JP5153368B2 - T-type joint penetration welding method and penetration welded structure - Google Patents

T-type joint penetration welding method and penetration welded structure Download PDF

Info

Publication number
JP5153368B2
JP5153368B2 JP2008021681A JP2008021681A JP5153368B2 JP 5153368 B2 JP5153368 B2 JP 5153368B2 JP 2008021681 A JP2008021681 A JP 2008021681A JP 2008021681 A JP2008021681 A JP 2008021681A JP 5153368 B2 JP5153368 B2 JP 5153368B2
Authority
JP
Japan
Prior art keywords
plate
upper plate
welding
penetration
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008021681A
Other languages
Japanese (ja)
Other versions
JP2009178761A (en
Inventor
昭慈 今永
栄次 芦田
健 尾花
湘軍 羅
宏夫 小出
利光 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008021681A priority Critical patent/JP5153368B2/en
Publication of JP2009178761A publication Critical patent/JP2009178761A/en
Application granted granted Critical
Publication of JP5153368B2 publication Critical patent/JP5153368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は,下側の立板上面に上板を溶接するT型継手の貫通溶接方法及び貫通溶接構造物に関する。   The present invention relates to a T-type joint penetration welding method and a penetration welded structure in which an upper plate is welded to a lower vertical plate upper surface.

高エネルギ密度の電子ビームやレーザビームを用いたT型継手の貫通溶接方法が提案されている。   There has been proposed a T-type joint penetration welding method using a high energy density electron beam or laser beam.

例えば,特許文献1に記載のT型継手の貫通溶接方法では,下板の上板と接する面を凹状に形成し,上板表面から電子ビームを照射して上板の溶接金属を前記凹状の部分で受け止めることが開示されている。   For example, in the through-welding method for a T-shaped joint described in Patent Document 1, a surface in contact with the upper plate of the lower plate is formed in a concave shape, and an electron beam is irradiated from the upper plate surface so that the weld metal of the upper plate is formed into the concave shape. It is disclosed to take part.

特許文献2に記載の溶接方法及びこれを用いて接合された構造体では,車体フレームを対象に,接合箇所となる略板状箇所を有する部材に他の部材の接合箇所を当接し,前記他の部材が当接する面とは反対側の部材面から所定の貫通溶接手段(レーザ溶接手段,電子ビーム溶接手段)を用いて貫通溶接処理することが開示されている。   In the welding method described in Patent Document 2 and a structure joined using the welding method, a joint part of another member is brought into contact with a member having a substantially plate-like part serving as a joint part for the body frame, and the other It is disclosed that through welding processing is performed using a predetermined through welding means (laser welding means, electron beam welding means) from a member surface opposite to the surface with which the member contacts.

特許文献3に記載の中空材及びその製造方法では,断面櫛型形状のソリッド押出形材と,このソリッド形材の櫛歯部に対向する板材と,前記ソリッド形材の櫛歯部の先端部と前記板材との接触部を溶着する溶接部とから構成することが開示されている。また,前記ソリッド形材の櫛歯部に対向させて板材を載置して,前記ソリッド形材の櫛歯部の先端部と前記板材との接触部を溶接することが開示されている。   In the hollow material described in Patent Document 3 and the manufacturing method thereof, a solid extruded shape having a cross-sectional comb shape, a plate material facing the comb teeth of the solid shape, and a tip portion of the comb teeth of the solid shape And a welded portion for welding a contact portion with the plate material. Further, it is disclosed that a plate material is placed facing the comb tooth portion of the solid shape member, and a contact portion between the tip portion of the comb shape portion of the solid shape member and the plate material is welded.

一方,フラックス入りワイヤを用いた深い溶け込みのTIG溶接方法が開示されている。   On the other hand, a deep penetration TIG welding method using a flux cored wire is disclosed.

例えば,特許文献4に記載のTIG溶接方法では,金属酸化物を6質量%以上含有するフラックスを内包したフラックス入りワイヤを溶加材として使用し,溶融金属中に前記金属酸化物を0.05〜3g/分供給しながらTIG溶接することが開示されている。   For example, in the TIG welding method described in Patent Document 4, a flux-cored wire containing a flux containing 6% by mass or more of a metal oxide is used as a filler material, and 0.05% of the metal oxide is contained in the molten metal. It is disclosed that TIG welding is performed while supplying -3 g / min.

特許文献5に記載のTIG溶接用フラックス入りワイヤでは,フラックスがSiOとCrとで構成され,この混合比率はSiOが20〜80重量%,Crが20〜20〜80重量%であり,このフラックスが前記フラックス入りワイヤに5〜25重量%の比率で充填されていることが開示されている。 In the flux-cored wire for TIG welding described in Patent Document 5, the flux is composed of SiO 2 and Cr 2 O 3, and the mixing ratio is 20 to 80 wt% for SiO 2 and 20 to 20 for Cr 2 O 3 . It is disclosed that the flux is filled in the flux-cored wire at a ratio of 5 to 25% by weight.

特許文献6に記載のTIG溶接法では,第1部材の開先表側における第2部材の中心線上でアークを発生させると共に,溶接部に交番磁界を与えながら溶接することが開示されている。   In the TIG welding method described in Patent Document 6, it is disclosed that an arc is generated on the center line of the second member on the groove front side of the first member and welding is performed while an alternating magnetic field is applied to the welded portion.

特許文献7に記載のTIG溶接装置及び方法では,不活性ガスからなる第1のシールドガスを,電極を囲むように被溶接物に向けて流すと共に,前記第1のシールドガスの周辺側に,酸化性ガスを含む第2のシールドガスを被溶接物に向けて流して溶接し,溶接金属部の酸素濃度を70〜220wt.ppmの範囲にすることが開示されている。また,特許文献7には,第2のシールドガスの酸素濃度若しくは二酸化炭素濃度と溶接金属部の溶け幅及び深さとの関係が開示されている。   In the TIG welding apparatus and method described in Patent Document 7, the first shield gas made of an inert gas is caused to flow toward the work piece so as to surround the electrode, and on the peripheral side of the first shield gas, It is disclosed that a second shield gas containing an oxidizing gas is flowed toward a workpiece to be welded so that the oxygen concentration of the weld metal part is in the range of 70 to 220 wt.ppm. Patent Document 7 discloses the relationship between the oxygen concentration or carbon dioxide concentration of the second shield gas and the melting width and depth of the weld metal part.

特許文献8には,摩擦攪拌接合によってT継手を形成することが開示されている。すなわち,特許文献7では,第1ワークの下面に溝を設け,前記溝に第2ワークを嵌合し,第1ワークの上面側から摩擦攪拌プローブを第2ワークの肉に及ぶように作用せしめ,第1ワークと第2ワークとを摩擦攪拌接合することによってT継手を形成することが開示されている。   Patent Document 8 discloses forming a T joint by friction stir welding. That is, in Patent Document 7, a groove is provided on the lower surface of the first workpiece, the second workpiece is fitted into the groove, and the friction stir probe is applied from the upper surface side of the first workpiece to reach the meat of the second workpiece. , Forming a T joint by friction stir welding of a first work and a second work is disclosed.

特開昭63−203286号公報(特に,第2頁左上欄第16行〜同頁右上欄第4行,第1図)JP-A-63-203286 (particularly, page 2, upper left column, line 16 to page upper right column, line 4, FIG. 1) 特開2003−334680号公報(特に,段落0029,0030,図3)JP 2003-334680 A (in particular, paragraphs 0029 and 0030, FIG. 3) 特開平6−23451号公報(特に,段落0007〜0010,図1,図2)Japanese Patent Laid-Open No. 6-23451 (particularly, paragraphs 0007 to 0010, FIGS. 1 and 2) 特開2001−219274号公報(特に,段落0009,0010)JP 2001-219274 A (particularly paragraphs 0009 and 0010) 特開2001−1183号公報(特に,段落0006〜0008)JP 2001-1183 A (particularly paragraphs 0006 to 0008) 特開昭59−13577号公報(特に,第1頁右下欄第4〜17行,第1図)JP 59-13577 (particularly, page 1, lower right column, lines 4-17, FIG. 1) 特開2004−298963号公報(特に,段落0014〜0016,図1,図11,図15)JP 2004-298963 A (in particular, paragraphs 0014 to 0016, FIGS. 1, 11, and 15) 特開平11−28581号公報(特に,段落0012〜0014,図1,図2)JP 11-28581 A (particularly paragraphs 0012 to 0014, FIGS. 1 and 2)

しかしながら,特許文献1に開示された技術的思想では,従来の溶接工程では困難な厚板のT型継手部材を対象に,電子ビーム溶接によって上板を溶融及び貫通して下板側まで容易に溶融接合できるが,大気を排除する真空装置や溶接する部材を収納する大きな真空チャンバー等の特殊な環境設備が必要になり,新たな設備投資に伴って製造コストが高騰するという問題がある。また,特許文献1では,電子ビームによる貫通溶接がキーホール型の溶け込み形状になり,溶け幅が極めて狭いため溶接断面積が小さく,部材の板厚強度より低い強度しか得られない。キーホール型の溶け込み溶接は,スパッタ(溶融金属の飛散)も発生し易いという問題がある。   However, according to the technical idea disclosed in Patent Document 1, the upper plate is easily melted and penetrated to the lower plate side by electron beam welding for a thick T-shaped joint member which is difficult in the conventional welding process. Although it can be melt-bonded, special environmental equipment such as a vacuum device that excludes the atmosphere and a large vacuum chamber that accommodates the member to be welded is required, and there is a problem that the manufacturing cost increases with new capital investment. Moreover, in patent document 1, penetration welding by an electron beam becomes a keyhole-type penetration shape, and since the melting width is extremely narrow, the welding cross-sectional area is small and only a strength lower than the plate thickness strength of the member can be obtained. Keyhole type penetration welding has the problem that spatter (spattering of molten metal) is also likely to occur.

特許文献2に開示された技術的思想では,従来のアーク溶接では困難な継手構造の車体フレームを対象に,レーザ溶接,又は電子ビーム溶接による貫通溶接を施して,上側の板状部材と下側部材とを溶融接合するようにしている。特に,レーザ溶接は,アーク溶接と全く異なる溶接方法であり,光学レンズ等によって集光化及び高エネルギ密度化したレーザビームを部材に照射して溶融するため,上記貫通溶接が可能であるが,キーホール型の溶け込み形状であって溶け幅が狭いため,溶接強度に相関関係のある溶接断面積が小さくなり易い。また,溶接中にスパッタが発生し易い。このレーザ溶接には,添加ワイヤ又はフラックス入りワイヤは使用されていない。さらに,レーザ溶接は,レーザ発信器等の特殊な設備が必要であり,電子ビーム溶接と同様に,安価なアーク溶接設備と比べて何れも高価である。また,特許文献2では,電子ビーム溶接でも前記レーザ溶接と同様に遂行できると明記されているが,大気を排除する真空装置や溶接する部材を収納する真空チャンバー等の特殊な環境設備が必要となるため,溶接前の準備や溶接後の搬出に時間がかかり,溶接部位の移動や回転を要する複雑形状の溶接には不向きである。   According to the technical idea disclosed in Patent Document 2, the upper plate-like member and the lower side are subjected to through welding by laser welding or electron beam welding for a vehicle body frame having a joint structure that is difficult with conventional arc welding. The members are melt-bonded. In particular, laser welding is a welding method that is completely different from arc welding, and the above-mentioned through-welding is possible because the member is irradiated with a laser beam focused and optically densified by an optical lens or the like to melt. Because it is a keyhole-type penetration shape and the melt width is narrow, the weld cross-sectional area correlated with the weld strength tends to be small. Also, spatter is likely to occur during welding. No additive wire or flux-cored wire is used for this laser welding. Furthermore, laser welding requires special equipment such as a laser transmitter, and, like electron beam welding, both are expensive compared to inexpensive arc welding equipment. Patent Document 2 stipulates that electron beam welding can be performed in the same manner as the laser welding, but requires special environmental equipment such as a vacuum device that excludes the atmosphere and a vacuum chamber that houses a member to be welded. Therefore, it takes time for preparation before welding and unloading after welding, and it is not suitable for welding in a complicated shape that requires movement and rotation of the welded part.

特許文献3に開示された技術的思想では,ソリッド形材の櫛歯部の先端部と前記板材との接触部(T型継手部)を,主にレーザ溶接によって溶接するようにしている。しかしながら,溶接対象の中空材は,アルミニウム合金であり,ステンレス鋼や低炭素鋼と材質や特性及び融点が全く異なる材料である。また,特許文献3には,レーザ溶接の代わりに,MIG溶接又はTIG溶接を使用してもよいと記載されているが,特に,TIG溶接については何れの実施例にも使用されていない。また,MIG溶接では,下側の櫛歯部まで溶融接合するために,上側の板材に予め穴を設けておき,この穴部からプラグ溶接(MIGアークスポット溶接)して下側の櫛歯部まで接合するようにしている。また,特許文献3に記載のレーザ溶接では,光学レンズ等によって集光化及び高エネルギ密度化したレーザビームを部材に照射して溶融するため,前記下側の櫛歯部までの貫通溶接が可能であるが,キーホール型の溶け込み形状であって溶け幅が狭いため,溶接強度に相関関係のある溶接断面積が小さく成り易い。このレーザ溶接には,添加ワイヤ又はフラックス入りワイヤは使用されていない。   According to the technical idea disclosed in Patent Document 3, the contact portion (T-type joint portion) between the tip portion of the comb-shaped portion of the solid shape member and the plate member is mainly welded by laser welding. However, the hollow material to be welded is an aluminum alloy, which is completely different in material, characteristics and melting point from stainless steel and low carbon steel. Patent Document 3 describes that MIG welding or TIG welding may be used instead of laser welding, but TIG welding is not particularly used in any of the examples. In MIG welding, a hole is provided in the upper plate in advance in order to melt and bond to the lower comb tooth portion, and the lower comb tooth portion is plug welded (MIG arc spot welding) from this hole portion. To join. Further, in the laser welding described in Patent Document 3, since the member is irradiated with a laser beam condensed and increased in energy density by an optical lens or the like to melt, penetration welding to the lower comb tooth portion is possible. However, since it is a keyhole-type penetration shape and the melt width is narrow, the weld cross-sectional area correlated with the welding strength tends to be small. No additive wire or flux-cored wire is used for this laser welding.

特許文献4に開示された技術的思想では,金属酸化物を6%以上含有したフラックス入りワイヤを所定量供給しながらTIG溶接して深い溶け込み部を得るようにしている。特に,板厚9mmのI型突合せ継手を溶接試験した溶け込み深さの測定結果を示している。しかしながら,フラックス入りワイヤの送給量の増減や送給方向によって溶け込み深さやワイヤ溶融状態が大きく変化するという問題がある。また,特許文献4には,I型突合せ継手の表面側から片面溶け込み溶接した試験結果が開示されているが,平板やI型突合せ継手と形状が異なるT型継手の貫通溶接には適用も想定もされていないし,本発明とは全く異なり,T型継手の貫通溶接に関しても何ら開示も示唆もされていない。   In the technical idea disclosed in Patent Document 4, a deep penetration portion is obtained by TIG welding while supplying a predetermined amount of a flux-cored wire containing 6% or more of a metal oxide. In particular, the measurement results of the penetration depth of a weld test of an I-type butt joint with a plate thickness of 9 mm are shown. However, there is a problem that the penetration depth and the wire melting state vary greatly depending on the increase / decrease of the feeding amount of the flux-cored wire and the feeding direction. Patent Document 4 discloses a test result of one-side penetration welding from the surface side of the I-type butt joint, but it is also assumed to be applied to penetration welding of a T-type joint having a shape different from that of a flat plate or an I-type butt joint. In contrast, the present invention is completely different from the present invention, and there is no disclosure or suggestion regarding penetration welding of a T-type joint.

特許文献5に開示された技術的思想では,SiOとCrとで構成されたフラックスが5〜25重量%の比率で充填されているフラックス入りワイヤを使用して深い溶け込み部を得るようにしている。しかしながら,前記特許文献3の場合と同様に,フラックス入りワイヤの送給量の増減や送給方向によって溶け込み深さやワイヤ溶融状態が大きく変化するという問題がある。また,特許文献5には,板厚8mmステンレス鋼の平板にビードオンプレート溶接した試験結果が開示されているが,I型継手の溶接への適用を示唆しており,平板やI型突合せ継手と形状が異なるT型継手の貫通溶接には適用も想定もされていないし,本発明とは全く異なり,T型継手の貫通溶接に関しても何ら開示も示唆もされていない。 According to the technical idea disclosed in Patent Document 5, a deep penetration portion is obtained by using a flux-cored wire in which a flux composed of SiO 2 and Cr 2 O 3 is filled at a ratio of 5 to 25% by weight. I am doing so. However, as in the case of Patent Document 3, there is a problem that the penetration depth and the wire melting state vary greatly depending on the increase / decrease of the feeding amount of the flux-cored wire and the feeding direction. Further, Patent Document 5 discloses a test result of bead-on-plate welding to a flat plate of 8 mm thick stainless steel, but suggests application to welding of an I-type joint. It is not supposed to be applied to through welding of T-shaped joints having different shapes, and completely different from the present invention, and there is no disclosure or suggestion regarding through welding of T-shaped joints.

特許文献6に開示された技術的思想では,アーク溶接中に交番磁界を与えてながら溶融部を攪拌してT型継手の左右裏面部に裏ビードを形成するようにしているが,上板表面には溝状の開先が設けられており,開先上部まで積層するために複数パスの溶接工程が必要となり煩雑である。また,特許文献6では,交番磁界を与えるために特殊な交番磁界装置を使用する必要があり,新たな設備投資に伴って製造コストが高騰するという問題がある。   According to the technical idea disclosed in Patent Document 6, the melted portion is stirred while applying an alternating magnetic field during arc welding to form back beads on the left and right back portions of the T-shaped joint. Is provided with a groove-like groove, and a multi-pass welding process is required for laminating up to the upper part of the groove, which is complicated. Moreover, in patent document 6, it is necessary to use a special alternating magnetic field apparatus in order to give an alternating magnetic field, and there exists a problem that manufacturing cost rises with new capital investment.

特許文献7に開示された技術的思想では,酸化性ガス(OガスやCOガス)と不活性ガス(Arガス)との混合ガスをアーク溶接部分に流して溶け込み深さを増加するようにしているが,その際,フラックス入りワイヤは使用されていない。また,特許文献7には,第2シールドガスの酸素濃度若しくは二酸化炭素濃度と溶接金属部の溶け幅及び深さとの関係が開示されているが,T型継手の溶け込み結果と異なる平板上での溶け込み結果であり,本発明とは全く異なるものである。また,T型継手の貫通溶接や突合せ継手の溶接に関して何ら開示も示唆もされていない。 In the technical idea disclosed in Patent Document 7, a mixed gas of an oxidizing gas (O 2 gas or CO 2 gas) and an inert gas (Ar gas) is allowed to flow through the arc welding portion to increase the penetration depth. However, at that time, flux-cored wire is not used. Further, Patent Document 7 discloses the relationship between the oxygen concentration or carbon dioxide concentration of the second shield gas and the melting width and depth of the weld metal part, but on a flat plate different from the penetration result of the T-shaped joint. This is a melting result and is completely different from the present invention. There is no disclosure or suggestion regarding penetration welding of T-shaped joints or welding of butt joints.

特許文献8に開示された技術的思想では,T型継手の形成を摩擦攪拌接合方法によって達成しているが,この摩擦攪拌接合方法は,材料を溶融させることがなく軟化状態で一方のワークと他方のワークとを接合するものであるのに対し,本発明におけるアーク溶接では,材料を溶融させた溶融状態で一方のワークと他方のワークとを接合する点で基本的に相違している。すなわち,摩擦攪拌接合方法は,摩擦攪拌用のプローブを挿入して低融点材のアルミニウム継手材料を摩擦攪拌接合するものであって,前記プローブを用いて前記アルミニウム継手材料を固相接合(融点以下の状態で接合)するものであるのに対し,本発明におけるアーク溶接は,アークの熱エネルギを用いて高融点材のステンレス鋼又は低炭素鋼の継手材料を溶融接合(融点以上の状態で接合)するものである点で,その接合方法及び接合状態が全く異なるものである。さらに,摩擦攪拌接合方法では,外部から溶接ワイヤ(例えば,フラックス入りワイヤやソリッドワイヤ)を接合部分に送給することも溶着することも全くできない。   According to the technical idea disclosed in Patent Document 8, the formation of the T-shaped joint is achieved by the friction stir welding method. This friction stir welding method does not melt the material and is in a softened state with one workpiece. The arc welding according to the present invention is basically different from the other workpiece in that the one workpiece and the other workpiece are joined in a molten state in which the material is melted. That is, in the friction stir welding method, a friction stir probe is inserted to friction stir weld an aluminum joint material of a low melting point material, and the aluminum joint material is solid-phase joined (below the melting point using the probe). In contrast, arc welding according to the present invention uses high-melting-point stainless steel or low-carbon steel joint materials using the thermal energy of the arc. The joining method and joining state are completely different. Furthermore, in the friction stir welding method, a welding wire (for example, a flux-cored wire or a solid wire) cannot be fed or welded from the outside at all.

本発明は,前記技術の種々の点を考慮してなされたものであり,上板側に形成される開先溝や継手ギャップを不要にし,上板表面側から行う1パス溶接によって下側の立板側まで確実に溶融接合した健全な溶接金属部及び十分な溶接強度を得るのに有効なT型継手の貫通溶接方法及び貫通溶接構造物を提供することを目的とする。   The present invention has been made in consideration of various aspects of the above-described technology, and eliminates the need for groove grooves and joint gaps formed on the upper plate side, and lowers the lower side by one-pass welding performed from the upper plate surface side. An object of the present invention is to provide a through-welding method and a through-welding structure for a T-type joint effective for obtaining a sound weld metal part that is reliably melt-bonded to the vertical plate side, and sufficient welding strength.

上記目的を達成するために,本発明は,ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合するT型継手の貫通溶接方法において,不活性ガスのシールドガスを流出するシールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成することを特徴とする。   In order to achieve the above object, the present invention is a T-shaped joint made of stainless steel or low carbon steel, and the thickness T1 range of the upper plate is 2 <T1 ≦ 6 mm, In a through-welding method for a T-type joint that melts and joins from the upper plate surface that is placed one on the upper surface of the thicker plate or the upper plate surface that is placed in parallel to the lower plate, A non-consumable electrode type arc welding is performed by using a shielding gas supply means that flows out the shielding gas of the active gas, and at the same time, a flux-cored wire filled with a flux agent promoting penetration depth is supplied to the arc welding part. While melting to the lower vertical plate, at least the melt width w on the vertical plate side after penetrating the upper plate back surface is larger than the plate thickness T1 (w> T1), Weld cutting of the melt width part on the vertical plate side The area A is formed larger than the plate thickness sectional area B1 on the upper plate side (A> B1).

また,本発明は,ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合するT型継手の貫通溶接方法において,不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成することを特徴とする。   Further, the present invention is a T-shaped joint made of stainless steel or low carbon steel, and the upper plate has a thickness T1 range of 2 <T1 ≦ 6 mm, which is thicker than the upper plate. In a through-welding method for a T-type joint that melts and joins from the upper plate surface arranged on the upper surface of the plate or the upper plate surface arranged in parallel to each other to the lower vertical plate, an inert gas shielding gas and A non-consumable electrode type arc welding is performed using a double shield gas supply means that flows out a shielding gas containing an oxidizing gas, and at the same time, a flux-cored wire filled with a flux agent promoting penetration depth is arced. The lower plate is melted while being fed to the welded portion, and at least the melt width w on the vertical plate side after penetrating the back surface of the upper plate is made larger than the plate thickness T1 (w> T1), or the upper plate The penetration part on the back side or the melting on the vertical plate side The weld cross-sectional area A of the width portion is formed larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1).

また,上記目的を達成するために,本発明は,ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合するT型継手の貫通溶接方法において,少なくとも下側の立板上面に該立板の板厚より薄肉の上板を1枚重ね配置又は2枚並列に突合せ配置してT型継手を製作する第1工程と,不活性ガスのシールドガスを流出するシールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,前記フラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成する第2工程と,を備えることを特徴とする。   In order to achieve the above object, the present invention is a T-shaped joint made of stainless steel or low carbon steel, and the upper plate has a thickness T1 range of 2 <T1 ≦ 6 mm. In a through-welding method for a T-type joint that melts and joins from the upper plate surface that is placed on the upper surface of the standing plate that is thicker than the plate thickness, or from the upper plate surface that is butt arranged in parallel to the lower plate to the lower standing plate , A first step of manufacturing a T-joint by arranging one or two upper plates that are thinner than the thickness of the standing plate on the upper surface of the lower plate, or abutting them in parallel, and shielding of an inert gas While performing non-consumable electrode type arc welding using shield gas supply means that flows out gas, the lower side while feeding a flux cored wire filled with a flux agent that promotes penetration depth to the arc welding part Melted or inactivated While performing the arc welding of the non-consumable electrode method using the double shield gas supply means that flows out the gas shielding gas and the shielding gas containing the oxidizing gas, while feeding the flux-cored wire to the arc welding portion Melting up to the lower plate, forming at least the melt width w on the vertical plate side after penetrating the upper plate back surface larger than the plate thickness T1 (w> T1), or penetrating part or vertical plate on the upper plate back surface Forming the welding cross-sectional area A of the melt width side on the side larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or setting both the melt width w and the weld cross-sectional area A to w> T1 and A> B1 And a second step of forming the size.

特に,前記板厚T1範囲の上板を前記厚肉の立板上面に2枚並列に突合せ配置する時には,この突合せ部にギャップGが殆んどない状態又はあっても上板の板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に抑えて設定し,その後に,不活性ガスのシールドガスを流出するシールドガス供給手段,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも前記溶け幅wをw>T1の大きさに形成,又は前記溶接断面積AをA>B1の大きさに形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成するとよい。   In particular, when two upper plates in the range of the plate thickness T1 are butt-arranged in parallel on the upper surface of the thick plate, the plate thickness T1 of the upper plate is present even when there is almost no gap G in the butt portion. Is set to a small gap G range (0 ≦ G ≦ 0.2 × T 1) that is 0.2 times or less, and then the shield gas supply means for flowing out the inert gas shield gas, or the inert gas Performs non-consumable electrode type arc welding using double shield gas supply means that flows out shield gas and shield gas containing oxidizing gas, and at the same time contains flux filled with flux agent that promotes penetration depth Melting the wire up to the lower vertical plate while feeding the wire to the arc welded portion, forming at least the melt width w to a size of w> T1, or forming the weld cross section A to a size of A> B1, Or the melting width w and Both of the weld cross-sectional areas A are preferably formed in the size of w> T1 and A> B1.

また,上記目的を達成するために,本発明は,ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合するT型継手の貫通溶接方法において,溶接すべき箇所に照射するレーザビームの焦点位置を前記上板表面より上側へずらした位置となるようにレーザトーチを配置し,焦点ぼかしの前記レーザビーム照射によるレーザ溶接を遂行すると同時にワイヤをレーザ溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成することを特徴とする。   In order to achieve the above object, the present invention is a T-shaped joint made of stainless steel or low carbon steel, and the upper plate has a thickness T1 range of 2 <T1 ≦ 6 mm. In a through-welding method for a T-type joint that melts and joins from the upper plate surface that is placed on the upper surface of the standing plate that is thicker than the plate thickness, or from the upper plate surface that is butt arranged in parallel to the lower plate to the lower standing plate The laser torch is arranged so that the focal position of the laser beam irradiated to the place to be welded is shifted to the upper side from the surface of the upper plate. Melting up to the lower vertical plate while feeding to the welded portion, forming at least the melt width w on the vertical plate side after passing through the upper plate rear surface larger than the plate thickness T1 (w> T1), or the upper plate rear surface Melting on the penetrating part or standing plate side Forming the weld cross-sectional area A of the width portion larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or setting both the melt width w and the weld cross-sectional area A to w> T1 and A> B1 It is characterized by forming in.

また,前記立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成すると同時に,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にするとすることもできる。   Further, the melt width w on the vertical plate side is formed larger than the plate thickness T1 of the upper plate (w> T1), and at the same time, the bead surface height C on the upper plate side is 1 to 3 mm higher than the upper plate surface (1 ≦ 1). C ≦ 3 mm) to form a convex shape.

さらに,前記立板の板厚T2範囲は,前記上板の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)に設定されているとよい。   Furthermore, the plate thickness T2 range of the upright plate may be set to 2.5 times or more and 5 times or less (2.5 × T1 ≦ T2 ≦ 5 × T1) of the plate thickness T1 of the upper plate.

また,上記目的を達成するために,本発明は,ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合したT型継手の貫通溶接構造物において,不活性ガスのシールドガスを流出するシールドガス供給手段,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部を備えた構造にすることを特徴とする。   In order to achieve the above object, the present invention is a T-shaped joint made of stainless steel or low carbon steel, and the upper plate has a thickness T1 range of 2 <T1 ≦ 6 mm. Through-weld structure of T-type joint that is melt-bonded from the upper plate surface that is placed on the upper surface of the standing plate that is thicker than the plate thickness, or from the upper plate surface that is butt arranged in parallel to the lower standing plate In this case, a non-consumable electrode type arc using a shield gas supply means for flowing out an inert gas shield gas or a double shield gas supply means for flowing out an inert gas shield gas and a shield gas containing an oxidizing gas. At the same time as welding is performed, a flux cored wire filled with a flux agent that promotes penetration depth is melted to the lower vertical plate while being fed to the arc welding part, and at least the vertical plate side after passing through the upper plate back surface of The width w is made larger than the plate thickness T1 of the upper plate (w> T1), or the weld cross section A of the penetration portion on the back surface of the upper plate or the melt width portion on the vertical plate side is determined from the plate thickness cross sectional area B1 on the upper plate side. A large (A> B1) formation or a structure including a weld metal portion in which both the melt width w and the weld cross-sectional area A are formed in the size of w> T1 and A> B1 is provided.

また,前記立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成すると同時に,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にした溶接金属部を備えた構造にすることもできる。   Further, the melt width w on the vertical plate side is formed larger than the plate thickness T1 of the upper plate (w> T1), and at the same time, the bead surface height C on the upper plate side is 1 to 3 mm higher than the upper plate surface (1 ≦ 1). (C <= 3mm) It can also be set as the structure provided with the weld metal part formed and made convex shape.

またさらに,前記大きさの溶接金属部は,前記フラックス入りワイヤを用いたTIGアーク溶接による1パス溶接で形成されているとすることもできる。   Furthermore, the weld metal part of the size can be formed by one-pass welding by TIG arc welding using the flux-cored wire.

さらに,前記溶け幅wがw>T1,又は前記溶接断面積AがA>B1のいずれかの大きさを有した前記溶接金属部は,少なくとも原子力機器又は火力機器又は自動車機器に適用されるT型継手に形成されているとよい。   Furthermore, the weld metal part having the melt width w of w> T1 or the weld cross-sectional area A of A> B1 is at least applied to nuclear equipment, thermal equipment, or automobile equipment. It is good to be formed in the mold joint.

すなわち,本発明のT型継手の貫通溶接方法では,不活性ガスのシールドガスを流出するシールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成することにより,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板と下側の立板とを確実に溶融接合でき,所定形状の健全な溶接金属部を得ることができる。また,ある程度の溶接強度が必要な部材であっても,上板側の板厚断面積より大きな溶接断面積が確保でき,上板材料強度と同等以上の引張強度(溶接強度)を得ることができる。   In other words, in the T-type joint penetration welding method of the present invention, non-consumable electrode type arc welding is performed using a shield gas supply means for flowing out an inert gas shield gas, and at the same time, a penetration depth promoting flux agent is obtained. The flux-cored wire filled with is melted to the lower vertical plate while being fed to the arc welded portion, and at least the melt width w on the vertical plate side after passing through the back surface of the upper plate is larger than the plate thickness T1 of the upper plate. (W> T1) or by forming a welded cross-sectional area A of a penetration part on the back side of the upper plate or a melting width part on the vertical plate side larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1). Even if it is a T-shaped joint made of stainless steel or low carbon steel that has not been pre-processed, the upper plate and the lower vertical plate can be reliably melt-bonded to obtain a sound weld metal part of a predetermined shape. it can. In addition, even for members that require a certain level of weld strength, it is possible to secure a weld cross-sectional area larger than the plate thickness cross-sectional area on the upper plate side, and to obtain a tensile strength (weld strength) equal to or higher than the upper plate material strength. it can.

また,本発明の貫通溶接方法では,不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成することにより,上述したように,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板と下側の立板とを確実に溶融接合でき,所定形状の健全な溶接金属部を得ることができる。また,ある程度の溶接強度が必要な部材であっても,上板側の板厚断面積より大きな溶接断面積が確保でき,上板材料強度と同等以上の引張強度(溶接強度)を得ることができる。   In the penetration welding method of the present invention, non-consumable electrode type arc welding is performed using a double shield gas supply means for flowing out a shield gas containing an inert gas and a shield gas containing an oxidizing gas, and at the same Flux-cored wire filled with a depth promoting flux agent is melted to the lower standing plate while being fed to the arc welding part, and at least the melting width w on the standing plate side after passing through the upper plate back surface is increased above It is formed larger than the plate thickness T1 (w> T1), or the weld cross-sectional area A of the penetration portion on the back side of the upper plate or the melting width portion on the standing plate side is larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1 ) By forming, as described above, even if it is a T-shaped joint made of stainless steel material or low carbon steel material that has not been grooved, the upper plate and the lower standing plate can be reliably melt-bonded, Sound welded metal parts of a predetermined shape Can be obtained. In addition, even for members that require a certain level of weld strength, it is possible to secure a weld cross-sectional area larger than the plate thickness cross-sectional area on the upper plate side, and to obtain a tensile strength (weld strength) equal to or higher than the upper plate material strength. it can.

また,本発明の貫通溶接方法では,下側の立板上面に該立板の板厚より薄肉の上板を1枚重ね配置又は2枚並列に突合せ配置してT型継手を製作する第1工程により,溶接対象のT型継手を所定形状に製作することができる。その後に,不活性ガスのシールドガスを流出するシールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,前記フラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成する第2工程により,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板と下側の立板とを確実に溶融接合でき,所定形状の健全な溶接金属部を得ることができる。また,上述したように,ある程度の溶接強度が必要な部材であっても,前記溶け幅wや前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度を得ることができる。しかも,裏当て材の設置が不要であり,溶接変形も少なく,溶け落ちもないので作業工数を削減することができる。   In the penetration welding method of the present invention, a T-shaped joint is manufactured by placing one upper plate that is thinner than the thickness of the vertical plate on the upper surface of the lower vertical plate, or two in parallel. According to the process, the T-shaped joint to be welded can be manufactured in a predetermined shape. After that, non-consumable electrode type arc welding is performed using a shield gas supply means that flows out an inert gas shielding gas, and at the same time, a flux-cored wire filled with a flux agent that promotes penetration depth is arc-welded. Non-consumable electrode type arc welding using a double shield gas supply means that melts to the lower vertical plate while feeding to the part, or flows out the shield gas containing inert gas and shield gas containing oxidizing gas At the same time, the flux-cored wire is melted to the lower vertical plate while being fed to the arc welded portion, and at least the melt width w on the vertical plate side after passing through the upper plate back surface is determined from the plate thickness T1 of the upper plate. Large (w> T1) formation, or weld cross-sectional area A of the penetration part on the back side of the upper plate or the melting width part on the vertical plate side is larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or before In the second step of forming both the melt width w and the weld cross-sectional area A to the size of w> T1 and A> B1, a T-shaped joint made of stainless steel material or low carbon steel material not subjected to groove processing. Even in such a case, the upper plate and the lower standing plate can be reliably melt-bonded, and a sound weld metal part having a predetermined shape can be obtained. Further, as described above, even for a member that requires a certain level of welding strength, a tensile strength equal to or higher than the upper plate material strength is obtained by ensuring the melt width w and the weld cross-sectional area A (A> B1). be able to. In addition, it is not necessary to install a backing material, welding deformation is small, and there is no melting, so the number of work steps can be reduced.

また,本発明の他の貫通溶接方法では,前記板厚T1範囲の上板を前記厚肉の立板上面に2枚並列に突合せ配置する時には,この突合せ部にギャップGが殆んどない状態又はあっても上板の板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に抑えて設定し,好ましくは0.1倍以下の0≦G≦0.1×T1の範囲にさらに抑えて設定することにより,組立精度や位置決め精度が高まり,溶接品質に悪影響を及ぼすことがある要因の一つを取り除くことができる。その後に,不活性ガスのシールドガスを流出するシールドガス供給手段,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも前記溶け幅wをw>T1の大きさに形成,又は前記溶接断面積AをA>B1の大きさに形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成することにより,上述したように,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板と下側の立板とを確実に溶融接合でき,所定形状の健全な溶接金属部を得ることができる。また,ある程度の溶接強度が必要な部材であっても,前記溶け幅wや前記溶接断面積Aが確保でき,上板材料強度と同等以上の引張強度を得ることができる。   Further, in another through welding method of the present invention, when two upper plates in the thickness T1 range are butt-arranged in parallel on the upper surface of the thick wall, there is almost no gap G in the butt portion. Or, even if it is set to be within a small gap G range (0 ≦ G ≦ 0.2 × T1) of 0.2 times or less of the plate thickness T1 of the upper plate, preferably 0 ≦ G ≦ 0.1 times or less. By further suppressing the setting within the range of 0.1 × T1, the assembly accuracy and positioning accuracy are improved, and one of the factors that may adversely affect the welding quality can be removed. After that, a non-consumable electrode method is used by using a shield gas supply means for flowing out an inert gas shield gas or a double shield gas supply means for flowing out an inert gas shield gas and a shield gas containing an oxidizing gas. At the same time that arc welding is performed, a flux cored wire filled with a flux agent that promotes penetration depth is melted to the lower vertical plate while being fed to the arc welding portion, and at least the melting width w is set to w> T1. Or the weld cross section A is formed in a size of A> B1, or both the melt width w and the weld cross section A are formed in a size of w> T1 and A> B1. As described above, even if it is a T-shaped joint made of stainless steel material or low carbon steel material that has not been grooved, the upper plate and the lower vertical plate can be reliably melt-bonded, and a predetermined shape of soundness can be obtained. A weld metal part can be obtained. Moreover, even if the member requires a certain level of welding strength, the melt width w and the weld cross-sectional area A can be secured, and a tensile strength equal to or higher than the upper plate material strength can be obtained.

また,本発明のさらに他の貫通溶接方法では,溶接すべき箇所に照射するレーザビームの焦点位置を前記上板表面より上側へずらした位置となるようにレーザトーチを配置し,焦点ぼかしの前記レーザビーム照射によるレーザ溶接を遂行すると同時に,ワイヤをレーザ溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成することより,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板と下側の立板とを確実に溶融接合でき,所定形状の健全な溶接金属部を得ることができる。また,ある程度の溶接強度が必要な部材であっても,前記溶け幅wや前記溶接断面積Aが確保でき,上板材料強度と同等以上の引張強度を得ることができる。なお,前記レーザビームの焦点位置が上板表面となるジャストホーカス(距離L=0)に定めた時やT型継手の内部側(距離L<0)に定めた時には,深さ方向に深く溶け込むキーホール型の溶け込み形態によって深い溶け込み形状が得られるが,反対に溶接幅方向の溶け込み幅が狭くなってしまうため,立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成することができないので好ましくない。   According to still another through welding method of the present invention, a laser torch is arranged so that a focal position of a laser beam irradiated to a place to be welded is shifted to an upper side from the surface of the upper plate, and the laser for focal blurring is arranged. At the same time as performing laser welding by beam irradiation, the wire is fed to the laser welding portion and melted to the lower vertical plate, and at least the melt width w on the vertical plate side after passing through the upper plate back surface is set to the plate thickness T1 of the upper plate. Forming larger (w> T1), or forming the welding cross-sectional area A of the penetration portion on the back side of the upper plate or the melting width portion on the standing plate side larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or Even if it is a T-shaped joint made of a stainless steel material or a low carbon steel material that has not been subjected to groove processing, by forming both the melt width w and the weld cross-sectional area A so that w> T1 and A> B1. Make sure that the upper plate and the lower vertical plate are Can fusion bonding, it is possible to obtain a sound weld metal of a predetermined shape. Moreover, even if the member requires a certain level of welding strength, the melt width w and the weld cross-sectional area A can be secured, and a tensile strength equal to or higher than the upper plate material strength can be obtained. When the focal position of the laser beam is determined to be just hocus (distance L = 0), which is the upper plate surface, or when it is determined to be inside the T-shaped joint (distance L <0), it deeply melts in the depth direction. A deep penetration shape can be obtained by the keyhole type penetration form, but the penetration width in the welding width direction is conversely narrowed, so the penetration width w on the vertical plate side is larger than the thickness T1 of the upper plate (w> T1) ) Since it cannot be formed, it is not preferable.

また,前記立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成すると同時に,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にすることにより,所定形状の健全な溶接金属部が得られると共に,T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。また,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度を得ることができる。   Further, the melt width w on the vertical plate side is formed larger than the plate thickness T1 of the upper plate (w> T1), and at the same time, the bead surface height C on the upper plate side is 1 to 3 mm higher than the upper plate surface (1 ≦ 1). C ≦ 3 mm) By forming and forming a convex shape, a sound weld metal part having a predetermined shape can be obtained, and a good convex weld bead having no dent or undercut on the weld surface of the T-shaped joint can be obtained. Can do. Even if the member requires a certain level of welding strength, it is possible to obtain a tensile strength equal to or higher than the strength of the upper plate material by ensuring the weld cross-sectional area A (A> B1).

また,前記上板の板厚T1範囲を2<T1≦6mmに設定することにより,好ましくは2<T1≦5mmの範囲に抑えて設定することにより,上板表面から裏面貫通して下側の立板側まで確実に溶融接合することができ,健全な溶け込み形状を有する溶接金属部を得ることができる。また,前記立板の板厚T2範囲を前記上板の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)に設定することにより,溶接すべき上板側の溶接線と下側の立板上面とに位置ずれが少々ある状態であっても,立板側の端面部に溶けダレがない健全な溶け込み形状を有する溶接金属部を得ることができる。   Further, the thickness T1 range of the upper plate is set to 2 <T1 ≦ 6 mm, and preferably set to the range of 2 <T1 ≦ 5 mm, so that the lower surface penetrates the back surface from the upper plate surface. It is possible to surely melt and join up to the vertical plate side, and to obtain a weld metal part having a sound penetration shape. Further, by setting the plate thickness T2 range of the upright plate to 2.5 times to 5 times (2.5 × T1 ≦ T2 ≦ 5 × T1) of the plate thickness T1 of the upper plate, Even if there is a slight misalignment between the welding line on the plate side and the upper surface of the lower standing plate, it is possible to obtain a weld metal portion having a sound penetration shape without melting and sagging at the end surface portion on the standing plate side. .

なお,前記上板の板厚T1が2mmより薄いと,上板側の溶け過ぎによる溶接変形が増大し易い。反対に,前記上板の板厚T1が6mmより厚いと,上板表面から裏面貫通して下側の立板側まで溶融し難く,また,立板側の溶け幅wを十分な大きさに形成することも難しくなる。強制的に溶融するには,大出力のアーク溶接装置が必要になると共に,上板側の溶け過ぎによる溶接変形が増大し易いので好ましくない。一方,前記立板の板厚T2が上板の板厚T1の2.5倍より薄いと,例えば,溶接すべき上板側の溶接線と下側の立板上面とに位置ずれがあったりする場合に,立板側の片端面部に溶けダレが発生したり,溶け込みが偏ったり歪な形状になったりし易い。反対に,前記立板の板厚T2が上板の板厚T1の5倍より厚いと,立板の板厚T2に対する立板側の溶け幅w及び溶接断面積Aの比率が低下すると共に,上板の板厚T1との板厚バランスが悪化したり,素材自身の重量が増大したりするので好ましくない。   If the plate thickness T1 of the upper plate is less than 2 mm, welding deformation due to excessive melting on the upper plate side tends to increase. On the contrary, if the thickness T1 of the upper plate is larger than 6 mm, it is difficult to melt from the upper plate surface to the lower surface through the lower plate side, and the melting width w on the vertical plate side is made sufficiently large. It is also difficult to form. In order to forcibly melt, a high-power arc welding apparatus is required, and welding deformation due to excessive melting of the upper plate tends to increase, which is not preferable. On the other hand, if the thickness T2 of the standing plate is less than 2.5 times the thickness T1 of the upper plate, for example, there is a displacement between the welding line on the upper plate side to be welded and the upper surface of the lower standing plate. In this case, it is easy for melting to occur at one end surface portion on the vertical plate side, or to form a distorted shape with uneven penetration. On the other hand, if the thickness T2 of the vertical plate is larger than 5 times the thickness T1 of the upper plate, the ratio of the melt width w and the welding cross-sectional area A on the vertical plate side to the vertical plate thickness T2 decreases. This is not preferable because the thickness balance with the thickness T1 of the upper plate is deteriorated and the weight of the material itself is increased.

また,上板側のビード表面高さCが1mmより小さいと,ビード境界部にアンダーカットが生じ易い。反対に,ビード表面高さCが3mmより大き過ぎると,溶け込み深さが浅くなったり,ビード外観が悪くなったり,過剰な出っ張り部分が邪魔になったりするので好ましくない。   Further, if the bead surface height C on the upper plate side is smaller than 1 mm, an undercut is likely to occur at the bead boundary. On the other hand, if the bead surface height C is larger than 3 mm, the penetration depth becomes shallow, the bead appearance is deteriorated, and excessive protruding portions are not preferable.

前記非消耗電極方式のアーク溶接は,例えば,TIGアーク溶接であり,若しくはプラズマアーク溶接であり,特殊な溶接設備を新たに導入する必要がなく,既存の溶接機を使用することができる。特に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤを前記アーク溶接(TIGアーク溶接,若しくはプラズマアーク溶接)中に送給しながら溶接することにより,前記フラックス入りワイヤの内部に含有している複数の金属酸化物の加熱反応(例えば,溶融中の金属酸化物から酸素が解離し,その解離した酸素の多くが溶融プール内に溶解する化学反応)によって,アーク直下の溶融プール(溶融金属)の対流が深さ方向及び内向き方向に変化して溶け込み状態を促進する結果,溶け込み深さが深くなる。この溶け込み形状や溶け深さは,前記フラックス入りワイヤの送給量や前記金属酸化物の含有量又は混合比率の調整によって調整可能である。また,溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり,継手部材の板厚や用途に応じて所定範囲の溶け幅wや溶接断面積Aを確保するように,事前に確認試験を行って調整するとよい。   The non-consumable electrode type arc welding is, for example, TIG arc welding or plasma arc welding, and it is not necessary to newly introduce special welding equipment, and an existing welding machine can be used. In particular, welding is performed while feeding a flux-cored wire filled with a flux agent that promotes penetration depth during the arc welding (TIG arc welding or plasma arc welding). A molten pool directly under the arc by a heating reaction of multiple metal oxides contained (for example, a chemical reaction in which oxygen is dissociated from the molten metal oxide and most of the dissociated oxygen is dissolved in the molten pool). As a result of the convection of (molten metal) changing in the depth direction and inward direction to promote the penetration state, the penetration depth becomes deeper. The penetration shape and the melting depth can be adjusted by adjusting the feeding amount of the flux-cored wire, the content of the metal oxide, or the mixing ratio. Also, it can be adjusted according to the welding heat input conditions such as welding current and welding speed, and in advance to ensure a predetermined range of melt width w and welding cross-sectional area A according to the thickness and application of the joint member. It is recommended to perform a confirmation test.

なお,前記フラックス入りワイヤに充填されているフラックス剤は,複数の金属酸化物であり,例えば,TiO,SiO,Crなどの成分からなる種々の粉末である。溶け込み深さ促進性のフラックス入りワイヤは,これら成分粉末の金属酸化物を適正比率で複数混合して充填した特殊なワイヤであり,アーク溶接中に発生する前記加熱反応によって溶け込み状態を促進するため,溶け込み深さが増加する作用及び効果を有しているものである。溶け込み深さを増加する作用及び効果がある。このような溶け込み深さ促進性のフラックス入りワイヤは,脱酸剤や塩基性造滓剤入りの従来ワイヤ(フラックス入りワイヤ)とは成分及び作用が全く異なるものであり,溶け込み深さを促進する前記金属酸化物の粉末が充填されている特殊なワイヤであり,既に公知の市販品を使用すればよい。 The flux agent filled in the flux-cored wire is a plurality of metal oxides, for example, various powders composed of components such as TiO 2 , SiO 2 , Cr 2 O 3 . The penetration depth facilitating flux-cored wire is a special wire filled with a mixture of metal oxides of these component powders at an appropriate ratio, and is used to promote the penetration state due to the heating reaction that occurs during arc welding. , It has the action and effect of increasing the penetration depth. There is an action and an effect of increasing the penetration depth. Such a penetration depth facilitating flux cored wire is completely different from the conventional wire (flux cored wire) containing a deoxidizer and a basic iron making agent, and promotes the penetration depth. This is a special wire filled with the metal oxide powder, and a known commercial product may be used.

また,本発明の貫通溶接構造物では,不活性ガスのシールドガスを流出するシールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,前記フラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部を備えた構造にすることにより,上板側の板厚断面積より大きな溶接断面積を有する溶け込み形状の健全な溶接金属部及び溶接構造物が得られ,しかも,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度(溶接強度)を得ることができる。   Further, in the penetration welded structure of the present invention, non-consumable electrode type arc welding is performed using a shield gas supply means for flowing out an inert gas shield gas, and at the same time, a penetration depth promoting flux agent is filled. Using a double shield gas supply means that melts the flux-cored wire to the lower vertical plate while feeding the flux-cored wire to the arc welding part, or flows out the shielding gas containing inert gas and shielding gas containing oxidizing gas The non-consumable electrode type arc welding is performed at the same time, and the flux-cored wire is melted to the lower vertical plate while being fed to the arc welding portion, and at least the melting width w on the vertical plate side after passing through the upper plate back surface is set. It is formed larger than the plate thickness T1 of the upper plate (w> T1), or the weld cross section A of the penetration portion on the back surface of the upper plate or the melting width portion on the standing plate side is larger than the plate thickness cross sectional area B1 on the upper plate side ( > B1) Thickness on the upper plate side by forming or forming a structure with a weld metal part in which both the melting width w and the weld cross-sectional area A are formed in the size of w> T1 and A> B1 A weld metal part and weld structure having a welded shape having a weld cross-sectional area larger than the cross-sectional area can be obtained, and the weld cross-sectional area A can be secured even for a member that requires a certain level of weld strength (A> By B1), a tensile strength (welding strength) equal to or higher than the upper plate material strength can be obtained.

また,前記立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成すると同時に,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にした溶接金属部を備えた構造にすることもできる。また,前記大きさの溶接金属部は,前記フラックス入りワイヤを用いたTIGアーク溶接による1パス溶接で形成,又は焦点ぼかしのレーザビームを用いた前記レーザ溶接による1パス溶接で形成されていることにより,上述したように,上板材料強度と同等以上の引張強度を得るのに必要な前記溶け幅wや溶接断面積Aを有する溶け込み形状の健全な溶接金属部及び溶接構造物を提供することができる。また,前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接は,対流型(及び熱伝導型)の溶け込み形状であり,スパッタ(溶融金属の飛散)の発生も全くない。しかも,裏当て材の設置が不要であり,1パス溶接で所定形状の深い溶け込みが確実に形成でき,溶接変形も少なく,溶け落ちもないので作業工数及び溶接時間を削減することができる。   Further, the melt width w on the vertical plate side is formed larger than the plate thickness T1 of the upper plate (w> T1), and at the same time, the bead surface height C on the upper plate side is 1 to 3 mm higher than the upper plate surface (1 ≦ 1). (C <= 3mm) It can also be set as the structure provided with the weld metal part formed and made convex shape. The weld metal part of the size is formed by one-pass welding by TIG arc welding using the flux-cored wire, or by one-pass welding by the laser welding using a laser beam with a blurred focus. Thus, as described above, it is possible to provide a weld metal and weld structure having a penetration shape having the melt width w and weld cross-sectional area A necessary to obtain a tensile strength equal to or higher than the upper plate material strength. Can do. The non-consumable electrode type arc welding using the flux-cored wire has a convection type (and heat conduction type) penetration shape and does not generate spatter (spatter of molten metal) at all. In addition, it is not necessary to install a backing material, a deep penetration of a predetermined shape can be reliably formed by one-pass welding, welding deformation is small, and there is no melt-down, so that the number of work steps and welding time can be reduced.

さらに,前記溶け幅wがw>T1,又は前記溶接断面積AがA>B1のいずれかの大きさを有した前記溶接金属部は,少なくとも原子力機器又は火力機器又は自動車機器に適用されることにより,従来の溶接構造部と比べて溶接変形の低減,工数削減及びコスト低減が可能になる。   Furthermore, the weld metal part having the melt width w of w> T1 or the weld cross-sectional area A of A> B1 is applied to at least nuclear equipment, thermal equipment, or automobile equipment. As a result, it is possible to reduce welding deformation, man-hours and costs as compared with the conventional welded structure.

以上述べたように,本発明のT型継手の貫通溶接方法及び貫通溶接構造物によれば,上板側に開先溝や継手ギャップを形成する必要がなく,溶け込みの深い1パス溶接が可能であり,上板表面から下側の立板側まで溶融されて上板と下側の立板とを確実に接合した健全な溶接金属部及び上板材料強度と同等以上の引張強度(溶接強度)を得ることができる。しかも,裏当て材の設置が不要であり,溶け落ちも生じない。この結果,従来の溶接方法及び溶接物比べて溶接変形の低減,工数削減及びコスト低減が可能となる。   As described above, according to the penetration welding method and penetration welding structure of the T-shaped joint of the present invention, it is not necessary to form a groove or a joint gap on the upper plate side, and one-pass welding with deep penetration is possible. A sound weld metal part that is melted from the upper plate surface to the lower vertical plate side and securely joins the upper plate and the lower vertical plate, and a tensile strength equal to or higher than the upper plate material strength (weld strength) ) Can be obtained. Moreover, there is no need to install a backing material, and no melting occurs. As a result, it is possible to reduce welding deformation, man-hours and costs as compared with conventional welding methods and weldments.

以下,本発明の内容について,図1〜図4に示される実施形態を用いて具体的に説明する。   Hereinafter, the contents of the present invention will be described in detail with reference to the embodiments shown in FIGS.

図1は,本発明のT型継手の貫通溶接方法に係わる溶接手順及び溶け込み形状の一実施形態を示す説明図である。すなわち,最初の第1工程21では,図1(1)に示すように,鉛直方向に沿った下側の立板3上面に,水平方向に沿った上板1を1枚重ね配置,又は上板1,2を2枚並列に突合せ配置してT字状に構成したT型継手を製作する。溶接対象のT型継手は,例えば,原子力機器又は火力機器又は自動車機器などに組み込まれる溶接物である。主にステンレス鋼材又は低炭素鋼材からなり,上板1,2の板厚T1範囲は,2<T1≦6mmである。好ましくは2<T1≦5mmの範囲に抑えるとよい。下側の立板3のT2範囲は,前記上板1,2の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)であり,立板3上面に薄肉T1の上板1,2が水平方向に沿って1枚重ね配置又は2枚並列に突合せ配置してT字状に構成されている。上板1,2側の突合せ部にはギャップGがほとんどない状態,また,上板1,2と下側の立板3との継手面も隙間がほとんどない状態にあり,比較的高精度に位置決め配置されている。なお,図中のB1は,上板1,2側の板厚T1方向の板厚断面積を示している。   FIG. 1 is an explanatory view showing an embodiment of a welding procedure and a penetration shape related to the T-type joint penetration welding method of the present invention. That is, in the first first step 21, as shown in FIG. 1 (1), one upper plate 1 along the horizontal direction is placed on the upper surface of the lower standing plate 3 along the vertical direction, A T-shaped joint having a T-shape is produced by arranging two plates 1 and 2 in parallel. The T-type joint to be welded is, for example, a welded article incorporated in nuclear equipment, thermal equipment, automobile equipment, or the like. It is mainly made of stainless steel or low carbon steel, and the thickness T1 range of the upper plates 1 and 2 is 2 <T1 ≦ 6 mm. It is preferable to keep it in the range of 2 <T1 ≦ 5 mm. The T2 range of the lower standing plate 3 is 2.5 times or more and 5 times or less (2.5 × T1 ≦ T2 ≦ 5 × T1) of the thickness T1 of the upper plates 1 and 2, and the upper surface of the standing plate 3 In addition, the upper plates 1 and 2 of the thin wall T1 are arranged in a T-shape by overlapping one piece in the horizontal direction or arranging two pieces in parallel. There is almost no gap G in the butt portion on the upper plate 1 and 2 side, and there is almost no gap on the joint surface between the upper plate 1 and 2 and the lower standing plate 3 with relatively high accuracy. Positioned and arranged. In the figure, B1 indicates the thickness cross-sectional area in the thickness T1 direction on the upper plates 1 and 2 side.

次の第2工程22では,図1(2)に示すように,ノズル9aの内周から不活性ガス(例えば,純ArガスやHeガス,又はArとHeとの混合ガスのシールドガス9bを流出するシールド構造の溶接トーチ(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4をアーク6溶接部分に送給して,前記上板1,2表面側から下側の立板3側まで溶融接合させる。同時に,この溶融接合によって,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成,又は上板1,2裏面の貫通部分又は立板3側の溶け幅w部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成するようにしている。   In the next second step 22, as shown in FIG. 1 (2), an inert gas (for example, pure Ar gas, He gas, or a mixed gas of Ar and He is used as the shielding gas 9b from the inner periphery of the nozzle 9a. A non-consumable electrode type arc welding is performed using an outflow shield welding torch (shield gas supply means), and at the same time, a flux-cored wire 4 filled with a flux depth promoting flux agent is connected to an arc 6 welding part. And melt-bonded from the surface side of the upper plates 1 and 2 to the side of the lower standing plate 3. At the same time, at least the melting of the standing plate 3 after passing through the back surface of the upper plates 1 and 2 is achieved by this melt-bonding. The width w is made larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), or the welding cross-sectional area A of the penetration width w portion on the back of the upper plates 1 and 2 or the standing plate 3 side is the upper plate 1. , Larger than the cross-sectional area B1 on the two sides (A> B1) Both the melt width w and the weld cross-sectional area A are formed so that w> T1 and A> B1.

なお,前記溶け幅w部分の溶接断面積Aは,前記立板3側の溶け幅wと溶接線長さLとの積(A=w×L)で求められる。同様に,前記板厚T1方向の板厚断面積B1は,上板1,2の板厚T1と溶接線長さLとの積(B1=T1×L)で求められ,前記溶け幅wをw>T1に形成すれば,その時の溶接断面積Aは,前記板厚断面積B1より大きく(A>B1)形成されたことになる。   The weld cross-sectional area A of the melt width w is determined by the product of the melt width w on the upright plate 3 side and the weld line length L (A = w × L). Similarly, the plate thickness cross-sectional area B1 in the plate thickness T1 direction is obtained by the product (B1 = T1 × L) of the plate thickness T1 of the upper plates 1 and 2 and the weld line length L, and the melting width w is calculated as follows. If it is formed so that w> T1, the weld cross-sectional area A at that time is formed larger than the plate thickness cross-sectional area B1 (A> B1).

前記非消耗電極方式のアーク溶接は,例えば,TIGアーク溶接であり,若しくはプラズマアーク溶接であり,特殊な溶接設備を新たに導入する必要がなく,既存の溶接機を使用することができる。特に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接(TIGアーク溶接,若しくはプラズマアーク溶接)を遂行することにより,フラックス入りワイヤ4の内部に含有している複数の金属酸化物の加熱反応(例えば,溶融中の金属酸化物から酸素が解離し,その解離した酸素の多くが溶融プール7a内に溶解する化学反応)によって,アーク6直下の溶融プール7a(溶融金属)の対流が深さ方向及び内向き方向に変化して溶け込み状態を促進する結果,溶け込み深さが深くなる。溶け込み形状や溶け深さは,前記フラックス入りワイヤ4の送給量や前記金属酸化物の含有量又は混合比率の調整によって調整可能である。また,溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり,継手部材の板厚や用途に応じて所定範囲の溶け幅wや溶接断面積Aを確保するように,事前に確認試験を行って調整するとよい。   The non-consumable electrode type arc welding is, for example, TIG arc welding or plasma arc welding, and it is not necessary to newly introduce special welding equipment, and an existing welding machine can be used. In particular, by performing non-consumable electrode type arc welding (TIG arc welding or plasma arc welding) using a flux cored wire 4 filled with a flux agent promoting penetration depth, the flux cored wire 4 The arc 6 is heated by a reaction of a plurality of metal oxides contained therein (for example, a chemical reaction in which oxygen is dissociated from the molten metal oxide and most of the dissociated oxygen is dissolved in the molten pool 7a). As a result of the convection of the molten pool 7a (molten metal) immediately below changing in the depth direction and inward direction to promote the penetration state, the penetration depth becomes deeper. The penetration shape and the melting depth can be adjusted by adjusting the feeding amount of the flux-cored wire 4, the content of the metal oxide, or the mixing ratio. Also, it can be adjusted according to the welding heat input conditions such as welding current and welding speed, and in advance to ensure a predetermined range of melt width w and welding cross-sectional area A according to the thickness and application of the joint member. It is recommended to perform a confirmation test.

なお,前記フラックス入りワイヤ4に充填されているフラックス剤は,複数の金属酸化物であり,例えば,TiO,SiO,Crなどの成分からなる種々の粉末である。溶け込み深さ促進性のフラックス入りワイヤ4は,これら成分粉末の金属酸化物を適正比率で複数混合して充填した特殊なワイヤであり,アーク溶接中に発生する前記加熱反応によって溶け込み状態を促進するため,溶け込み深さが増加する作用及び効果を有しているものである。このような溶け込み深さ促進性のフラックス入りワイヤ4は,一般の脱酸剤や塩基性造滓剤入りの従来ワイヤ(フラックス入りワイヤ)とは成分及び作用が全く異なるものであり,溶け込み深さを促進する金属酸化物の粉末(例えば,TiO,SiO,Crなどの成分粉末)が充填されている特殊なワイヤであり,既に公知の市販品を使用すればよい。 The flux agent filled in the flux-cored wire 4 is a plurality of metal oxides, for example, various powders made of components such as TiO 2 , SiO 2 , Cr 2 O 3 . A penetration depth promoting flux-cored wire 4 is a special wire in which a plurality of metal oxides of these component powders are mixed and filled at an appropriate ratio, and promotes the penetration state by the heating reaction generated during arc welding. Therefore, it has the action and effect of increasing the penetration depth. Such a penetration depth promoting flux-cored wire 4 is completely different in composition and action from a conventional wire (flux-cored wire) containing a general deoxidizing agent or a basic iron making agent. It is a special wire filled with a metal oxide powder (for example, a component powder of TiO 2 , SiO 2 , Cr 2 O 3, etc.) that promotes the heat treatment, and a known commercial product may be used.

また,非消耗性の電極5は,溶接トーチ8の先端に設けられるタングステン電極であり,例えば,高融点材のLa入りW,Y入りW,ThO入りWなど,市販品の電極棒を使用すればよい。また,アーク6溶接部分及び電極5を保護するシールドガス9bは,ノズル9aの内周から流出させる不活性ガスであり,例えば,純ArガスやHeガスであり,また,Ar主体の混合ガスも使用可能であり,市販品のガスを使用すればよい。 The non-consumable electrode 5 is a tungsten electrode provided at the tip of the welding torch 8, and is commercially available such as W containing La 2 O 3, W containing Y 2 O 3, W containing ThO 2, etc. Product electrode rods may be used. The shield gas 9b that protects the welded portion of the arc 6 and the electrode 5 is an inert gas that flows out from the inner periphery of the nozzle 9a, for example, pure Ar gas or He gas, and an Ar-based mixed gas is also used. It is possible to use a commercially available gas.

図1の(2)及び(3)に示すように,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2側の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成することにより,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板1,2と下側の立板3とを確実に溶融接合でき,所定形状の健全な溶接金属部7bを得ることができる。また,ある程度の溶接強度が必要な部材であっても,上板側の板厚断面積B1より大きな溶接断面積Aが確保(A>B1)でき,上板材料強度と同等以上の引張強度(溶接強度)を得ることができ,同時に溶接変形を小さくすることもできる。   As shown in FIGS. 1 (2) and (3), at least the melting width w on the upright plate 3 side after passing through the back surfaces of the upper plates 1 and 2 is larger than the thickness T1 on the upper plate 1 and 2 sides (w> T1). ) Formation or formation of the weld cross-sectional area A of the penetration portion on the back side of the upper plate or the melting width portion on the standing plate side larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or the melting width w and the welding By forming both cross-sectional areas A in the size of w> T 1 and A> B 1, the top plate 1, 2, even if it is a T-shaped joint made of stainless steel or low carbon steel that has not been grooved And the lower standing plate 3 can be reliably melt-bonded, and a predetermined welded metal portion 7b can be obtained. In addition, even for members that require a certain level of weld strength, a weld cross-sectional area A larger than the plate thickness cross-sectional area B1 on the upper plate side can be secured (A> B1), and a tensile strength equal to or higher than the upper plate material strength ( Welding strength) and weld deformation can be reduced at the same time.

溶け込み深さ促進性の前記フラックス入りワイヤ4は,溶接進行方向の前方からアーク6溶接部分に送給,又は溶接進行方向の後方からアーク6溶接部分に送給することができる。特に,溶け込み深さ促進性の前記フラックス入りワイヤ4を溶接進行方向の後方からアーク6溶接部分に送給することにより,例えば,小電流から大電流まで広範囲の溶接電流(例えば100〜350A)を出力させる場合であっても,前記フラックス入りワイヤ4がアーク6直下の溶融プール7a内にスムーズに入り,大きな溶滴にならずに安定して溶融及び溶着させることができる。同時に,上板1,2表面から下側の立板3側まで深く溶け込み,その溶け幅wを上板1,2側の板厚T1より大きく(w>T1)形成することができ,健全な溶接金属部7bを得ることができる。   The flux-cored wire 4 that promotes penetration depth can be fed from the front in the welding progress direction to the arc 6 welding portion, or can be fed from the rear in the welding progress direction to the arc 6 welding portion. In particular, by feeding the flux-cored wire 4 that promotes the penetration depth to the arc 6 welding portion from the rear in the welding direction, for example, a wide range of welding current (eg, 100 to 350 A) from a small current to a large current can be obtained. Even in the case of outputting, the flux-cored wire 4 smoothly enters the melt pool 7a directly under the arc 6 and can be melted and welded stably without forming large droplets. At the same time, it can be deeply melted from the surface of the upper plates 1 and 2 to the lower vertical plate 3 side, and the melt width w can be formed larger than the plate thickness T1 on the upper plates 1 and 2 side (w> T1). The weld metal part 7b can be obtained.

また,後方送給方式の前記フラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接の遂行によって,前記立板3側の溶け幅wを前記上板1,2の板厚T1より大きく(w>T1)形成すると同時に,上板1,2側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にすることにより,所定形状の健全な溶接金属部7bが得られると共に,T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。また,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度を得ることができる。   Further, by performing non-consumable electrode type arc welding using the flux-cored wire 4 of the backward feeding method, the melting width w on the upright plate 3 side is made larger than the plate thickness T1 of the upper plates 1 and 2 (w > T1) At the same time as forming, the bead surface height C on the upper plate 1, 2 side is 1 to 3 mm higher than the upper plate surface (1 ≦ C ≦ 3 mm) to form a convex shape. The weld metal portion 7b can be obtained, and a good weld bead having a convex shape without a dent or undercut on the weld surface of the T-shaped joint can be obtained. Even if the member requires a certain level of welding strength, it is possible to obtain a tensile strength equal to or higher than the strength of the upper plate material by ensuring the weld cross-sectional area A (A> B1).

上述したように,前記上板1,2の板厚T1範囲を2<T1≦6mmに設定することにより,好ましくは2<T1≦5mmの範囲に抑えて設定することにより,上板1,2表面から裏面貫通して下側の立板3側まで確実に溶融接合することができ,健全な溶け込み形状を有する溶接金属部7bを得ることができる。また,前記立板3の板厚T2範囲を上板1,2の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)に設定することにより,溶接すべき上板1,2側の溶接線と下側の立板上面とに位置ずれが少々ある状態であっても,立板3の端面部に溶けダレがない健全な溶け込み形状を有する溶接金属部7bを得ることができる。   As described above, by setting the thickness T1 range of the upper plates 1 and 2 to 2 <T1 ≦ 6 mm, preferably by setting the range to 2 <T1 ≦ 5 mm, The weld metal portion 7b having a sound penetration shape can be obtained by reliably melting and joining from the front surface to the back surface through the lower vertical plate 3 side. Further, by setting the plate thickness T2 range of the standing plate 3 to 2.5 times or more and 5 times or less (2.5 × T1 ≦ T2 ≦ 5 × T1) of the plate thickness T1 of the upper plates 1 and 2, welding is performed. Even if there is a slight misalignment between the upper and lower welding lines of the upper plate 1 and 2 and the upper surface of the lower vertical plate, the weld metal has a sound penetration shape that does not melt at the end surface portion of the vertical plate 3 Part 7b can be obtained.

なお,前記上板1,2の板厚T1が2mmより薄いと,上板1,2側の溶け過ぎによる溶接変形が増大し易い。反対に,前記上板1,2の板厚T1が6mmより厚いと,上板表面から裏面貫通して下側の立板3側まで溶融し難く,また,立板3側の溶け幅wを十分な大きさに形成することも難しくなる。強制的に溶融接合するには,大出力のアーク溶接装置が必要になると共に,上板1,2側の溶け過ぎによる溶接変形が増大し易いので好ましくない。一方,前記立板3の板厚T2が上板1,2の板厚T1の2.5倍より薄いと,例えば,溶接すべき上板1,2側の溶接線と立板3上面とに前記位置ずれがあったりする場合に,立板3側の片端面部に溶けダレが発生したり,溶け込みが偏ったり歪な形状になったりし易い。反対に,前記立板3の板厚T2が上板1,2の板厚T1の5倍より厚いと,立板3の板厚T2に対する立板3側の溶け幅w及び溶接断面積Aの比率が低下すると共に,上板1,2の板厚T1との板厚バランスが悪化したり,素材自身の重量が増大したりするので好ましくない。   If the thickness T1 of the upper plates 1 and 2 is less than 2 mm, welding deformation due to excessive melting of the upper plates 1 and 2 tends to increase. On the contrary, if the plate thickness T1 of the upper plates 1 and 2 is larger than 6 mm, it is difficult to melt from the upper plate surface to the lower surface through the back surface and to the lower vertical plate 3 side. It is also difficult to form a sufficient size. In order to forcibly melt and join, a high-power arc welding device is required, and welding deformation due to excessive melting of the upper plates 1 and 2 tends to increase, which is not preferable. On the other hand, if the plate thickness T2 of the standing plate 3 is less than 2.5 times the plate thickness T1 of the upper plates 1 and 2, for example, the welding line on the upper plate 1 or 2 side to be welded and the upper surface of the standing plate 3 When there is a positional shift, the one end surface portion on the upright plate 3 side is likely to melt and sag, or the penetration is likely to be uneven or distorted. On the contrary, if the thickness T2 of the upright plate 3 is thicker than five times the thickness T1 of the upper plates 1 and 2, the melt width w on the upright plate 3 side and the welding cross-sectional area A with respect to the thickness T2 of the upright plate 3 This is not preferable because the ratio decreases, the balance between the thicknesses T1 and T1 of the upper plates 1 and 2 deteriorates, and the weight of the material itself increases.

また,上板側のビード表面高さCが1mmより小さいと,ビード境界部にアンダーカットが生じ易い。反対に,ビード表面高さCが3mmより大き過ぎると,溶け込み深さが浅くなったり,ビード外観が悪くなったり,過剰な出っ張り部分が邪魔になったりするので好ましくない。   Further, if the bead surface height C on the upper plate side is smaller than 1 mm, an undercut is likely to occur at the bead boundary. On the other hand, if the bead surface height C is larger than 3 mm, the penetration depth becomes shallow, the bead appearance is deteriorated, and excessive protruding portions are not preferable.

本発明の貫通溶接構造物では,不活性ガスのシールドガス9bを流出するシールド構造の溶接トーチ(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4をアーク6溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部7bを備えた構造とすることができる。   In the penetration welding structure of the present invention, non-consumable electrode type arc welding is performed using a shield structure welding torch (shield gas supply means) that flows out the inert gas shield gas 9b, and at the same time, penetration depth acceleration The flux-cored wire 4 filled with the fluxing agent is melted to the lower standing plate 3 while being fed to the arc 6 welding portion, and at least the melt width w on the standing plate 3 side after passing through the upper plate 1, 2 back surface Is larger than the plate thickness T1 of the upper plate (w> T1), or the weld cross-sectional area A of the penetration portion on the back surface of the upper plate or the melting width portion on the standing plate side is larger than the plate thickness cross-sectional area B1 on the upper plate side (A > B1) Formation or a structure including a weld metal portion 7b in which both the melting width w and the weld cross-sectional area A are formed in the size of w> T1 and A> B1 can be adopted.

これにより,上板1,2側の板厚断面積B1より大きな溶接断面積Aを有する溶け込み形状の健全な溶接金属部7b及び溶接構造物が得られ,しかも,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度(溶接強度)を得ることができ,同時に溶接変形を小さくすることもできる。   As a result, a sound weld metal part 7b and a welded structure having a welded cross-sectional area A larger than the plate thickness cross-sectional area B1 on the upper plate 1, 2 side are obtained, and a member that requires a certain degree of welding strength is obtained. Even so, by ensuring the weld cross-sectional area A (A> B1), it is possible to obtain a tensile strength (welding strength) equal to or higher than the strength of the upper plate material, and at the same time, it is possible to reduce welding deformation.

また,前記立板3側の溶け幅wを前記上板1,2の板厚T1より大きく(w>T1)形成すると同時に,上板1,2側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にした溶接金属部7bを備えた構造にすることもできる。また,前記大きさの溶接金属部7bは,前記フラックス入りワイヤ4を用いたTIGアーク溶接による1パス溶接で形成されているとよい。   Further, the melt width w on the upright plate 3 side is formed larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), and at the same time, the bead surface height C on the upper plate 1 and 2 side is set from the upper plate surface. A structure having a weld metal portion 7b formed to be 1 to 3 mm higher (1 ≦ C ≦ 3 mm) to have a convex shape may be employed. Further, the weld metal portion 7b having the size may be formed by one-pass welding by TIG arc welding using the flux-cored wire 4.

これにより,上板材料強度と同等以上の引張強度を得るのに必要な前記溶け幅wや溶接断面積Aを有する溶け込み形状の健全な溶接金属部7b及び溶接構造物を得ることができる。また,溶け込み深さ促進性の前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接は,対流型(及び熱伝導型)の溶け込み形状であり,1パス溶接で所定形状の深い溶け込みが確実に形成でき,スパッタ(溶融金属の飛散)の発生も全くない。しかも,裏当て材の設置が不要であり,前記フラックス入りワイヤ4を用いた1パスの溶接工数で済み,溶接変形も小さく,溶け落ちもないので作業工数及び溶接時間を削減することができる。   Thereby, a sound weld metal part 7b having a penetration shape and a welded structure having the melt width w and weld cross-sectional area A necessary for obtaining a tensile strength equal to or higher than the upper plate material strength can be obtained. In addition, arc welding of the non-consumable electrode method using the flux-cored wire that promotes penetration depth is a convection type (and heat conduction type) penetration shape, and a deep penetration of a predetermined shape is ensured by one-pass welding. It can be formed and there is no spatter (spatter of molten metal). In addition, it is not necessary to install a backing material, only one pass of welding man-hour using the flux-cored wire 4 is required, welding deformation is small, and there is no melting, so man-hours and welding time can be reduced.

特に,原子力機器又は火力機器又は自動車機器に組み込まれるT型継手の溶接構造物に,前記溶け幅wがw>T1,又は前記溶接断面積AがA>B1のいずれかの大きさを有した前記溶接金属部が適用されることにより,従来の溶接構造部と比べて溶接変形の低減,工数削減及びコスト低減が可能になる。   In particular, a welded structure of a T-type joint incorporated in nuclear equipment, thermal equipment, or automobile equipment has the melt width w of w> T1 or the weld cross-sectional area A of A> B1. By applying the weld metal part, it is possible to reduce welding deformation, man-hours and costs as compared with the conventional welded structure part.

図2は,本発明のT型継手の貫通溶接方法に係わる溶接手順及び溶け込み形状の他の一実施形態を示す説明図である。図1との主な相違点は,下側の立板3上面に上板1,2を2枚並列に突合せ配置する時に,上板1,2同士の突合せ部にギャップGがあったりなかったりするT型継手の実施例であり,その他の部分や符号は,図1と同じである。   FIG. 2 is an explanatory view showing another embodiment of the welding procedure and penetration shape related to the T-type joint penetration welding method of the present invention. The main difference from FIG. 1 is that when two upper plates 1 and 2 are butt-arranged in parallel on the upper surface of the lower standing plate 3, there is no gap G at the butt portion between the upper plates 1 and 2. The other parts and symbols are the same as in FIG.

溶接線の長い部材のT型継手では,ギャップGがない状態に組み立てることが意外と難しく,上板1,2同士の突合せ部にギャップGがあったりなかったりする状態になり易く,また,前記上板1,2と下側の上板3上面との継手面にも僅かな隙間があったりなかったりすることがある。特に,前記ギャップGが全体的に過大な場合や,許容値を時々超えたりするバラツキの大きなギャップG変化の場合には,溶接品質に悪影響(例えば,不均一な溶け込み,不揃いなビード形状,アンダーカットなど)が発生し易い。これを避けるため,本実施例では,許容可能なギャップG範囲を限定している。   It is unexpectedly difficult to assemble a T-shaped joint with a long weld line without gap G, and it is likely that there is no gap G at the butt portion between upper plates 1 and 2. There may be a slight gap on the joint surface between the plates 1 and 2 and the upper surface of the lower upper plate 3. In particular, when the gap G is excessively large as a whole, or when the gap G changes greatly, which sometimes exceeds the allowable value, the welding quality is adversely affected (for example, uneven penetration, uneven bead shape, Cut). In order to avoid this, in this embodiment, the allowable gap G range is limited.

すなわち,最初の第1工程21では,図2の(1)に示すように,立板3上面に上板1,1を2枚並列に突合せ配置する時に,突合せ部にギャップGが殆んどない状態又はあっても上板側の板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に抑えて設定している。好ましくは0.1倍以下の0≦G≦0.1×T1の範囲にさらに抑えて設定するとよい。また,上板1,2と下側の上板3上面との隙間が殆どない状態又はあっても0.5mm以下に抑制するとよい。このように,ギャップG範囲を抑制することにより,組立精度や位置決め精度が高まり,溶接品質に悪影響を及ぼすことがある要因の一つを取り除くことができる。   That is, in the first first step 21, as shown in FIG. 2 (1), when the two upper plates 1, 1 are butt-arranged in parallel on the upper surface of the upright plate 3, the gap G is almost at the butt portion. Even if there is no state, the gap G is set within a small gap G range (0 ≦ G ≦ 0.2 × T1) which is 0.2 times or less of the plate thickness T1 on the upper plate side. Preferably, it is set to be further suppressed within the range of 0 ≦ G ≦ 0.1 × T1 of 0.1 times or less. Moreover, it is good to suppress to 0.5 mm or less in the state where there is almost no gap between the upper plates 1 and 2 and the upper surface of the lower upper plate 3. In this way, by suppressing the gap G range, assembly accuracy and positioning accuracy are increased, and one of the factors that may adversely affect welding quality can be removed.

溶接対象のT型継手は,上述したように,原子力機器又は火力機器又は自動車機器などに組み込まれる溶接物である。主にステンレス鋼材又は低炭素鋼材からなり,上板1,2の板厚T1範囲は,2<T1≦6mmであり,また,下側の立板3のT2範囲は,上板1,2の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)である。立板3上面に薄肉T1の上板1,2が水平方向に沿って1枚重ね配置又は2枚並列に突合せ配置してT字状に構成されている。   As described above, the T-shaped joint to be welded is a welded article incorporated in nuclear equipment, thermal equipment, automobile equipment, or the like. Mainly made of stainless steel or low carbon steel, the thickness T1 range of the upper plates 1 and 2 is 2 <T1 ≦ 6 mm, and the T2 range of the lower vertical plate 3 is that of the upper plates 1 and 2 The plate thickness T1 is 2.5 times or more and 5 times or less (2.5 × T1 ≦ T2 ≦ 5 × T1). The upper plates 1 and 2 of the thin wall T1 are arranged on the upper surface of the upright plate 3 so as to overlap each other in the horizontal direction or in parallel with each other in a T-shape.

次の第2工程22では,上記小さなギャップG有無のT型継手に対して,図2の(2)に示すように,不活性ガスのシールドガス9bを流出するシールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4をアーク6溶接部分に送給して,上板1,2表面側から前記下側の立板3側まで溶融接合させる。同時に,この溶融接合によって,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成,又は上板1,2裏面の貫通部分又は立板3側の溶け幅w部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成するようにしている。またさらに,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にすることもできる。   In the next second step 22, as shown in FIG. 2 (2), the T-type joint with or without the small gap G is not used by using shield gas supply means for flowing out the inert gas shield gas 9 b. At the same time as performing consumable electrode type arc welding, a flux-cored wire 4 filled with a flux agent that promotes penetration depth is fed to the arc 6 welding portion, and the lower side from the surface side of the upper plates 1 and 2 Are melt-bonded to the vertical plate 3 side. At the same time, at least the melt width w on the upright plate 3 side after passing through the back surfaces of the upper plates 1 and 2 is made larger than the thickness T1 (w> T1) of the upper plates 1 and 2 by this fusion bonding, or the upper plates 1 and 2 Forming the welding cross-sectional area A of the penetration portion on the back surface or the melting width w portion on the standing plate 3 side larger than the plate thickness cross-sectional area B1 on the upper plate 1 and 2 side (A> B1), or the melting width w and the welding break Both areas A are formed to have a size of w> T1 and A> B1. Furthermore, the bead surface height C on the upper plate side can be formed 1 to 3 mm higher than the upper plate surface (1 ≦ C ≦ 3 mm) to form a convex shape.

これにより,前記ギャップG有無のT型継手であっても,上板1,2と下側の立板3とを確実に溶融接合でき,所定形状の健全な溶接金属部7bが得られると共に,T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。また,ある程度の溶接強度が必要な部材であっても,前記溶け幅wや前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度を得ることができる。   Thereby, even if it is a T-shaped joint with or without the gap G, the upper plates 1 and 2 and the lower upright plate 3 can be reliably melt-bonded, and a sound weld metal portion 7b having a predetermined shape can be obtained. A good weld bead having a convex shape without a dent or undercut on the weld surface of the T-shaped joint can be obtained. Even if the member requires a certain level of weld strength, a tensile strength equal to or higher than the upper plate material strength can be obtained by ensuring the melt width w and the weld cross-sectional area A (A> B1).

特に,前記ギャップG有無のT型継手のアーク溶接を遂行する時には,1パス溶接のみで所定形状に仕上ることが最も好ましい。しかし,例えば,ワイヤ溶着量の不足によって溶接ビード表面部に僅かな余盛り不足やアンダーカットが発生した時には,2パス目の溶接を遂行するとよい。なお,立板3側の前記溶け幅w及び溶接断面積Aは,既に1パス目の溶接によって所定(w>T1,A>B1)の大きさに確保されている。このため,2パス目の溶接では,上板1,2側の溶接ビード表面が所定範囲(1≦C≦3mm)の高さになるように,1パス目溶接の施工条件を見直して2パス目溶接の施工条件を定め,前層溶接のビード表面部から前記フラックス入りワイヤ4送りのアーク溶接を再度遂行することによって,前記余盛り不足及びアンダーカットが解消されて,健全な余盛り高さの溶接ビード及び溶け込み形状を有する溶接金属部7bに改善することができる。また,前記フラックス入りワイヤの代わりに普通のソリッドワイヤ又はストランドワイヤを使用して前記2パス目のアーク溶接を行うことも可能であり,前記余盛り不足及びアンダーカットを解消することができる。   In particular, when arc welding of the T-shaped joint with or without the gap G is performed, it is most preferable to finish in a predetermined shape by only one pass welding. However, for example, when a slight surplus or undercut occurs on the surface of the weld bead due to an insufficient amount of wire welding, the second pass welding may be performed. Note that the melting width w and the welding cross-sectional area A on the upright plate 3 side are already secured at predetermined sizes (w> T1, A> B1) by the first pass welding. For this reason, in the second pass welding, the welding conditions of the first pass are reviewed so that the surface of the weld beads on the upper plate 1 and 2 side is within a predetermined range (1 ≦ C ≦ 3 mm). By setting the welding conditions for the spot welding and performing the arc welding of the four-core flux-cored wire feed again from the bead surface of the previous layer welding, the above-mentioned lack of underfill and undercut are eliminated, and a healthy surplus height is achieved. It can improve to the weld metal part 7b which has the following welding bead and penetration shape. Moreover, it is also possible to perform arc welding of the second pass by using an ordinary solid wire or strand wire instead of the flux-cored wire, and it is possible to eliminate the excess filling and undercut.

また,本発明の貫通溶接構造物では,図2の(2)及び(3)に示すように,不活性ガスのシールドガス9bを流出するシールド構造の溶接トーチ8(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4をアーク6溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成,又は上板1,2裏面の貫通部分又は立板3側の溶け幅w部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部7bを備えた構造にすることできる。   Further, in the through-welded structure of the present invention, as shown in FIGS. 2 (2) and (3), a welding torch 8 (shield gas supply means) having a shield structure that flows out a shield gas 9b of an inert gas is used. At the same time, the non-consumable electrode type arc welding is performed, and at the same time, the flux cored wire 4 filled with the flux agent that promotes the penetration depth is melted to the lower vertical plate 3 while being fed to the arc 6 welding portion. At least the melting width w on the standing plate 3 side after penetrating the upper plates 1 and 2 is formed to be larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), or the penetrating portion or standing plate of the upper plates 1 and 2 Form the weld cross-sectional area A of the melt width w portion on the 3 side larger than the plate thickness cross-section area B1 on the upper plate 1, 2 side (A> B1), or both the melt width w and the weld cross-sectional area A> Structure with weld metal portion 7b formed to have a size of T1 and A> B1 Able to.

これにより,溶け込み形状の健全な溶接金属部7b及び溶接構造物が得られ,しかも,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度(溶接強度)を得ることができ,同時に溶接変形を小さくすることもできる。   As a result, a sound weld metal part 7b and a welded structure can be obtained, and even if the member requires a certain level of weld strength, the upper plate can be secured by securing the weld cross section A (A> B1). A tensile strength (welding strength) equal to or higher than the material strength can be obtained, and at the same time, welding deformation can be reduced.

特に,原子力機器又は火力機器又は自動車機器に組み込まれるT型継手の溶接構造物に,前記溶け幅wがw>T1,又は前記溶接断面積AがA>B1のいずれかの大きさを有した前記溶接金属部が適用されることにより,従来の溶接構造部と比べて溶接変形の低減,工数削減及びコスト低減が可能になる。   In particular, a welded structure of a T-type joint incorporated in nuclear equipment, thermal equipment, or automobile equipment has the melt width w of w> T1 or the weld cross-sectional area A of A> B1. By applying the weld metal part, it is possible to reduce welding deformation, man-hours and costs as compared with the conventional welded structure part.

次に,図3は,本発明のT型継手の貫通溶接方法に係わる溶接手順及び溶け込み形状のさらに他の実施形態を示す説明図である。図1との主な相違点は,不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールド構造の溶接トーチ8b(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行するようにしたことである。T型継手の形状や溶接部分の溶け込み形状は,図1と略同じである。   Next, FIG. 3 is explanatory drawing which shows further embodiment of the welding procedure and penetration shape regarding the penetration welding method of the T-shaped joint of this invention. The main difference from FIG. 1 is that a non-consumable electrode is formed by using a welding torch 8b (double shield gas supply means) having a double shield structure that flows out a shield gas containing an inert gas and a shield gas containing an oxidizing gas. This is to carry out arc welding of the method. The shape of the T-shaped joint and the penetration shape of the welded portion are substantially the same as in FIG.

すなわち,図3の(2)に示すように,内管と外管とが同軸状に配設された二重シールド構造の溶接トーチ8bを使用し,外側ノズル10aのノズル孔から酸化性ガス(OやCO)と不活性ガス(ArやHe)との混合ガス10bを流出させ,同時に,内側ノズル9aのノズル孔から不活性ガス9b(ArやHe)のシールドガスを流出させる雰囲気内で,非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4をアーク6溶接部分に送給しながら前記上板1,2表面側から下側の立板3側まで溶融接合させる。同時に,この溶融接合によって,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成,又は上板1,2裏面の貫通部分又は立板3側の溶け幅w部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成するようにしている。 That is, as shown in FIG. 3 (2), a welding torch 8b having a double shield structure in which an inner pipe and an outer pipe are coaxially arranged is used, and an oxidizing gas (from the nozzle hole of the outer nozzle 10a) O 2 or CO 2 ) and an inert gas (Ar or He) mixed gas 10b is caused to flow out, and at the same time, an inert gas 9b (Ar or He) shielding gas is caused to flow out from the nozzle hole of the inner nozzle 9a. In addition, while performing arc welding of the non-consumable electrode system, while feeding the flux-cored wire 4 filled with the flux agent promoting penetration depth to the arc 6 welding portion, from the surface side of the upper plates 1 and 2 It melt-bonds to the lower standing plate 3 side. At the same time, at least the melt width w on the upright plate 3 side after passing through the back surfaces of the upper plates 1 and 2 is made larger than the thickness T1 (w> T1) of the upper plates 1 and 2 by this fusion bonding, Forming the welding cross-sectional area A of the penetration portion on the back surface or the melting width w portion on the standing plate 3 side larger than the plate thickness cross-sectional area B1 on the upper plate 1 and 2 side (A> B1), or the melting width w and the welding break Both areas A are formed to have a size of w> T1 and A> B1.

例えば,外側ノズル10aのノズル孔から数パーセントの酸化性ガス(OやCO)と不活性ガス(ArやHe)との混合ガス9bをアーク6直下の溶融プール7a部分に流すと共に,溶け込み促進性の前記フラックス入りワイヤ4をアーク6溶接部分に送給しながら前記アーク溶接を遂行すると,前記酸化性ガス(OやCO)から解離した酸素,さらに,溶融中の前記フラックス入りワイヤ4(例えば,TiO,SiO,Crなどの金属酸化物からなるフラックス剤を含有したワイヤ)から解離した酸素の両方が溶融プール7a内に多く溶解する。この酸素溶解によって,アーク6直下の溶融プール7aの対流が深さ方向に大きく変化して溶け込みがさらに深くなり,上板1の表面から下側の立板3側まで確実に溶融接合できると同時に,上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成でき,又は上板1,2裏面の貫通部分又は立板3側の溶け幅w部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成することができる。 For example, a mixed gas 9b of several percent oxidizing gas (O 2 or CO 2 ) and inert gas (Ar or He) is allowed to flow from the nozzle hole of the outer nozzle 10a to the molten pool 7a portion immediately below the arc 6 and melt. When the arc welding is performed while feeding the facilitating flux-cored wire 4 to the arc 6 welding portion, oxygen dissociated from the oxidizing gas (O 2 or CO 2 ), and further, the flux-cored wire being melted Both oxygen dissociated from 4 (for example, a wire containing a fluxing agent made of a metal oxide such as TiO 2 , SiO 2 , Cr 2 O 3 ) are dissolved in the molten pool 7 a in large quantities. By this oxygen dissolution, the convection of the molten pool 7a immediately below the arc 6 changes greatly in the depth direction and the penetration further deepens, and at the same time it can be surely melt-bonded from the surface of the upper plate 1 to the lower vertical plate 3 side. The melting width w on the upright plate 3 side after passing through the upper plates 1 and 2 can be formed larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), The weld cross-sectional area A of the melt width w portion on the plate 3 side can be formed larger than the plate thickness cross-sectional area B1 on the upper plate 1 and 2 side (A> B1).

なお,溶け込み形状や溶け深さの調整は,前記フラックス入りワイヤ4の送給量や前記金属酸化物の含有量又は混合比率の調整によって調整可能であり,また,前記酸化性ガスの含有量やそのガス流量の調整によっても調整可能である。さらに,溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり,継手部材の板厚や用途に応じて所定範囲の溶け幅wや溶接断面積Aを確保するように,事前に確認試験を行って調整するとよい。また,前記酸化性ガスと不活性ガスとの混合ガス10bは,公知の市販品を使用すればよい。また,不活性ガスのシールドガス9bと酸化性ガス入りのシールドガス10b(上記の混合ガス10b)とを流出させる方法については,二重シールド構造の溶接トーチ8bを使用すればよい。   It is to be noted that the adjustment of the penetration shape and the melting depth can be adjusted by adjusting the feeding amount of the flux-cored wire 4, the content of the metal oxide, or the mixing ratio, the content of the oxidizing gas, Adjustment is also possible by adjusting the gas flow rate. Furthermore, it can be adjusted according to the size of welding heat input conditions such as welding current and welding speed, and in order to ensure a predetermined range of melting width w and welding cross-sectional area A according to the thickness and application of the joint member. It is recommended to perform a confirmation test. Moreover, what is necessary is just to use a well-known commercial item for the mixed gas 10b of the said oxidizing gas and inert gas. Further, a welding shield torch 8b having a double shield structure may be used as a method for causing the shielding gas 9b of inert gas and the shielding gas 10b containing the oxidizing gas (the mixed gas 10b) to flow out.

上述したように,前記溶け幅w部分の溶接断面積Aは,前記立板3側の溶け幅wと溶接線長さLとの積(A=w×L)で求められる。同様に,前記板厚T1方向の板厚断面積B1は,上板1,2の板厚T1と溶接線長さLとの積(B1=T1×L)で求められ,前記溶け幅wをw>T1に形成すれば,その時の溶接断面積Aは,前記板厚断面積B1より大きく(A>B1)形成されたことになる。   As described above, the weld cross-sectional area A of the melt width w portion is obtained by the product (A = w × L) of the melt width w on the vertical plate 3 side and the weld line length L. Similarly, the plate thickness cross-sectional area B1 in the plate thickness T1 direction is obtained by the product (B1 = T1 × L) of the plate thickness T1 of the upper plates 1 and 2 and the weld line length L, and the melting width w is calculated as follows. If it is formed so that w> T1, the weld cross-sectional area A at that time is formed larger than the plate thickness cross-sectional area B1 (A> B1).

前記二重シールド構造の溶接トーチ8b及び前記フラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接は,対流型(及び熱伝導型)の溶け込み形状であり,1パス溶接で所定形状の深い溶け込みが確実に形成でき,スパッタの発生が全くない。しかも,上板1側に開先加工を施す必要がなく,また,裏当て材の設置が不要であり,溶け落ちも生じない。従来のTIG溶接と比べて溶接変形の低減や工数低減及びコスト低減が可能となる。   The non-consumable electrode type arc welding using the double shield structure welding torch 8b and the flux-cored wire 4 is a convection type (and heat conduction type) penetration shape, and a deep penetration of a predetermined shape by one-pass welding. Can be reliably formed, and no spatter is generated. In addition, it is not necessary to perform groove processing on the upper plate 1 side, installation of a backing material is unnecessary, and melting does not occur. Compared to conventional TIG welding, it is possible to reduce welding deformation, man-hours, and costs.

最初の第1工程21では,図3の(1)に示すように,鉛直方向に沿った下側の立板3上面に,水平方向に沿った上板1を1枚重ね配置,又は上板1,2を2枚並列に突合せ配置してT字状に構成したT型継手を製作する。上述したように,溶接対象のT型継手は,例えば,原子力機器又は火力機器又は自動車機器などに組み込まれる溶接物である。主にステンレス鋼材又は低炭素鋼材からなり,上板1,2の板厚T1範囲は,2<T1≦6mmである。好ましくは2<T1≦5mmの範囲に抑えるとよい。また,上述したように,下側の立板3のT2範囲は,前記上板1,2の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)であり,立板3上面に薄肉T1の上板1,2が水平方向に沿って1枚重ね配置又は2枚並列に突合せ配置してT字状に構成されている。   In the first first step 21, as shown in FIG. 3 (1), one upper plate 1 along the horizontal direction is placed on the upper surface of the lower standing plate 3 along the vertical direction, or the upper plate A T-shaped joint with a T-shaped configuration is produced by butt-arranging 1 and 2 in parallel. As described above, the T-shaped joint to be welded is, for example, a welded product incorporated in nuclear equipment, thermal equipment, automobile equipment, or the like. It is mainly made of stainless steel or low carbon steel, and the thickness T1 range of the upper plates 1 and 2 is 2 <T1 ≦ 6 mm. It is preferable to keep it in the range of 2 <T1 ≦ 5 mm. Further, as described above, the T2 range of the lower standing plate 3 is 2.5 times to 5 times the thickness T1 of the upper plates 1 and 2 (2.5 × T1 ≦ T2 ≦ 5 × T1). The upper plates 1 and 2 of the thin wall T1 are disposed on the upper surface of the standing plate 3 so as to overlap each other in the horizontal direction or in parallel with each other in a T-shape.

また,前記第1工程21で,前記板厚T1範囲の上板を前記厚肉の立板上面に2枚並列に突合せ配置する時には,この突合せ部にギャップGが殆んどない状態に設定し,あるいは,図2の(1)に示したように,ギャップGがあっても上板の板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に抑えて設定するとよい。   In the first step 21, when two upper plates in the range of the plate thickness T1 are butt-arranged in parallel on the upper surface of the thick wall, the gap G is set so that there is almost no gap G. Or, as shown in FIG. 2 (1), even if there is a gap G, the gap G is within a small gap G range (0 ≦ G ≦ 0.2 × T1) which is 0.2 times or less the plate thickness T1 of the upper plate. It is good to set it down.

次の第2工程22では,図3の(2)に示すように,不活性ガスのシールドガス9bと酸化性ガス入りのシールドガス10bとを流出する二重シールド構造の溶接トーチ8b(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性の前記フラックス入りワイヤ4をアーク6溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを前記上板1,2の板厚T1より大きく(w>T1)形成,又は上板1,2裏面の貫通部分又は立板3側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成するようにしている。   In the next second step 22, as shown in FIG. 3 (2), a welding torch 8 b having a double shield structure for flowing out a shielding gas 9 b of an inert gas and a shielding gas 10 b containing an oxidizing gas (double The non-consumable electrode type arc welding is performed using the shield gas supply means) and at the same time, the flux-cored wire 4 that promotes the penetration depth is melted to the lower vertical plate 3 while being fed to the arc 6 welding portion. , Forming at least the melting width w on the upright plate 3 side after penetrating the upper plates 1 and 2 larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), The welding cross-sectional area A of the melting width portion on the upright plate 3 side is formed larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or both the melting width w and the welding cross-sectional area A are set to w> T1 and A> B1 is formed.

これにより,上述したように,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板1,2と下側の立板3とを確実に溶融接合でき,所定形状の健全な溶接金属部7bを得ることができる。また,ある程度の溶接強度が必要な部材であっても,上板側の板厚断面積B1より大きな溶接断面積Aが確保(A>B1)でき,上板材料強度と同等以上の引張強度(溶接強度)を得ることができる。   As a result, as described above, the upper plates 1 and 2 and the lower upright plate 3 can be reliably melt-bonded even with a T-shaped joint made of stainless steel material or low carbon steel material that has not been grooved. The sound weld metal part 7b having a predetermined shape can be obtained. In addition, even for members that require a certain level of weld strength, a weld cross-sectional area A larger than the plate thickness cross-sectional area B1 on the upper plate side can be secured (A> B1), and a tensile strength equal to or higher than the upper plate material strength ( Welding strength).

溶け込み深さ促進性の前記フラックス入りワイヤ4は,溶接進行方向の前方からアーク6溶接部分に送給,又は溶接進行方向の後方からアーク6溶接部分に送給することができる。特に,溶け込み深さ促進性の前記フラックス入りワイヤ4を溶接進行方向の後方からアーク6溶接部分に送給することにより,例えば,小電流から大電流まで広範囲の溶接電流(例えば100〜350A)を出力させる場合であっても,前記フラックス入りワイヤ4がアーク6直下の溶融プール7a内にスムーズに入り,大きな溶滴にならずに安定して溶融及び溶着させることができる。同時に,上板1,2表面から下側の立板3側まで深く溶け込み,その溶け幅wを上板1,2側の板厚T1より大きく(w>T1)形成することができ,健全な溶接金属部7bを得ることができる。   The flux-cored wire 4 that promotes penetration depth can be fed from the front in the welding progress direction to the arc 6 welding portion, or can be fed from the rear in the welding progress direction to the arc 6 welding portion. In particular, by feeding the flux-cored wire 4 that promotes the penetration depth to the arc 6 welding portion from the rear in the welding direction, for example, a wide range of welding current (eg, 100 to 350 A) from a small current to a large current can be obtained. Even in the case of outputting, the flux-cored wire 4 smoothly enters the melt pool 7a directly under the arc 6 and can be melted and welded stably without forming large droplets. At the same time, it can be deeply melted from the surface of the upper plates 1 and 2 to the lower vertical plate 3 side, and the melt width w can be formed larger than the plate thickness T1 on the upper plates 1 and 2 side (w> T1). The weld metal part 7b can be obtained.

また,前記二重シールド構造の溶接トーチ8b及び後方送給方式の前記フラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接の遂行によって,前記立板3側の溶け幅wを前記上板1,2の板厚T1より大きく(w>T1)形成すると同時に,上板1,2側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にすることにより,上述したように,所定形状の健全な溶接金属部7bが得られると共に,T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。また,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度を得ることができる。なお,上板側のビード表面高さCが1mmより小さいと,ビード境界部にアンダーカットが生じ易い。反対に,ビード表面高さCが3mmより大き過ぎると,溶け込み深さが浅くなったり,ビード外観が悪くなったり,過剰な出っ張り部分が邪魔になったりするので好ましくない。   Further, by performing non-consumable electrode type arc welding using the double shielded welding torch 8b and the backward feeding type flux-cored wire 4, the melting width w on the vertical plate 3 side is set to the upper plate 1 side. , 2 is formed larger than the plate thickness T1 (w> T1), and at the same time, the bead surface height C on the upper plate 1, 2 side is 1 to 3 mm higher than the upper plate surface (1 ≦ C ≦ 3 mm) to form a convex shape By doing so, as described above, a sound weld metal portion 7b having a predetermined shape can be obtained, and a good weld bead having a convex shape with no dents or undercuts on the weld surface of the T-shaped joint can be obtained. Even if the member requires a certain level of welding strength, it is possible to obtain a tensile strength equal to or higher than the strength of the upper plate material by ensuring the weld cross-sectional area A (A> B1). If the bead surface height C on the upper plate side is smaller than 1 mm, an undercut is likely to occur at the bead boundary. On the other hand, if the bead surface height C is larger than 3 mm, the penetration depth becomes shallow, the bead appearance is deteriorated, and excessive protruding portions are not preferable.

また,本発明の貫通溶接構造物では,図3の(2)及び(3)に示すように,不活性ガスのシールドガス9bと酸化性ガスのシールドガス10bとを流出する二重シールド構造の溶接トーチ8b(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤ4をアーク6溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成,又は上板1,2裏面の貫通部分又は立板3側の溶け幅w部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部7bを備えた構造にすることもできる。   In addition, in the through-welded structure of the present invention, as shown in FIGS. 3 (2) and (3), a double shield structure in which an inert gas shield gas 9b and an oxidizing gas shield gas 10b flow out. A non-consumable electrode type arc welding is performed using a welding torch 8b (double shield gas supply means), and at the same time, a flux-cored wire 4 filled with a flux agent promoting penetration depth is sent to the arc 6 welding portion. Melting to the lower standing plate 3 while feeding, forming at least the melting width w on the standing plate 3 side after passing through the back surfaces of the upper plates 1 and 2 larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), Alternatively, the weld cross-sectional area A of the penetration portion of the back surface of the upper plates 1 and 2 or the melting width w portion of the upright plate 3 side is larger than the plate thickness cross-sectional area B1 of the upper plates 1 and 2 (A> B1), or the melting Both width w and the weld cross-sectional area A are expressed as w> T1 and A> B1. Possible to having a weld metal portion 7b which is formed in a size structures may be.

これにより,上述したように,溶け込み形状の健全な溶接金属部7b及び溶接構造物が得られ,しかも,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度(溶接強度)を得ることができ,同時に溶接変形を小さくすることもできる。特に,原子力機器又は火力機器又は自動車機器に組み込まれるT型継手の溶接構造物に,前記溶け幅wがw>T1,又は前記溶接断面積AがA>B1のいずれかの大きさを有した前記溶接金属部が適用されることにより,従来の溶接構造部と比べて溶接変形の低減,工数削減及びコスト低減が可能になる。   As a result, as described above, a weld metal part 7b and a welded structure having a penetration shape can be obtained, and even if the member requires a certain level of weld strength, the weld cross-sectional area A is ensured (A> By B1), it is possible to obtain a tensile strength (welding strength) equal to or higher than the strength of the upper plate material, and at the same time to reduce welding deformation. In particular, a welded structure of a T-type joint incorporated in nuclear equipment, thermal equipment, or automobile equipment has the melt width w of w> T1 or the weld cross-sectional area A of A> B1. By applying the weld metal part, it is possible to reduce welding deformation, man-hours and costs as compared with the conventional welded structure part.

図4は,本発明のT型継手の貫通溶接方法に係わるレーザ溶接手順及び溶け込み形状の実施形態を示す説明図である。図1及び図3との主な相違点は,前記アーク溶接の代わりに,レーザトーチを用いて焦点ぼかしのレーザビーム照射によるレーザ溶接を遂行すると同時に,ワイヤをレーザ溶接部分に送給しながら下側の立板まで溶融させるようにしたことである。他の部分や符号は,図1及び図3と略同じである。   FIG. 4 is an explanatory view showing an embodiment of a laser welding procedure and a penetration shape related to the T-type joint penetration welding method of the present invention. The main difference from FIG. 1 and FIG. 3 is that instead of arc welding, laser welding is performed using a laser torch to defocus laser beam irradiation, and at the same time the wire is fed to the laser welding portion while It was made to melt even to the standing plate. Other parts and symbols are substantially the same as those in FIGS.

すなわち,図4の(2)に示すように,焦点ぼかしのレーザ溶接(第2工程24)では,レーザビーム18の焦点位置19を前記上板1,2表面より上側へずらした位置(距離L)となるようにレーザトーチ17を配置し,焦点ぼかしの前記レーザビーム18照射によるレーザ溶接を遂行すると同時に,ワイヤ44をレーザ溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板3側の溶け幅部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成するようにしている。   That is, as shown in (2) of FIG. 4, in laser welding for defocusing (second step 24), a position (distance L) where the focal position 19 of the laser beam 18 is shifted upward from the surfaces of the upper plates 1 and 2. The laser torch 17 is disposed so that the laser beam 18 is irradiated with the laser beam 18 for defocusing, and at the same time, the wire 44 is melted to the lower standing plate 3 while being fed to the laser welding portion. Form the melt width w on the upright plate 3 side after penetration of the plates 1 and 2 larger than the plate thickness T1 of the upper plate (w> T1), or weld the penetration portion on the back side of the upper plate or the melt width portion on the upright plate 3 side The cross-sectional area A is formed larger than the plate thickness cross-sectional area B1 on the upper plate 1, 2 side (A> B1), or both the melt width w and the weld cross-sectional area A are set to w> T1 and A> B1. Try to form.

レーザビーム18は,COレーザ又はYAGレーザ又はファイバーレーザ又はディスクレーザのいずれかを使用すればよい。特に,使用するレーザビーム18の焦点位置19を,少なくとも前記上板1,2表面より上側へずらした位置L(例えば,上板1側の板厚T1より大きな距離L>T1だけ上側へ離した位置)となるようにレーザトーチ17(例えば,レーザビームを集光して加工物に照射する集光レンズ等から構成されているレーザ加工トーチ)を配置して,焦点ぼかしレーザビーム18を溶接すべき箇所に照射することが重要である。このような焦点ぼかしのレーザビームの照射によって,溶接表面部のビード幅や溶け込み部の溶け幅wを広くなり,立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成することができる。なお,レーザビーム18の焦点位置19が上板表面となるジャストホーカス(L=0)に定めた時やT型継手の内部側(L<0)に定めた時には,深さ方向に深く溶け込むキーホール型の溶け込み形態によって深い溶け込み形状が得られるが,反対に溶接幅方向の溶け込み幅が狭くなってしまい,その結果,立板3側の溶け幅wを上板の板厚T1より大きく(w>T1)形成することができないので好ましくない。 As the laser beam 18, any one of a CO 2 laser, a YAG laser, a fiber laser, or a disk laser may be used. In particular, the focal position 19 of the laser beam 18 to be used is at least a position L shifted upward from the surfaces of the upper plates 1 and 2 (for example, a distance L> T1 larger than the plate thickness T1 on the upper plate 1 side). A laser torch 17 (for example, a laser processing torch composed of a condensing lens or the like for condensing the laser beam and irradiating the workpiece) so as to be positioned, and the focus-blurred laser beam 18 should be welded It is important to irradiate the spot. By irradiation with such a laser beam with a defocusing blur, the bead width of the weld surface portion and the melt width w of the penetration portion are widened, and the melt width w on the standing plate 3 side is larger than the thickness T1 of the upper plates 1 and 2 ( w> T1) can be formed. Note that when the focal position 19 of the laser beam 18 is determined to be just hocus (L = 0), which is the upper plate surface, or when it is determined on the inner side of the T-shaped joint (L <0), a key that deeply melts in the depth direction. A deep penetration shape is obtained by the hole-type penetration form, but the penetration width in the welding width direction is conversely narrowed. As a result, the penetration width w on the vertical plate 3 side is larger than the thickness T1 of the upper plate (w > T1) Since it cannot be formed, it is not preferable.

したがって,前記立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成するためには,レーザビーム18の焦点位置19を上板1,2表面より上側へずらして(例えば,焦点ぼかしの距離LをL>T1にする)レーザビームの焦点をぼかし,ビーム径を大きく及びエネルギー密度を弱めたレーザビームを使用する必要がある。このような焦点ぼかしのレーザビーム照射によるレーザ溶接を遂行することによって,深さ方向に深く溶け込むキーホール型の溶け込み形態から幅方向に溶け広がる溶け込み形態に変化させることができる。その結果,立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成できると同時に,その溶け幅w部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成することができる。   Therefore, in order to form the melt width w on the upright plate 3 side larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), the focal position 19 of the laser beam 18 is located above the surface of the upper plates 1 and 2. It is necessary to use a laser beam that is deviated (for example, the focus blur distance L is L> T1), the focus of the laser beam is blurred, the beam diameter is increased, and the energy density is decreased. By performing laser welding by such laser beam irradiation with defocusing, it is possible to change from a keyhole-type penetration form that deeply melts in the depth direction to a penetration form that spreads in the width direction. As a result, the melt width w on the upright plate 3 side can be formed larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), and at the same time, the weld cross-sectional area A of the melt width w portion can be set to It can be formed larger than the cross-sectional area B1 (A> B1).

レーザ溶接部分に送給するワイヤ44は,T型継手の部材と同質系のソリッドワイヤ又はストランドワイヤを使用すればよい。また,溶け込み促進性の前記フラックス入りワイヤ4を使用することも可能である。レーザ溶接部分に流すシールドガス9cについては,Arガス又はN2ガスを使用すればよい。このように,シールドガス9cの雰囲気中のレーザ溶接部分にワイヤ44を送給及び溶着させることによって,所定形状の健全な溶接金属部77bが得られると共に,T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。   The wire 44 to be fed to the laser welded portion may be a solid wire or a strand wire that is the same quality as the T-shaped joint member. It is also possible to use the flux-cored wire 4 that promotes melting. Ar gas or N2 gas may be used for the shield gas 9c flowing through the laser welding portion. In this way, by feeding and welding the wire 44 to the laser welding portion in the atmosphere of the shield gas 9c, a sound weld metal portion 77b having a predetermined shape is obtained, and a dent and A good weld bead having a convex shape without a cut can be obtained.

上述したように,焦点ぼかしの前記レーザビーム18照射によるレーザ溶接を遂行すると同時に,前記ワイヤ44をレーザ溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板1,2裏面貫通後の立板3側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板3側の溶け幅部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成することにより,開先加工を施していないステンレス鋼材又は低炭素鋼材からなるT型継手であっても,上板1,2と下側の立板3とを確実に溶融接合でき,溶け込み形状の健全な溶接金属部77b及び溶接構造物を得ることができる。しかも,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度(溶接強度)を得ることができ,同時に溶接変形を小さくすることもできる。   As described above, laser welding is performed by irradiating the laser beam 18 with defocusing, and at the same time, the wire 44 is melted to the lower standing plate 3 while being fed to the laser welding portion, and at least the upper plate 1, 2 back surface The penetration width w on the standing plate 3 side after penetration is made larger than the plate thickness T1 (w> T1), or the welding cross-sectional area A of the penetration portion on the back side of the upper plate or the melting width portion on the standing plate 3 side By forming larger than the plate thickness cross-sectional area B1 on the side of the plates 1 and 2 (A> B1), or by forming both the melt width w and the weld cross-sectional area A so that w> T1 and A> B1. Even with a T-shaped joint made of stainless steel or low carbon steel that has not been grooved, the upper plates 1 and 2 and the lower vertical plate 3 can be reliably melt-bonded, and a weld metal with a good penetration shape. A portion 77b and a welded structure can be obtained. Moreover, even if the member requires a certain level of welding strength, it is possible to obtain a tensile strength (welding strength) equal to or higher than the upper plate material strength by securing the welding cross-sectional area A (A> B1), and welding at the same time. The deformation can also be reduced.

溶接対象のT型継手は,図4の(1)に示すように,原子力機器又は火力機器又は自動車機器などに組み込まれる溶接物である。主にステンレス鋼材又は低炭素鋼材からなり,上板1,2の板厚T1範囲は,2<T1≦6mmであり,好ましくは2<T1≦5mmである。また,下側の立板3のT2範囲は,上板1,2の板厚T1の2.5倍以上5倍以下(2.5×T1≦T2≦5×T1)である。立板3上面に薄肉T1の上板1,2が水平方向に沿って1枚重ね配置又は2枚並列に突合せ配置してT字状に構成されている。   As shown in (1) of FIG. 4, the T-shaped joint to be welded is a welded article incorporated in nuclear equipment, thermal equipment, automobile equipment, or the like. It is mainly made of stainless steel or low carbon steel, and the thickness T1 range of the upper plates 1 and 2 is 2 <T1 ≦ 6 mm, preferably 2 <T1 ≦ 5 mm. The T2 range of the lower standing plate 3 is 2.5 times or more and 5 times or less (2.5 × T1 ≦ T2 ≦ 5 × T1) of the plate thickness T1 of the upper plates 1 and 2. The upper plates 1 and 2 of the thin wall T1 are arranged on the upper surface of the upright plate 3 so as to overlap each other in the horizontal direction or in parallel with each other in a T-shape.

本発明の貫通溶接構造物では,図4の(2)及び(3)に示すように,溶接すべき箇所に照射するレーザビーム18の焦点位置19を前記上板1,2表面より上側へずらした位置(距離L>T1)となるようにレーザトーチ17を配置し,焦点ぼかしの前記レーザビーム照射によるレーザ溶接を遂行すると同時に,ワイヤ44をレーザ溶接部分に送給しながら下側の立板3まで溶融させ,少なくとも上板裏面貫通後の立板3側の溶け幅wを上板1,2の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分又は立板3側の溶け幅部分の溶接断面積Aを上板1,2側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部77bを備えた構造にすることすることができる。   In the through-welded structure of the present invention, as shown in FIGS. 4 (2) and 4 (3), the focal position 19 of the laser beam 18 irradiated to the place to be welded is shifted upward from the surfaces of the upper plates 1 and 2. The laser torch 17 is arranged so as to be in the position (distance L> T1), and laser welding is performed by irradiating the laser beam for defocusing. At the same time, the lower standing plate 3 is fed while feeding the wire 44 to the laser welding portion. And the melt width w on the standing plate 3 side after penetrating the upper plate back surface is made larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), or the through portion of the upper plate rear surface or the standing plate 3 side The weld cross-sectional area A of the melt width portion is formed larger than the plate thickness cross-section area B1 on the upper plate 1, 2 side (A> B1), or both the melt width w and the weld cross-sectional area A are set to w> T1 and A > A structure having a weld metal portion 77b formed to have a size of B1. Can be.

これにより,上述したように,上板1,2側の板厚断面積B1より大きな溶接断面積Aを有する溶け込み形状の健全な溶接金属部77b及び溶接構造物が得られ,しかも,ある程度の溶接強度が必要な部材であっても,前記溶接断面積Aの確保(A>B1)によって上板材料強度と同等以上の引張強度(溶接強度)を得ることができ,同時に溶接変形を小さくすることもできる。   As a result, as described above, it is possible to obtain a penetration-like sound weld metal portion 77b and a welded structure having a weld cross-sectional area A larger than the plate thickness cross-sectional area B1 on the upper plate 1 and 2 side. Even if it is a member that requires strength, it is possible to obtain a tensile strength (welding strength) equal to or higher than the upper plate material strength by ensuring the weld cross-sectional area A (A> B1), and at the same time reduce welding deformation. You can also.

また,前記立板3側の溶け幅wを前記上板1,2の板厚T1より大きく(w>T1)形成すると同時に,上板1,2側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にした溶接金属部77bを備えた構造にすることもできる。しかも,前記焦点ぼかしのレーザ溶接による1パス溶接によって,前記大きさを有した健全な溶接金属部77b及び溶接構造物が得られる同時に,作業工数を削減することができる。   Further, the melt width w on the upright plate 3 side is formed larger than the plate thickness T1 of the upper plates 1 and 2 (w> T1), and at the same time, the bead surface height C on the upper plate 1 and 2 side is set from the upper plate surface. A structure including a weld metal portion 77b that is formed 1 to 3 mm higher (1 ≦ C ≦ 3 mm) to have a convex shape can also be used. In addition, the one-pass welding by the laser beam for blurring the focus can obtain a sound weld metal part 77b and a welded structure having the size, and at the same time, the work man-hours can be reduced.

特に,原子力機器又は火力機器又は自動車機器に組み込まれるT型継手の溶接構造物に,前記溶け幅wがw>T1,又は前記溶接断面積AがA>B1のいずれかの大きさを有した前記溶接金属部77bが適用されることにより,従来の溶接構造部と比べて溶接変形の低減,工数削減及びコスト低減が可能になる。   In particular, a welded structure of a T-type joint incorporated in nuclear equipment, thermal equipment, or automobile equipment has the melt width w of w> T1 or the weld cross-sectional area A of A> B1. By applying the weld metal part 77b, it is possible to reduce welding deformation, man-hours, and cost as compared with the conventional welded structure part.

図5は,従来のTIG溶接方法による開先溝付きT型継手の多パス溶接形状を示す比較例の断面図である。また,図6は,従来のTIG溶接方法による他のギャップ付きT型継手の多パス溶接形状を示す他の比較例の断面図である。さらに,図7は,従来のTIG溶接方法による他のギャップ付きT型継手の多パス溶接形状を示すさらに他の比較例の断面図である。   FIG. 5 is a cross-sectional view of a comparative example showing a multi-pass welding shape of a grooved T-shaped joint by a conventional TIG welding method. Moreover, FIG. 6 is sectional drawing of the other comparative example which shows the multipass welding shape of the other T type joint with a gap by the conventional TIG welding method. Further, FIG. 7 is a cross-sectional view of still another comparative example showing a multi-pass welding shape of another gap-attached T-type joint by a conventional TIG welding method.

すなわち,従来のTIG溶接方法では,溶け込みが浅いため,図5の(1)に示すように,上板1及び立板3を溶け易くするために,上板1表面部に開先溝12を形成して薄肉化している。そして,図5の(2)に示すように,最初に,開先溝12の薄肉部を溶接して立板3側まで溶け込ませて初層溶接部14を形成している。その後に,上板1上部まで複数の積層溶接部15を順次積層する多パス溶接を遂行している。また,比較例に係わる他の方法として,図6の(1)及び(2)に示すように,上板1,2を2枚並列に配置した継ぎ目部分に数ミリの大きなギャップ13を設け,この継手ギャップ13の底部及び下側立板3の空間部を溶接して立板3側まで溶け込ませて初層溶接部14を形成した後に,開先上部まで複数の積層溶接部15を順次積層する多パス溶接を遂行している。また,比較例に係わるさらに他の方法として,図7の(1)及び(2)に示すように,上板1,2を2枚並列に配置した継ぎ部に数ミリの大きな継手ギャップ13を設け,下側の立板3と左右両側の上板とを各々隅肉溶接16した後に,残り継ぎ部の中央部分を肉盛りする溶接を遂行している。   That is, in the conventional TIG welding method, since the penetration is shallow, as shown in FIG. 5 (1), in order to facilitate melting of the upper plate 1 and the upright plate 3, groove grooves 12 are formed on the surface portion of the upper plate 1. Formed and thinned. Then, as shown in (2) of FIG. 5, first, the thin-walled portion of the groove groove 12 is welded and melted to the upright plate 3 side to form the first layer welded portion 14. Thereafter, multi-pass welding is performed in which a plurality of laminated welds 15 are sequentially laminated up to the upper portion of the upper plate 1. Further, as another method related to the comparative example, as shown in FIGS. 6 (1) and (2), a large gap 13 of several millimeters is provided at a joint portion where two upper plates 1 and 2 are arranged in parallel, After welding the bottom part of this joint gap 13 and the space part of the lower upright plate 3 to melt up to the upright plate 3 side to form the first layer welded part 14, a plurality of laminated welded parts 15 are sequentially laminated to the upper part of the groove. Performs multi-pass welding. Further, as another method according to the comparative example, as shown in FIGS. 7 (1) and (2), a large joint gap 13 of several millimeters is formed at a joint portion in which two upper plates 1 and 2 are arranged in parallel. After the lower standing plate 3 and the left and right upper plates are each fillet welded 16, welding is performed to build up the central portion of the remaining joint.

このため,図5,図6及び図7に示した従来のTIG溶接方法では,工数増加の多パス溶接が必要であり,また,溶接変形も増加する結果に成り易い。   For this reason, the conventional TIG welding method shown in FIGS. 5, 6 and 7 requires multi-pass welding with increased man-hours and tends to result in increased welding deformation.

これに対して,本発明のT型継手の貫通溶接方法及び貫通溶接構造物によれば,上板側に開先溝や大きな継手ギャップを形成する必要がなく,溶け込みの深い1パス溶接が可能であり,上板表面から下側の立板側まで溶融されて上板と下側の立板とを確実に接合した健全な溶接金属部及び上板材料強度と同等以上の引張強度(溶接強度)を得ることができる。しかも,裏当て材の設置が不要であり,溶け落ちも生じない。この結果,従来の溶接方法及び溶接物比べて溶接変形の低減,工数削減及びコスト低減が可能となる。   In contrast, according to the T-type joint penetration welding method and penetration welded structure of the present invention, it is not necessary to form a groove groove or a large joint gap on the upper plate side, and one-pass welding with deep penetration is possible. A sound weld metal part that is melted from the upper plate surface to the lower vertical plate side and securely joins the upper plate and the lower vertical plate, and a tensile strength equal to or higher than the upper plate material strength (weld strength) ) Can be obtained. Moreover, there is no need to install a backing material, and no melting occurs. As a result, it is possible to reduce welding deformation, man-hours and costs as compared with conventional welding methods and weldments.

本発明のT型継手の貫通溶接方法に係わる溶接手順及び溶け込み形状の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the welding procedure concerning the penetration welding method of the T-shaped joint of this invention, and a penetration shape. 本発明のT型継手の貫通溶接方法に係わる溶接手順及び溶け込み形状の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the welding procedure concerning the penetration welding method of the T-shaped coupling of this invention, and a penetration shape. 本発明のT型継手の貫通溶接方法に係わる溶接手順及び溶け込み形状のさらに他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the welding procedure concerning the penetration welding method of the T-shaped coupling of this invention, and a penetration shape. 本発明のT型継手の貫通溶接方法に係わるレーザ溶接手順及び溶け込み形状の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the laser welding procedure and penetration shape concerning the penetration welding method of the T-shaped joint of this invention. 従来のTIG溶接方法による開先溝付きT型継手の多パス溶接形状を示す比較例の断面図である。It is sectional drawing of the comparative example which shows the multipass welding shape of the T-shaped joint with a groove by the conventional TIG welding method. 従来のTIG溶接方法によるギャップ付きT型継手の多パス溶接形状を示す他の比較例の断面図である。It is sectional drawing of the other comparative example which shows the multipass welding shape of the T-shaped joint with a gap by the conventional TIG welding method. 従来のTIG溶接方法によるギャップ付きT型継手の多パス溶接形状を示すさらに他の比較例の断面図である。It is sectional drawing of the further another comparative example which shows the multipass welding shape of the T-shaped joint with a gap by the conventional TIG welding method.

符号の説明Explanation of symbols

1,2…T型継手の上板,3…T型継手の立板,4…フラックス入りワイヤ,44…ワイヤ,5…非消耗性電極,6…アーク,7a,77a…溶融プール,7b,77b…溶接金属部,8,8b…溶接トーチ,9a…内側ノズル,9b…不活性ガス,9c…シールドガス,10a…外側ノズル,10b…酸化性ガス入り混合ガス,12…開先溝,13…継手ギャップ,14…初層溶接部,15…積層溶接部,16…隅肉溶接部,17…レーザトーチ,18…レーザビーム,19…焦点位置,
T1…上板の板厚,T2…立板の板厚,w…立板の溶け幅,C…ビード表面高さ,h…立板の溶け深さ,A…溶け幅W部分の溶接断面積,B1…上板断面積 ,L…焦点ずれ高さ
DESCRIPTION OF SYMBOLS 1, 2 ... Top plate of T type joint, 3 ... Standing plate of T type joint, 4 ... Flux-cored wire, 44 ... Wire, 5 ... Non-consumable electrode, 6 ... Arc, 7a, 77a ... Molten pool, 7b, 77b ... weld metal part, 8 and 8b ... welding torch, 9a ... inner nozzle, 9b ... inert gas, 9c ... shield gas, 10a ... outer nozzle, 10b ... mixed gas containing oxidizing gas, 12 ... groove groove, 13 ... Joint gap, 14 ... First layer weld, 15 ... Laminate weld, 16 ... Fillet weld, 17 ... Laser torch, 18 ... Laser beam, 19 ... Focus position,
T1 ... Upper plate thickness, T2 ... Vertical plate thickness, w ... Vertical melt width, C ... Bead surface height, h ... Vertical melt depth, A ... Welding cross section of weld width W , B1 ... Upper plate cross-sectional area, L ... Defocus height

Claims (8)

ステンレス鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,また,立板の板厚T2範囲は前記上板の板厚T1の2.5倍以上で5倍以下(2.5×T1≦T2≦5×T1)であり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合する方法であって,不活性ガスのシールドガスを流出するシールドガス供給手段,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで1パス溶接によって溶融接合するT型継手の貫通溶接方法において,
前記1パス溶接によって,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成することを特徴とするT型継手の貫通溶接方法。
It is a T-shaped joint made of stainless steel, and the range of the plate thickness T1 of the upper plate is 2 <T1 ≦ 6 mm, and the range of the plate thickness T2 of the upright plate is 2.5 of the plate thickness T1 of the upper plate. 2 times or more (2.5 x T1 ≤ T2 ≤ 5 x T1), and the upper plate surface that is arranged on the upper surface of the upper plate that is thicker than the plate thickness of the upper plate or two in parallel A method of melt-bonding from the upper plate surface to the lower vertical plate, which is butt-arranged, with shield gas supply means for flowing out an inert gas shield gas, or a shield containing an inert gas shield gas and an oxidizing gas A non-consumable electrode type arc welding is performed using a double shield gas supply means that flows out gas, and at the same time, a flux-cored wire filled with a flux agent that promotes penetration depth is fed to the arc welding part. However, it is melted by one-pass welding to the lower vertical plate In the through-welding method of the T-joint for joining,
By the one-pass welding, at least the melt width w on the standing plate side after penetrating the upper plate back surface is made larger than the plate thickness T1 of the upper plate (w> T1), or the penetration portion on the upper plate rear surface or the melt on the standing plate side A through-welding method for a T-shaped joint, characterized in that the weld cross-sectional area A of the width portion is formed larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1).
ステンレス鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,また,立板の板厚T2範囲は前記上板の板厚T1の2.5倍以上で5倍以下(2.5×T1≦T2≦5×T1)であり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合する方法であって,不活性ガスのシールドガスを流出するシールドガス供給手段,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで1パス溶接によって溶融接合するT型継手の貫通溶接方法において,
少なくとも下側の立板上面に該立板の板厚より薄肉の上板を1枚重ね配置又は2枚並列に突合せ配置してT型継手の形状を構成する第1工程と,
前記1パス溶接によって,少なくとも上板裏面貫通後の立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成する第2工程と,
を備えることを特徴とするT型継手の貫通溶接方法。
It is a T-shaped joint made of stainless steel, and the range of the plate thickness T1 of the upper plate is 2 <T1 ≦ 6 mm, and the range of the plate thickness T2 of the upright plate is 2.5 of the plate thickness T1 of the upper plate. 2 times or more (2.5 x T1 ≤ T2 ≤ 5 x T1), and the upper plate surface that is arranged on the upper surface of the upper plate that is thicker than the plate thickness of the upper plate or two in parallel A method of melt-bonding from the upper plate surface to the lower vertical plate, which is butt-arranged, with shield gas supply means for flowing out an inert gas shield gas, or a shield containing an inert gas shield gas and an oxidizing gas A non-consumable electrode type arc welding is performed using a double shield gas supply means that flows out gas, and at the same time, a flux-cored wire filled with a flux agent that promotes penetration depth is fed to the arc welding part. However, it is melted by one-pass welding to the lower vertical plate In the through-welding method of the T-joint for joining,
A first step of configuring the shape of the T-shaped joint by arranging at least one upper plate that is thinner than the thickness of the standing plate on the upper surface of the lower plate in a stacked or two-sided arrangement in parallel;
By the one-pass welding, at least the melt width w on the standing plate side after penetrating the upper plate back surface is made larger than the plate thickness T1 of the upper plate (w> T1), or the penetration portion on the upper plate rear surface or the melt on the standing plate side Forming the weld cross-sectional area A of the width portion larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or setting both the melt width w and the weld cross-sectional area A to w> T1 and A> B1 A second step of forming
A through-welding method for a T-shaped joint.
ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,また,立板の板厚T2範囲は前記上板の板厚T1の2.5倍以上で5倍以下(2.5×T1≦T2≦5×T1)であり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合するT型継手の貫通溶接方法において,
溶接すべき箇所に照射するレーザビームの焦点位置を前記上板表面より上側へずらした位置となるようにレーザトーチを配置し,焦点ぼかしの前記レーザビーム照射によるレーザ溶接を遂行すると同時に,ワイヤをレーザ溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成することを特徴とするT型継手の貫通溶接方法。
It is a T-shaped joint made of stainless steel material or low carbon steel material, and the plate thickness T1 range of the upper plate is 2 <T1 ≦ 6 mm, and the plate thickness T2 range of the vertical plate is the plate thickness T1 of the upper plate. Or more than 5 times (2.5 × T 1 ≦ T 2 ≦ 5 × T 1), and the upper plate surface that is arranged on the upper surface of the standing plate that is thicker than the plate thickness of the upper plate or In the T-type joint penetration welding method that melt-joins from the upper plate surface to the lower vertical plate arranged in parallel in two pieces,
The laser torch is arranged so that the focal position of the laser beam irradiated to the place to be welded is shifted upward from the surface of the upper plate, and laser welding is performed by the laser beam irradiation for defocusing, and at the same time, the wire is lasered. Melting up to the lower vertical plate while feeding to the welded portion, forming at least the melt width w on the vertical plate side after passing through the upper plate rear surface larger than the plate thickness T1 (w> T1), or the upper plate rear surface The welding cross-sectional area A of the penetration part or the melting width part on the vertical plate side is made larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or both the melting width w and the welding cross-sectional area A are w A through-welding method for a T-shaped joint, characterized in that it is formed to have a size of> T1 and A> B1.
請求項1ないし3のいずれか一つの請求項に記載のT型継手の貫通溶接方法において,
前記立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成すると同時に,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にすることを特徴とするT型継手の貫通溶接方法。
In the penetration welding method of the T type joint as described in any one of Claims 1 thru | or 3,
The melting width w on the standing plate side is formed larger than the plate thickness T1 of the upper plate (w> T1), and the bead surface height C on the upper plate side is 1 to 3 mm higher than the upper plate surface (1 ≦ C ≦ 3 mm) T-type joint penetration welding method characterized by forming a convex shape.
ステンレス鋼材又は低炭素鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,また,立板の板厚T2範囲は前記上板の板厚T1の2.5倍以上で5倍以下(2.5×T1≦T2≦5×T1)であり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合したT型継手の貫通溶接構造物において,
溶接すべき箇所に照射するレーザビームの焦点位置を前記上板表面より上側へずらした位置となるようにレーザトーチを配置し,焦点ぼかしの前記レーザビーム照射によるレーザ溶接を遂行すると同時に,ワイヤをレーザ溶接部分に送給しながら下側の立板まで溶融させ,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部を備えた構造にすることを特徴とするT型継手の貫通溶接構造物。
It is a T-shaped joint made of stainless steel material or low carbon steel material, and the plate thickness T1 range of the upper plate is 2 <T1 ≦ 6 mm, and the plate thickness T2 range of the vertical plate is the plate thickness T1 of the upper plate. Or more than 5 times (2.5 × T 1 ≦ T 2 ≦ 5 × T 1), and the upper plate surface that is arranged on the upper surface of the standing plate that is thicker than the plate thickness of the upper plate or In a T-type joint penetration welded structure that is melt-bonded from the upper plate surface to the lower vertical plate arranged in parallel in two pieces,
The laser torch is arranged so that the focal position of the laser beam irradiated to the place to be welded is shifted upward from the surface of the upper plate, and laser welding is performed by the laser beam irradiation for defocusing, and at the same time, the wire is lasered. Melting up to the lower vertical plate while feeding to the welded portion, forming at least the melt width w on the vertical plate side after passing through the upper plate rear surface larger than the plate thickness T1 (w> T1), or the upper plate rear surface The welding cross-sectional area A of the penetration part or the melting width part on the vertical plate side is made larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or both the melting width w and the welding cross-sectional area A are w A T-type joint penetration welding structure characterized by having a structure including a weld metal portion formed in a size of> T1 and A> B1.
ステンレス鋼材からなるT型継手であって,かつ,上板の板厚T1範囲が2<T1≦6mmであり,また,立板の板厚T2範囲は前記上板の板厚T1の2.5倍以上で5倍以下(2.5×T1≦T2≦5×T1)であり,前記上板の板厚より厚肉の立板上面に1枚重ね配置された上板表面又は2枚並列に突合せ配置された上板表面から下側の立板まで溶融接合した構造物であって,不活性ガスのシールドガスを流出するシールドガス供給手段,又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を遂行すると同時に,溶け込み深さ促進性のフラックス剤が充填されているフラックス入りワイヤをアーク溶接部分に送給しながら下側の立板まで1パス溶接によって溶融接合したT型継手の貫通溶接構造物において,
前記1パス溶接によって,少なくとも上板裏面貫通後の立板側の溶け幅wを上板の板厚T1より大きく(w>T1)形成,又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上板側の板厚断面積B1より大きく(A>B1)形成,又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶接金属部を備えた構造にすることを特徴とするT型継手の貫通溶接構造物。
It is a T-shaped joint made of stainless steel, and the range of the plate thickness T1 of the upper plate is 2 <T1 ≦ 6 mm, and the range of the plate thickness T2 of the upright plate is 2.5 of the plate thickness T1 of the upper plate. 2 times or more (2.5 x T1 ≤ T2 ≤ 5 x T1), and the upper plate surface that is arranged on the upper surface of the upper plate that is thicker than the plate thickness of the upper plate or two in parallel It is a structure that is melt-bonded from the upper plate surface to the lower vertical plate that are arranged in abutment, and that contains shield gas supply means that flows out the inert gas shield gas, or contains inert gas shield gas and oxidizing gas. A non-consumable electrode type arc welding is performed using a double shield gas supply means that flows out of the shielding gas, and at the same time, a flux-cored wire filled with a flux agent promoting penetration depth is fed to the arc welding part. However, by one-pass welding to the lower vertical plate In the through-welded structure of fusion bonding the T-shaped joint,
By the one-pass welding, at least the melt width w on the vertical plate side after penetrating the upper plate back surface is formed larger than the plate thickness T1 (w> T1), or the melt width on the through portion of the upper plate rear surface or the vertical plate side The weld cross-sectional area A of the portion is formed larger than the plate thickness cross-sectional area B1 on the upper plate side (A> B1), or both the melt width w and the weld cross-sectional area A are set to w> T1 and A> B1 A through-welded structure for a T-shaped joint, characterized in that the structure has a formed weld metal part.
請求項5又は6に記載のT型継手の貫通溶接構造物において,
前記立板側の溶け幅wを前記上板の板厚T1より大きく(w>T1)形成すると同時に,上板側のビード表面高さCを上板表面より1〜3mm高く(1≦C≦3mm)形成して凸形状にした溶接金属部を備えた構造にすることを特徴とするT型継手の貫通溶接構造物。
In the penetration welded structure of the T-shaped joint according to claim 5 or 6,
The melting width w on the standing plate side is formed larger than the plate thickness T1 of the upper plate (w> T1), and the bead surface height C on the upper plate side is 1 to 3 mm higher than the upper plate surface (1 ≦ C ≦ 3 mm) A through-welded structure for a T-shaped joint, characterized in that it has a structure including a weld metal part formed into a convex shape.
請求項5又は6に記載のT型継手の貫通溶接構造物において,
前記非消耗電極方式のアーク溶接による1パス溶接又は前記焦点ぼかしのレーザビーム照射によるレーザ溶接によって、前記立板側の溶け幅wが上板の板厚T1よりも大きく(w>T1),又は前記溶接断面積Aが上板側の板厚断面積B1よりも大きく(A>B1),又は前記溶け幅w及び前記溶接断面積Aの両方が大きく(w>T1及びA>B1)形成された前記溶接金属部は,原子力機器又は火力機器又は自動車機器のいずれかに適用されるT型継手に形成されていることを特徴とするT型継手の貫通溶接構造物。
In the penetration welded structure of the T-shaped joint according to claim 5 or 6,
The melt width w on the vertical plate side is larger than the plate thickness T1 (w> T1) by one-pass welding by the non-consumable electrode type arc welding or laser welding by the laser beam irradiation of the focal blur, or The weld cross section A is larger than the plate thickness cross section B1 on the upper plate side (A> B1), or both the melt width w and the weld cross section A are large (w> T1 and A> B1). Further, the weld metal part is formed in a T-type joint applied to any of nuclear equipment, thermal equipment, or automobile equipment, and a T-type joint penetration welded structure.
JP2008021681A 2008-01-31 2008-01-31 T-type joint penetration welding method and penetration welded structure Expired - Fee Related JP5153368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008021681A JP5153368B2 (en) 2008-01-31 2008-01-31 T-type joint penetration welding method and penetration welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021681A JP5153368B2 (en) 2008-01-31 2008-01-31 T-type joint penetration welding method and penetration welded structure

Publications (2)

Publication Number Publication Date
JP2009178761A JP2009178761A (en) 2009-08-13
JP5153368B2 true JP5153368B2 (en) 2013-02-27

Family

ID=41033137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008021681A Expired - Fee Related JP5153368B2 (en) 2008-01-31 2008-01-31 T-type joint penetration welding method and penetration welded structure

Country Status (1)

Country Link
JP (1) JP5153368B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105171243A (en) * 2015-10-23 2015-12-23 南京南车浦镇城轨车辆有限责任公司 Laser-arc hybrid welding method of medium-thickness board corner joint
WO2017045477A1 (en) * 2015-09-17 2017-03-23 中建钢构有限公司 Nightside inclined-vertical-butting welding method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102126088B (en) * 2011-01-13 2013-05-08 哈尔滨工业大学 Double-sided laser arc composite welding method for thick plate T-joint
CA2841364A1 (en) * 2011-07-19 2013-01-24 Magna International Inc. Method of welding work pieces together
CN103447677B (en) * 2013-09-12 2015-12-02 浙江海洋学院 The anti-deformation method of a kind of factory ship T profile
CN104227191B (en) * 2014-09-10 2016-04-20 北京工业大学 A kind of low back pressure penetrating arc welder and method
JP2018079502A (en) * 2016-11-18 2018-05-24 日産自動車株式会社 Welding quality judgment method
CN113385839A (en) * 2021-07-07 2021-09-14 上海交通大学 Method for improving laser welding seam strength of panel and web plate in T-shaped joint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8310630D0 (en) * 1983-04-20 1983-05-25 British Shipbuilders Eng Laser welding
JPS5913577A (en) * 1982-07-15 1984-01-24 Mitsubishi Heavy Ind Ltd T-joint welding method
JPH05177373A (en) * 1991-12-26 1993-07-20 Sekisui Chem Co Ltd T-shaped welding method by laser beam
JPH09150294A (en) * 1995-11-29 1997-06-10 Kobe Steel Ltd Filler metal for tig arc welding
FR2846898B1 (en) * 2002-11-07 2005-07-15 Snecma Moteurs METHOD FOR LASER WELDING IN ONE PASS OF A T-ASSEMBLY OF METAL PARTS
JP2007090386A (en) * 2005-09-29 2007-04-12 Hitachi Ltd Two-sided welding process and welded structure formed thereby

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045477A1 (en) * 2015-09-17 2017-03-23 中建钢构有限公司 Nightside inclined-vertical-butting welding method
US10350694B2 (en) 2015-09-17 2019-07-16 China Construction Steel Structure Corp. Ltd. Nightside inclined-vertical-butting welding method
CN105171243A (en) * 2015-10-23 2015-12-23 南京南车浦镇城轨车辆有限责任公司 Laser-arc hybrid welding method of medium-thickness board corner joint

Also Published As

Publication number Publication date
JP2009178761A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5153368B2 (en) T-type joint penetration welding method and penetration welded structure
EP2511041B1 (en) A hybrid welding apparatus and system and method of welding
US8253061B2 (en) Hybrid laser arc welding process and apparatus
US8253060B2 (en) Hybrid laser arc welding process and apparatus
US20140027414A1 (en) Hybrid welding system and method of welding
WO2012121086A1 (en) Method for bonding dissimilar metals to each other
AU4205901A (en) Laser/arc hybrid welding process with appropriate gas mixture
EP2596896B1 (en) Welding system and process with a laser device, a GMAW device and a GTAW device
JP5318543B2 (en) Laser-arc combined welding method
JP4326492B2 (en) Dissimilar materials joining method using laser welding
JP5164870B2 (en) Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP5416422B2 (en) Laser-arc combined welding method
JP4978121B2 (en) Butt joining method of metal plates
JP2006231359A (en) Welding method and structure welded by the method
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JP2008238265A (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP2008200750A (en) One side arc spot welding method
JP2007196266A (en) Both-side welding method and weld structure thereby
JP5268594B2 (en) Welding method of type I joint, type I welded joint, and welded structure using the same
JP4871747B2 (en) Double-side welding method
JP2003001453A (en) Combined heat source welding method
JP2006088174A (en) Method for joining dissimilar materials
CN113210870A (en) Efficient laser-electric arc composite heat source high-strength steel pipeline straight seam welding process
Jokinen Novel ways of using Nd: YAG laser for welding thick section austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5153368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees