range of 200 mm to 600 mm (200 ≦ X2 ≦ 600 mm). It is good to make it.

また、仮付個数nについては、本溶接すべき溶接線長さXwによって変化するが、例えば、溶接線長さXwを仮付間の距離間隔X2で略均等分割した数に開始側又は終了側の1つを加えた合計数にすれば、(溶接線長さXw/距離間隔X2)+1となり、仮付個数nを容易に決定することができる。また、各仮付位置についても、溶接線の開始位置と、その開始位置から前記距離間隔X2毎の各位置と溶接線の終了位置とに決定すれば良い。また、仮付溶接すべき継手母材の溶接線(6−1、6−2・・・6−N)は、本溶接の場合と同程度であり、伝熱銅フィン3の端面角部から伝熱銅フィン表面側に溶接トーチをシフトさせる距離S3(第2の距離)は、1mm以上3mm以下(1≦S3≦3mm)の範囲にすると良い。   The number of temporary attachments n varies depending on the weld line length Xw to be welded. For example, the start side or the end side is a number obtained by dividing the weld line length Xw substantially equally by the distance interval X2 between the temporary attachments. If the total number including one of the above is added, (welding line length Xw / distance interval X2) +1, and the provisional number n can be easily determined. Further, each temporary attachment position may be determined as the start position of the weld line, the respective positions for each distance interval X2 and the end position of the weld line from the start position. Further, the weld lines (6-1, 6-2,..., 6-N) of the joint base material to be tack welded are the same as those in the case of the main welding, and from the end face corners of the heat transfer copper fins 3. The distance S3 (second distance) for shifting the welding torch to the heat transfer copper fin surface side is preferably in the range of 1 mm to 3 mm (1 ≦ S3 ≦ 3 mm).

なお、仮付長さX1が15mmより短過ぎると、仮付長さ不足に伴う強度不足になり易く、反対に、50mmより長過ぎると、本溶接の施工時に仮付部を再溶融させて本溶接ビードを形成させるのに支障が生じ易い。また、仮付間の距離間隔X2が200mmより短過ぎると、仮付個数の増加及び仮付作業の時間増加に至り、反対に、600mmより長過ぎると、仮付個数不足に伴う強度不足になり易く、また、本溶接の施工時に反り変形が生じ易いので好ましくない。また、溶接トーチをシフトさせるシフト距離S3が1mmより短過ぎると、仮付溶接中のアーク及び溶融プールが鋼側(内筒1側)に片寄り易くなることから、反対側の伝熱銅フィン3側の溶融不足やアンダーカット発生に伴う強度不足になり易い。一方、シフト距離S3が3mmより長過ぎると、仮付溶接中のアーク及び溶融プールが伝熱銅フィン3側に片寄り易くなることから、反対側の内筒1側の溶融不足や不正ビードになり易いので好ましくない。   If the tacking length X1 is too short than 15 mm, the strength tends to be insufficient due to insufficient tacking length. Conversely, if the tacking length X1 is too long, the tacking part is remelted during the main welding process. It is easy to cause trouble in forming the weld bead. Further, if the distance X2 between the tacks is too short than 200 mm, the number of tacks increases and the time for the tacking work increases. On the other hand, if it is too long, the strength is insufficient due to the shortage of the tacks. This is not preferable because it is easy to be warped and deformed during the actual welding. Also, if the shift distance S3 for shifting the welding torch is shorter than 1 mm, the arc and the molten pool during the tack welding are likely to be shifted to the steel side (inner cylinder 1 side). It tends to become insufficient in strength due to insufficient melting or undercut on the 3rd side. On the other hand, if the shift distance S3 is longer than 3 mm, the arc and the melt pool during tack welding are likely to be shifted to the heat transfer copper fin 3 side. Since it becomes easy to become, it is not preferable.

このようにして決定した仮付位置に所定長さ(X1)ずつ、所定間隔(X2)毎にTIG仮付溶接を行うことで、内筒1側の場合でも、所定長さずつの仮付部を容易にn個形成(k1、k2・・・kn)することができ、また、本溶接すべき溶接線の曲がりや反り変形が小さい隅肉継手部を容易に仮組製作することができる。また、本仮付方法による仮付によって金属キャスク溶接構造物の溶接組立及び製造を継続することもできる。   By performing TIG temporary welding at predetermined intervals (X1) at predetermined intervals (X1) at the temporary attachment positions determined in this manner, temporary attachment portions with predetermined lengths even in the case of the inner cylinder 1 side. N pieces (k1, k2,..., Kn) can be easily formed, and a fillet joint portion with small bending and warping deformation of the weld line to be welded can be easily formed temporarily. Moreover, the welding assembly and manufacture of a metal cask welding structure can also be continued by temporary attachment by this temporary attachment method.

また、各隅肉継手部5−1、5−2・・・5−Nの所定位置にn個の仮付部を形成するためのTIG仮付溶接では、この仮付溶接後の本溶接で使用予定の溶接ワイヤ及びシールドガスと同一成分のSiCuワイヤ及びArガスとHeガスとの混合ガスを使用すると良い。   Moreover, in TIG tack welding for forming n tacking portions at predetermined positions of the fillet joint portions 5-1, 5-2,..., 5-N, the main welding after the tack welding is performed. It is preferable to use a mixed gas of SiCu wire and Ar gas and He gas having the same components as the welding wire and shield gas to be used.

また、仮付溶接すべき隅肉継手部5−1の溶接線6−1上を通過するように溶接トーチを配置し、溶接トーチの先端開口部から仮付すべき隅肉継手部5−1及びその近傍表面部に向かって混合ガスを流出させて仮付開始位置にTIGアークを発生させ、給電無のSiCuワイヤをTIGアーク中及び溶融プール内に低速送給し、先行ワイヤ後続TIGアークの方向に溶接トーチを走行移動させ、隅肉継手部に所定長さのTIG仮付溶接を施工して仮付ビードを形成することで、所定の仮付長さX1の仮付ビード(k1、k2・・・kn)を良好に得ることができる。   Moreover, the welding torch is disposed so as to pass over the weld line 6-1 of the fillet joint portion 5-1 to be tack welded, and the fillet joint portion 5-1 to be provisionally attached from the tip opening of the welding torch and The mixed gas is flowed out to the vicinity surface portion to generate a TIG arc at the temporary attachment start position, and a non-powered SiCu wire is fed into the TIG arc and the molten pool at a low speed, and the direction of the preceding wire and the subsequent TIG arc The welding torch is moved and moved, and a TIG tack welding of a predetermined length is applied to the fillet joint portion to form a temporary bead, thereby providing a temporary bead (k1, k2,. .. kn) can be obtained satisfactorily.

また、SiCuワイヤを用いてTIG仮付溶接することで、銅と鋼との異材溶接であっても、銅と鋼及びSiとが固溶可能な状態で適度に混合し合って割れのない良好な仮付ビード及び仮付溶接断面部を得ることができる。更に、複数の仮付部を有する隅肉継手部の本溶接を行うことが可能となる。   Also, by TIG tack welding using SiCu wire, even when dissimilar material welding of copper and steel, copper, steel and Si are mixed properly in a state where they can be dissolved, and good without cracks A temporary bead and a temporary welded cross section can be obtained. Furthermore, it becomes possible to perform the main welding of the fillet joint portion having a plurality of temporary attachment portions.

なお、図5中には、伝熱銅フィン3を2枚のみ図示して他の部分を省略してあるが、溶接すべき所定枚数の伝熱銅フィン3は、内筒1の外面の円周方向に略等間隔に傾斜配備されている。   In FIG. 5, only two heat transfer copper fins 3 are shown and other portions are omitted, but a predetermined number of heat transfer copper fins 3 to be welded are circles on the outer surface of the inner cylinder 1. Inclined and arranged at substantially equal intervals in the circumferential direction.

図6は、図5に示した内筒側の隅肉継手部に本溶接した溶接部の形状を示す部分斜視図である。   FIG. 6 is a partial perspective view showing the shape of a welded portion that is finally welded to the fillet joint portion on the inner cylinder side shown in FIG. 5.

本実施例の内筒1側の本溶接では、外筒2は配備せずに、伝熱銅フィン3を内筒1の外面に傾斜配備して広角形状の隅肉継手部5−1、5−2・・・5−Nを形成すると共に仮付して仮組した後に、TIG−MIG溶接トーチによる本溶接の先行TIGと後続MIGとの複合溶接又はMIG溶接トーチによる本溶接のMIG溶接によって、1パスずつ順番に溶接施工して溶接ビード及び溶接断面部7−1、7−2・・・7−Nを形成するようにしている。   In the main welding on the inner cylinder 1 side of the present embodiment, the outer cylinder 2 is not arranged, but the heat transfer copper fins 3 are inclinedly arranged on the outer surface of the inner cylinder 1 to form wide-angle fillet joint portions 5-1, 5. -2 ... After 5-N is formed and temporarily attached and temporarily assembled, by TIG-MIG welding torch TIG-preceding TIG and subsequent MIG combined welding or MIG welding of main welding by MIG welding torch .., 7-N are formed by welding one pass at a time in order.

このように、仮組(仮付溶接)後の各隅肉継手部5−1、5−2・・・5−Nの溶接線上から本溶接を1パスずつ順番に溶接施工することで、十分な大きさを有するのど厚L1とビード高さH1及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード及び溶接断面部7−1、7−2・・・7−Nを得ることができる。   In this way, it is sufficient to perform the main welding in order one pass at a time on the weld line of each fillet joint portion 5-1, 5-2... 5-N after temporary assembly (temporary welding). Throat thickness L1 and bead height H1 and heat conduction cross-sectional area effective for heat removal can be reliably ensured, and a shallow penetration weld bead and weld cross sections 7-1, 7-2,... 7 -N can be obtained.

また、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103(本溶接工程)は、上述したように、仮組及び溶接すべき内筒1側の各隅肉継手を仮付溶接して仮組した後に本溶接する工程である。   In addition, as described above, the first welding process 103 (main welding process) on the inner cylinder 1 side including the temporary assembly process of each fillet joint includes the fillet joints on the inner cylinder 1 side to be temporarily assembled and welded. Is a step of performing temporary welding after temporary welding and temporarily assembling.

図3〜図6に示したように、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103では、所定枚数(N枚)の伝熱銅フィン3を内筒1の外面に取り付て隅肉継手部5をN箇所形成、又はN箇所形成すると共に仮付溶接して仮組し、その後に、仮付有継手部に本溶接を施工するようにしている。仮組後の内筒1側の本溶接では、例えば、所定枚数(N枚)の伝熱銅フィン3を内筒1の外面に取り付て隅肉継手部5をN箇所形成、又はN箇所形成すると共に仮付溶接して仮組した後に、そのN箇所の隅肉継手部5−1、5−2・・・5−Nに1パスずつ繰り返し溶接(連続溶接)する内筒1側のN箇所の溶接の繰り返し溶接工程105と、N箇所の隅肉継手部5−1、5−2・・・5−Nを予め1〜5箇所程度に分割し、その分割した1〜5箇所の隅肉継手部5−1、5−2、5−3、5−4、5−5を溶接して、その溶接部を検査するように、溶接と検査の両作業を繰り返す内筒1側の少数単位での溶接と検査の繰り返し溶接工程106とに分けている。   As shown in FIGS. 3 to 6, in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, a predetermined number (N) of heat transfer copper fins 3 are connected to the inner cylinder 1. The fillet joint portion 5 is formed at N locations, or N locations are formed, and are temporarily attached by temporary welding, and then the main weld is applied to the provisionally-attached joint portion. In the main welding on the inner cylinder 1 side after temporary assembly, for example, a predetermined number (N) of heat transfer copper fins 3 are attached to the outer surface of the inner cylinder 1 to form fillet joints 5 at N locations, or N locations On the inner cylinder 1 side, which is repeatedly welded (continuously welded) to the N fillet joint portions 5-1, 5-2,... The N welding welding process 105 and the N fillet joints 5-1, 5-2... 5-N are divided into about 1 to 5 places in advance, and the divided 1 to 5 places are divided. The fillet joints 5-1, 5-2, 5-3, 5-4, 5-5 are welded, and both the welding and inspection operations are repeated so as to inspect the welds. It is divided into welding in a small number of units and repeated welding process 106 of inspection.

内筒1側のN箇所の溶接(本溶接)の繰り返し溶接工程105では、パス毎に溶接すべきN箇所の隅肉継手部5−1、5−2・・・5−Nの各溶接開始位置から終了位置までの各溶接線(伝熱銅フィン3の下位表面に点線で示す溶接線6−1、6−2・・・6−N)に対して、シリコン入りのCuSiワイヤを用い、TIG−MIG溶接トーチによる本溶接の先行TIGと後続MIGとの複合溶接、又はMIG溶接トーチによる本溶接のMIG溶接によって、1パスずつ順番に溶接施工する。   In the repeated welding step 105 of N welding (main welding) on the inner cylinder 1 side, welding of N fillet joint portions 5-1, 5-2,..., 5-N to be welded for each pass is started. For each welding line from the position to the end position (welding lines 6-1, 6-2,..., 6-N indicated by dotted lines on the lower surface of the heat transfer copper fin 3), a CuSi wire containing silicon is used, Welding is performed in order, one pass at a time, by composite welding of the preceding TIG and the subsequent MIG of the main welding by the TIG-MIG welding torch, or MIG welding of the main welding by the MIG welding torch.

このため、内筒1側のN箇所の溶接の繰り返し溶接工程105では、例えば、溶接対象の継手(内筒1及び伝熱銅フィン3の両方)側を回転駆動装置等で回転移動させて、仮付溶接の場合と同様に、本溶接すべき隅肉継手部5−1の溶接線6−1を鉛直方向に姿勢変更した後に、溶接線6−1上に一体構造のTIG−MIG溶接トーチ、又はMIG溶接トーチを下向姿勢で位置決めする。伝熱銅フィン3の両端面部が平坦面形状の場合の溶接線は、端面角部から伝熱銅フィン3の表面側にワイヤ位置又はトーチ位置(電極位置含む)を所定距離だけシフトさせた位置であり、そのシフト量S1(第1の距離S1)は、0mm以上4mm以下(0≦S1≦4mm)の範囲で設定すると良い。   For this reason, in the repeated welding process 105 of welding of N places on the inner cylinder 1 side, for example, the joint (both inner cylinder 1 and heat transfer copper fin 3) side to be welded is rotated and moved by a rotary drive device or the like. As in the case of tack welding, after changing the posture of the weld line 6-1 of the fillet joint portion 5-1 to be welded in the vertical direction, a TIG-MIG welding torch having an integral structure on the weld line 6-1 Alternatively, the MIG welding torch is positioned in a downward posture. The welding line when both end portions of the heat transfer copper fin 3 are flat surfaces is a position obtained by shifting the wire position or torch position (including electrode position) by a predetermined distance from the end face corner portion to the surface side of the heat transfer copper fin 3. The shift amount S1 (first distance S1) is preferably set in the range of 0 mm to 4 mm (0 ≦ S1 ≦ 4 mm).

また、下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを、溶接開始位置から終了位置までの溶接線6−1上に沿って走行させながら1パス溶接して溶接ビード及び溶接断面部7−1、7−2を形成するようにすると良い。   In addition, the TIG-MIG welding torch or the MIG welding torch having a monolithic structure in the downward posture is welded along the weld line 6-1 from the welding start position to the end position to perform one pass welding, and a weld bead and a weld cross section. The parts 7-1 and 7-2 may be formed.

このように、ワイヤ位置又はトーチ位置を伝熱銅フィン3側にシフトさせて本溶接することで、伝熱銅フィン3の加熱溶融が促進されると共に、鋼側の溶込み深さcが抑制されるので、十分な大きさを有するのど厚L1及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード及び溶接断面部7−1、7−2を得ることができる。   In this way, by performing the main welding by shifting the wire position or the torch position to the heat transfer copper fin 3 side, heat melting of the heat transfer copper fin 3 is promoted, and the penetration depth c on the steel side is suppressed. Therefore, the throat thickness L1 having a sufficient size and the heat conduction cross-sectional area effective for heat removal can be reliably ensured, and a shallow penetration weld bead and weld cross sections 7-1 and 7-2 can be obtained. it can.

溶接線6−1の1パス溶接が終了すれば、溶接トーチを回避移動させ、次の溶接線6−2の溶接では、継手側を再び回転移動させて、該当する溶接線6−2を鉛直方向に姿勢変更した後に、回避移動させていた溶接トーチを溶接線6−2上に沿って移動させて下向姿勢で位置決めを行う。溶接トーチを溶接線6−2上に沿って走行させながら1パス溶接すると良い。   When the one-pass welding of the welding line 6-1 is completed, the welding torch is moved around, and in the welding of the next welding line 6-2, the joint side is rotated again, and the corresponding welding line 6-2 is moved vertically. After changing the posture in the direction, the welding torch that has been moved to avoid is moved along the welding line 6-2 to perform positioning in a downward posture. One-pass welding may be performed while the welding torch travels along the welding line 6-2.

このように、該当する隅肉継手部5の溶接線を姿勢変更する動作、溶接線上に溶接トーチを位置決めする動作、その溶接トーチを走行させながら溶接線上に1パス溶接を施工する動作、1パス溶接施工後に溶接トーチを回避させる動作等の一連の繰り返し動作を行うことで、所定枚数(N枚)の隅肉継手部の各溶接線6−1、6−2・・・6−Nに、図6に示すように、それぞれ溶接ビード及び溶接断面部7−1、7−2・・・7−Nを形成することができる。   In this way, the operation of changing the orientation of the weld line of the corresponding fillet joint portion 5, the operation of positioning the welding torch on the weld line, the operation of performing one-pass welding on the weld line while running the welding torch, 1 pass By performing a series of repetitive operations such as an operation for avoiding the welding torch after welding construction, each welding line 6-1, 6-2. As shown in FIG. 6, a weld bead and weld cross sections 7-1, 7-2... 7-N can be formed, respectively.

なお、先行TIGと後続MIGとの複合溶接又はMIG溶接については、別の実施例(図11〜14)を用いて後述する。   Note that composite welding or MIG welding of the preceding TIG and the subsequent MIG will be described later using another embodiment (FIGS. 11 to 14).

一方、内筒1側の溶接(1〜5箇所)と、その溶接部の検査を繰り返す内筒1側の少数単位での溶接と検査の繰り返し溶接工程106でも、溶接施工は同様であり、上述したように、下向姿勢の一体構造のTIG−MIG溶接トーチ、又はMIG溶接トーチを溶接開始位置から終了位置までの溶接線6−1上に沿って走行させながら1パス溶接して、溶接ビード及び溶接断面部7−1を形成するようにすると良い。溶接後には内筒1側の検査工程117で溶接品質の検査を行い、また、この溶接品質の検査で不合格となった場合には、不合格の溶接部分及びその近傍部を補修溶接工程119で補修するようにしている。   On the other hand, the welding operation is the same in the welding process 106 of the welding and inspection in the small number unit on the inner cylinder 1 side that repeats the inspection of the inner cylinder 1 side (1-5 locations) and the inspection of the welded portion. As described above, a single-pass welding is performed while the TIG-MIG welding torch having a monolithic structure in the downward posture or the MIG welding torch is run along the welding line 6-1 from the welding start position to the end position. And it is good to form the welding cross-section part 7-1. After welding, inspection of the welding quality is performed in the inspection process 117 on the inner cylinder 1 side, and when the inspection of the welding quality is unsuccessful, the repaired welding process 119 repairs the rejected welded part and its vicinity. I am trying to repair it.

CuSiワイヤを用いて先行TIGと後続MIGとの複合溶接又はMIG溶接することで、銅と鋼との異材溶接であっても、銅と鋼及びSiとが固溶可能な状態で適度に混合し合って割れのない良好な溶接ビード及び溶接断面部(溶接部)を形成することができる。   By using CuSi wire to perform composite welding of preceding TIG and subsequent MIG or MIG welding, copper, steel, and Si can be mixed together in a state where they can be dissolved even in the case of dissimilar material welding of copper and steel. As a result, it is possible to form a good weld bead and weld cross section (welded part) without cracks.

例えば、Si及びMnは、CuやFeに対して溶け合う共晶型IIに属する物質であり、このため、該Si及びMn入りのCuSiワイヤを用いて溶接施工することで、上述したように、銅と鋼及びSiが固溶可能な状態で適度に混合し合って割れのない良好な溶接部が得られるものと推定される。   For example, Si and Mn are substances belonging to eutectic type II that are soluble in Cu and Fe. For this reason, by performing welding using the CuSi wire containing Si and Mn, It is presumed that a good weld with no cracks can be obtained by mixing the steel and the steel and Si in a solid solutionable state.

一方、熱伝導率が高い純銅製のCuワイヤを使用することも可能であるが、純銅製のCuワイヤの場合には、シリコン入りのCuSiワイヤと比べて、銅と鋼との異材溶接に対して溶接性及び溶接品質が劣ると共に、割れ感受性も高いことから本実施例の溶接方法には採用しなかった。   On the other hand, it is also possible to use a pure copper Cu wire with high thermal conductivity, but in the case of a pure copper Cu wire, compared to CuSi wire containing silicon, different materials welding of copper and steel Since the weldability and weld quality are inferior and the cracking susceptibility is high, it was not adopted in the welding method of this example.

そして、本実施例では、溶接施工された各隅肉継手部5−1、5−2・・・5−Nの溶接ビード及び溶接断面部7−1、7−2・・・7−Nに、少なくとも溶接部ののど厚L1が、伝熱銅フィン3の板厚T1以上(L1≧T1)に形成され、かつ、内筒1側の溶込み深さcが、0.05mm以上6mm以下(0.05≦c≦6mm)に形成されている。好ましくは、溶込み深さcを0.05mm以上4mm以下(0.05≦c≦4mm)に形成する良い。   In this embodiment, the weld bead of each fillet joint portion 5-1, 5-2,..., 5-N and the weld cross-section portions 7-1, 7-2,. At least the throat thickness L1 of the welded portion is formed to be not less than the plate thickness T1 of the heat transfer copper fin 3 (L1 ≧ T1), and the penetration depth c on the inner cylinder 1 side is not less than 0.05 mm and not more than 6 mm ( 0.05 ≦ c ≦ 6 mm). Preferably, the penetration depth c may be 0.05 mm or more and 4 mm or less (0.05 ≦ c ≦ 4 mm).

これによって、内筒1側の各伝熱銅フィン3の溶接箇所に、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード及び溶接断面部を得ることができる。また、除熱性能の向上及び製造コスト低減にも寄与することができる。更に、溶接部の引張強度についても、100N/mm以上の強度を確実に得ることができる。 As a result, it is possible to reliably secure a throat thickness L having a sufficient size and a heat conduction cross-sectional area effective for heat removal at the welded portion of each heat transfer copper fin 3 on the inner cylinder 1 side, and defects such as cracks. It is possible to obtain a weld bead and a welded cross-section with good quality. Moreover, it can contribute to improvement of heat removal performance and reduction of manufacturing cost. Furthermore, also about the tensile strength of a weld part, the intensity | strength of 100 N / mm < 2 > or more can be obtained reliably.

上述したのど厚L1が伝熱銅フィン3の板厚T1よりも小さ過ぎると、例えば、内筒1側から内側溶接部7を経由して伝熱銅フィン3側に熱を伝導するのに必要な熱伝導断面積が減少するため、除熱性能の向上に支障をきたすことになる。そのため、溶接部ののど厚L1を伝熱銅フィン3の板厚T1以上(L1≧T1)、ビード高さH1をT1以上(H1≧T1)に形成している。   If the above-mentioned throat thickness L1 is too smaller than the plate thickness T1 of the heat transfer copper fin 3, for example, it is necessary to conduct heat from the inner cylinder 1 side to the heat transfer copper fin 3 side via the inner welded portion 7. As a result, the heat conduction cross-sectional area is reduced, which hinders improvement of heat removal performance. Therefore, the throat thickness L1 of the welded portion is formed to be not less than the plate thickness T1 of the heat transfer copper fin 3 (L1 ≧ T1), and the bead height H1 is not less than T1 (H1 ≧ T1).

また、伝熱銅フィン3側のビード止端部に発生することがあるアンダーカット深さRを(0.1×T1)以下に抑制している。更に、内筒1側の溶込み深さcが深過ぎると、溶接部の断面積に対する鋼の溶融比率(希釈率)が増加するため、溶接部分の熱伝導率が減少すると共に、割れ感受性が高くなり易い。溶込み深さcが浅過ぎると、鋼側との接合不足によって引張強度が低下し易くなる。   Moreover, the undercut depth R which may occur at the bead toe portion on the heat transfer copper fin 3 side is suppressed to (0.1 × T1) or less. Furthermore, if the penetration depth c on the inner cylinder 1 side is too deep, the steel melting ratio (dilution rate) with respect to the cross-sectional area of the welded portion increases, so the thermal conductivity of the welded portion decreases and crack susceptibility increases. It tends to be expensive. If the penetration depth c is too shallow, the tensile strength tends to decrease due to insufficient bonding with the steel side.

そのため、上述したように、内筒1側の溶込み深さcを0.05mm以上6mm以下(0.05≦c≦6mm)に形成している。好ましくは溶込み深さcを0.05mm以上4mm以下(0.05≦c≦4mm)に形成すると良い。   Therefore, as described above, the penetration depth c on the inner cylinder 1 side is formed to be 0.05 mm or more and 6 mm or less (0.05 ≦ c ≦ 6 mm). The penetration depth c is preferably 0.05 mm to 4 mm (0.05 ≦ c ≦ 4 mm).

一方、各伝熱銅フィン3を、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103(本溶接工程)で溶接する過程で発生することがあるアンダーカット過大や、のど厚不足又はビード高さ不足等の溶接不良部、又は溶接後の品質検査工程107、117で検出されることがあるアンダーカット過大、のど厚不足又はビード高さ不足等の溶接不良部は、補修溶接(肉盛補修)する必要がある。   On the other hand, excessive undercuts that may occur in the process of welding each heat transfer copper fin 3 in the first welding process 103 (main welding process) on the inner cylinder 1 side including the temporary assembly process of each fillet joint, , Welded defective parts such as throat thickness deficiency or bead height deficient, or undercut excessive parts that may be detected in quality inspection processes 107 and 117 after welding, such as throat thickness deficient or bead height deficient It is necessary to carry out repair welding (overlay repair).

図7は、本発明の実施例1に係わる金属キャスク溶接構造物における内筒側の検査工程での合否判定、及び補修溶接工程で溶接不良部を補修した補修溶接部の形状を示す部分斜視図である。   FIG. 7 is a partial perspective view showing the pass / fail determination in the inspection process on the inner cylinder side in the metal cask welded structure according to the first embodiment of the present invention, and the shape of the repair weld part in which the defective weld part is repaired in the repair welding process. It is.

本実施例の内筒側の検査工程107、117では、溶接品質の合否判定を行うため、例えば、のど厚L1がL1<T1、又はビード高さH1がH1<T1、又はアンダーカット深さRがR>(0.1×T1)の時には、不合格(溶接不良)と判定し、また、L1≧T1、又はH1≧T1、又はR≦(0.1×T1)の時には、合格(溶接良好)と判定するようにしている。不合格判定の溶接不良部及びその近傍部は、補修溶接工程109、119で補修溶接を実施する。   In the inspection steps 107 and 117 on the inner cylinder side of this embodiment, in order to determine whether or not the welding quality is acceptable, for example, the throat thickness L1 is L1 <T1, or the bead height H1 is H1 <T1, or the undercut depth R When R> (0.1 × T1), it is judged as rejected (welding failure), and when L1 ≧ T1, or H1 ≧ T1, or R ≦ (0.1 × T1), it passes (welded). (Good). Repair welding is performed in the repair welding process 109 and 119 on the defective weld portion and its vicinity in the failure determination.

例えば、不合格判定の溶接不良部を補修する場合には、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103(本溶接工程)で使用したTIG−MIG溶接トーチ又はMIG溶接トーチと同一又は同種の溶接トーチ、同一成分の溶接ワイヤ及びシールドガスをそれぞれ使用すると共に、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103で施工した時の溶接方向と同一方向にTIG−MIG溶接トーチ又はMIG溶接トーチを走行させ、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、溶接不良部を有する溶接ビード部7−1、7−2の上から肉盛するように、溶接不良部及びその近傍部に補修溶接を施工して溶接不良部を消滅させ、かつ、良好な補修溶接ビード(補修ビード)70−1を形成するようにしている。   For example, when repairing a defective weld portion determined to be rejected, the TIG-MIG welding torch used in the first welding process 103 (main welding process) on the inner cylinder 1 side including the temporary assembly process of each fillet joint. Or, using the same or the same type of welding torch as the MIG welding torch, welding wire and shield gas of the same component, respectively, it was constructed in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint Welding bead portions 7-1 and 7-2 having poorly welded portions by running a TIG-MIG welding torch or a MIG welding torch in the same direction as the current welding direction and performing composite welding or MIG welding of the preceding TIG and the subsequent MIG. In order to build up from above, repair welding is applied to the welded defective part and its vicinity to eliminate the welded defective part, and a good repair weld bead (repair bead) 70-1 is formed. The

また、補修溶接工程109、119で溶接不良部を補修する場合には、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103で使用した溶接条件と略同一の補修溶接条件、又は補修溶接条件よりもMIG電圧や入熱量を増加した他の補修溶接条件を使用し、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103で形成された溶接ビード部7−1、7−2の銅側のビード止端部から伝熱銅フィン3の表面側に所定距離だけシフトさせた位置の線上に、TIG−MIG溶接トーチ又はMIG溶接トーチを配置すると良い。   In addition, when repairing defective welds in the repair welding processes 109 and 119, the repair is substantially the same as the welding conditions used in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint. It is formed in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint using welding conditions or other repair welding conditions in which the MIG voltage and the heat input amount are increased from the repair welding conditions. TIG-MIG welding torch or MIG welding torch on a line at a position shifted by a predetermined distance from the bead toe portion on the copper side of weld bead portions 7-1 and 7-2 to the surface side of heat transfer copper fin 3 It is good to arrange.

そして、溶接不良部及びその近傍部の線上を通過するようにTIG−MIG溶接トーチ又はMIG溶接トーチを走行させ、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、溶接不良部を有する溶接ビード部7−1、7−2の上から肉盛するように、溶接不良部及びその近傍部に補修溶接を施工して溶接不良部を消滅させると共に、良好な補修溶接ビード70−1を形成するようにしている。   And a TIG-MIG welding torch or a MIG welding torch is run so as to pass on the line of the poorly welded part and the vicinity thereof, and a weld bead having a poorly welded part by combined welding of the preceding TIG and the succeeding MIG or MIG welding. Repair welding is performed on the poorly welded part and the vicinity thereof so as to build up from above the parts 7-1 and 7-2 so that the poorly welded part disappears and a good repair weld bead 70-1 is formed. I am doing so.

このように補修溶接することで、のど厚不足又はビード高さ不足及びアンダーカット深さ過大等の溶接不良部を確実に消滅させることができ、品質良好な溶接ビード(補修断面部)70−1、70−2を得ることができる。また、本補修方法による補修によって、金属キャスク溶接構造物の製造を継続することもできる。   By carrying out repair welding in this way, weld defects such as insufficient throat thickness or insufficient bead height and excessive undercut depth can be reliably eliminated, and weld beads (repair cross section) 70-1 with good quality can be reliably eliminated. 70-2 can be obtained. In addition, the repair of the metal cask welded structure can be continued by the repair by this repair method.

補修終了後に行う補修溶接部の品質検査1071、1171で、補修後ののど厚L2≧T1、ビード積層高さH2≧T1、アンダーカット深さR≦(0.1×T1)に回復すると合格判定となり、次工程の各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110に進むようにしている。   In the quality inspections 1071 and 1171 of the repaired welds that are performed after the repairs are completed, it is determined to pass if the repaired throat thickness L2 ≧ T1, bead stack height H2 ≧ T1, and undercut depth R ≦ (0.1 × T1). Thus, the process proceeds to the second welding step 110 on the outer cylinder 2 side including the temporary assembly step of each fillet joint in the next step.

このように、溶接不良が発生した場合でも、独自の補修溶接の施工によって、のど厚不足やビード高さ不足及びアンダーカット深さ過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード(補修断面部)70−1、70−2を得ると共に、除熱性能向上に寄与する大きな溶接のど厚及び熱伝導断面積を確保することができる。   In this way, even when poor welding occurs, the original repair welding can reliably eliminate defective welds such as insufficient throat thickness, insufficient bead height, and excessive undercut depth, resulting in good quality. It is possible to obtain a large repair weld bead (repair cross section) 70-1 and 70-2, and to secure a large weld throat thickness and heat conduction cross sectional area that contributes to an improvement in heat removal performance.

次に、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110(本溶接工程)は、仮組及び溶接すべき外筒2側の各隅肉継手を仮付溶接して仮組した後に本溶接する工程である。   Next, in the second welding step 110 (main welding step) on the outer cylinder 2 side including the temporary assembly process of each fillet joint, the temporary assembly and each fillet joint on the outer cylinder 2 side to be welded are tack-welded. This is the step of performing the main welding after the temporary assembly.

図3及び図4に示しように、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110では、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、内筒1側のN箇所の溶接の繰り返し溶接工程105、内筒1側の少数単位での溶接と検査の繰り返し溶接工程106の終了後又は内筒1側の検査工程107、117の終了後に、外筒2側の各隅肉継手を仮組(仮付溶接)し、その後に、仮付有継手部に本溶接を施工するようにしている。   As shown in FIGS. 3 and 4, in the second welding process 110 on the outer cylinder 2 side including the temporary assembly process of each fillet joint, the first on the inner cylinder 1 side including the temporary assembly process of each fillet joint. Welding process 103, N-weld welding repeated welding process 105 on the inner cylinder 1 side, welding and inspection repeating welding process 106 on the inner cylinder 1 side in the minor unit, or after the inner cylinder 1-side inspection process 107, After the end of 117, each fillet joint on the outer cylinder 2 side is temporarily assembled (temporary welding), and then the main welding is applied to the provisional joint portion.

例えば、外筒2側の仮組では、図8に示すように、内筒1側に溶接済の伝熱銅フィン3の外周側に一体の円筒状の外筒2を配置して、所定枚数(N)の伝熱銅フィン3の他方の各端面部を突き合せて、広角形状の各隅肉継手部8−1、8−2・・・8−Nを略等間隔に各々形成、又は前記各々形成すると共に仮付溶接して仮組する。   For example, in the temporary assembly on the outer cylinder 2 side, as shown in FIG. 8, a predetermined number of the cylindrical outer cylinders 2 are arranged on the outer peripheral side of the heat transfer copper fins 3 that are welded on the inner cylinder 1 side. The other end face portions of the heat transfer copper fin 3 of (N) are abutted to form wide-angle fillet joint portions 8-1, 8-2 to 8 -N, respectively, at approximately equal intervals, or Each of these is formed and temporarily assembled by temporary welding.

図8中の右側に示すように、隅肉継手部8−1、8−2・・・8−Nを形成及び仮組する場合には、例えば、TIG溶接等の溶接法によって仮付溶接し、所定長さX1の仮付部(k1、k2・・・kp)を所定間隔X2毎に形成して隅肉継手部を仮組すると良い。   As shown on the right side in FIG. 8, when forming and temporarily assembling fillet joint portions 8-1, 8-2... 8 -N, for example, temporary welding is performed by a welding method such as TIG welding. The fillet joint portions may be provisionally assembled by forming temporary attachment portions (k1, k2,... Kp) having a predetermined length X1 at predetermined intervals X2.

上述した内筒1側の場合と同様に、外筒2側の場合でも、仮付溶接すべき仮付長さX1は、15mm以上50mm以下(15≦X1≦50mm)の範囲であり、仮付間の距離間隔X2は、200mm以上600mm以下(200≦X2≦600mm)の範囲であると良い。また、仮付個数nについては、本溶接すべき溶接線長さXwによって変化するが、例えば、溶接線長さXwを仮付間の距離間隔X2で略均等分割した数に開始側又は終了側の1つを加えた合計数にすれば、(溶接線長さXw/距離間隔X2)+1となり、仮付個数nを容易に決定することができる。また、各仮付位置についても、溶接線の開始位置と、その開始位置から距離間隔X2毎の各位置と溶接線の終了位置とに決定すれば良い。   As in the case of the inner cylinder 1 side described above, even in the case of the outer cylinder 2 side, the temporary attachment length X1 to be temporarily attached is in the range of 15 mm to 50 mm (15 ≦ X1 ≦ 50 mm). The distance interval X2 is preferably in the range of 200 mm to 600 mm (200 ≦ X2 ≦ 600 mm). The number of temporary attachments n varies depending on the weld line length Xw to be welded. For example, the start side or the end side is a number obtained by dividing the weld line length Xw substantially equally by the distance interval X2 between the temporary attachments. If the total number including one of the above is added, (welding line length Xw / distance interval X2) +1, and the provisional number n can be easily determined. In addition, each temporary attachment position may be determined as a weld line start position, a position for each distance interval X2 from the start position, and a weld line end position.

このようにして決定した仮付位置にTIG仮付溶接を所定長さ(X1)ずつ、所定間隔(X2)毎に行うことで、内筒1側の場合と同様に、外筒2側の場合でも、所定長さずつの仮付部を容易にn個形成することができ、また、本溶接すべき溶接線の曲がりや反り変形が小さい隅肉継手部を容易に仮組製作することができる。また、上述したように、本仮付方法による仮付によって、金属キャスク溶接構造物の溶接組立及び製造を継続することもできる。   In the case of the outer cylinder 2 side as in the case of the inner cylinder 1 side, TIG tack welding is performed at a predetermined length (X1) at predetermined intervals (X2) at the temporary attachment position thus determined. However, it is possible to easily form n temporary attachment portions each having a predetermined length, and it is possible to easily manufacture a fillet joint portion in which bending or warping deformation of a weld line to be welded is small. . In addition, as described above, the welding assembly and manufacturing of the metal cask welded structure can be continued by the temporary attachment according to the temporary attachment method.

なお、各隅肉継手部5−1、5−2・・・5−Nの所定位置にn個の仮付部を形成するためのTIG仮付溶接では、この仮付溶接後の本溶接で使用予定の溶接ワイヤ及びシールドガスと同一成分のSiCuワイヤ及びArガスとHeガスとの混合ガスを使用すると良い。   In addition, in TIG tack welding for forming n tacking portions at predetermined positions of the fillet joint portions 5-1, 5-2,..., 5-N, the main welding after the tack welding is performed. It is preferable to use a mixed gas of SiCu wire and Ar gas and He gas having the same components as the welding wire and shield gas to be used.

また、内筒1側の仮付溶接の場合と同様に、外筒2の場合でも、仮付溶接すべき隅肉継手部8−1の溶接線9−1上を通過するように溶接トーチを配置し、溶接トーチの先端開口部から仮付すべき隅肉継手部8−1及びその近傍表面部に向かって混合ガスを流出させて仮付開始位置にTIGアークを発生させ、給電無のSiCuワイヤをTIGアーク中及び溶融プール内に低速送給し、先行ワイヤ後続TIGアークの方向に溶接トーチを走行移動させ、隅肉継手部に所定長さの仮付溶接を施工して仮付ビードを形成するTIG仮付溶接を施工し仮付ビードを形成することで、所定の仮付長さX1の仮付ビード(k1、k2・・・kn)を良好に得ることができる。   Similarly to the case of tack welding on the inner cylinder 1 side, even in the case of the outer cylinder 2, the welding torch is passed so as to pass over the weld line 9-1 of the fillet joint portion 8-1 to be tack welded. Arranged and let the mixed gas flow out from the front end opening of the welding torch toward the fillet joint portion 8-1 and its vicinity surface portion to generate a TIG arc at the temporary attachment start position, and feed no SiCu wire Is fed at a low speed into the TIG arc and into the molten pool, the welding torch is moved in the direction of the TIG arc following the preceding wire, and a temporary bead is formed on the fillet joint to form a temporary bead. By performing TIG tack welding and forming a tack bead, a tack bead (k1, k2,..., Kn) having a predetermined tack length X1 can be obtained satisfactorily.

また、SiCuワイヤを用いてTIG仮付溶接することで、銅と鋼との異材溶接であっても、銅と鋼及びSiとが固溶可能な状態で適度に混合し合って割れのない良好な仮付ビード及び仮付溶接断面部を得ることができる。更に、複数の仮付部を有する隅肉継手部の本溶接を行うことが可能となる。   Also, by TIG tack welding using SiCu wire, even when dissimilar material welding of copper and steel, copper, steel and Si are mixed properly in a state where they can be dissolved, and good without cracks A temporary bead and a temporary welded cross section can be obtained. Furthermore, it becomes possible to perform the main welding of the fillet joint portion having a plurality of temporary attachment portions.

なお、図8中には、図5と同様に、伝熱銅フィン3を2枚のみ図示して他の部分を省略しているが、溶接すべき所定枚数(N)の伝熱銅フィン3は、内筒1及び外筒2の両面に略等間隔に傾斜配備されており、かつ、内筒1側の溶接ビード及び溶接断面部7−1、7−2・・・7−Nは既に形成済であり、継手側の姿勢を反転して図示している。   In FIG. 8, only two heat transfer copper fins 3 are shown and the other parts are omitted as in FIG. 5, but a predetermined number (N) of heat transfer copper fins 3 to be welded are shown. Are arranged at substantially equal intervals on both surfaces of the inner cylinder 1 and the outer cylinder 2, and the weld beads and weld cross sections 7-1, 7-2,... It has been formed, and the joint side posture is reversed and illustrated.

図9は、図8に示した外筒側の隅肉継手部に本溶接した溶接部の形状を示す部分斜視図である。   FIG. 9 is a partial perspective view showing the shape of a welded portion that is finally welded to the fillet joint portion on the outer cylinder side shown in FIG. 8.

本実施例の外筒2側の本溶接では、伝熱銅フィン3を外筒2の内面に傾斜配備して広角形状の隅肉継手部8−1、8−2・・・8−Nを形成すると共に仮付して仮組した後に、内筒1側の場合と同様に、TIG−MIG溶接トーチによる本溶接の先行TIGと後続MIGとの複合溶接又はMIG溶接トーチによる本溶接のMIG溶接によって、1パスずつ順番に溶接施工して溶接ビード(溶接断面部)10−1、10−2・・・10−Nを形成するようにしている。   In the main welding on the outer cylinder 2 side of the present embodiment, the heat transfer copper fins 3 are inclinedly arranged on the inner surface of the outer cylinder 2 so that the wide-angle fillet joint portions 8-1, 8-2,. After forming and provisionally attaching and temporarily assembling, as in the case of the inner cylinder 1 side, MIG welding of the main welding with the TIG-MIG welding torch and the main welding of the preceding TIG and the subsequent MIG or the main welding with the MIG welding torch In this way, welding is carried out one by one in order to form weld beads (welded cross sections) 10-1, 10-2... 10-N.

このように、仮組(仮付溶接)後の各隅肉継手部8−1、8−8・・・8−Nの溶接線上から本溶接を1パスずつ順番に溶接施工することで、十分な大きさを有するのど厚L1とビード高さH1及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード(溶接断面部)10−1、10−2・・・10−Nを得ることができる。   In this way, it is sufficient to perform the main welding one by one in order from the weld line of each fillet joint portion 8-1, 8-8... 8 -N after temporary assembly (temporary welding). Throat thickness L1 and bead height H1 and heat conduction cross-sectional area effective for heat removal can be ensured reliably, and shallow penetration weld beads (welding cross sections) 10-1, 10-2,... 10-N can be obtained.

また、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110では、図3、図4、図8及び図9に示すように、外筒2側に隅肉継手部をN箇所形成、又はN箇所形成すると共に仮付溶接して仮組した後に、そのN箇所の隅肉継手部8−1、8−2・・・8−Nに1パスずつ繰り返し溶接(連続溶接)する外筒2側のN箇所の溶接(本溶接)の繰り返し溶接工程112と、1〜5箇所程度の隅肉継手部8−1、8−2・・・8−Nに1パスずつ溶接すると共に、その溶接後の溶接部を検査するように溶接と検査の両作業を繰り返す外筒2側の少数単位での溶接と検査の繰り返し溶接工程113とに分けている。   Further, in the second welding step 110 on the outer tube 2 side including the temporary assembly step of each fillet joint, as shown in FIGS. 3, 4, 8 and 9, the fillet joint portion is formed on the outer tube 2 side. Are formed at N locations, or are formed at N locations and temporarily assembled by temporary welding, and then repeatedly welded one pass at a time at each of the N fillet joint portions 8-1, 8-2,. Welding) Repeat welding process 112 of N places (main welding) on the outer cylinder 2 side to be welded, and 1 pass to 1 to 5 fillet joint parts 8-1, 8-2, ... 8-N. In addition to welding, the welding process after the welding is inspected, and the welding and inspection are repeated in a small number of units on the outer cylinder 2 side that repeats both welding and inspection operations.

例えば、外筒2側のN箇所の溶接の繰り返し溶接工程112では、内筒1側のN箇所の溶接の繰り返し溶接工程105の場合と同様に、パス毎に溶接すべきN箇所の隅肉継手部8−1、8−2・・・8−Nの各溶接開始位置から終了位置までの各溶接線(伝熱銅フィン3の下位表面に記載した点線で示す溶接線9−1、9−2・・・9−Nに対して、シリコン入りのCuSiワイヤを用い、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、1パスずつ順番に溶接施工する。   For example, in the repeated welding process 112 for welding N places on the outer cylinder 2 side, as in the repeated welding process 105 for welding N places on the inner cylinder 1 side, N fillet joints to be welded for each pass are provided. Each weld line from the welding start position to the end position of each of the parts 8-1, 8-2,..., 8-N (welding lines 9-1, 9- shown by the dotted lines described on the lower surface of the heat transfer copper fin 3) 2... 9-N are welded in order, one pass at a time, by using a CuSi wire containing silicon and performing composite welding of the preceding TIG and the succeeding MIG or MIG welding.

このため、内筒1側の場合と同様に、外筒2側の本溶接の場合でも、溶接対象の継手(内筒1と外筒2及び伝熱銅フィン3)側を回転駆動装置等で回転移動させて、仮付溶接の場合と同様に、本溶接すべき隅肉継手部8−1の溶接線9−1を鉛直方向に姿勢変更した後に、溶接線9−1上に、一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを下向姿勢で位置決めする。   For this reason, as in the case of the inner cylinder 1 side, even in the case of the main welding on the outer cylinder 2 side, the joint to be welded (the inner cylinder 1, the outer cylinder 2 and the heat transfer copper fin 3) side is connected with a rotary drive device or the like. After rotating and moving the weld line 9-1 of the fillet joint part 8-1 to be fully welded in the vertical direction in the same manner as in the case of tack welding, an integrated structure is formed on the weld line 9-1. The TIG-MIG welding torch or MIG welding torch is positioned in a downward posture.

上述したように、伝熱銅フィン3の両端面部が平坦面形状の場合の溶接線は、端面角部から伝熱銅フィン3の表面側にワイヤ位置又はトーチ位置(電極位置含む)を所定距離だけシフトさせた位置であり、そのシフト量S1は、0≦S1≦4mmの範囲で設定すると良い。また、下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを、溶接開始位置から終了位置までの溶接線9−1上に沿って走行させながら1パス溶接して溶接ビード(溶接断面部)10−1を形成するようにすると良い。   As described above, the welding line in the case where both end portions of the heat transfer copper fin 3 are flat surfaces has a predetermined distance between the wire position or the torch position (including the electrode position) from the end face corner portion to the surface side of the heat transfer copper fin 3. The shift amount S1 is preferably set in a range of 0 ≦ S1 ≦ 4 mm. In addition, the TIG-MIG welding torch or the MIG welding torch having a one-piece structure in the downward posture is welded along a weld line 9-1 from the welding start position to the end position, and then welded (welded cross section). Part) 10-1 may be formed.

このように、ワイヤ位置又はトーチ位置を伝熱銅フィン3側にシフトさせて溶接することで、伝熱銅フィン3の加熱溶融が促進されると共に鋼側の溶込み深さが抑制されるので、十分な大きさを有するのど厚L1とビード高さH1及び除熱に有効な熱伝導断面積を確実に確保でき、浅溶込みの溶接ビード及び溶接断面部を得ることができる。   Thus, by shifting the wire position or torch position to the heat transfer copper fin 3 side and welding, the heat melting of the heat transfer copper fin 3 is promoted and the penetration depth on the steel side is suppressed. The throat thickness L1, the bead height H1, and the heat conduction cross-sectional area effective for heat removal can be reliably ensured, and a shallow penetration weld bead and weld cross section can be obtained.

溶接線9−1の1パス溶接が終了すれば、溶接トーチを回避移動させ、次の溶接線9−2の溶接及びそれ以降の溶接線の溶接も同様であり、上述したように、該当する隅肉継手部の溶接線を姿勢変更する動作、溶接線上に溶接トーチを位置決めする動作、溶接トーチを走行させながら溶接線上に1パス溶接を施工する動作、1パス溶接施工後に溶接トーチを回避させる動作等の一連の繰り返し動作を行うことで、所定枚数(N枚)の隅肉継手部の各溶接線9−1、9−2・・・9−Nに、それぞれ溶接ビード(溶接断面部)10−1、10−2・・・10−Nを形成することができる。   When the one-pass welding of the welding line 9-1 is completed, the welding torch is moved around to avoid the welding of the next welding line 9-2 and the welding of the subsequent welding line, as described above. Operation to change the position of the weld line of the fillet joint, operation to position the welding torch on the weld line, operation to perform 1-pass welding on the weld line while running the welding torch, avoid welding torch after 1-pass welding operation By performing a series of repetitive operations such as operations, a weld bead (welded cross section) is provided on each of the welding lines 9-1, 9-2,... 9-N of a predetermined number (N) of fillet joints. 10-1, 10-2... 10-N can be formed.

一方、外筒2側の溶接(1〜5箇所)と、その溶接部の検査とを繰り返す外筒2側の少数単位での溶接と検査の繰り返し溶接工程113でも、内筒1側の場合と同様であり、上述したように、下向姿勢の一体構造のTIG−MIG溶接トーチ又はMIG溶接トーチを、溶接開始位置から終了位置までの溶接線9−1上に沿って走行させながら1パス溶接して溶接ビード(溶接断面部)10−1を形成するようにすると良い。溶接後に外筒2側の溶接品質の検査工程120を行い、また、この外筒2側の溶接品質の検査工程120で不合格となった場合は、不合格の溶接部分及びその近傍部を補修溶接工程122で補修するようにしている。   On the other hand, in the case of the inner cylinder 1 side even in the repeated welding step 113 of welding and inspection on the outer cylinder 2 side which repeats the welding (1 to 5 places) on the outer cylinder 2 side and the inspection of the welded portion, Similarly, as described above, the one-pass welding is performed while the TIG-MIG welding torch or the MIG welding torch having the downward structure is moved along the welding line 9-1 from the welding start position to the end position. Then, it is preferable to form a weld bead (welded cross section) 10-1. The welding quality inspection process 120 on the outer cylinder 2 side is performed after welding, and if the welding quality inspection process 120 on the outer cylinder 2 side fails, the rejected welded part and its vicinity are repaired. Repair is performed in the welding step 122.

また、図4、図8及び図9に示したように、溶接施工された各隅肉継手部8−1、8−2・・・8−Nの溶接ビード(溶接断面部)10−1、10−2・・・10−Nには、少なくとも溶接部ののど厚L1が伝熱銅フィン3の板厚T1以上(L1≧T1)、ビード高さH1がT1以上(H1≧T1)に形成されており、また、アンダーカット深さRは(0.1×T1)以下に抑制されている。   Moreover, as shown in FIG.4, FIG8 and FIG.9, the weld bead (welding cross-section part) 10-1 of each fillet joint part 8-1, 8-2, ... 8-N welded, 10-2... 10-N, at least the throat thickness L1 of the weld is formed to be equal to or greater than the plate thickness T1 of the heat transfer copper fin 3 (L1 ≧ T1), and the bead height H1 is equal to or greater than T1 (H1 ≧ T1). In addition, the undercut depth R is suppressed to (0.1 × T1) or less.

これによって、上述した内筒1側の場合と同様に、外筒2側の各伝熱銅フィン3の溶接箇所でも、十分な大きさを有するのど厚L及び除熱に有効な熱伝導断面積を確実に確保でき、かつ、割れ等の欠陥がない品質良好な溶接ビード(溶接断面部)10−1、10−2・・・10−Nを得ることができる。   As a result, as in the case of the inner cylinder 1 side described above, the welded portion of each heat transfer copper fin 3 on the outer cylinder 2 side has a sufficiently large throat thickness L and a heat conduction cross-sectional area effective for heat removal. Can be reliably ensured, and weld beads (welded cross-sections) 10-1, 10-2,..., 10-N with good quality without defects such as cracks can be obtained.

外筒2側の繰り返し溶接が終了した後の外筒2側の検査工程114では、内筒1側の溶接検査と同様に、外筒2側の各溶接部に溶接ビードが良好に形成されているか否か、割れやアンダーカット等の欠陥があるか否か、のど厚L1やビード高さH1や溶込み深さc等を満足しているか否か等の溶接品質の検査・確認を行う。合格(工程115)であれば、次工程125のステップに進み、不合格の溶接箇所があれば、補修溶接工程116に進み、不合格の溶接箇所及び近傍を補修溶接するようにしている。   In the inspection step 114 on the outer cylinder 2 side after the repeated welding on the outer cylinder 2 side is completed, the weld beads are well formed in the respective welded portions on the outer cylinder 2 side, as in the welding inspection on the inner cylinder 1 side. Whether or not there is a defect such as a crack or undercut, and whether or not the throat thickness L1, bead height H1, penetration depth c, or the like is satisfied is checked and confirmed. If it is acceptable (step 115), the process proceeds to the step of the next process 125. If there is a rejected welded part, the process proceeds to the repair welding process 116 to repair weld the rejected welded part and the vicinity.

内筒1側の場合と同様に、外筒2側の溶接部に発生したアンダーカット過大、のど厚不足又はビード高さ不足等の溶接不良部は、補修溶接(肉盛補修)する必要がある。図10に示すように、外筒2側の検査工程114、120では、溶接品質の合否判定を行うため、例えば、のど厚L1がL1<T1、又はビード高さH1がH1<T1、又はアンダーカット深さRがR>(0.1×T1)の時は不合格(溶接不良)と判定し、不合格判定の溶接不良部及びその近傍部は、補修溶接工程116、122で補修溶接を実施する。   As in the case of the inner cylinder 1 side, it is necessary to repair and weld (overlay repair) the welded defective part such as an excessive undercut, insufficient throat thickness or insufficient bead height generated in the welded part on the outer cylinder 2 side. . As shown in FIG. 10, in the inspection steps 114 and 120 on the outer cylinder 2 side, in order to perform the pass / fail determination of the welding quality, for example, the throat thickness L1 is L1 <T1, or the bead height H1 is H1 <T1, or under When the cut depth R is R> (0.1 × T1), it is judged as rejected (welding failure), and the welding failure part and its vicinity in the failing judgment are repaired in repair welding processes 116 and 122. carry out.

内筒1側の場合と同様に、不合格判定の溶接不良部を補修溶接工程116、122で補修する場合には、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110(本溶接工程)で使用したTIG−MIG溶接トーチ又はMIG溶接トーチと同一又は同種の溶接トーチ、同一成分の溶接ワイヤ及びシールドガスをそれぞれ使用すると共に、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で施工した時の溶接方向と同一方向にTIG−MIG溶接トーチ又はMIG溶接トーチを走行させ、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、溶接不良部を有する溶接ビード(溶接断面部)10−1の上から肉盛するように、溶接不良部及びその近傍部に補修溶接を施工して溶接不良部を消滅させると共に、良好な補修溶接ビード100−1を形成するようにしている。   As in the case of the inner cylinder 1 side, when repairing a defective weld portion determined to be rejected in the repair welding processes 116 and 122, the second welding on the outer cylinder 2 side including the temporary assembly process of each fillet joint. The TIG-MIG welding torch used in step 110 (main welding step) or the same or the same type of welding torch, welding wire and shield gas of the same component are used, respectively, and the temporary assembly process of each fillet joint is performed. The TIG-MIG welding torch or the MIG welding torch is run in the same direction as the welding direction at the time of construction in the second welding step 110 on the outer cylinder 2 side including, by combined welding or MIG welding of the preceding TIG and the subsequent MIG, Repair welding is performed on the poor welded part and its vicinity so as to build up the weld bead (welded cross-sectional part) 10-1 having the poor welded part, and the defective welded part disappears. And so as to form a weld bead 100-1.

また、補修溶接工程116、122で溶接不良部を補修する場合には、上述したように、各隅肉継手の仮組工程を含む第1の溶接工程110で使用した溶接条件と略同一の補修溶接条件、又は補修溶接条件よりもMIG電圧や入熱量を増加した他の補修溶接条件を使用し、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で形成された補修溶接ビード10−1の銅側のビード止端部から伝熱銅フィン3表面側に所定距離だけシフトさせた位置の線上に、TIG−MIG溶接トーチ又はMIG溶接トーチを配置すると良い。   In addition, when repairing a defective welded part in the repair welding processes 116 and 122, as described above, the repair is substantially the same as the welding conditions used in the first welding process 110 including the temporary assembly process of each fillet joint. It is formed in the second welding process 110 on the outer tube 2 side including the temporary assembly process of each fillet joint using welding conditions or other repair welding conditions in which the MIG voltage and the heat input amount are increased from the repair welding conditions. The TIG-MIG welding torch or the MIG welding torch may be arranged on a line shifted by a predetermined distance from the toe end of the copper side of the repair weld bead 10-1 to the heat transfer copper fin 3 surface side.

そして、溶接不良部及びその近傍部の線上を通過するようにTIG−MIG溶接トーチ又はMIG溶接トーチを走行させ、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、溶接不良部を有する溶接ビード(溶接断面部)10−1の上から肉盛するように、溶接不良部及びその近傍部に補修溶接を施工して溶接不良部を消滅させると共に、良好な補修溶接ビード100−1を形成するようにしている。   And a TIG-MIG welding torch or a MIG welding torch is run so as to pass on the line of the poorly welded part and the vicinity thereof, and a weld bead having a poorly welded part by combined welding of the preceding TIG and the succeeding MIG or MIG welding. (Welding cross section) 10-1 is repaired on the poorly welded part and its vicinity so as to build up from the top so that the poorly welded part disappears and a good repair weld bead 100-1 is formed. I am doing so.

このように補修溶接することで、のど厚L1不足又はビード高さH1不足及びアンダーカット深さR過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード100−1を得ることができる。また、上述したように、本補修方法による補修によって金属キャスク溶接構造物の製造を継続することもできる。   By repair welding in this way, defective welds such as a throat thickness L1 shortage or a bead height H1 shortage and an excessive undercut depth R can be reliably eliminated, and a repair weld bead 100-1 with good quality can be obtained. Can be obtained. Further, as described above, the production of the metal cask welded structure can be continued by the repair by the repair method.

補修溶接(肉盛補修)すべき補修箇所は、主に不合格判定された溶接不良部及びその近傍部であり、上述したように、溶接不良部を有する溶接ビード10−1の上から肉盛するように、溶接不良部及びその近傍部に補修溶接を施工すると良い。なお、合格判定の溶接良好部には補修溶接を施工する必要性がないので省略すれば良い。   The repair locations to be repaired (built-up repair) are mainly welded defective portions and the vicinity thereof that have been determined to be rejected, and as described above, build-up from above the weld bead 10-1 having the welded defective portions. As described above, repair welding may be performed on the poorly welded portion and its vicinity. In addition, since it is not necessary to perform repair welding in the welding good part of a pass determination, it may be omitted.

そして、補修終了後に行う補修溶接部の品質検査1141、1201で、補修後ののど厚L2≧T1、ビード積層高さH2≧T1、アンダーカット深さR≦(0.1×T1)に回復すると合格判定となり、次工程125に進むようにしている。   Then, in the quality inspections 1141 and 1201 of the repair welds that are performed after the repair is completed, the throat thickness L2 ≧ T1, the bead stack height H2 ≧ T1, and the undercut depth R ≦ (0.1 × T1) after repair are restored. It is determined to be acceptable and the process proceeds to the next step 125.

このように、外筒2側の溶接箇所に溶接不良が発生した場合でも、内筒2側の場合と同様に、独自の補修溶接の施工によって、のど厚L1不足やビード高さH1不足及びアンダーカット深さR過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード100−1を得ると共に、除熱性能向上に寄与する大きな溶接のど厚及び熱伝導断面積を確保することができる。   As described above, even when a welding failure occurs in the welded portion on the outer tube 2 side, the throat thickness L1 is insufficient or the bead height H1 is insufficient and under, as in the case of the inner tube 2 side, by the original repair welding. Welding defects such as excessive cut depth R can be reliably eliminated, and repair weld bead 100-1 with good quality can be obtained, and a large weld throat thickness and heat conduction cross-sectional area contributing to improved heat removal performance can be secured. can do.

図11及び図12は、本実施例に係わる一体構造のTIG−MIG溶接トーチの概略構成及びトーチ配置の一実施例を示すものである。   FIG. 11 and FIG. 12 show one embodiment of a schematic configuration and a torch arrangement of an integrally structured TIG-MIG welding torch according to the present embodiment.

図11に示すように、一体構造のTIG−MIG溶接トーチ11の内部には、タングステン等の非消耗電極13、その非消耗電極13の先端部及び溶接部分に向けて第1のシールドガス14を流出させる第1のガス通路(図示せず)等を備えたTIGユニット12と、CuSiワイヤ等の消耗ワイヤ18(溶接ワイヤともいう)、その消耗ワイヤ18が挿通するワイヤ通路(図示せず)、消耗ワイヤ18の先端部及び溶接部分に向けて第2のシールドガス19を流出させる第2のガス通路等を備えたMIGユニット17とが配備されている。   As shown in FIG. 11, a TIG-MIG welding torch 11 having a monolithic structure has a non-consumable electrode 13 such as tungsten, and a first shield gas 14 directed toward the tip and the welded portion of the non-consumable electrode 13. A TIG unit 12 having a first gas passage (not shown) to be discharged, a consumable wire 18 (also referred to as a welding wire) such as a CuSi wire, a wire passage (not shown) through which the consumable wire 18 is inserted, A MIG unit 17 having a second gas passage for allowing the second shield gas 19 to flow out toward the distal end portion and the welding portion of the consumable wire 18 is provided.

第1及び第2のシールドガス14及び19は、ガスの種類や成分を変更可能であるが、ここではArガスとHeガスとの混合ガスをシールドガスに使用している。銅と鋼との溶接にArガスとHeガスとの混合ガスを使用することで、純Arガスの場合と比べて、電位傾度が高く、溶接性や濡れ性等が優れており、品質良好な溶接部を得ることが容易となる。図示していないが、この他にも、TIG−MIG溶接トーチ11を循環水で冷却する水路が設けられている。   The first and second shield gases 14 and 19 can change the type and composition of the gas, but here, a mixed gas of Ar gas and He gas is used as the shield gas. By using a mixed gas of Ar gas and He gas for welding copper and steel, compared to pure Ar gas, the potential gradient is high, weldability and wettability are excellent, and the quality is good. It becomes easy to obtain a weld. Although not shown, a water channel for cooling the TIG-MIG welding torch 11 with circulating water is also provided.

TIG−MIG溶接トーチ11は、鋼製の内筒1と銅製の伝熱銅フィン3との隅肉継手部5の溶接線6に対して、走行移動可能な長尺アーム31の先端部に取付冶具(図示せず)を介して略下向姿勢に取付け、又は長尺アーム31の先端部に取付冶具及び左右・上下移動可能な2軸駆動テーブル(図示せず)を介して取付け、かつ、溶接線6−1方向に配置されている。   The TIG-MIG welding torch 11 is attached to the distal end portion of a long arm 31 that can move and move with respect to the weld line 6 of the fillet joint portion 5 between the steel inner tube 1 and the copper heat transfer copper fin 3. Attached in a substantially downward position via a jig (not shown), or attached to the tip of the long arm 31 via a mounting jig and a biaxial drive table (not shown) that can move left and right and up and down, and It arrange | positions in the welding line 6-1 direction.

また、走行移動可能な長尺アーム31の代わりに、多関節可動式の溶接ロボットを用い、この溶接ロボットの手首部にTIG−MIG溶接トーチ11を配置(取付)して、TIG−MIG溶接トーチ11を走行移動させながら、先行TIGと後続MIGとの複合溶接を隅肉継手部の溶接線の開始位置から終了位置まで溶接施工するようにしても良い。   Further, an articulated movable welding robot is used instead of the long arm 31 that can be moved and moved, and the TIG-MIG welding torch 11 is arranged (attached) to the wrist of the welding robot, and the TIG-MIG welding torch is arranged. While moving 11, the composite welding of the preceding TIG and the subsequent MIG may be performed from the start position to the end position of the weld line of the fillet joint portion.

更に、先行TIGの非消耗電極13側のTIGユニット12は、溶接進行方向と逆方向側に後退角−α1で傾斜配置され、また、後続MIGの消耗ワイヤ18側のMIGユニット17は、溶接進行方向に前進角+α2で傾斜して配置されている。   Furthermore, the TIG unit 12 on the non-consumable electrode 13 side of the preceding TIG is inclined at a receding angle −α1 in the direction opposite to the welding progress direction, and the MIG unit 17 on the consumable wire 18 side of the subsequent MIG is welded. It is inclined in the direction with a forward angle + α2.

先行TIG側の後退角−α1は、0〜45度の範囲にすると良い。好ましくは15〜30度の範囲に配置するとさらに良い。他方の後続MIG側の前進角+α2は、15〜45度の範囲にすると良い。好ましくは15〜30度の範囲に配置するとさらに良い。   The receding angle -α1 on the preceding TIG side is preferably in the range of 0 to 45 degrees. It is more preferable to arrange it in the range of 15 to 30 degrees. The forward angle + α2 on the other subsequent MIG side is preferably in the range of 15 to 45 degrees. It is more preferable to arrange it in the range of 15 to 30 degrees.

また、非消耗電極13の先端部の延長線が継手母材の溶接線6と交差する位置から消耗ワイヤ18の先端部までの両電極間の距離間隔f1は、3〜9mmの範囲にすると良い。好ましくは4〜7mmの範囲に配置するとさらに良い。また、継手母材の溶接線6から非消耗電極13の先端部までの電極高さf2は、3〜9mmの範囲にすると良い。好ましくは4〜7mmの範囲に配置するとさらに良い。   The distance interval f1 between the electrodes from the position where the extension line of the tip of the non-consumable electrode 13 intersects the weld line 6 of the joint base material to the tip of the consumable wire 18 is preferably in the range of 3 to 9 mm. . It is even better if it is preferably placed in the range of 4-7 mm. The electrode height f2 from the weld line 6 of the joint base material to the tip of the non-consumable electrode 13 is preferably in the range of 3 to 9 mm. It is even better if it is preferably placed in the range of 4-7 mm.

このように、TIG−MIG溶接トーチ11を配置して溶接線上を走行移動及び溶接動作させることで、先行TIGと後続MIGとの複合溶接を安定に施工することができる。   Thus, the composite welding of the preceding TIG and the subsequent MIG can be stably performed by arranging the TIG-MIG welding torch 11 and causing the traveling movement and the welding operation on the welding line.

なお、TIGユニット12の後退角−α1及びMIGユニット17の前進角+α2が15度よりも小さ過ぎると、例えば、非消耗電極13と消耗ワイヤ18との距離間隔f1を所定範囲に接近させることができなくなり、また、TIGアーク22とMIGアーク23で形成する1つの溶融プール24の形状が細長く不安定になり易い。   If the receding angle −α1 of the TIG unit 12 and the advancing angle + α2 of the MIG unit 17 are too smaller than 15 degrees, for example, the distance interval f1 between the non-consumable electrode 13 and the consumable wire 18 can be brought close to a predetermined range. In addition, the shape of one molten pool 24 formed by the TIG arc 22 and the MIG arc 23 tends to be elongated and unstable.

一方、後退角−α1及び前進角+α2が上述した角度範囲よりも大き過ぎると、MIGアーク23によって溶融される消耗ワイヤ18の溶滴が、スパッタとなって先行TIG側方向に飛び散り易く、そのスパッタの一部が先行TIG側の非消耗電極13に付着して非消耗電極13を損傷させることがあり、また、ガスシールド性が低下し易いので好ましくない。   On the other hand, if the receding angle −α1 and the advancing angle + α2 are too larger than the above-described angle range, the droplets of the consumable wire 18 melted by the MIG arc 23 are likely to be spattered and scattered in the direction of the preceding TIG. May adhere to the non-consumable electrode 13 on the preceding TIG side and damage the non-consumable electrode 13, and the gas shielding property is likely to deteriorate, which is not preferable.

従って、先行TIG側の後退角−α1は、0〜45度の範囲にすると良いし、後続MIG側の前進角+α2は、15〜45度の範囲にすると良い。   Therefore, the receding angle −α1 on the preceding TIG side is preferably in the range of 0 to 45 degrees, and the advancing angle + α2 on the subsequent MIG side is preferably in the range of 15 to 45 degrees.

また、非消耗電極13と消耗ワイヤ18との距離間隔f1の値が3mmよりも小さ過ぎると、例えば、TIGアーク22とMIGアーク23が接近し過ぎ、後続MIG側の消耗ワイヤ18から発生したスパッタの一部が先行TIG側の非消耗電極13に付着して非消耗電極13を損傷させることがあり、しかも、TIGアーク22とMIGアーク23の挙動も不安定になり易い。   On the other hand, if the value of the distance interval f1 between the non-consumable electrode 13 and the consumable wire 18 is too smaller than 3 mm, for example, the TIG arc 22 and the MIG arc 23 are too close and spatter generated from the consumable wire 18 on the subsequent MIG side. May adhere to the non-consumable electrode 13 on the preceding TIG side and damage the non-consumable electrode 13, and the behavior of the TIG arc 22 and the MIG arc 23 is likely to be unstable.

一方、非消耗電極13と消耗ワイヤ18との距離間隔f1が9mmよりも大き過ぎると、TIGアーク22とMIGアーク23で形成する1つの溶融プール24の形状が細長く不安定になり易く、所望の溶接ビード及び溶接断面部が得られない場合がある。   On the other hand, if the distance interval f1 between the non-consumable electrode 13 and the consumable wire 18 is too larger than 9 mm, the shape of one molten pool 24 formed by the TIG arc 22 and the MIG arc 23 tends to be elongated and unstable, and the desired distance A weld bead and a weld cross section may not be obtained.

従って、非消耗電極13の先端部の延長線が継手母材の溶接線6−1と交差する位置から消耗ワイヤ18の先端部までの両電極間の距離間隔f1は、3〜9mmの範囲にすると良い。   Accordingly, the distance interval f1 between the electrodes from the position where the extension line of the tip of the non-consumable electrode 13 intersects the weld line 6-1 of the joint base material to the tip of the consumable wire 18 is in the range of 3 to 9 mm. Good.

更に、継手母材の溶接線6から非消耗電極13の先端部までの電極高さf2が3mmよりも小さ過ぎると、例えば、TIGアーク22の短縮に伴うアーク電圧低下及び入熱減少等によって溶融不足が発生することがあり、また、非消耗電極13の先端部が溶融プール24の表面上に接近しているので、溶融プール24の挙動変化や飛散したスパッタの影響を受け易くなる。   Furthermore, if the electrode height f2 from the weld line 6 of the joint base material to the tip of the non-consumable electrode 13 is too smaller than 3 mm, for example, melting occurs due to a decrease in arc voltage and a decrease in heat input associated with the shortening of the TIG arc 22. Insufficiency may occur, and the tip of the non-consumable electrode 13 is close to the surface of the molten pool 24, so that it is easily affected by changes in behavior of the molten pool 24 and scattered spatter.

一方、継手母材の溶接線6−1から非消耗電極13の先端部までの電極高さf2が9mmよりも大き過ぎると、TIGアーク22の延長に伴うアーク不安定化及び入熱増加等によって、伝熱銅フィン3が過剰に溶融されてアンダーカットの発生要因になることがあり、また、ガスシールド性も低下し易いので好ましくない。   On the other hand, if the electrode height f2 from the weld line 6-1 of the joint base material to the tip of the non-consumable electrode 13 is too larger than 9 mm, arc destabilization and increased heat input accompanying the extension of the TIG arc 22 The heat transfer copper fins 3 may be melted excessively, which may cause undercutting, and the gas shield property is likely to deteriorate, which is not preferable.

従って、継手母材の溶接線6−1から非消耗電極13の先端部までの電極高さf2は、3〜9mmの範囲にすると良い。   Therefore, the electrode height f2 from the weld line 6-1 of the joint base material to the tip of the non-consumable electrode 13 is preferably in the range of 3 to 9 mm.

図12に示すように、TIG溶接電源15は、給電ケーブル16−1、16−2を経由してTIGユニット12内の非消耗電極13と継手母材の内筒1との間に接続され、かつ、非消耗電極13側の極性を負極(マイナス)とし、内筒1側の極性を正極(プラス)として、シールドガス14の流出雰囲気内で、TIGアーク22を溶接箇所に発生させる。他方のMIG溶接電源20(ワイヤ送給装置も含む)は、給電ケーブル21−1、21−2を経由してMIGユニット17内の消耗ワイヤ18と継手母材の内筒1との間に接続され、かつ、給電及び送給する消耗ワイヤ18側の極性を正極(プラス)とし、内筒1側の極性を負極(マイナス)として、第2のシールドガス19の流出雰囲気内で、MIGアーク23をTIGアーク22の後方近傍に発生させる。   As shown in FIG. 12, the TIG welding power source 15 is connected between the non-consumable electrode 13 in the TIG unit 12 and the inner cylinder 1 of the joint base material via power supply cables 16-1 and 16-2. In addition, with the polarity on the non-consumable electrode 13 side as the negative electrode (minus) and the polarity on the inner cylinder 1 side as the positive electrode (plus), the TIG arc 22 is generated at the welding location in the outflow atmosphere of the shield gas 14. The other MIG welding power source 20 (including the wire feeding device) is connected between the consumable wire 18 in the MIG unit 17 and the inner cylinder 1 of the joint base material via power supply cables 21-1 and 21-2. In addition, the polarity on the side of the consumable wire 18 to be fed and fed is positive (plus) and the polarity on the inner cylinder 1 side is negative (minus), and the MIG arc 23 in the outflow atmosphere of the second shield gas 19 Is generated near the rear of the TIG arc 22.

先行TIG側の非消耗電極13を流れる第1の溶接電流Iaと、後続MIG側の消耗ワイヤ18(CuSiワイヤ)を流れる第2の溶接電流Ibとで生じる反発作用の磁力によって、相互に反発し合う2つのTIGアーク22及びMIGアーク23で1つの溶融プール24を形成し、仮付有継手部の溶接線6上を通過するように溶接方向25aへ移動させながら本溶接するようにしている。   The first welding current Ia flowing through the non-consumable electrode 13 on the preceding TIG side and the second welding current Ib flowing through the consumable wire 18 (CuSi wire) on the subsequent MIG side repel each other. Two molten TIG arcs 22 and MIG arcs 23 form one molten pool 24, and the main welding is performed while moving in the welding direction 25a so as to pass over the weld line 6 of the provisional joint joint.

第1の溶接電流Iaと第2の溶接電流Ibとの比(Ia/Ib)は、約0.8〜1.2の範囲に設定して出力させると良い。また、第1及び第2の溶接電流Ia及びIbは、両方共に直流電流を給電して、直流同士の2つのアークを形成するようにすると良い。。   The ratio (Ia / Ib) between the first welding current Ia and the second welding current Ib is preferably set in the range of about 0.8 to 1.2. Further, both the first and second welding currents Ia and Ib are preferably supplied with direct current to form two arcs of direct current. .

非消耗電極13を流れる第1の溶接電流Iaと、消耗ワイヤ18を流れる第2の溶接電流Ibとの比(Ia/Ib=0.8〜1.2)の範囲で直流同士の溶接電流Ia、Ibを出力させることで、相互に反発し合うTIGアーク22とMIGアーク23が略下向き方向に偏向した状態で持続されると共に、1つの溶融プール24を安定に形成することができる。また、消耗ワイヤ18の先端部からの溶滴が飛散することなく、溶融プール24内へ容易に溶滴移行し易くなり、良好な溶接ビード及び溶接断面部を有する溶接ビード(溶接断面部)7−1を得ることができる。   Welding current Ia between direct currents in the range of the ratio of the first welding current Ia flowing through the non-consumable electrode 13 and the second welding current Ib flowing through the consumable wire 18 (Ia / Ib = 0.8 to 1.2). By outputting Ib, the TIG arc 22 and the MIG arc 23 that repel each other are maintained in a state of being substantially deflected downward, and one molten pool 24 can be stably formed. In addition, the droplets from the tip of the consumable wire 18 do not scatter, and the droplets easily migrate into the molten pool 24 and have a good weld bead and weld cross section (weld cross section) 7. −1 can be obtained.

なお、非消耗電極13を流れる第1の溶接電流Iaと、消耗ワイヤ18を流れる第2の溶接電流Ibとの比(Ia/Ib)が小さ過ぎる場合又は大き過ぎる場合には、相互に反発し合うTIGアーク22とMIGアーク23に大きな偏差が生じるため、電流が大きい側のアーク力の影響により電流の小さい側のアーク挙動が不安定となって溶接不良になり易い。   When the ratio (Ia / Ib) between the first welding current Ia flowing through the non-consumable electrode 13 and the second welding current Ib flowing through the consumable wire 18 is too small or too large, they repel each other. Since a large deviation occurs between the matching TIG arc 22 and MIG arc 23, the arc behavior on the smaller current side becomes unstable due to the influence of the arc force on the larger current side, which tends to cause poor welding.

一方、例えば、TIG側の極性を負極(マイナス)から正極(プラス)に反転させた場合は、溶接中にタングステン等の非消耗電極13が高温過熱によって激しく消耗するため、アーク挙動が不安定となって溶接不良になり易く、時間の長い溶接が困難となる。また、TIGアーク22とMIGアーク23が相互に引き合う方向に偏向するため、MIG側の消耗ワイヤ18の溶滴が、TIG側の非消耗電極13に溶着して短時間で電極消耗が発生することもある。他方のMIG側の極性を正極(プラス)から負極(マイナス)に反転させた場合には、不安定なアーク挙動及びスパッタの発生を伴うため溶接不良になり易く、時間の長い溶接が困難となる。   On the other hand, for example, when the polarity on the TIG side is reversed from the negative electrode (minus) to the positive electrode (plus), the non-consumable electrode 13 such as tungsten is consumed violently due to high temperature overheating during welding, so that the arc behavior is unstable. This tends to cause poor welding and makes it difficult to weld for a long time. In addition, since the TIG arc 22 and the MIG arc 23 are deflected in a mutually attracting direction, droplets of the MIG side consumable wire 18 are welded to the non-consumable electrode 13 on the TIG side, and electrode consumption occurs in a short time. There is also. If the polarity of the other MIG side is reversed from the positive electrode (plus) to the negative electrode (minus), unstable arc behavior and spatter are likely to cause poor welding, making it difficult to weld for a long time. .

図12中には、説明し易くするために中央付近の溶接線6上にTIGアーク22とMIGアーク23及び1つの溶融プール24を図示しているが、実際にTIGアーク22とMIGアーク23を発生させる箇所は、溶接すべき隅肉継手部5の溶接線6上の溶接開始位置である。   In FIG. 12, for ease of explanation, a TIG arc 22 and a MIG arc 23 and one molten pool 24 are shown on the weld line 6 near the center, but the TIG arc 22 and the MIG arc 23 are actually shown. The location to be generated is a welding start position on the weld line 6 of the fillet joint portion 5 to be welded.

例えば、溶接対象の継手(内筒1及び伝熱銅フィン3)側を回転駆動装置等で回転移動させて、溶接すべき隅肉継手部5の溶接線6を鉛直方向に姿勢変更した後に、溶接線6−1上に一体構造のTIG−MIG溶接トーチ11を下向姿勢で位置決めする。その後、TIG−MIG溶接トーチ11を溶接線6上の溶接開始位置に停止させる。TIG−MIG溶接トーチ11内のTIGユニット12の先端開口部と、MIGユニット17の先端開口部との両方からArガスとHeガスとの混合ガスを溶接開始位置及びその近傍で流出させながら、先行TIGの非消耗電極13の先端部から電極負極(マイナス)のTIGアーク22を発生させ、その第1の溶接電流Iaを定常値まで到着させた直後又は所定時間経過後に、後続MIGの消耗ワイヤ18として送給するCuSiワイヤからワイヤ正極(プラス)のMIGアーク23を、TIGアーク22の後方近傍に発生させると共に、その第2の溶接電流Ibを定常値まで到達させ、相互に反発し合うTIGアーク22とMIGアーク23で1つの溶融プール24を形成させ、溶接開始位置に発生させた直後又は所定時間経過後に、TIG−MIG溶接トーチ11を走行させて、1つの溶融プール24を溶接線方向に移動させながら隅肉継手部5の溶接終了位置まで溶接するようにしている。   For example, after rotating the joint (inner cylinder 1 and heat transfer copper fin 3) side to be welded with a rotary drive device or the like and changing the posture of the weld line 6 of the fillet joint portion 5 to be welded in the vertical direction, The integrally structured TIG-MIG welding torch 11 is positioned on the welding line 6-1 in a downward posture. Thereafter, the TIG-MIG welding torch 11 is stopped at the welding start position on the welding line 6. While flowing the mixed gas of Ar gas and He gas from both the front end opening of the TIG unit 12 in the TIG-MIG welding torch 11 and the front end opening of the MIG unit 17 at and near the welding start position, Immediately after the first negative electrode (minus) TIG arc 22 is generated from the tip of the non-consumable electrode 13 of the TIG and the first welding current Ia reaches the steady value or after a predetermined time has elapsed, the consumable wire 18 of the subsequent MIG A positive electrode (positive) MIG arc 23 is generated from the CuSi wire to be fed in the vicinity of the rear of the TIG arc 22 and the second welding current Ib reaches a steady value to repel each other. 22 and the MIG arc 23 form one molten pool 24 and immediately after the welding start position is generated or after a predetermined time has elapsed, TIG- The MIG welding torch 11 is caused to travel so as to weld to the welding end position of the fillet joint portion 5 while moving one molten pool 24 in the welding line direction.

このように溶接施工することで、上述したように、隅肉継手部5の溶接開始位置から終了位置までの溶接線6上に良好な溶接ビード(溶接断面部)7−1を確実に形成することができる。   By performing welding in this way, as described above, a good weld bead (welded cross section) 7-1 is reliably formed on the weld line 6 from the welding start position to the end position of the fillet joint 5. be able to.

図13は、本発明の実施例2としてのMIG溶接トーチの概略構成及びトーチ配置の一例を示すものである。該図に示す例は、上述したTIG−MIG溶接トーチ11の代わりに、MIG溶接トーチ26を使用してMIG溶接する場合の例である。   FIG. 13 shows an example of a schematic configuration and a torch arrangement of a MIG welding torch as Embodiment 2 of the present invention. The example shown in the figure is an example in the case where MIG welding is performed using the MIG welding torch 26 instead of the TIG-MIG welding torch 11 described above.

該図に示す如く、MIG溶接トーチ26を使用する場合には、消耗ワイヤ18のCuSiワイヤと継手母材の内筒1との間に、給電ケーブル29−1、29−2を経由してMIG溶接電源28が接続されている。また、MIG溶接トーチ26は、上述のTIG−MIG溶接トーチ11の場合と同様に、溶接すべき溶接線6に対して、走行移動可能な長尺アーム(図示せず)の先端部又は多関節可動式の溶接ロボット(図示せず)の手首部に取付冶具(図示せず)を介して略下向姿勢に取付けられ、かつ、溶接線6の方向に配置されている。   As shown in the figure, when the MIG welding torch 26 is used, the MIG is connected between the CuSi wire of the consumable wire 18 and the inner cylinder 1 of the joint base material via the feeding cables 29-1 and 29-2. A welding power source 28 is connected. Further, the MIG welding torch 26 is, as in the case of the TIG-MIG welding torch 11 described above, a distal end portion or a multi-joint of a long arm (not shown) capable of traveling with respect to the welding line 6 to be welded. It is attached to the wrist of a movable welding robot (not shown) in a substantially downward position via an attachment jig (not shown), and is arranged in the direction of the welding line 6.

また、本実施例でのMIG溶接トーチ26は、溶接方向に対して、略垂直又は前進角+α3で傾斜配置している。この前進角+α3は、0〜30度の範囲にすると良い。好ましくは0〜15度の範囲に配置するとさらに良い。   Further, the MIG welding torch 26 in the present embodiment is disposed so as to be substantially perpendicular to the welding direction or inclined at an advance angle + α3. The advance angle + α3 is preferably in the range of 0 to 30 degrees. It is more preferable to arrange it in the range of 0 to 15 degrees.

なお、前進角+α3は記載を省略しているが、図11及び図12に示したTIG−MIG溶接トーチ11内のMIGユニット17の傾斜角+α2に該当するトーチ傾斜角度であり、図13に示すMIG溶接トーチ26を使用する場合には、前進角+α3を0〜30度の範囲にすると良い。好ましくは0〜15度の範囲に配置するとさらに良い。   Although the advance angle + α3 is omitted, it is a torch inclination angle corresponding to the inclination angle + α2 of the MIG unit 17 in the TIG-MIG welding torch 11 shown in FIGS. 11 and 12, and shown in FIG. When the MIG welding torch 26 is used, the advance angle + α3 is preferably set in the range of 0 to 30 degrees. It is more preferable to arrange it in the range of 0 to 15 degrees.

この前進角+α3を30度よりも大きくして溶接すると、MIGアーク23が前方に傾斜し過ぎることから、MIGアーク23によって溶融される消耗ワイヤ18の溶滴が前方方向へ飛び散り(スパッタ多発)易く、また、ガスシールド性も低下し易いので好ましくない。   If welding is performed with the advance angle + α3 larger than 30 degrees, the MIG arc 23 is inclined too far forward, so that the droplets of the consumable wire 18 melted by the MIG arc 23 are likely to scatter forward (occurrence of spatter frequently). In addition, the gas shield property is liable to be lowered, which is not preferable.

各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110でMIG溶接を実施する場合は、MIG溶接トーチ26の先端開口部からArガスとHeガスとの混合ガスからなるMIG用シールドガス27を流出させながら、MIG溶接電源28側から給電及び送給する消耗ワイヤ18の電極極性を正極(プラス)としたMIGアーク(図示せず)を隅肉継手部5の溶接線6上の溶接開始位置より発生させ、1つのアークで1つの溶融プール24を形成させてから、MIG溶接トーチ26を溶接方向に移動させながら下向姿勢で溶接するようにしている。   When performing MIG welding in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint and the second welding process 110 on the outer cylinder 2 side including the temporary assembly process of each fillet joint The electrode polarity of the consumable wire 18 to be fed and fed from the MIG welding power source 28 side while flowing the MIG shield gas 27 made of a mixed gas of Ar gas and He gas from the tip opening of the MIG welding torch 26. A MIG arc (not shown) having a positive electrode (plus) is generated from the welding start position on the weld line 6 of the fillet joint 5 to form one molten pool 24 by one arc, and then the MIG welding torch. It is made to weld in a downward attitude | position, moving 26 to a welding direction.

消耗ワイヤ18へ正極(プラス)の直流電流を給電する直流MIGアークによる溶接も可能であるが、高いピーク電流と低いベース電流とを交互に繰り返すパルスMIGアークを使用すると、直流MIGアークの場合よりもスパッタの発生が少ない溶接を行うことができる。   Welding with a DC MIG arc that feeds a positive (positive) DC current to the consumable wire 18 is also possible, but using a pulsed MIG arc that alternately repeats a high peak current and a low base current is more effective than with a DC MIG arc. Also, welding with less spatter generation can be performed.

溶接すべき内筒1側の伝熱銅フィン3の片方端面部と隅肉継手部5又は外筒2側の伝熱銅フィン3の他方端面部と隅肉継手部8の角度θ1は、θ1=120度±15度(105≦θ1≦135度)の範囲の広角傾斜に配置(構成)されており、また、内筒1及び外筒2の両面に形成された伝熱銅フィン3の両方端面部との隅肉継手部5の角度θ1も上記値と同じ範囲内に配置すると良い。また、他方の内筒1側又は外筒2側の傾斜角度θ2は、水平線に対して、θ2=30度±15度(15≦θ2≦45度)の範囲となるように配置されている。   The angle θ1 between one end surface portion of the heat transfer copper fin 3 on the inner tube 1 side to be welded and the fillet joint portion 5 or the other end surface portion of the heat transfer copper fin 3 on the outer tube 2 side and the fillet joint portion 8 is θ1. = 120 ° ± 15 ° (105 ≦ θ1 ≦ 135 °) wide angle inclination (configuration), and both of the heat transfer copper fins 3 formed on both surfaces of the inner cylinder 1 and the outer cylinder 2 The angle θ1 of the fillet joint portion 5 with the end face portion is also preferably arranged within the same range as the above value. Further, the inclination angle θ2 on the other inner cylinder 1 side or outer cylinder 2 side is arranged to be in a range of θ2 = 30 degrees ± 15 degrees (15 ≦ θ2 ≦ 45 degrees) with respect to the horizontal line.

このような角度範囲で継手部材(伝熱銅フィン3と内筒1又は伝熱フィン3と外筒2)を傾斜配置することで、MIG溶接トーチ26(TIG−MIG溶接トーチ11の場合も同様)を略垂直の下向姿勢に配置可能となり、溶接トーチ等の操作性が良くなると共に、溶接前の準備作業及び溶接作業等を向上することができる。   The joint member (the heat transfer copper fin 3 and the inner cylinder 1 or the heat transfer fin 3 and the outer cylinder 2) is inclined in such an angle range, so that the same applies to the MIG welding torch 26 (TIG-MIG welding torch 11). ) Can be arranged in a substantially vertical downward position, the operability of the welding torch and the like is improved, and preparatory work and welding work before welding can be improved.

なお、図1及び図2で説明したように、内筒1及び外筒2と複数枚(N枚)の伝熱銅フィン3との間に区分けされた各空間部4は、使用済燃料の集合体から法線状に放出される放射線を遮蔽する物質(レジン)が別途実施するレジン充填工程で充填される。   As described with reference to FIGS. 1 and 2, each space portion 4 divided between the inner cylinder 1 and the outer cylinder 2 and a plurality of (N) heat transfer copper fins 3 includes the spent fuel. A substance (resin) that shields radiation emitted from the aggregate in a normal line is filled in a resin filling step that is performed separately.

このため、図5及び図8に示したように、溶接すべき隅肉継手部5、8の角度θ1を135度よりも大きくすると、上述したレジンの充填によって放射線を効果的に遮蔽することができるが、溶接施工時に内筒1の外面及び外筒2の内面の間に溶接すべき各伝熱銅フィン3の板幅を事前に大きく製作する必要があるため、伝熱銅フィン3の製作コスト増加になると共に、隣接し合う各伝熱銅フィン3の溶接時に、溶接トーチの一部が隣の伝熱銅フィン3に接触して溶接施工が実施できなくなる可能性が高い。   Therefore, as shown in FIGS. 5 and 8, when the angle θ1 of the fillet joint portions 5 and 8 to be welded is larger than 135 degrees, radiation can be effectively shielded by the above-described resin filling. However, since it is necessary to make the plate width of each heat transfer copper fin 3 to be welded between the outer surface of the inner tube 1 and the inner surface of the outer tube 2 at the time of welding, it is possible to manufacture the heat transfer copper fins 3. There is a high possibility that a part of the welding torch comes into contact with the adjacent heat transfer copper fin 3 and the welding work cannot be carried out when the adjacent heat transfer copper fins 3 are welded together with an increase in cost.

一方、隅肉継手部5、8の角度θ1を105度よりも小さくすると、伝熱銅フィン3の板幅は縮小でき、また、溶接施工もし易くなるが、使用済燃料の集合体から放出される放射線量の一部が各レジンの間(伝熱銅フィン3及び隙間)から透過することが予想され、この放射線量の透過漏れ等によって、放射線遮蔽能力が低下する可能性が高まるので好ましくない。   On the other hand, if the angle θ1 of the fillet joint portions 5 and 8 is smaller than 105 degrees, the plate width of the heat transfer copper fins 3 can be reduced and welding can be easily performed, but it is released from the spent fuel assembly. It is anticipated that a part of the radiation dose will be transmitted from between the resins (the heat transfer copper fins 3 and the gaps). .

従って、隅肉継手部5、8の角度θ1を105≦θ1≦135度の範囲の広角傾斜に配置することで、溶接施工の実施や放射線遮蔽の能力確保を可能にすることができる。   Therefore, by arranging the angle θ1 of the fillet joint portions 5 and 8 at a wide-angle inclination in the range of 105 ≦ θ1 ≦ 135 degrees, it is possible to perform the welding work and ensure the radiation shielding ability.

また、内筒1側又は外筒2側の傾斜角度θ2は、MIG溶接トーチ26(TIG−MIG溶接トーチ11の場合も同様)を略垂直の下向姿勢に配置するための角度であることから、隅肉継手部5の角度θ1の大きさに対応して変化させれば良く、例えば、隅肉継手部5、8の角度θ1を小さくする場合は、他方の内筒1側又は外筒2側の傾斜角度θ2を大きくする方向に変化させ、反対に隅肉継手部5、8の角度θ1を大きくする場合には、傾斜角度θ2を小さくする方向に変化させると良い。   Further, the inclination angle θ2 on the inner cylinder 1 side or the outer cylinder 2 side is an angle for disposing the MIG welding torch 26 (the same applies to the TIG-MIG welding torch 11) in a substantially vertical downward posture. For example, when the angle θ1 of the fillet joints 5 and 8 is reduced, the other inner cylinder 1 side or the outer cylinder 2 may be changed. In the case of changing the inclination angle θ2 on the side to increase the angle and conversely increasing the angle θ1 of the fillet joint portions 5 and 8, it is preferable to change the inclination angle θ2 to decrease.

図11、図12及び図13に示した一体構造のTIG−MIG溶接トーチ11及びMIG溶接専用のMIG溶接トーチ26は、図11に一例として示すように、アーム駆動装置31−1によって走行移動可能な長尺アーム31の先端部(又は多関節可動式の溶接ロボットの手首部)に取付冶具を介して略下向姿勢に取付け、又は長尺アーム31の先端部に取付冶具及び左右・上下移動可能な2軸駆動テーブルを介して略下向姿勢に取付けると共に、溶接線方向に配置されている。   The integrated TIG-MIG welding torch 11 and the MIG welding torch 26 dedicated to MIG welding shown in FIGS. 11, 12, and 13 can be moved and moved by an arm driving device 31-1, as shown as an example in FIG. It is attached to the tip of the long arm 31 (or the wrist of the articulated movable welding robot) in a substantially downward position via an attachment jig, or the attachment jig and the left / right / up / down movement to the tip of the long arm 31 It is mounted in a substantially downward posture via a possible two-axis drive table and is arranged in the weld line direction.

また、伝熱銅フィン3の銅板と内筒1又は外筒2の鋼材と隅肉継手部に対して、パス毎に溶接すべき隅肉継手部の溶接線の溶接開始位置から終了位置まで、溶接制御機器20−1による長尺アーム31の走行指令、TIG溶接電源15及びMIG溶接電源20への出力指令によって、一体構造のTIG−MIG溶接トーチ11又はMIG溶接トーチ26の走行動作及び溶接動作を実行させながら、先行TIGと後続MIGとの複合溶接又はMIG溶接を隅肉継手部の溶接線の開始位置から終了位置まで溶接が施工されている。   Moreover, from the welding start position of the weld line of the fillet joint part to be welded for each pass to the copper plate of the heat transfer copper fin 3 and the steel material of the inner cylinder 1 or the outer cylinder 2 and the fillet joint part, to the end position, The traveling operation and welding operation of the integrally structured TIG-MIG welding torch 11 or MIG welding torch 26 according to the traveling command of the long arm 31 by the welding control device 20-1 and the output commands to the TIG welding power source 15 and the MIG welding power source 20. , Welding is performed from the start position to the end position of the weld line of the fillet joint portion by performing composite welding of the preceding TIG and the subsequent MIG or MIG welding.

このようにして、継手傾斜の隅肉継手部5の溶接線6上に、MIG溶接トーチ26又はTIG−MIG溶接トーチ11を下向配置して溶接施工することで、溶接線の開始位置から終了位置まで安定に溶接することができると共に、良好な溶接ビード及び溶接断面部を得ることが可能となる。   In this manner, the MIG welding torch 26 or the TIG-MIG welding torch 11 is disposed downward on the weld line 6 of the fillet joint portion 5 having the inclined joint, thereby completing the welding line from the start position of the weld line. While being able to weld stably to a position, it becomes possible to obtain a favorable weld bead and a weld cross section.

上述したように、溶接線6は、端面角部から伝熱銅フィン3の表面側にワイヤ位置又はトーチ位置(電極位置含む)を所定距離だけシフトさせた位置であり、そのシフト量S1(第1の距離S1)は、S1=0〜4mm(0≦S1≦4mm)の範囲で設定すると良い。好ましくは、1≦S1≦3mmの範囲にするとさらに良いと考えられる。   As described above, the welding line 6 is a position obtained by shifting the wire position or torch position (including the electrode position) from the end face corner portion to the surface side of the heat transfer copper fin 3 by a predetermined distance, and the shift amount S1 (the first amount) 1 distance S1) is preferably set in a range of S1 = 0 to 4 mm (0 ≦ S1 ≦ 4 mm). Preferably, it is considered better if the range is 1 ≦ S1 ≦ 3 mm.

なお、シフト量S1が0mmより小さ過ぎると、ワイヤ位置又はトーチ位置が鋼側寄りになるため、溶接時のアーク及び溶融プールが鋼側寄りに形成されることから、鋼側の溶込み深さは増加し易くなるが、反対側の銅側(伝熱銅フィン側)の溶融不足の影響で、溶接部のど厚L1及びビード高さH1が減少し、影響過大の場合にはのど厚不足又はビード高さ不足に至る可能性が高い。   If the shift amount S1 is too smaller than 0 mm, the wire position or the torch position is closer to the steel side, so that the arc and the molten pool during welding are formed closer to the steel side. However, the throat thickness L1 and the bead height H1 decrease due to insufficient melting on the opposite copper side (heat transfer copper fin side). If the influence is excessive, the throat thickness is insufficient or There is a high possibility that the bead height will be insufficient.

一方、シフト量S1が4mmより大き過ぎると、溶接時のアーク及び溶融プールが伝熱銅フィン側寄りに形成され易いため、溶接部のど厚L1及びビード高さH1は増加し易くなるが、伝熱銅フィンの溶融過大による溶落ち、若しくは反対側の鋼側の溶融不足による接合不良(強度不足)に至る可能性が高い。   On the other hand, if the shift amount S1 is larger than 4 mm, the welding arc and the molten pool are likely to be formed closer to the heat transfer copper fin side, so that the weld throat thickness L1 and the bead height H1 are likely to increase. There is a high possibility that the hot copper fins will melt down due to overmelting, or that the opposite steel side will be poorly fused (insufficient strength).

また、伝熱銅フィン3(長さ方向短縮)の両端面部の形状については、図13に示すように、伝熱銅フィン3の表面に対して、傾斜面がない略直角な端面の平坦面形状39であるが、30度±15度の範囲で傾斜させた傾斜面形状の伝熱銅フィン3を使用することもできる。伝熱銅フィン3の両端面部が平坦面形状39の場合には、継手底面部の開口によってギャップ等が生じ易いが、傾斜面形状の伝熱銅フィン3の場合と比べて加工コストを低減することができる。   Moreover, about the shape of the both-ends surface part of the heat-transfer copper fin 3 (length direction shortening), as shown in FIG. 13, with respect to the surface of the heat-transfer copper fin 3, the flat surface of the substantially orthogonal end surface without an inclined surface Although it is the shape 39, the heat transfer copper fin 3 of the inclined surface shape inclined in the range of 30 degree +/- 15 degree can also be used. When both end portions of the heat transfer copper fin 3 have a flat surface shape 39, a gap or the like is likely to be generated due to the opening of the bottom surface of the joint, but the processing cost is reduced as compared with the case of the heat transfer copper fin 3 having an inclined surface shape. be able to.

図14は、本発明の実施例3に係わるTIG−MIG溶接トーチの概略構成及び溶接ビード部の上から肉盛するようにTIG−MIG補修溶接するトーチ配置の一実施例を示すものである。   FIG. 14 shows an example of a schematic configuration of a TIG-MIG welding torch according to Example 3 of the present invention and a torch arrangement for TIG-MIG repair welding so as to build up from above the weld bead portion.

本実施例における補修溶接に使用する溶接トーチ11Aは、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用した溶接トーチと同一又は同種のTIG−MIG溶接トーチであり、補修すべき溶接線60上を通過するように配置されている。   A welding torch 11A used for repair welding in the present embodiment includes a first welding process 103 on the inner cylinder 1 side including a temporary assembly process for each fillet joint, and an outer cylinder 2 side including a temporary assembly process for each fillet joint. The TIG-MIG welding torch used in the second welding step 110 is the same as or the same type as the welding torch, and is disposed so as to pass over the weld line 60 to be repaired.

この補修すべき溶接線60は、補修すべき溶接不良部を有する内側溶接部7の伝熱銅フィン3側のビード止端部7bから伝熱銅フィン3の表面側に所定距離だけシフトさせた位置であり、そのシフト量S2(第2の距離)は0〜3mmの範囲(0≦S2≦3mm)に設定すると良い。好ましくは1≦S2≦2mmの範囲に限定するとさらに良い。   The weld line 60 to be repaired is shifted by a predetermined distance from the bead toe 7b on the heat transfer copper fin 3 side of the inner weld 7 having the poor weld to be repaired to the surface side of the heat transfer copper fin 3. It is a position, and the shift amount S2 (second distance) is preferably set in a range of 0 to 3 mm (0 ≦ S2 ≦ 3 mm). Preferably, it is better to limit to the range of 1 ≦ S2 ≦ 2 mm.

また、このTIG−MIG補修溶接に使用する溶接ワイヤ18やシールドガス14、19等は、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用したものと同一成分のSiCuワイヤ、ArガスとHeガスとの混合ガスであり、更に、TIG溶接電源15やワイヤ送給装置を含むMIG溶接電源20等も同様なものを使用すると良い。   Further, the welding wire 18 and shield gas 14 and 19 used for this TIG-MIG repair welding are used for the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, and for each fillet joint. SiCu wire of the same component as that used in the second welding process 110 on the outer cylinder 2 side including the temporary assembly process, a mixed gas of Ar gas and He gas, and further, a TIG welding power source 15 and a wire feeding device It is preferable to use the same MIG welding power source 20 including

このように、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110と補修溶接工程109、116、119及び122とで使用する装置を兼用化することで、設備投資削減や製造コスト低減等を図ることができる。   As described above, the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, the second welding process 110 on the outer cylinder 2 side including the temporary assembly process of each fillet joint, and repair welding. By sharing the apparatus used in Steps 109, 116, 119, and 122, it is possible to reduce capital investment and manufacturing cost.

上述した補修溶接工程109、116、119及び122で、アンダーカット深さ過大やのど厚不足等の溶接不良部をTIG−MIG補修溶接する場合には、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用した溶接条件と略同一の補修溶接条件、又は補修溶接条件よりもMIG電圧や入熱量を増加した他の補修溶接条件を使用し、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で形成された溶接ビード部7の伝熱銅フィン3側のビード止端部7bから伝熱銅フィン3の表面側に所定距離だけシフトさせた位置(0≦S2≦3mm)の補修すべき溶接線60上にTIG−MIG溶接トーチ11を配置し、少なくとも補修すべき溶接不良部及びその近傍部の補修すべき溶接線60上を通過するようにTIG−MIG溶接トーチ11を走行させ、先行TIGと後続MIGとの複合溶接によって、溶接不良部を有する内側溶接部7の上から肉盛するように、溶接不良部及びその近傍部に補修溶接を施工して、溶接不良部を消滅させると共に、良好な補修溶接ビード(溶接断面部)70を形成するようにしている。   In the above-described repair welding processes 109, 116, 119 and 122, when TIG-MIG repair welding is performed on a welded defective part such as an excessive undercut depth or insufficient throat thickness, the provisional assembly process for each fillet joint is included. From repair welding conditions or repair welding conditions substantially the same as those used in the first welding process 103 on the cylinder 1 side and the second welding process 110 on the outer cylinder 2 side including the temporary assembly process of each fillet joint In addition, using other repair welding conditions with increased MIG voltage and heat input, the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, and the temporary assembly process of each fillet joint are included. A position shifted by a predetermined distance from the bead toe portion 7b on the heat transfer copper fin 3 side of the weld bead portion 7 formed in the second welding step 110 on the outer cylinder 2 side to the surface side of the heat transfer copper fin 3 ( 0 ≦ S2 ≦ 3 mm) on the weld line 60 to be repaired. The torch 11 is disposed, and the TIG-MIG welding torch 11 is caused to travel so as to pass over the weld line 60 to be repaired at least in the defective weld portion to be repaired and in the vicinity thereof, and by the composite welding of the preceding TIG and the subsequent MIG Then, repair welding is performed on the welded defective part and its vicinity so as to build up from the inner welded part 7 having the welded defective part, and the welded defective part disappears and a good repair weld bead (welded cross section). Part) 70 is formed.

例えば、TIGユニット12内の非消耗電極13の極性を負極(マイナス)とし、内筒1側の極性を正極(プラス)として、TIGアーク22を溶接ビード7−1及び近傍に発生させ、その後に、他方のMIGユニット17側から給電及び送給する消耗ワイヤ18側の極性を正極(プラス)とし、内筒1側の極性を負極(マイナス)として、MIGアーク23をTIGアーク22の後方近傍に発生させる。   For example, the polarity of the non-consumable electrode 13 in the TIG unit 12 is set to the negative electrode (minus), the polarity on the inner cylinder 1 side is set to the positive electrode (plus), and the TIG arc 22 is generated in the weld bead 7-1 and the vicinity. The polarity of the consumable wire 18 to be fed and fed from the other MIG unit 17 side is positive (plus), the polarity of the inner cylinder 1 side is negative (minus), and the MIG arc 23 is near the rear of the TIG arc 22. generate.

そして、相互に反発し合うTIGアーク22とMIGアーク23で1つの溶融プール24を形成させ、少なくとも補修すべき溶接不良部及びその近傍部の補修すべき溶接線60上を通過するように、TIG−MIG溶接トーチ11を先行TIG及び後続MIGの補修方向25bに走行させ、TIGアーク22及びMIGアーク23によるTIG−MIG補修溶接によって、溶接不良部を有する溶接ビード部7の上から肉盛するように補修溶接を施工し、溶接不良部を消滅させると共に良好な補修溶接ビード70を形成するものである。   Then, the TIG arc 22 and the MIG arc 23 that repel each other form one molten pool 24 and pass through the weld line 60 to be repaired at least in the defective weld portion to be repaired and the vicinity thereof. -The MIG welding torch 11 is made to travel in the repair direction 25b of the preceding TIG and the subsequent MIG, and the TIG-MIG repair welding using the TIG arc 22 and the MIG arc 23 is used to build up the weld bead portion 7 having a poor weld portion. Then, repair welding is performed to eliminate defective welds and form a good repair weld bead 70.

このようにTIG−MIG補修溶接することで、のど厚L1の不足又はビード高さH1の不足及びアンダーカット深さRの過大等の溶接不良部を確実に消滅させることができ、品質良好な補修ビード及び補修溶接断面部(補修ビード)70を得ることができる。   By repairing TIG-MIG in this way, defective welds such as lack of throat thickness L1 or bead height H1 and excessive undercut depth R can be reliably eliminated, and repair with good quality is possible. A bead and repair weld cross section (repair bead) 70 can be obtained.

図15は、本発明の実施例4に係わるTIG−MIG溶接トーチの概略構成及び溶接ビード部の上から肉盛するようにTIG補修溶接するトーチ配置の一実施例を示すものである。   FIG. 15 shows an example of a schematic configuration of a TIG-MIG welding torch according to Example 4 of the present invention and an example of a torch arrangement for TIG repair welding so as to build up from above the weld bead portion.

図14との主な相違点は、MIGアーク23を発生させずに、TIGアーク22のみを発生させ、MIGユニット17側から給電無のコールドワイヤとした消耗ワイヤ18(溶接ワイヤ)を、TIGアーク22中及び溶融プール24内に、TIG、MIG溶接で使用するワイヤ速度よりも遅い速度で低速送給しながらTIG補修溶接するようにしたことである。   The main difference from FIG. 14 is that the MIG arc 23 is not generated, only the TIG arc 22 is generated, and the consumable wire 18 (welding wire) that is a cold wire without power supply from the MIG unit 17 side is replaced with the TIG arc. 22 and in the molten pool 24, TIG repair welding is performed while feeding at a lower speed than the wire speed used in TIG and MIG welding.

なお、このTIG補修溶接に使用するTIG−MIG溶接トーチ11、SiCuワイヤ(消耗ワイヤ18)、ArとHeとの混合ガス、TIG溶接電源15及びMIG溶接電源20等の装置構成は、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用した装置構成(図11及び図12)と同様である。   Note that the apparatus configuration of the TIG-MIG welding torch 11, the SiCu wire (consumable wire 18), the mixed gas of Ar and He, the TIG welding power source 15 and the MIG welding power source 20 used for this TIG repair welding is each fillet. The apparatus configuration used in the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of the joint and the second welding process 110 on the outer cylinder 2 side including the temporary assembly process of each fillet joint (FIGS. 11 and FIG. It is the same as 12).

上述した補修溶接工程109、116、119及び122で、TIG−MIG溶接トーチ11を使用してTIG補修溶接する場合には、例えば、TIGユニット12及びMIGユニット17の先端開口部からArとHeとの混合ガスからなるシールドガス14、19を流出させ、TIGユニット12内の非消耗電極13の極性を負極(マイナス)とし、内筒1側の極性を正極(プラス)として、TIGアーク22を溶接ビード部7及び近傍に発生させ、その後に、他方のMIGユニット17側から給電無(MIGアーク無)の消耗ワイヤ18をTIGアーク22中及び溶融プール24内に、TIG、MIG溶接で使用するワイヤ速度よりも遅い速度で低速送給して、1つのTIGアーク22で1つ溶融プール24を形成させ、補修すべき溶接不良部及びその近傍部の補修すべき溶接線60上を通過するように、TIG−MIG溶接トーチ11を先行ワイヤ及び後続TIGアーク22の補修方向25bに走行させ、1つのTIGアーク22及び1つ溶融プール24の形成によるTIG補修溶接によって、溶接不良部を有する溶接ビード7の上から肉盛するように、補修溶接を施工して溶接不良部を消滅させると共に、良好な補修溶接ビード70を形成するようにしている。   In the repair welding processes 109, 116, 119 and 122 described above, when TIG repair welding is performed using the TIG-MIG welding torch 11, for example, Ar and He from the tip openings of the TIG unit 12 and the MIG unit 17. The TIG arc 22 is welded with the polarity of the non-consumable electrode 13 in the TIG unit 12 being negative (minus) and the polarity on the inner cylinder 1 side being positive (plus). A wire used in TIG and MIG welding in the TIG arc 22 and in the molten pool 24 is a consumable wire 18 that is generated near the bead portion 7 and in the vicinity thereof, and then has no power supply (no MIG arc) from the other MIG unit 17 side. A low-speed feed at a speed slower than the speed causes one TIG arc 22 to form one melt pool 24, and a weld defect to be repaired. The TIG-MIG welding torch 11 travels in the repair direction 25b of the preceding wire and the subsequent TIG arc 22 so as to pass over the welding line 60 to be repaired in the vicinity thereof, and one TIG arc 22 and one molten pool 24 are passed. By performing TIG repair welding by forming the weld bead 7 having a defective weld portion, repair welding is performed so that the defective weld portion is eliminated and a good repair weld bead 70 is formed. ing.

なお、先行ワイヤ及び後続TIGアーク22の補修方向25bと逆方向に、TIG−MIG溶接トーチ11を走行させてTIG補修する場合には、後退角のTIGアーク22(後方曲がりのアーク形状)の後方からワイヤが、TIGアーク22中及び溶融プール24内に送給されることになるため、不安定なワイヤ溶融及び溶融プール24の形成によって不良ビードになり易い。   When the TIG-MIG welding torch 11 is run in the direction opposite to the repair direction 25b of the preceding wire and the subsequent TIG arc 22, and the TIG repair is performed, the rear of the TIG arc 22 having a receding angle (the arc shape of the backward curve) Since the wire is fed into the TIG arc 22 and into the molten pool 24, unstable wire melting and formation of the molten pool 24 tend to cause defective beads.

このため、先行ワイヤ及び後続TIGアーク22の方向に、TIG−MIG溶接トーチ11を走行させてTIG補修することで、前進角のTIGアーク22(前方曲がりのアーク形状)の前方からワイヤが、TIGアーク22中及び溶融プール24内に送給されるため、ワイヤがスムーズに溶融されると共に溶融プールも安定に形成でき、良好な補修溶接ビードを得ることができる。   For this reason, by moving the TIG-MIG welding torch 11 in the direction of the preceding wire and the subsequent TIG arc 22 and repairing the TIG, the wire is moved from the front of the TIG arc 22 of the advance angle (the arc shape of the forward bending) to the TIG. Since it is fed into the arc 22 and into the molten pool 24, the wire is smoothly melted and the molten pool can be formed stably, and a good repair weld bead can be obtained.

なお、TIG−MIG溶接トーチ11の代わりにTIG専用トーチを用いてTIG補修溶接を行うように変更することも可能である。   In addition, it is also possible to change to perform TIG repair welding using a TIG dedicated torch instead of the TIG-MIG welding torch 11.

このように、TIG補修溶接することで、のど厚L1の不足又はビード高さH1の不足及びアンダーカット深さRの過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード(補修断面部)70を得ることができる。   In this way, TIG repair welding can reliably eliminate defective welds such as lack of throat thickness L1 or bead height H1 and excessive undercut depth R, and repair welding with good quality. A bead (repair cross section) 70 can be obtained.

TIG補修溶接すべき溶接線60は、TIG−MIG補修溶接の場合と同様であり、溶接不良部を有する溶接ビード7の伝熱銅フィン3側のビード止端部7bから伝熱銅フィン3の表面側へ所定距離S2だけシフトさせた位置であり、そのシフト量S2(第2の距離)は、0〜3mmの範囲(0≦S2≦3mm)に設定すると良く、好ましくは、1≦S2≦2mmの範囲にすると更に良い。   The welding line 60 to be TIG repair welded is the same as in the case of TIG-MIG repair welding, and the heat transfer copper fin 3 is connected to the heat transfer copper fin 3 from the bead toe 7b on the heat transfer copper fin 3 side of the weld bead 7 having a poorly welded portion. The position is shifted to the surface side by a predetermined distance S2, and the shift amount S2 (second distance) may be set in a range of 0 to 3 mm (0 ≦ S2 ≦ 3 mm), preferably 1 ≦ S2 ≦. A range of 2 mm is even better.

また、TIG補修溶接に使用する補修溶接条件は、例えば、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用(出力)したTIG電流と同等以上のTIG電流を設定し、溶接(補修)速度Vを90〜150mm/分の範囲(90≦V≦150mm/分)に設定して入熱量を大きくすると共に、給電無の消耗ワイヤ18を、TIG、MIG溶接で使用するワイヤ速度よりも遅い速度で低速送給(例えば、2〜2.5m/分)すると良い。   The repair welding conditions used for TIG repair welding are, for example, the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, and the outer cylinder 2 including the temporary assembly process of each fillet joint. A TIG current equal to or greater than the TIG current used (output) in the second welding step 110 on the side is set, and the welding (repair) speed V is in the range of 90 to 150 mm / min (90 ≦ V ≦ 150 mm / min) It is preferable to increase the heat input amount by setting and to feed the consumable wire 18 without power supply at a low speed (for example, 2 to 2.5 m / min) at a speed slower than the wire speed used in TIG and MIG welding.

シフト量S2の補修すべき溶接線60上を通過するように、TIG−MIG溶接トーチ11を先行ワイヤ及び後続TIGアーク22の補修方向25bに走行させると共に、補修溶接条件を用いてTIG補修溶接することで、上述したように、のど厚L1の不足又はビード高さH1の不足及びアンダーカット深さRの過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード(補修溶接断面部)70を得ることができる。   The TIG-MIG welding torch 11 is moved in the repair direction 25b of the preceding wire and the subsequent TIG arc 22 so as to pass over the welding line 60 to be repaired with the shift amount S2, and TIG repair welding is performed using repair welding conditions. As described above, it is possible to surely eliminate defective welds such as a lack of throat thickness L1 or a bead height H1 and an excessive undercut depth R, and repair weld beads with good quality (repairs) Welded cross section) 70 can be obtained.

図16は、本発明の実施例5に係わるMIG溶接トーチの概略構成及び溶接ビード部の上から肉盛するようにMIG補修溶接するトーチ配置の一実施例を示すものである。該図に示す例は、上述したTIG−MIG溶接トーチ11の代わりに、MIG溶接トーチ26を使用する場合の例であり、また、図13に示したMIG溶接の装置構成と同様である。   FIG. 16 shows an example of a schematic configuration of a MIG welding torch according to the fifth embodiment of the present invention and a torch arrangement for performing MIG repair welding so as to build up from above the weld bead portion. The example shown in the figure is an example in the case of using the MIG welding torch 26 instead of the TIG-MIG welding torch 11 described above, and is the same as the apparatus configuration of MIG welding shown in FIG.

図16に示すように、補修溶接工程109、116、119及び122でMIG溶接トーチ26を使用してMIG補修溶接する場合には、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用したMIG溶接トーチ26と同一又は同種の溶接トーチ26、同一成分の消耗ワイヤ18(SiCuワイヤ)及びシールドガス27(ArとHeとの混合ガス)をそれぞれ使用すると共に、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で施工した時の溶接方向と同一方向にMIG溶接トーチ26を走行させ、MIGアーク23によるMIG溶接によって、溶接不良部を有する溶接ビード部7の上から肉盛するようにMIG補修溶接を施工して溶接不良部を消滅させると共に、良好な補修溶接断面部(溶接ビード)70を形成させることができる。   As shown in FIG. 16, when MIG repair welding is performed using the MIG welding torch 26 in the repair welding processes 109, 116, 119 and 122, the inner cylinder 1 side including the temporary assembly process of each fillet joint is performed. 1, the same or the same kind of MIG welding torch 26 used in the second welding step 110 on the outer tube 2 side including the temporary assembly step of each fillet joint, and the consumable wire 18 of the same component ( (SiCu wire) and shield gas 27 (mixed gas of Ar and He) are used, and the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, A weld bead portion having a poorly welded portion by running the MIG welding torch 26 in the same direction as the welding direction in the second welding step 110 on the outer cylinder 2 side including the assembly step, and by MIG welding with the MIG arc 23 Above 7 As a result, MIG repair welding is performed so as to build up, and the defective weld portion is eliminated, and a good repair weld cross section (weld bead) 70 can be formed.

例えば、MIG溶接トーチ26の先端開口部からArガスとHeガスとの混合ガスからなるMIG用シールドガス27を流出させながら、MIG溶接電源28側から給電及び送給する消耗ワイヤ18の電極極性を正極(プラス)としたMIGアークを溶接ビード部7及びその近傍に発生させと共に、1つのMIGアーク23で1つの溶融プール24を形成させ、溶接不良部及びその近傍部の溶接線60上を通過するようにMIG溶接トーチ26を補修方向25bに走行させ、1つのMIGアーク23及び1つの溶融プール24形成によるMIG溶接によって、溶接不良部を有する溶接ビード部7の上から肉盛するようにMIG補修溶接を施工して溶接不良部を消滅させると共に、良好な補修溶接ビード(溶接断面部)70を形成させることができる。   For example, the electrode polarity of the consumable wire 18 to be fed and fed from the MIG welding power source 28 side while the MIG shielding gas 27 made of a mixed gas of Ar gas and He gas is allowed to flow out from the tip opening of the MIG welding torch 26. A positive (plus) MIG arc is generated in the weld bead portion 7 and the vicinity thereof, and one molten pool 24 is formed by one MIG arc 23 and passes over the weld line 60 in the poor weld portion and the vicinity thereof. The MIG welding torch 26 is caused to travel in the repair direction 25b so that MIG welding is performed by forming one MIG arc 23 and one molten pool 24 so as to build up from the top of the weld bead portion 7 having a poorly welded portion. While repair welding is performed to eliminate the defective welded portion, a good repair weld bead (welded cross section) 70 can be formed. That.

このようにMIG補修溶接することで、上述したように、のど厚L1の不足又はビード高さH1の不足及びアンダーカット深さRの過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード(溶接断面部)70を得ることができる。   By repairing the MIG in this way, as described above, it is possible to reliably eliminate defective welds such as a lack of the throat thickness L1 or an insufficient bead height H1 and an excessive undercut depth R. A good repair weld bead (weld cross section) 70 can be obtained.

また、溶接不良部を有する溶接ビード7のビード止端部7bから伝熱銅フィン3の表面側へMIG溶接トーチ26をシフトさせ、そのシフト量S2(第2の距離)は、TIG−MIG補修溶接の場合と同様であり、上述したように、0mm以上3mm以下(0≦S2≦3mm)の範囲にすると良く、好ましくは1≦S2≦2mmの範囲にすると更に良い。   Further, the MIG welding torch 26 is shifted from the bead toe 7b of the weld bead 7 having a poor weld portion to the surface side of the heat transfer copper fin 3, and the shift amount S2 (second distance) is TIG-MIG repair. As in the case of welding, as described above, the range may be 0 mm or more and 3 mm or less (0 ≦ S2 ≦ 3 mm), and more preferably 1 ≦ S2 ≦ 2 mm.

また、補修溶接工程109、116、119及び122で溶接不良部及びその近傍部をMIG補修する場合には、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の溶接工程110で使用した溶接条件と略同一の補修溶接条件、又は前記補修溶接条件よりもMIG電圧や入熱量を増加した他の補修溶接条件を使用して補修溶接すると良い。   Further, when repairing a defective weld and its vicinity in the repair welding processes 109, 116, 119 and 122, the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, Repair welding conditions that are substantially the same as the welding conditions used in the second welding process 110 on the outer cylinder 2 side including the temporary assembly process of each fillet joint, or the MIG voltage and the heat input amount are increased more than the repair welding conditions. Repair welding using the repair welding conditions of

上述したシフト量S2の補修すべき溶接線60上を通過するようにMIG溶接トーチ11を補修方向25bに走行させると共に、補修溶接条件を用いてMIG補修溶接することで、上述したように、のど厚L1の不足又はビード高さH1の不足及びアンダーカット深さRの過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード(溶接断面部)70を得ることができる。   As described above, the MIG welding torch 11 is caused to travel in the repair direction 25b so as to pass over the welding line 60 to be repaired with the shift amount S2 described above, and as described above, the MIG repair welding is performed using repair welding conditions. It is possible to surely eliminate defective welds such as insufficient thickness L1 or insufficient bead height H1 and excessive undercut depth R, and a repair weld bead (welded cross section) 70 with good quality can be obtained. .

次に、本発明者等が実際に行った溶接試験及び補修試験の方法及び結果について説明する。   Next, methods and results of welding tests and repair tests actually conducted by the inventors will be described.

図17は、本発明の実施例6に係わる補修試験方法及び溶接ビード部の上から肉盛するように補修溶接するトーチ配置を示す一実施例である。   FIG. 17 is an example showing a repair test method according to Example 6 of the present invention and a torch arrangement for repair welding so as to build up from above the weld bead portion.

本実施例では、多関節可動式の溶接ロボット33を用い、作業台36及び試験固定台35に傾斜配置した伝熱銅フィン(銅板)3と内筒(鋼板)1との隅肉継手に対して、事前に溶接施工した溶接ビード7の上位に、溶接ロボット33の手首34に保持したTIG−MIG溶接トーチを垂直下向方向に配置し、補修溶接する試験を実施した。   In this embodiment, a multi-joint movable welding robot 33 is used, and a fillet joint between a heat transfer copper fin (copper plate) 3 and an inner cylinder (steel plate) 1 which is inclinedly disposed on the work table 36 and the test fixing table 35. Then, a test for repair welding was carried out by placing a TIG-MIG welding torch held on the wrist 34 of the welding robot 33 in a vertically downward direction above the weld bead 7 welded in advance.

図18は、本発明の実施例6に係わる溶接模擬欠陥部のTIG補修試験片の一実施例を示す斜視図である。   FIG. 18 is a perspective view showing an embodiment of a TIG repair test piece for a welded simulated defect portion according to Embodiment 6 of the present invention.

本実施例でのTIG補修用の試験片は、板厚5mmの銅板(材質:C1020P、サイズ:長さ250×幅80mm)と板厚16mmの炭素鋼板(材質:SM400A、サイズ:長さ250×幅100mm)との隅肉継手を用いた。ワイヤは、1.2mm径のCuSiワイヤ(MG960)、また、シールドガスは、ArガスとHeガス(50〜70%)との混合ガスを用いた。   The test piece for TIG repair in this example is a copper plate having a thickness of 5 mm (material: C1020P, size: length 250 × width 80 mm) and a carbon steel plate having a thickness of 16 mm (material: SM400A, size: length 250 × A fillet joint with a width of 100 mm) was used. The wire was a 1.2 mm diameter CuSi wire (MG960), and the shielding gas was a mixed gas of Ar gas and He gas (50 to 70%).

そして、隅肉継手の試験片に本溶接のTIG−MIG複合溶接を事前に施工して本溶接ビードを形成し、のど厚不足やアンダーカット深さ過大の溶接欠陥を有する試験片と仮定した。   Then, the TIG-MIG composite welding of the main welding was preliminarily applied to the test piece of the fillet joint to form the main welding bead, and it was assumed that the test piece had a welding defect with insufficient throat thickness or excessive undercut depth.

模擬欠陥部のTIG補修溶接試験では、図15及び図18に示すように、溶接ビード7(模擬欠陥部)の上位にTIG−MIG溶接トーチ11を配置して走行させ、先行ワイヤ及び後続TIGアーク22によるTIG補修溶接を施工し、約50mm長さの補修溶接断面部(補修溶接ビード70)(1パス又は2パス)を2ヵ所に形成させた。このTIG補修溶接試験では、適正な補修溶接条件を調査するため、トーチ位置のシフト量S2、溶接(補修)速度V、ワイヤ送り速度Wf、TIG電流It等の条件因子を変化させた。   In the TIG repair welding test of the simulated defect portion, as shown in FIGS. 15 and 18, the TIG-MIG welding torch 11 is arranged and traveled above the weld bead 7 (simulated defect portion), and the preceding wire and the subsequent TIG arc are run. TIG repair welding by 22 was applied, and repair weld cross sections (repair weld beads 70) (one pass or two passes) having a length of about 50 mm were formed in two places. In this TIG repair welding test, in order to investigate appropriate repair welding conditions, the condition factors such as the torch position shift amount S2, the welding (repair) speed V, the wire feed speed Wf, and the TIG current It were changed.

図19は、本発明の実施例6に係わる溶接模擬欠陥部のTIG−MIG補修試験片の一実施例を示す斜視図である。   FIG. 19: is a perspective view which shows one Example of the TIG-MIG repair test piece of the welding simulation defect part concerning Example 6 of this invention.

本実施例でのTIG−MIG補修用の試験片は、TIG補修用の試験片と同一の材質及びサイズのものを用い、この銅・鋼隅肉継手に本溶接のTIG−MIG複合溶接を事前に施工して本溶接ビードを形成し、のど厚不足やアンダーカット深さ過大の溶接欠陥を有する試験片と仮定した。   The test piece for TIG-MIG repair in this example is of the same material and size as the test piece for TIG repair, and the TIG-MIG composite welding of the main welding is previously applied to this copper / steel fillet joint. This was assumed to be a test piece having a weld defect with a short throat thickness or an excessive undercut depth.

そして、模擬欠陥部のTIG−MIG補修溶接試験では、図14及び図19に示すように、溶接ビード7(模擬欠陥部)の上位にTIG−MIG溶接トーチ11を配置して走行させ、先行TIGアーク及び後続MIGアークによるTIG−MIG補修溶接を施工し、約160mm長さの補修溶接ビード70を1ヵ所に形成させた。このTIG−MIG補修溶接試験では、MIG設定電圧Em等の条件因子を変化させた。   In the TIG-MIG repair welding test of the simulated defect portion, as shown in FIGS. 14 and 19, the TIG-MIG welding torch 11 is disposed and traveled above the weld bead 7 (simulated defect portion), and the preceding TIG TIG-MIG repair welding using an arc and subsequent MIG arc was performed, and a repair weld bead 70 having a length of about 160 mm was formed in one place. In this TIG-MIG repair welding test, the condition factors such as the MIG set voltage Em were changed.

表1は、銅板と炭素鋼との隅肉継手試験片に本溶接のTIG−MIG複合溶接試験とその本溶接ビードの上にTIG補修溶接試験及びTIG−MIG補修溶接試験を行った時の溶接条件並びに補修溶接条件を示すものである。   Table 1 shows the welds when the TIG-MIG composite welding test of the main welding is performed on the fillet joint specimen of the copper plate and the carbon steel and the TIG repair welding test and the TIG-MIG repair welding test are performed on the main welding bead. This shows the conditions and repair welding conditions.

Figure 2016075586
Figure 2016075586

本溶接のTIG−MIG複合溶接試験は、補修溶接する前に、アンダーカット過大やのど厚不足等の溶接不良部を想定した模擬欠陥を有した溶接ビード7を形成させるための試験であり、溶接速度が354mm/分、ワイヤ送り速度が11m/分、TIG電流が約300Aの一定の条件下でTIG−MIG複合溶接を施工した。   The TIG-MIG combined welding test of the main welding is a test for forming a weld bead 7 having a simulated defect that assumes a defective weld portion such as an excessive undercut or insufficient throat thickness before repair welding. TIG-MIG composite welding was performed under constant conditions of a speed of 354 mm / min, a wire feed speed of 11 m / min, and a TIG current of about 300A.

このTIG−MIG複合溶接試験では、のど厚L1やビード高さH1等の溶接品質に及ぼす影響を調査するため、継手試験片の予熱有無、電極高さh及びシフト量S1を変化させて溶接施工し、模擬欠陥の溶接ビード部7を形成させて評価した。   In this TIG-MIG combined welding test, in order to investigate the influence on the welding quality such as the throat thickness L1 and the bead height H1, the welding operation is performed by changing the preheating of the joint specimen, the electrode height h and the shift amount S1. Then, a weld bead portion 7 having a simulated defect was formed and evaluated.

一方、模擬欠陥の溶接ビード7の上に肉盛するTIG補修溶接試験では、TIG電流(It=275〜340A)、ワイヤ送り速度(Wf=2〜2.5m/分)、補修溶接速度(V=90〜120mm/分)、シフト量(S2=0〜3mm)等の条件因子を変化させ、図18に示すように、溶接ビード7の上に1パス補修又は2パス補修を施工し、補修溶接ビード部70を形成させて評価した。   On the other hand, in the TIG repair welding test that builds up on the weld bead 7 of the simulated defect, the TIG current (It = 275 to 340 A), the wire feed speed (Wf = 2 to 2.5 m / min), the repair welding speed (V = 90-120 mm / min), shift amount (S2 = 0-3 mm) and other conditional factors are changed, and as shown in FIG. 18, 1-pass repair or 2-pass repair is performed on the weld bead 7 to repair. The weld bead portion 70 was formed and evaluated.

また、模擬欠陥の溶接ビード7の上に肉盛するTIG−MIG補修溶接試験では、本溶接条件と略同一の補修溶接条件を用い、更に、MIG設定電圧を増加させ、図19に示すように、溶接ビード7の上に1パス補修を施工し、補修溶接ビード部70を形成させて評価した。   Moreover, in the TIG-MIG repair welding test that builds up on the weld bead 7 of the simulated defect, the repair welding conditions substantially the same as the main welding conditions are used, and the MIG set voltage is further increased, as shown in FIG. Then, one-pass repair was performed on the weld bead 7, and a repair weld bead portion 70 was formed for evaluation.

なお、表1中に記載したMIG設定電圧Emは、給電ケーブル電圧を含むMIG側の電圧値(電圧検出フィードバック制御の出力電圧に該当)であるため、MIG電極と母材間で計測した電圧値(計測値)よりも約1.7〜2V程度高くなっている。   The MIG setting voltage Em described in Table 1 is a voltage value measured between the MIG electrode and the base material because it is a voltage value on the MIG side (corresponding to the output voltage of voltage detection feedback control) including the power supply cable voltage. It is about 1.7-2V higher than (measured value).

また、表1中(後述する表2も同様)の左側に記載の各番号は、本溶接(39−49)の試験番号及び補修(1−14)の試験番号である。例えば、表1の最上段に本溶接39、その下に補修1、2を記載しているのは、本溶接39の試験後の溶接ビード上に、補修1、2の試験を施工したからであり、以下の番号配列も同様である。更に、表1中の仮付方向の記入欄に記載の逆方向は、溶接方向に対する表現であり、ワイヤ先行後続TIGアークの方向にTIG補修溶接した試験例、また、正方向も溶接方向に対する表現であり、本溶接の場合と同様に、先行TIGアーク後続MIGアークの方向にTIG−MIG補修溶接した試験例である。   Further, the numbers on the left side of Table 1 (the same applies to Table 2 to be described later) are the test number for main welding (39-49) and the test number for repair (1-14). For example, the main welding 39 is listed at the top of Table 1 and the repairs 1 and 2 are described below because the tests for repairs 1 and 2 were performed on the weld bead after the test of the main welding 39. The same applies to the following number sequences. Furthermore, the reverse direction described in the column for the tacking direction in Table 1 is an expression for the welding direction, a test example in which TIG repair welding is performed in the direction of the wire preceding and following TIG arc, and the positive direction is also an expression for the welding direction. As in the case of the main welding, this is a test example in which TIG-MIG repair welding is performed in the direction of the preceding TIG arc and the subsequent MIG arc.

表2は、表1に示した溶接条件及び補修溶接条件で試験した時のTIG−MIG複合溶接部とTIG補修溶接及びTIG−MIG補修溶接部の各形状寸法並びに評価結果を示すものである。   Table 2 shows the shape dimensions and evaluation results of the TIG-MIG composite weld, TIG repair weld, and TIG-MIG repair weld when tested under the welding conditions and repair welding conditions shown in Table 1.

Figure 2016075586
Figure 2016075586

表2中には、各溶接試験片から3個ずつ採取した各溶接断面部ののど厚L、ビード積層高さHの各値と融合不良有無、ビード外観良否及び合否評価の結果をそれぞれ記している。補修前の本溶接部ののど厚L1は基準値(L1≧T1)を全て満足しているが、模擬欠陥有の溶接ビードと仮定し、この模擬欠陥有の溶接ビード部の上に補修ビード部を形成させ、補修終了後の各補修溶接断面部からのど厚L2、ビード積層高さH2を計測して評価した。   In Table 2, the values of throat thickness L, bead stacking height H of each welded cross section taken from each welded test piece, and the results of poor fusion, bead appearance quality, and pass / fail evaluation are shown. Yes. The throat thickness L1 of the main welded part before repair satisfies all the reference values (L1 ≧ T1), but it is assumed that the weld bead has a simulated defect, and the repair bead part is placed on the weld bead part having the simulated defect. The throat thickness L2 and the bead stacking height H2 were measured and evaluated from each repair weld cross section after completion of repair.

表2中の斜線部分は、アンダーカット過大、溶融不良及び溶落ちによる判定で不合格(×印)になったものであり、○印は品質基準確保の判定で合格になったものである。また、△印については、品質基準を満たしているが、ワイヤ溶融不安定の影響で補修ビードの形状が見劣りする判定で、○印に至らなかったものである。   The hatched portion in Table 2 is a failure due to the determination due to excessive undercutting, poor melting, and burn-off, and a circle indicates that the quality standard is determined to be acceptable. For the Δ mark, the quality standard was satisfied, but the shape of the repair bead was inferior due to the effect of instability of the wire melting, and the mark was not reached.

図20は、本発明の実施例6に係わる溶接(補修)速度及びワイヤ送り速度を変化させた時のワイヤ溶着断面積を示す特性図である。図中には、TIG補修溶接の適用範囲及び代表的な補修溶接断面部の写真を記している。   FIG. 20 is a characteristic diagram showing a cross-sectional area of wire welding when the welding (repair) speed and the wire feed speed according to Example 6 of the present invention are changed. In the figure, the application range of TIG repair welding and a photograph of a typical repair weld cross section are shown.

該図の補修溶接断面部の写真から分かるように、上側の補修溶接部は、銅板側及び下側の溶接部の両方に深く溶込んで融合している。ワイヤ溶着断面積Bは、ワイヤ送り速度Wfに比例増加し、溶接速度Vに反比例する関係にある。   As can be seen from the photograph of the repair weld cross section in the figure, the upper repair weld is deeply melted and fused into both the copper plate side and the lower weld. The wire welding cross-sectional area B increases in proportion to the wire feed speed Wf and is inversely proportional to the welding speed V.

良好な補修溶接ビード70が得られる適正なTIG補修溶接の適用範囲は、溶接(補修)速度Vが90≦V≦150mm/分の範囲であると共に、ワイヤ送り速度Wfが2≦Wf≦2.5m/分であり、好ましくは2≦Wf≦2.2m/分である。   Applicable range of appropriate TIG repair welding for obtaining a good repair weld bead 70 is a welding (repair) speed V in a range of 90 ≦ V ≦ 150 mm / min and a wire feed speed Wf of 2 ≦ Wf ≦ 2. 5 m / min, preferably 2 ≦ Wf ≦ 2.2 m / min.

この適用範囲でTIG補修溶接を施工することで、アンダーカット深さ過大やのど厚不足等の溶接不良部を確実に消滅できると共に、品質良好な補修溶接ビード(補修溶接断面部)を得ることができる。   By applying TIG repair welding in this application range, it is possible to reliably eliminate defective welds such as excessive undercut depth and insufficient throat thickness, and to obtain repair weld beads (repair weld cross sections) with good quality. it can.

なお、溶接(補修)速度Vが150mm/分より速過ぎると、入熱不足及びワイヤ溶着断面不足の影響で不良ビードになり易い。また、ワイヤ送り速度Wfが2m/分より少な過ぎると、ワイヤ溶着断面不足の影響で、補修溶接時にワイヤの溶融状態及び溶融プールの形成状態が不安定になって不良ビードになり易い。   Note that if the welding (repair) speed V is faster than 150 mm / min, a defective bead tends to be formed due to the influence of insufficient heat input and insufficient cross section of the wire weld. On the other hand, if the wire feed speed Wf is less than 2 m / min, the melted state of the wire and the formation state of the melt pool become unstable at the time of repair welding due to the lack of the cross section of the wire weld, and a defective bead tends to be formed.

一方、補修速度Vが90mm/分より遅過ぎる場合は、作業時間の増加による生産効率低下を伴うと共に、入熱増加及びワイヤ溶着断面増加の影響で肉盛すべき補修ビードが鋼側の溶接ビードへ垂れ下がり易くなる。また、ワイヤ送り速度Wfが2.5m/分より多過ぎる場合は、ワイヤ溶着断面が増加するが、のど厚増加になり難く、ワイヤ溶融の不安定化の影響で補修ビードが鋼側の溶接ビードへ垂れ下がり易くなる。   On the other hand, if the repair speed V is slower than 90 mm / min, the production efficiency decreases due to an increase in work time, and the repair bead to be built up due to the effects of increased heat input and increased wire weld cross section is a weld bead on the steel side. It becomes easy to hang down. Also, if the wire feed speed Wf is more than 2.5 m / min, the wire welding cross section increases, but the throat thickness is unlikely to increase, and the repair bead becomes a weld bead on the steel side due to destabilization of wire melting. It becomes easy to hang down.

従って、上述した適用範囲でTIG補修溶接を施工することで、良好な補修溶接ビードを安定に形成することができる。   Therefore, a good repair weld bead can be stably formed by performing TIG repair welding in the above-described application range.

図21は、本発明の実施例6に係わるTIG−MIG複合溶接した後の本溶接ビードの上からTIG補修溶接した時の補修ビード及び補修有無部の溶接断面の一実施例を示す試験結果の写真図である。   FIG. 21 is a test result showing an example of the weld cross section of the repair bead and the repair presence / absence portion when the TIG repair welding is performed from above the main weld bead after the TIG-MIG composite welding according to the sixth embodiment of the present invention. FIG.

該図のビード外観写真中に記載の番号は、表1及び表2に示した試験番号である。また、各溶接(補修)断面部は、本溶接ビード部の1ヶ所と2ヵ所の補修ビード部から各々採取した位置を記している。TIG−MIG複合溶接した本溶接ビードの溶接速度は354mm/分であり、また、TIG補修溶接した補修ビードの溶接(補修)速度は90mm/分の場合と120mm/分の場合である。   The numbers described in the bead appearance photograph in the figure are the test numbers shown in Tables 1 and 2. In addition, each weld (repair) cross-sectional portion indicates a position taken from one and two repair bead portions of the main weld bead portion. The welding speed of the main welding bead subjected to TIG-MIG composite welding is 354 mm / min, and the welding (repairing) speed of the repair bead repaired by TIG is 90 mm / min and 120 mm / min.

該図の補修溶接断面部の写真から分かるように、上側の補修溶接部は、銅板側及び下側の溶接部の両方に深く溶込んで融合している。   As can be seen from the photograph of the repair weld cross section in the figure, the upper repair weld is deeply melted and fused into both the copper plate side and the lower weld.

このように、溶接ビード7の上からTIG補修溶接を施工することで、アンダーカット深さ過大やのど厚不足等の溶接不良部を確実に消滅できると共に、品質良好な補修溶接ビード(補修溶接断面部)70を得ることができる。また、TIG−MIG複合溶接による本溶接方法並びにTIG補修溶接による補修方法を金属キャスク溶接構造物の製造ラインへ適用することで、金属キャスク溶接構造物の製造を継続することができる。   In this way, by performing TIG repair welding from above the weld bead 7, it is possible to surely eliminate defective welds such as excessive undercut depth and insufficient throat thickness, and repair weld beads with good quality (repair weld cross section). Part) 70 can be obtained. Moreover, manufacture of a metal cask welded structure can be continued by applying the main welding method by TIG-MIG composite welding and the repair method by TIG repair welding to the production line of a metal cask welded structure.

TIG補修溶接では、本溶接のTIG−MIG複合溶接の場合と比べて、溶接(補修)速度が遅い。このため、例えば、補修すべき溶接不良部の長さが比較的短い溶接線に対して、TIG補修溶接を適用することで、補修作業の時間短縮を図ることができる。   In TIG repair welding, the welding (repair) speed is slower than in the case of TIG-MIG composite welding of main welding. For this reason, for example, the time of repair work can be shortened by applying TIG repair welding to a weld line in which the length of a defective weld portion to be repaired is relatively short.

図22及び図23は、本発明の実施例6に係わるTIG−MIG複合溶接した後の本溶接ビードの上からTIG補修溶接又はTIG−MIG補修溶接した時のトーチ位置のシフト量と補修前後ののど厚及びビード積層高さの関係を示す一実施例の特性図である。   FIGS. 22 and 23 show the amount of shift of the torch position when TIG repair welding or TIG-MIG repair welding is performed on the main weld bead after TIG-MIG composite welding according to Example 6 of the present invention and before and after the repair. It is a characteristic view of one Example which shows the relationship between throat thickness and bead lamination | stacking height.

図22に示すように、補修前の本溶接部ののど厚L1は、6.4〜6.7mmの大きさで基準値(L1≧T1)を満足しているが、溶接ビード7の上からシフト量S2(第2の距離)を変化(S2=0〜3mm)させてTIG補修溶接した時ののど厚L2は、バラツキがあるものの、約9.2〜9.8mmの大きさ(約1.4倍)に増加している。また、TIG−MIG補修溶接の場合には、10.5〜10.9mmであり、TIG補修溶接部ののど厚L2よりも大きく形成されている。   As shown in FIG. 22, the throat thickness L1 of the main weld before repair is 6.4 to 6.7 mm and satisfies the reference value (L1 ≧ T1), but from above the weld bead 7. The throat thickness L2 when TIG repair welding is performed by changing the shift amount S2 (second distance) (S2 = 0 to 3 mm) has a variation of about 9.2 to 9.8 mm (about 1). .4 times). In the case of TIG-MIG repair welding, the thickness is 10.5 to 10.9 mm, which is larger than the throat thickness L2 of the TIG repair weld.

一方、ビード積層高さH2は、図23に示すように、シフト量S2の増加に伴って増加する傾向ある。補修前のビード高さH1が約6.7〜6.8mmであるのに対して、シフト量S2を2mmに設定して補修溶接した時のビード積層高さH2は、バラツキがあるものの、約12.1〜12.9mmの大きさ(約1.8〜1.9倍)に増加してしている。   On the other hand, the bead stacking height H2 tends to increase as the shift amount S2 increases as shown in FIG. While the bead height H1 before repair is about 6.7 to 6.8 mm, the bead stacking height H2 when repair welding is performed with the shift amount S2 set to 2 mm varies, The size is increased to 12.1 to 12.9 mm (about 1.8 to 1.9 times).

このような結果から、例えば、補修前ののど厚L1及びビード高さH1の各値が基準値(L1≧T1=5、H1≧T1)を下回る4mm程度の場合でも、上述した補修溶接を施工することで、基準値を満足する大きさに改善することができる。また、アンダーカット深さが1mm前後ある場合でも、アンダーカット部及びその近傍に肉盛するように補修溶接を施工することで、アンダーカットを確実に消滅させることができると共に、基準値を満足するのど厚L2及びビード積層高さH2を有する良好な補修溶接ビード(補修溶接断面部)が形成できる。   From these results, for example, the repair welding described above is performed even when the values of the throat thickness L1 and the bead height H1 before repair are about 4 mm below the reference values (L1 ≧ T1 = 5, H1 ≧ T1). By doing so, the size can be improved to satisfy the reference value. In addition, even when the undercut depth is around 1 mm, the undercut can be reliably eliminated by applying repair welding so that the undercut portion and its vicinity are built up, and the reference value is satisfied. A good repair weld bead (repair weld cross section) having a throat thickness L2 and a bead lamination height H2 can be formed.

なお、シフト量S2が3mmより大き過ぎると、補修時のアーク及び溶融プールが銅側(伝熱銅フィン側)寄りに形成され易いため、ビード積層高さH2は増加する可能性があるが、のど厚L2増加が望めず、伝熱銅フィンの溶融過大による溶落ちに至る可能性が高い。一方、シフト量S2が0mmより小さ過ぎると、補修時のアーク及び溶融プールが溶接ビード寄りに形成され易いため、補修後ののど厚L2及びビード積層高さH2の増加にならず、溶接ビード側へ垂れ下がり易くなる。   If the shift amount S2 is too larger than 3 mm, the arc and molten pool during repair are likely to be formed closer to the copper side (heat transfer copper fin side), so the bead stacking height H2 may increase. The increase in the throat thickness L2 cannot be expected, and there is a high possibility that the heat transfer copper fin will be melted down. On the other hand, if the shift amount S2 is less than 0 mm, the arc and the molten pool at the time of repair are likely to be formed closer to the weld bead. It becomes easy to hang down.

従って、シフト量S2を0≦S2≦3mmの範囲に、好ましくは1≦S2≦2mmの範囲に設定して、TIG−MIG補修溶接又はTIG補修溶接を施工することで、上述したように、アンダーカット深さ過大やのど厚不足等の溶接不良部を確実に消滅できると共に、良好な補修溶接ビード(補修溶接断面部)を得ることができる。   Therefore, by setting the shift amount S2 in the range of 0 ≦ S2 ≦ 3 mm, preferably in the range of 1 ≦ S2 ≦ 2 mm, and performing TIG-MIG repair welding or TIG repair welding, A weld defect such as an excessive cut depth or insufficient throat thickness can be reliably eliminated, and a good repair weld bead (repair weld cross section) can be obtained.

図24は、本発明の実施例6に係わるTIG−MIG複合溶接した本溶接ビードの上からTIG−MIG補修溶接した時の補修溶接ビード及び補修有無部の溶接断面の一実施例を示す試験結果の写真図である。   FIG. 24 is a test result showing an example of the weld cross section of the repair weld bead and the repair presence / absence portion when the TIG-MIG repair weld is performed on the TIG-MIG composite weld main weld bead according to the sixth embodiment of the present invention. FIG.

該図のビード外観写真中に記載の番号は、図21に示した結果の場合と同様に、表1及び表2に示した試験番号である。また、各溶接(補修)断面部は、本溶接ビード部の1ヶ所と補修ビード部の2ヵ所から各々採取した位置を記している。   The numbers described in the bead appearance photograph in the figure are the test numbers shown in Tables 1 and 2 as in the case of the results shown in FIG. In addition, each welding (repair) cross-sectional portion indicates a position taken from one place of the main weld bead part and two places of the repair bead part.

本溶接ビード7の上からTIG−MIG補修溶接した補修溶接ビード70の溶接速度は、本溶接時と同一速度の354mm/分であり、TIG補修溶接の場合と比べて約3倍速く補修することができる。また、TIG−MIG補修溶接では、例えば、本溶接のTIG−MIG複合溶接で使用した溶接条件よりも、MIG設定電圧Emを1V前後高くした補修溶接条件を使用して補修施工することで、補修ビードの表面形状を滑らかに改善することができ、また、補修作業の時間短縮を図ることも可能である。   The welding speed of the repair weld bead 70 that has been TIG-MIG repair welded from the top of the main weld bead 7 is 354 mm / min, which is the same speed as that of the main welding, and repair is about three times faster than in the case of TIG repair welding. Can do. In TIG-MIG repair welding, for example, repair is performed using repair welding conditions in which the MIG set voltage Em is increased by about 1 V compared to the welding conditions used in the TIG-MIG composite welding of the main welding. The surface shape of the bead can be improved smoothly, and the repair work time can be shortened.

上述したように、TIG−MIG補修溶接では、本溶接のTIG−MIG複合溶接と同一速度で補修溶接することができる。このため、例えば、補修すべき溶接不良部の長さが比較的長い溶接線に対して、TIG−MIG補修溶接を適用することで、補修作業の時間短縮を図ることができる。補修すべき溶接不良部の長さの相違に応じて、TIG−MIG補修溶接とTIG補修溶接とを使い分けて施工すると良い。   As described above, in TIG-MIG repair welding, repair welding can be performed at the same speed as the TIG-MIG composite welding of the main welding. For this reason, for example, by applying TIG-MIG repair welding to a weld line in which the length of a defective weld portion to be repaired is relatively long, the time required for repair work can be reduced. Depending on the difference in the length of the defective weld portion to be repaired, TIG-MIG repair welding and TIG repair welding may be used separately.

また、TIG−MIG補修溶接又はTIG補修溶接では、本溶接工程で使用した溶接トーチと同一又は同種のTIG−MIG溶接トーチ11、同一成分のSiCuワイヤ(消耗ワイヤ18)及びArガスとHeガスとの混合ガス(第1、第2のシールドガス14、19)を使用して補修溶接を施工することで、装置の兼用化や設備投資削減や製造コスト低減等を図ることができる。   In TIG-MIG repair welding or TIG repair welding, the same or the same type of TIG-MIG welding torch 11 used in the main welding process, the same component of SiCu wire (consumable wire 18), Ar gas and He gas, By using the mixed gas (first and second shield gases 14 and 19) for repair welding, it is possible to share the apparatus, reduce equipment investment, reduce manufacturing costs, and the like.

一方、図24に示す補修溶接断面部の写真から分かるように、上側の補修溶接部は銅板側(伝熱銅フィン側)及び下側の溶接部の両方に深く溶込んで融合している。補修前の溶接ビード及びその溶接断面部7には、アンダーカット等の溶接不良部は発生していないが、欠陥部の補修溶接を想定した補修試験のように、模擬欠陥部の溶接ビード7の上からTIG−MIG補修溶接を施工することで、アンダーカット深さR過大やのど厚L2不足等の溶接不良部を確実に消滅できると共に、品質良好な補修溶接ビード(補修溶接断面部)70を得ることができる。   On the other hand, as can be seen from the photograph of the repair weld cross section shown in FIG. 24, the upper repair weld is deeply melted and fused to both the copper plate side (heat transfer copper fin side) and the lower weld. The weld bead before repair and its weld cross-section 7 do not have poor welds such as undercuts. However, as in the repair test assuming repair repair of the defective part, the weld bead 7 of the simulated defective part By applying TIG-MIG repair welding from above, defective welds such as excessive undercut depth R and insufficient throat thickness L2 can be reliably eliminated, and repair weld beads (repair weld cross section) 70 with good quality can be removed. Can be obtained.

このような結果から、例えば、アンダーカット深さが1mm前後ある場合、又はのど厚L1及びビード高さH1が基準値(L1≧T1=5mm、H1≧T1)を下回る4mm程度の場合でも、これらの溶接不良部及びその近傍に肉盛するようにTIG−MIG補修溶接を施工することで、アンダーカットを確実に消滅させることができると共に、基準値を満足するのど厚L2及びビード積層高さH2を有する良好な補修溶接ビード(補修溶接断面部)70が形成できる。   From these results, for example, even when the undercut depth is around 1 mm, or when the throat thickness L1 and bead height H1 are about 4 mm below the reference values (L1 ≧ T1 = 5 mm, H1 ≧ T1), By applying TIG-MIG repair welding so as to build up in the weld failure part and its vicinity, the undercut can be reliably eliminated, and the throat thickness L2 and bead stacking height H2 satisfying the standard value A good repair weld bead (repair weld cross section) 70 having the above can be formed.

また、TIG−MIG複合溶接による本溶接方法、並びに同様なTIG−MIG補修溶接による補修方法を金属キャスク溶接構造物の製造ラインへ適用することで、金属キャスク溶接構造物を製造及び継続することができる。   In addition, by applying the main welding method by TIG-MIG composite welding and the same repair method by TIG-MIG repair welding to the production line of the metal cask welded structure, the metal cask welded structure can be manufactured and continued. it can.

また、上述した前記TIG−MIG補修溶接又はTIG補修溶接によって形成された補修ビード及び補修断面部70には、少なくともアンダーカット深さR過大、のど厚L1不足又はビード高さH1不足等の溶接不良部が消滅しており、かつ、補修前の溶接部を含む補修溶接部のビード積層高さH2が補修後ののど厚L2より大きく、補修後ののど厚L2も伝熱銅フィンの板厚T1より大きく(H2>L2>T1)形成できる。   Further, in the repair bead and repair cross-sectional portion 70 formed by the above-described TIG-MIG repair welding or TIG repair welding, at least undercut depth R is excessive, throat thickness L1 is insufficient, or bead height H1 is insufficient. The bead lamination height H2 of the repair weld including the weld before repair is larger than the throat thickness L2 after repair, and the throat thickness L2 after repair is also the plate thickness T1 of the heat transfer copper fin. Larger (H2> L2> T1) can be formed.

更に、TIG−MIG溶接トーチ11の代わりに、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の本溶接工程110で使用した溶接トーチと同一のMIG溶接トーチ26、同一成分のSiCuワイヤ及びArガスとHeガスとの混合ガスを用い、各隅肉継手の仮組工程を含む内筒1側の第1の溶接工程103、各隅肉継手の仮組工程を含む外筒2側の第2の本溶接工程110で使用したMIG溶接条件と略同一の補修溶接条件、又はこの補修溶接条件よりもMIG設定電圧や入熱量を少し高くした補修溶接条件を用い、補修溶接工程109、116、119及び122でMIG補修溶接することも可能であり、MIG補修溶接によって形成された補修ビード及び補修断面部70には、少なくともアンダーカット深さR過大、のど厚L1不足又はビード高さH1不足等の溶接不良部が消滅しており、かつ、補修前の溶接部を含む補修溶接部のビード積層高さH2が補修後ののど厚L2より大きく、補修後ののど厚L2も伝熱銅フィンの板厚T1より大きく(H2>L2>T1)形成することができる。   Further, instead of the TIG-MIG welding torch 11, the first welding process 103 on the inner cylinder 1 side including the temporary assembly process of each fillet joint, the first welding process 103 on the outer cylinder 2 side including the temporary assembly process of each fillet joint. The inner cylinder 1 including the temporary assembly process of each fillet joint using the same MIG welding torch 26 used in the main welding process 110 of No. 2, the same component of the SiCu wire and the mixed gas of Ar gas and He gas. Repair welding conditions substantially the same as the MIG welding conditions used in the first main welding process 103 on the side, the second main welding process 110 on the outer tube 2 side including the temporary assembly process of each fillet joint, or the repair welding conditions It is also possible to perform MIG repair welding in repair welding processes 109, 116, 119 and 122 using repair welding conditions in which the MIG set voltage and heat input are slightly higher than the repair bead and repair beads formed by MIG repair welding. Cross section 70 Has at least an undercut depth R, a throat thickness L1 deficiency or a bead height H1 deficiency, or the like, and a welded weld bead height H2 including a welded portion before repair is eliminated. The throat thickness L2 after repair, and the throat thickness L2 after repair, can be larger than the plate thickness T1 of the heat transfer copper fin (H2> L2> T1).

また、上述したように、TIG−MIG補修溶接の場合と同様に、溶接不良部を有する溶接ビード7の上から肉盛するようにMIG補修溶接することで、のど厚L1不足又はビード高さH1不足及びアンダーカット深さR過大等の溶接不良部を確実に消滅させることができ、品質良好な補修溶接ビード(補修溶接断面部)70を得ることができる。   Further, as described above, similarly to the case of TIG-MIG repair welding, by performing MIG repair welding so as to build up from the top of the weld bead 7 having a poor weld portion, the throat thickness L1 is insufficient or the bead height H1. It is possible to reliably eliminate defective welds such as shortage and excessive undercut depth R, and to obtain a repair weld bead (repair weld cross section) 70 with good quality.

なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1…内筒、2…外筒、2−2…外筒板、3…伝熱銅フィン、4…空間、5、5−1、5−2・・・5−N、8、8−1、8−2・・・8−N…隅肉継手部、6、6−1、6−2・・・6−N、9−1、9−2・・・9−N…仮付溶接すべき継手部材の溶接線、7…内側溶接部、7b…ビード止端部、7、7−1、7−2・・・7−N、10−1、10−2・・・10−N…溶接ビード(溶接断面部)、10…外側溶接部、11…TIG−MIG溶接トーチ、11A…溶接トーチ、12…TIGユニット、13…非消耗電極、14…第1のシールドガス、15…TIG溶接電源、16−1、16−2、21−1、21−2、29−1、29−2…給電ケーブル、17…MIGユニット、18…消耗ワイヤ、19…第2のシールドガス、20、28…MIG溶接電源、20−1…溶接制御機器、22…TIGアーク、23…MIGアーク、24…溶融プール、25a…溶接方向、25b…補修方向、26…MIG溶接トーチ、27…MIG用シールドガス、31…長尺アーム、31−1…アーム駆動装置、33…溶接ロボット、34…手首、35…試験片固定台、36…作業台、60…補修すべき溶接線、70、70−1、70−2、100−1,100−2…補修溶接ビード、99…伝熱銅フィンの溶接手順(その1)、100…伝熱銅フィンの溶接手順(その2)、102…ワイヤ溶着断面積決定工程、103…内筒側の第1の溶接工程、105…内筒側のN箇所の溶接の繰り返し溶接工程、106…内筒側の少数単位での溶接及び検査の繰り返し溶接工程、107、117…内筒側の溶接品質の検査工程、109、116、119、122…補修溶接工程、110…外筒側の第2の溶接工程、112…外筒側のN箇所の溶接の繰り返し溶接工程、113…外筒側の少数単位での溶接及び検査の繰り返し溶接工程、114、120…外筒側の検査工程、123…外筒の溶接仕上げ工程、1071、1171…補修溶接部の品質検査、Aw…ワイヤ溶着断面積、c…鋼側の溶込み深さ、d…ワイヤ径、H1…溶接部のビード高さ、H2…補修後のビード積層高さ、Ia…第1の溶接電流、Ib…第2の溶接電流、L1…溶接部ののど厚、L2…補修後ののど厚、S1…溶接時のシフト量(第1の距離)、S2…補修時のシフト量(第2の距離)、R…アンダーカット深さ、T1…伝熱銅フィンの板厚、V…溶接速度、Wf…ワイヤ送り速度、Xw…溶接線長さ。   DESCRIPTION OF SYMBOLS 1 ... Inner cylinder, 2 ... Outer cylinder, 2-2 ... Outer cylinder board, 3 ... Heat-transfer copper fin, 4 ... Space, 5-1, 5-2 ... 5-N, 8, 8-1 , 8-2 ... 8-N ... fillet joint, 6, 6-1, 6-2 ... 6-N, 9-1, 9-2 ... 9-N ... temporarily welded Welding line of power joint member, 7 ... inner weld, 7b ... bead toe, 7, 7-1, 7-2 ... 7-N, 10-1, 10-2 ... 10-N ... Weld beads (welded cross section), 10 ... outer weld, 11 ... TIG-MIG welding torch, 11A ... welding torch, 12 ... TIG unit, 13 ... non-consumable electrode, 14 ... first shielding gas, 15 ... TIG welding Power source, 16-1, 16-2, 21-1, 21-2, 29-1, 29-2 ... feeder cable, 17 ... MIG unit, 18 ... consumable wire, 19 ... second shield gas, 20, 2 ... MIG welding power source, 20-1 ... Welding control device, 22 ... TIG arc, 23 ... MIG arc, 24 ... Melting pool, 25a ... Welding direction, 25b ... Repair direction, 26 ... MIG welding torch, 27 ... Shield gas for MIG 31 ... Long arm, 31-1 ... Arm drive device, 33 ... Welding robot, 34 ... Wrist, 35 ... Test specimen fixing base, 36 ... Work table, 60 ... Welding line to be repaired, 70, 70-1, 70-2, 100-1, 100-2 ... repair weld bead, 99 ... heat transfer copper fin welding procedure (part 1), 100 ... heat transfer copper fin welding procedure (part 2), 102 ... wire welding cross section A determination process, 103 ... a first welding process on the inner cylinder side, 105 ... a repeated welding process for welding at N locations on the inner cylinder side, 106 ... a repeated welding process for welding and inspection in a small number on the inner cylinder side, 107, 117 ... Inner cylinder 109, 116, 119, 122 ... repair welding step, 110 ... second welding step on the outer tube side, 112 ... repeated welding step of welding at N locations on the outer tube side, 113 ... outer tube Repeating welding process of welding and inspection in minor units on the side, 114, 120 ... outer cylinder side inspection process, 123 ... outer cylinder welding finish process, 1071, 1171 ... quality inspection of repair welds, Aw ... wire welding cutting Area, c ... Depth of penetration on steel side, d ... Wire diameter, H1 ... Bead height of weld, H2 ... Bead stack height after repair, Ia ... First welding current, Ib ... Second welding Current, L1 ... Throat thickness of weld, L2 ... Throat thickness after repair, S1 ... Shift amount during welding (first distance), S2 ... Shift amount during repair (second distance), R ... Undercut Depth, T1 ... Heat transfer copper fin thickness, V ... Welding speed, Wf ... Wire feed Speed, Xw ... welding wire length.

Claims (15)

放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置される鋼製の外筒との間の周方向に略等間隔に傾斜配備される銅製の複数の伝熱銅フィンをそれぞれ溶接する本溶接工程の過程で発生する溶接不良部、又は溶接後の品質検査工程で検出される溶接不良部を、補修工程で補修溶接する金属キャスク溶接構造物の溶接不良部補修方法であって、
前記補修工程で溶接不良部を補修する際に、前記本溶接工程で使用したTIG−MIG溶接トーチ又はMIG溶接トーチと同一又は同種の溶接トーチ、同一成分の溶接ワイヤ及びシールドガスをそれぞれ使用すると共に、前記本溶接工程で施工した時の溶接方向と同一方向に前記TIG−MIG溶接トーチ又は前記MIG溶接トーチを走行させ、先行TIGと後続MIGとの複合溶接又はMIG溶接によって、前記溶接不良部を有する溶接ビード部の上から肉盛するように、少なくとも前記溶接不良部に補修溶接を施工して補修ビードを形成することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
Inclined at substantially equal intervals in the circumferential direction between a steel inner cylinder that houses a collection of spent fuel containing radioactive material and a steel outer cylinder that is coaxially disposed outside the inner cylinder A metal cask that repairs and welds defective welds that occur in the process of the main welding process for welding a plurality of copper heat transfer copper fins to be welded or welded defective parts that are detected in the quality inspection process after welding. A method for repairing a defective weld portion of a welded structure,
When repairing defective welds in the repair process, use the same or the same type of welding torch, welding wire and shield gas as the TIG-MIG welding torch or MIG welding torch used in the main welding process. The TIG-MIG welding torch or the MIG welding torch travels in the same direction as the welding direction at the time of construction in the main welding process, and the defective weld portion is removed by composite welding or MIG welding of the preceding TIG and the subsequent MIG. A method for repairing a defective welded portion of a metal cask welded structure, wherein repair welding is performed on at least the defective welded portion to form a repaired bead so as to build up from above the weld bead portion.
請求項1に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記補修工程で溶接不良部を補修する際に、前記本溶接工程で使用した溶接条件と略同一の補修溶接条件、又は前記補修溶接条件よりもMIG電圧や入熱量を増加した他の補修溶接条件を用い、前記本溶接工程で形成された溶接ビード部の銅側のビード止端部から前記伝熱銅フィンの表面側に所定距離だけシフトさせた位置の線上に、前記TIG−MIG溶接トーチ又はMIG溶接トーチを配置し、少なくとも前記溶接不良部の線上を通過するように前記TIG−MIG溶接トーチ又はMIG溶接トーチを走行させ、前記先行TIGと後続MIGとの複合溶接又はMIG溶接によって、前記溶接不良部を有する溶接ビード部の上から肉盛するように、少なくとも前記溶接不良部に補修溶接を施工して補修ビードを形成するようにしたことを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask welded structure according to claim 1,
When repairing defective welds in the repair process, the repair welding conditions substantially the same as the welding conditions used in the main welding process, or other repair welding conditions in which the MIG voltage and the heat input amount are increased over the repair welding conditions. And the TIG-MIG welding torch on the line at a position shifted from the copper bead toe portion of the weld bead portion formed in the main welding step by a predetermined distance to the surface side of the heat transfer copper fin, or The MIG welding torch is disposed, and the TIG-MIG welding torch or the MIG welding torch is caused to travel so as to pass at least on the line of the poorly welded portion, and the welding is performed by composite welding of the preceding TIG and the succeeding MIG or MIG welding. A repair bead is formed by performing repair welding on at least the defective weld portion so as to build up from above the weld bead portion having the defective portion. Poor welding unit repair method for a metal cask welded structure to.
請求項1又は2に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記TIG−MIG溶接トーチを用いて前記溶接不良部をTIG−MIG補修溶接する際に、TIG側の電極極性を負極とするTIGアークを少なくとも前記溶接ビード部に発生させると共に、MIG側から給電及び送給するワイヤの極性を正極とするMIGアークを前記TIGアークの後方に発生させ、相互に反発し合う2つのアークで1つの溶融プールを形成させ、少なくとも前記溶接不良部の線上を通過するように前記TIG−MIG溶接トーチを先行TIG及び後続MIGの方向に走行させ、前記TIGアーク及びMIGアークによるTIG−MIG補修溶接によって、前記溶接不良部を有する溶接ビード部の上から肉盛するように、少なくとも前記溶接不良部に補修溶接を施工することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask welded structure according to claim 1 or 2,
When the TIG-MIG welding torch is used for TIG-MIG repair welding of the poor welded portion, a TIG arc having a negative electrode polarity on the TIG side is generated in at least the weld bead portion, and power is supplied from the MIG side. A MIG arc having the polarity of the wire to be fed as a positive electrode is generated behind the TIG arc, and one arc is formed by two arcs repelling each other so as to pass at least on the line of the defective weld portion. The TIG-MIG welding torch is caused to travel in the direction of the preceding TIG and the subsequent MIG, and the TIG-MIG repair welding using the TIG arc and the MIG arc is used to build up the weld bead portion having the poor weld portion. Welding of metal cask welded structure characterized in that repair welding is applied to at least the weld defect portion Good part repair method.
請求項1又は2に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記TIG−MIG溶接トーチを用いて前記溶接不良部をTIG補修溶接する際に、TIG側の電極極性を負極とするTIGアークを少なくとも前記溶接ビード部に発生させると共に、MIG側から給電無のコールドワイヤとした溶接ワイヤを、TIGアーク中及び溶融プール内にTIG−MIG複合溶接又はTIG−MIG補修溶接で使用する溶接ワイヤの速度よりも遅い低速で送給し、少なくとも前記溶接不良部の線上を通過するように前記TIG−MIG溶接トーチを先行ワイヤ及び後続TIGアークの方向に走行させ、前記先行ワイヤ及び後続TIGアークによるTIG補修溶接によって、前記溶接不良部を有する溶接ビード部の上から肉盛するように、少なくとも前記溶接不良部に補修溶接を施工することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask welded structure according to claim 1 or 2,
When the TIG-MIG welding torch is used for TIG repair welding of the poor welded portion, a TIG arc having a negative electrode polarity on the TIG side is generated in at least the weld bead portion, and a cold without power supply from the MIG side The welding wire as a wire is fed at a low speed slower than the speed of the welding wire used in the TIG-MIG composite welding or the TIG-MIG repair welding in the TIG arc and in the molten pool, and at least on the line of the defective welding portion. The TIG-MIG welding torch travels in the direction of the preceding wire and the subsequent TIG arc so as to pass, and is built up from the top of the weld bead portion having the poor welded portion by TIG repair welding using the preceding wire and the subsequent TIG arc. A metal cast characterized in that repair welding is applied to at least the defective welded portion. Poor welding unit repair method of welding structures.
請求項4に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記溶接不良部をTIG補修溶接する際に、前記本溶接工程で使用したTIG電流と同等以上のTIG電流を設定し、溶接速度を90〜150mm/分の範囲に設定して入熱量を大きくすると共に、給電無の前記溶接ワイヤを、TIG−MIG複合溶接又はTIG−MIG補修溶接で使用する前記溶接ワイヤの速度よりも遅い低速で送給するように設定した他の補修溶接条件を用いることを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask weld structure according to claim 4,
When TIG repair welding is performed on the defective welded portion, a TIG current equal to or higher than the TIG current used in the main welding process is set, and the welding speed is set in a range of 90 to 150 mm / min to increase the heat input. And using other repair welding conditions set to feed the welding wire without power supply at a lower speed than the speed of the welding wire used in TIG-MIG composite welding or TIG-MIG repair welding. A method for repairing defective welded parts of a metal cask welded structure.
請求項1乃至5のいずれか1項に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記溶接不良部は、前記本溶接工程の過程で発生するか若しくは溶接後の品質検査工程で検出されるアンダーカット過大、のど厚不足又はビード高さ不足であることを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of a metal cask welded structure according to any one of claims 1 to 5,
The metal cask welding structure characterized in that the poor weld portion is generated in the course of the main welding process, or is undercut excessively detected in a quality inspection process after welding, insufficient throat thickness, or insufficient bead height. Repair method for defective welded parts.
請求項6に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記アンダーカット過大の不良判定は、前記アンダーカットの深さRが前記伝熱銅フィンの板厚T1の1/10より大きい(R>0.1×T1)時であり、また、前記のど厚不足又はビード高さ不足の不良判定は、補修前の前記のど厚L1又はビード高さH1の大きさが前記伝熱銅フィンの板厚T1より小さい(L1<T1、H1<T1))時であり、これらの溶接不良部が無くなるように前記補修溶接を施工することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask weld structure according to claim 6,
The determination of the undercut excess failure is when the depth R of the undercut is greater than 1/10 of the plate thickness T1 of the heat transfer copper fin (R> 0.1 × T1), and the throat thickness The defect judgment of insufficient or bead height is determined when the size of the throat thickness L1 or bead height H1 before repair is smaller than the plate thickness T1 of the heat transfer copper fin (L1 <T1, H1 <T1)). There is provided a method for repairing a defective weld portion of a metal cask welded structure, wherein the repair welding is performed so that the defective weld portion is eliminated.
請求項1乃至7のいずれか1項に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記溶接不良部の補修溶接に使用する溶接ワイヤ及びシールドガスは、前記本溶接工程で使用した溶接ワイヤと同一成分のシリコン入りのCuSiワイヤであると共に、同一成分のArガスとHeガスとの混合ガスであり、かつ、前記溶接トーチの先端開口部から前記混合ガスを放出させ、前記CuSiワイヤを前記溶接ビード部の上から肉盛するように前記補修溶接を施工して前記補修ビードを形成することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of a metal cask welded structure according to any one of claims 1 to 7,
The welding wire and shield gas used for repair welding of the defective welding part are CuSi wires containing silicon of the same component as the welding wire used in the main welding process, and a mixture of Ar gas and He gas of the same component. The repair bead is formed by discharging the mixed gas from the tip opening of the welding torch and applying the repair welding so as to build up the CuSi wire from above the weld bead. A method for repairing a defective welded part of a metal cask welded structure.
請求項2乃至8のいずれか1項に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記TIG−MIG溶接トーチ又はMIG溶接トーチを溶接ビード部の銅側のビード止端部から伝熱銅フィン表面側にシフトさせる所定距離S2は、0mm以上3mm以下(0≦S2≦3)であることを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of a metal cask welded structure according to any one of claims 2 to 8,
The predetermined distance S2 for shifting the TIG-MIG welding torch or the MIG welding torch from the copper side bead toe portion to the heat transfer copper fin surface side of the weld bead portion is 0 mm or more and 3 mm or less (0 ≦ S2 ≦ 3). A method for repairing a defective welded part of a metal cask welded structure.
請求項1乃至9のいずれか1項に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記補修溶接によって形成された補修ビード及び補修断面部には、少なくともアンダーカット過大、のど厚不足又はビード高さ不足等の溶接不良部が消滅しており、かつ、補修前の溶接部を含む補修溶接部のビード積層高さH2が補修後ののど厚L2より大きく、前記補修後ののど厚L2も伝熱銅フィンの板厚T1より大きく(H2>L2>T1)形成されていることを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
The method for repairing a defective weld portion of a metal cask welded structure according to any one of claims 1 to 9,
The repair bead and repair cross-section formed by the repair welding have repaired including at least the undercut, the throat thickness is insufficient, or the bead height is insufficient, and the weld including the weld before repair is eliminated. The bead lamination height H2 of the welded portion is larger than the throat thickness L2 after repair, and the throat thickness L2 after the repair is also larger than the plate thickness T1 of the heat transfer copper fin (H2>L2> T1). Repair method for defective welded parts of metal cask welded structures.
請求項1乃至10のいずれか1項に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記溶接不良部を補修溶接する補修工程は、前記内筒側の品質検査工程又は前記外筒側の品質検査工程若しくは両方の品質検査工程の次工程に設けられると共に、前記品質検査工程は、所定枚数(N枚)の前記伝熱銅フィンの端面部又は他方の前記伝熱銅フィンの端面部を順番に繰り返し溶接する溶接工程の終了後の次工程に、又は少数単位に分割した前記伝熱銅フィンの片方端面部又は前記伝熱銅フィンの他方端面部を少数単位で溶接して検査する溶接・検査繰り返し工程の中に、若しくは両方の工程に設けられており、かつ、前記補修工程では、前記品質検査工程で不良判定された前記溶接不良部を無くすように前記補修溶接を施工することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
The method for repairing a defective weld portion of a metal cask welded structure according to any one of claims 1 to 10,
The repair process for repair welding the defective weld portion is provided in the next process of the quality inspection process on the inner cylinder side or the quality inspection process on the outer cylinder side or both of the quality inspection processes. The number of (N) end surfaces of the heat transfer copper fins or the other end surface of the heat transfer copper fins are sequentially and repeatedly welded in order, or after the end of the welding process, or the heat transfer divided into a small number of units. One end surface of the copper fin or the other end surface of the heat transfer copper fin is welded and inspected by welding in a small number of units, or is provided in both processes, and in the repair process, A repair method for repairing a defective welded part of a metal cask welded structure, wherein the repair welding is performed so as to eliminate the welded defective part determined to be defective in the quality inspection step.
請求項1又は2に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記補修工程前の本溶接工程で前記伝熱銅フィンの端面部と継手部の溶接線を本溶接する際に、前記補修工程で使用予定の溶接トーチと同一又は同種のTIG−MIG溶接トーチ又はMIG溶接トーチ、同一成分のシリコン入りのCuSiワイヤ及びArガスとHeガスとの混合ガスをそれぞれ使用し、前記伝熱銅フィンの端面角部から前記伝熱銅フィンの表面側に所定距離だけシフトさせた位置の溶接線上の溶接開始位置に前記TIG−MIG溶接トーチ又はMIG溶接トーチを配置すると共に、前記溶接開始位置から終了位置までの溶接線上を通過するように走行させ、前記TIG−MIG溶接トーチによる先行TIGと後続MIGとの複合溶接又は前記MIG溶接トーチによるMIG溶接によって、前記継手部の前記溶接開始位置から終了位置までの溶接線に溶接施工することを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask welded structure according to claim 1 or 2,
TIG-MIG welding torch which is the same or the same type as the welding torch scheduled to be used in the repairing process when the welding line of the end face part of the heat transfer copper fin and the joint part is main welded in the main welding process before the repairing process or Using a MIG welding torch, CuSi wire containing silicon of the same component, and a mixed gas of Ar gas and He gas, respectively, a predetermined distance is shifted from the corner portion of the heat transfer copper fin to the surface side of the heat transfer copper fin. The TIG-MIG welding torch or the MIG welding torch is disposed at the welding start position on the weld line at the position, and the TIG-MIG welding is run so as to pass over the welding line from the welding start position to the end position. From the welding start position of the joint part by composite welding of the preceding TIG and the subsequent MIG with a torch or MIG welding with the MIG welding torch Poor welding unit repair method for a metal cask welded structure, characterized in that welding to the welding line to the completion position.
請求項12に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記TIG−MIG溶接トーチ又はMIG溶接トーチを前記伝熱銅フィンの端面角部から前記伝熱銅フィンの表面側にシフトさせる所定距離S1は、0mm以上4mm以下(0≦S1≦4mm)であることを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask weld structure according to claim 12,
The predetermined distance S1 for shifting the TIG-MIG welding torch or the MIG welding torch from the end face corner portion of the heat transfer copper fin to the surface side of the heat transfer copper fin is 0 mm or more and 4 mm or less (0 ≦ S1 ≦ 4 mm). A method for repairing a defective welded part of a metal cask welded structure.
請求項12に記載の金属キャスク溶接構造物の溶接不良部補修方法において、
前記溶接施工によって形成された前記溶接ビード及び溶接断面部には、前記のど厚L1及びビード高さH1が、前記伝熱銅フィンの板厚T1以上(L1≧T1、H1≧T1)の大きさに形成され、かつ、前記アンダーカット深さRが前記板厚T1の1/10以下(R≦(0.1×T1))であることを特徴とする金属キャスク溶接構造物の溶接不良部補修方法。
In the method for repairing a defective weld portion of the metal cask weld structure according to claim 12,
In the weld bead and weld cross section formed by the welding operation, the throat thickness L1 and bead height H1 are equal to or greater than the plate thickness T1 of the heat transfer copper fin (L1 ≧ T1, H1 ≧ T1). And the undercut depth R is 1/10 or less of the plate thickness T1 (R ≦ (0.1 × T1)). Method.
放射性物質を有する使用済燃料の集合体を収納する鋼製の内筒と、該内筒の外側に同軸状に配置する鋼製の外筒と、前記内筒器と前記外筒との間の周方向に略等間隔に傾斜配備する銅製の複数の伝熱銅フィンとを備え、
鋼製の前記内筒外面の長手方向に所定枚数の前記伝熱銅フィンの片方端面部を略等間隔に突合せて各々形成された前記内筒側の広角傾斜の各隅肉継手部、又は前記外筒内面の長手方向に所定枚数の前記伝熱銅フィンの他方の各端面部を略等間隔に突合せて各々形成された前記外筒側の広角傾斜の各隅肉継手部、若しくは前記内筒及び前記外筒の両面に各々形成された各隅肉継手部に、先行TIGと後続MIGとの複合溶接又はMIG溶接によって1パスずつ溶接施工する本溶接工程が行われて形成される伝熱銅フィン付き金属キャスクであって、
前記本溶接工程の過程で発生する溶接不良部、又は溶接後の品質検査工程で検出される溶接不良部が、請求項1乃至14のいずれか1項に記載の金属キャスク溶接構造物の溶接不良部補修方法を用いて補修溶接されていることを特徴とする伝熱銅フィン付き金属キャスク。
A steel inner cylinder that houses an assembly of spent fuel having a radioactive substance, a steel outer cylinder that is coaxially disposed outside the inner cylinder, and between the inner cylinder and the outer cylinder With a plurality of copper heat transfer copper fins inclined and arranged at substantially equal intervals in the circumferential direction,
Each fillet joint portion having a wide-angle inclination on the inner cylinder side formed by abutting one end face portions of the heat transfer copper fins at substantially equal intervals in the longitudinal direction of the outer surface of the inner cylinder made of steel, or Each outer joint side wide-angle inclined fillet joint portion formed by abutting the other end face portions of the predetermined number of heat transfer copper fins at substantially equal intervals in the longitudinal direction of the inner cylinder inner surface, or the inner cylinder And heat transfer copper formed by performing a main welding process in which each fillet joint formed on both surfaces of the outer cylinder is welded one pass at a time by composite welding of the preceding TIG and the subsequent MIG or MIG welding. A metal cask with fins,
The welding defect of the metal cask welded structure according to any one of claims 1 to 14, wherein a welding defect portion generated in the process of the main welding process or a welding defect portion detected in a quality inspection process after welding. A metal cask with heat transfer copper fins, which is repair welded using a partial repair method.
JP2014206404A 2014-10-07 2014-10-07 Repair method for defective welds in metal cask welded structures Active JP6386330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206404A JP6386330B2 (en) 2014-10-07 2014-10-07 Repair method for defective welds in metal cask welded structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206404A JP6386330B2 (en) 2014-10-07 2014-10-07 Repair method for defective welds in metal cask welded structures

Publications (3)

Publication Number Publication Date
JP2016075586A true JP2016075586A (en) 2016-05-12
JP2016075586A5 JP2016075586A5 (en) 2017-10-12
JP6386330B2 JP6386330B2 (en) 2018-09-05

Family

ID=55951331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206404A Active JP6386330B2 (en) 2014-10-07 2014-10-07 Repair method for defective welds in metal cask welded structures

Country Status (1)

Country Link
JP (1) JP6386330B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813032A (en) * 2017-09-15 2018-03-20 哈尔滨工业大学(威海) Lockhole TIG and MIG electric arc couple composite welding apparatus and method
JP2019150855A (en) * 2018-03-05 2019-09-12 三菱重工業株式会社 Welding method and radioactive material storage device
WO2020262050A1 (en) * 2019-06-28 2020-12-30 パナソニックIpマネジメント株式会社 Repair welding examination device and repair welding examination method
CN112404727A (en) * 2020-10-27 2021-02-26 中国核动力研究设计院 Square tube assembling and welding method and welding protection device
CN114669839A (en) * 2022-03-29 2022-06-28 岭澳核电有限公司 Weld repairing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178727A (en) * 2008-01-30 2009-08-13 Toshiba Corp Method for manufacturing metallic vessel and welding device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178727A (en) * 2008-01-30 2009-08-13 Toshiba Corp Method for manufacturing metallic vessel and welding device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813032A (en) * 2017-09-15 2018-03-20 哈尔滨工业大学(威海) Lockhole TIG and MIG electric arc couple composite welding apparatus and method
JP2019150855A (en) * 2018-03-05 2019-09-12 三菱重工業株式会社 Welding method and radioactive material storage device
JP7085368B2 (en) 2018-03-05 2022-06-16 三菱重工業株式会社 Welding method and radioactive material containment vessel
WO2020262050A1 (en) * 2019-06-28 2020-12-30 パナソニックIpマネジメント株式会社 Repair welding examination device and repair welding examination method
CN114025904A (en) * 2019-06-28 2022-02-08 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method
CN114025904B (en) * 2019-06-28 2023-09-12 松下知识产权经营株式会社 Repair welding inspection device and repair welding inspection method
JP7386461B2 (en) 2019-06-28 2023-11-27 パナソニックIpマネジメント株式会社 Repair welding inspection equipment and repair welding inspection method
CN112404727A (en) * 2020-10-27 2021-02-26 中国核动力研究设计院 Square tube assembling and welding method and welding protection device
CN114669839A (en) * 2022-03-29 2022-06-28 岭澳核电有限公司 Weld repairing method

Also Published As

Publication number Publication date
JP6386330B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6104408B2 (en) Method for forming a cladding layer of a superalloy material
JP6099771B2 (en) How to repair parts made of superalloy materials
JP6386330B2 (en) Repair method for defective welds in metal cask welded structures
EP2698223B1 (en) A process of welding to repair thick sections using two arc welding devices and a laser device
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
CN102310289B (en) Hybrid laser arc welding technology and equipment
JP2016513200A (en) Local repair of superalloy parts
JP2016511697A (en) Selective laser melting / sintering using powdered flux
US20090224530A1 (en) Welded butt joints on tubes having dissimilar end preparations
JP2015526295A (en) Hybrid welding system and welding method using a wire feeder arranged between a laser and an electric arc welder
JP2016516580A (en) Method of remelting and repairing superalloy by laser using flux
US20140061171A1 (en) Hybrid welding apparatuses, systems and methods
JP2004306084A (en) Composite welding method of laser welding and arc welding
JP2016011845A (en) Welding method for heat-transfer copper fin for metal cask and welding device therefor
JP5153368B2 (en) T-type joint penetration welding method and penetration welded structure
JP6322561B2 (en) Temporary welding construction method for metal cask welded structure and metal cask with heat transfer fin
JP2016509541A (en) Laser micro-cladding using powdered flux and powdered metal
JP6278852B2 (en) Welding method of heat transfer copper fin for metal cask and metal cask with heat transfer copper fin
JP2008200750A (en) One side arc spot welding method
JP2010167425A (en) Welding method of vertical t-shaped joint, vertical t-shaped weld joint, and welded structure using the same
JP2007196266A (en) Both-side welding method and weld structure thereby
JP5268594B2 (en) Welding method of type I joint, type I welded joint, and welded structure using the same
US7371994B2 (en) Buried arc welding of integrally backed square butt joints
CN114799526B (en) Narrow-gap laser swing-filler wire composite welding method for ultra-high-strength steel thick plate
JP5600652B2 (en) Dissimilar metal joining method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150