JP5164870B2 - Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same - Google Patents

Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same Download PDF

Info

Publication number
JP5164870B2
JP5164870B2 JP2009010486A JP2009010486A JP5164870B2 JP 5164870 B2 JP5164870 B2 JP 5164870B2 JP 2009010486 A JP2009010486 A JP 2009010486A JP 2009010486 A JP2009010486 A JP 2009010486A JP 5164870 B2 JP5164870 B2 JP 5164870B2
Authority
JP
Japan
Prior art keywords
plate
welding
welded
shaped
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009010486A
Other languages
Japanese (ja)
Other versions
JP2010167425A (en
Inventor
昭慈 今永
栄次 芦田
健 尾花
湘 多羅沢
昌哉 岡田
和彦 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009010486A priority Critical patent/JP5164870B2/en
Publication of JP2010167425A publication Critical patent/JP2010167425A/en
Application granted granted Critical
Publication of JP5164870B2 publication Critical patent/JP5164870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、立板上下面に薄板の平板を溶接する上下T型継手の溶接方法及びその上下T型溶接継手並びにこれを用いた溶接構造物に関する。   The present invention relates to a welding method for an upper and lower T-shaped joint for welding a thin flat plate to the upper and lower surfaces of the standing plate, an upper and lower T-shaped welded joint, and a welded structure using the same.

高エネルギー密度の電子ビームやレーザビームを用いたT型継手の貫通溶接方法が提案されている。   A through-welding method for T-shaped joints using a high energy density electron beam or laser beam has been proposed.

例えば、特許文献1に記載のT型継手の貫通溶接方法では、下板の上板と接する面を凹状に形成し、上板表面から電子ビームを照射して上板の溶接金属を前記凹状の部分で受け止めることが開示されている。従来の溶接工程では困難な厚板のT型継手部材を対象に、電子ビーム溶接によって上板を溶融及び貫通して下板側まで容易に溶融接合できる。   For example, in the through-welding method for a T-shaped joint described in Patent Document 1, a surface in contact with the upper plate of the lower plate is formed in a concave shape, and an electron beam is irradiated from the surface of the upper plate to cause the weld metal of the upper plate to be in the concave shape. It is disclosed to take part. Targeting thick T-shaped joint members that are difficult in the conventional welding process, the upper plate can be melted and penetrated by electron beam welding and easily melted to the lower plate side.

特許文献2に記載の溶接方法及びこれを用いて接合された構造体では、従来のアーク溶接では困難な継手構造の車体フレームを対象に、接合箇所となる略板状箇所を有する部材に他の部材の接合箇所を当接し、前記他の部材が当接する面とは反対側の部材面から所定の貫通溶接手段(レーザ溶接手段,電子ビーム溶接手段)を用いて貫通溶接処理することが開示されている。レーザ溶接は、光学レンズ等によって集光化及び高エネルギー密度化したレーザビームを部材に照射して溶融するため、上記貫通溶接が可能である。   In the welding method described in Patent Document 2 and a structure joined using the welding method, a vehicle body frame having a joint structure that is difficult by conventional arc welding is used as a target for a member having a substantially plate-like portion as a joining portion. It is disclosed that through welding processing is performed using a predetermined through welding means (laser welding means, electron beam welding means) from a member surface opposite to a surface on which the other member abuts while abutting a joint portion of the member. ing. Since the laser welding is performed by irradiating a member with a laser beam condensed and optically densified by an optical lens or the like to melt the member, the above-described through welding is possible.

特許文献3に記載のアルミニウム合金の中空材及びその製造方法では、断面櫛型形状のソリッド押出形材と、このソリッド形材の櫛歯部に対向する板材と、前記ソリッド形材の櫛歯部の先端部と前記板材との接触部を溶着する溶接部とから構成することが開示されている。また、前記ソリッド形材の櫛歯部に対向させて板材を載置して、前記ソリッド形材の櫛歯部の先端部と前記板材との接触部を溶接することが開示されている。ソリッド形材の櫛歯部の先端部と前記板材との接触部(T型継手部)を、主にレーザ溶接によって溶接するようにしている。また、特許文献3には、レーザ溶接の代わりに、MIG溶接又はTIG溶接を使用してもよいと記載されている。MIG溶接では、下側の櫛歯部まで溶融接合するために、上側の板材に予め穴を設けておき、この穴部からプラグ溶接(MIGアークスポット溶接)して下側の櫛歯部まで接合するようにしている。   In the hollow material of aluminum alloy and the manufacturing method thereof described in Patent Document 3, a solid extruded shape having a cross-sectional comb shape, a plate material facing the comb teeth of the solid shape, and the comb teeth of the solid shape It is disclosed that the contact portion between the front end portion of the plate and the plate member is welded. Further, it is disclosed that a plate material is placed facing the comb tooth portion of the solid shape member and a contact portion between the tip portion of the solid shape member and the plate material is welded. The contact portion (T-shaped joint portion) between the tip portion of the comb tooth portion of the solid shape member and the plate member is welded mainly by laser welding. Patent Document 3 describes that MIG welding or TIG welding may be used instead of laser welding. In MIG welding, in order to melt and bond to the lower comb tooth portion, a hole is provided in the upper plate in advance, and from this hole portion, plug welding (MIG arc spot welding) is performed to join the lower comb tooth portion. Like to do.

一方、フラックス入りワイヤを用いた溶け込みの深いTIG溶接方法が以下の文献に開示されている。   On the other hand, a deep penetration TIG welding method using a flux cored wire is disclosed in the following documents.

例えば、特許文献4に記載のTIG溶接方法では、金属酸化物を6質量%以上含有するフラックスを内包したフラックス入りワイヤを溶加材として使用し、溶融金属中に前記金属酸化物を0.05〜3g/分供給しながらTIG溶接することが開示されている。また、金属酸化物を6%以上含有したフラックス入りワイヤを所定量供給しながらTIG溶接して深い溶け込み部を得るようにしている。特に、板厚9mmのI型突合せ継手を表面側から片面溶け込み溶接試験した溶け込み深さの測定結果を示している。   For example, in the TIG welding method described in Patent Document 4, a flux-cored wire including a flux containing 6% by mass or more of a metal oxide is used as a filler material, and the metal oxide is added to a molten metal by 0.05. It is disclosed that TIG welding is performed while supplying -3 g / min. Further, a deep penetration portion is obtained by TIG welding while supplying a predetermined amount of a flux-cored wire containing 6% or more of a metal oxide. In particular, a measurement result of a penetration depth obtained by performing a one-side penetration welding test on a 9 mm-thick I-type butt joint from the surface side is shown.

特許文献5に記載のTIG溶接用フラックス入りワイヤでは、I型継手の溶接への適用で深い溶け込み部を得るため、フラックスがSiO2とCr23とで構成され、この混合比率はSiO2が20〜80重量%、Cr23が20〜80重量%であり、このフラックスが前記フラックス入りワイヤに5〜25重量%の比率で充填されていることが開示されている。板厚8mmステンレス鋼の平板にビードオンプレート溶接した試験結果が開示されている。 In the flux-cored wire for TIG welding described in Patent Document 5, the flux is composed of SiO 2 and Cr 2 O 3 in order to obtain a deep penetration portion by application to welding of an I-type joint, and the mixing ratio is SiO 2. Is 20 to 80% by weight and Cr 2 O 3 is 20 to 80% by weight, and it is disclosed that this flux-filled wire is filled in a ratio of 5 to 25% by weight. Test results of bead-on-plate welding to a flat plate of 8 mm thick stainless steel are disclosed.

特許文献6に記載のTIG溶接法では、第1部材の開先表側における第2部材の中心線上でアークを発生させると共に、溶接部に交番磁界を与えながら溶接することが開示されている。アーク溶接中に交番磁界を与えてながら溶融部を攪拌してT型継手の左右裏面部に裏ビードを形成するようにしている。   In the TIG welding method described in Patent Document 6, it is disclosed that an arc is generated on the center line of the second member on the groove front side of the first member and welding is performed while an alternating magnetic field is applied to the welded portion. While applying an alternating magnetic field during arc welding, the melted portion is agitated to form back beads on the left and right back portions of the T-shaped joint.

特許文献7に記載のTIG溶接装置及び方法では、不活性ガスからなる第1のシールドガスを電極の外周を囲むように被溶接物に向けて流すと共に、前記第1のシールドガスの周辺側に酸化性ガスを含む第2のシールドガスを被溶接物に向けて流しながら溶接し、溶接金属部の酸素濃度を70〜220wt.ppmの範囲にすることが開示されている。また、特許文献7には、第2のシールドガスの酸素濃度若しくは二酸化炭素濃度と溶接金属部の溶け幅及び深さとの関係から、酸化性ガス(O2ガスやCO2ガス)と不活性ガス(Arガス)との混合ガスをアーク溶接部分に流して溶け込み深さを増加させることが開示されている。 In the TIG welding apparatus and method described in Patent Document 7, the first shield gas made of an inert gas is caused to flow toward the work piece so as to surround the outer periphery of the electrode, and at the periphery of the first shield gas. It is disclosed that welding is performed while flowing a second shield gas containing an oxidizing gas toward an object to be welded, so that the oxygen concentration of the weld metal portion is in the range of 70 to 220 wt.ppm. Patent Document 7 discloses an oxidizing gas (O 2 gas or CO 2 gas) and an inert gas based on the relationship between the oxygen concentration or carbon dioxide concentration of the second shield gas and the melting width and depth of the weld metal part. It is disclosed that a mixed gas with (Ar gas) is caused to flow through the arc welding portion to increase the penetration depth.

特許文献8には、摩擦攪拌接合によってT継手を形成することが開示されている。摩擦攪拌接合方法は、摩擦攪拌用のプローブを挿入して低融点材のアルミニウム継手材料を摩擦攪拌接合するものであって、前記プローブを用いて前記アルミニウム継手材料を固相接合(融点以下の状態で接合)するものである。この摩擦攪拌接合方法は、材料を溶融させることがなく軟化状態で一方のワークと他方のワークとを接合する。すなわち、特許文献8では、第1ワークの下面に溝を設け、前記溝に第2ワークを嵌合し、第1ワークの上面側から摩擦攪拌プローブを第2ワークの肉に及ぶように作用せしめ、第1ワークと第2ワークとを摩擦攪拌接合することによってT継手を形成することが開示されている。   Patent Document 8 discloses forming a T joint by friction stir welding. The friction stir welding method is a method in which a friction stir probe is inserted to friction stir weld an aluminum joint material of a low melting point material, and the aluminum joint material is solid-phase joined (state below the melting point) using the probe. To be joined). This friction stir welding method joins one workpiece and the other workpiece in a softened state without melting the material. That is, in Patent Document 8, a groove is provided on the lower surface of the first workpiece, the second workpiece is fitted into the groove, and the friction stir probe is caused to reach the flesh of the second workpiece from the upper surface side of the first workpiece. It is disclosed that a T joint is formed by friction stir welding of a first work and a second work.

一方、特許文献9は、溶け込み促進剤を塗布したI型突合せ継手部の表側と裏側の両面から遂行する非消耗電極方式のアーク溶接によって板厚中央部で融合し合った溶け込み形状の両面溶接部を形成することが開示されている。I型突合せ表面に溶け込み促進剤を塗布した後に表裏両面から溶接することが開示されている。   On the other hand, Patent Document 9 discloses a double-sided welded portion having a penetration shape fused at the center of the plate thickness by non-consumable electrode type arc welding performed from both the front and back sides of the I-type butt joint portion coated with a penetration accelerator. Is disclosed. It is disclosed that welding is applied from both the front and back sides after applying a penetration accelerator to the I-type butt surface.

特開昭63−203286号公報(特に、第2頁左上欄第16行〜同頁右上欄第4行,第1図)JP-A-63-203286 (particularly, page 2, upper left column, line 16 to page upper right column, line 4, FIG. 1) 特開2003−334680号公報(特に、段落0029,0030,図3)JP 2003-334680 A (in particular, paragraphs 0029 and 0030, FIG. 3) 特開平6−23451号公報(特に、段落0007〜0010,図1,図2)JP-A-6-23451 (particularly, paragraphs 0007 to 0010, FIGS. 1 and 2) 特開2001−219274号公報(特に、段落0009,0010)JP 2001-219274 A (particularly paragraphs 0009 and 0010) 特開2001−1183号公報(特に、段落0006〜0008)JP 2001-1183 A (particularly paragraphs 0006 to 0008) 特開昭59−13577号公報(特に、第1頁右下欄第4〜17行,第1図)JP 59-13577 (in particular, page 1, lower right column, lines 4 to 17, line 1) 特開2004−298963号公報(特に、段落0014〜0016,図1,図11,図15)JP 2004-298963 A (in particular, paragraphs 0014 to 0016, FIGS. 1, 11, and 15) 特開平11−28581号公報(特に、段落0012〜0014,図1,図2)JP 11-28581 A (particularly paragraphs 0012 to 0014, FIGS. 1 and 2) 特開2006−231359号公報(特に、段落0035〜0039,図1)JP 2006-231359 A (particularly, paragraphs 0035 to 0039, FIG. 1)

特許文献1に開示された技術では、大気を排除する真空装置や溶接する部材を収納する大きな真空チャンバー等の特殊な環境設備が必要になり、新たな設備投資に伴って製造コストが高騰するという問題がある。また、特許文献1では、電子ビームによる貫通溶接がキーホール型の溶け込み形状になり、溶け幅が極めて狭いため溶接断面積が小さく、部材の板厚強度より低い強度しか得られない。キーホール型の溶け込み溶接は、スパッタ(溶融金属の飛散)も発生し易いという問題がある。   The technology disclosed in Patent Document 1 requires special environmental equipment such as a vacuum device that excludes the atmosphere and a large vacuum chamber that accommodates a member to be welded, and production costs increase with new capital investment. There's a problem. Moreover, in patent document 1, penetration welding by an electron beam becomes a keyhole-type penetration shape, and since the melting width is extremely narrow, the weld cross-sectional area is small and only a strength lower than the plate thickness strength of the member can be obtained. Keyhole type penetration welding has a problem that spatter (spattering of molten metal) is also likely to occur.

特許文献2に開示された技術では、レーザ溶接のキーホール型の溶け込み形状であって溶け幅が狭いため、溶接強度に相関関係のある溶接断面積が小さくなり易い。また、溶接中にスパッタが発生し易い。このレーザ溶接には、添加ワイヤ又はフラックス入りワイヤは使用されていない。さらに、レーザ溶接は、レーザ発信器等の特殊な設備が必要であり、電子ビーム溶接と同様に、安価なアーク溶接設備と比べて何れも高価である。また、特許文献2では、電子ビーム溶接でも前記レーザ溶接と同様に遂行できると明記されているが、大気を排除する真空装置や溶接する部材を収納する真空チャンバー等の特殊な環境設備が必要となるため、溶接前の準備や溶接後の搬出に時間がかかり、溶接部位の移動や回転を要する複雑形状の溶接には不向きである。   The technique disclosed in Patent Document 2 is a keyhole-type penetration shape for laser welding and has a narrow melting width, so that the welding cross-sectional area correlated with the welding strength tends to be small. Also, spatter is likely to occur during welding. No additive wire or flux-cored wire is used for this laser welding. Furthermore, laser welding requires special equipment such as a laser transmitter, and is expensive as compared with inexpensive arc welding equipment, like electron beam welding. Patent Document 2 specifies that electron beam welding can be performed in the same manner as the laser welding, but requires special environmental equipment such as a vacuum device for eliminating the atmosphere and a vacuum chamber for housing a member to be welded. Therefore, it takes time for preparation before welding and unloading after welding, and it is not suitable for welding in a complicated shape that requires movement and rotation of the welding site.

特許文献3に開示されたレーザ溶接では、光学レンズ等によって集光化及び高エネルギー密度化したレーザビームを部材に照射して溶融するため、前記下側の櫛歯部までの貫通溶接が可能であるが、キーホール型の溶け込み形状であって溶け幅が狭いため、溶接強度に相関関係のある溶接断面積が小さく成り易い。なお、このレーザ溶接には、添加ワイヤ又はフラックス入りワイヤは使用されていない。また、溶接対象の中空材はアルミニウム合金であり、材質や特性及び融点が全く異なる材料であるステンレス鋼や低炭素鋼に適用することが記載されていない。   In the laser welding disclosed in Patent Document 3, the member is irradiated with a laser beam condensed and increased in energy density by an optical lens or the like to melt the member, so that penetration welding to the lower comb tooth portion is possible. However, since it is a keyhole-type penetration shape and the melting width is narrow, the weld cross-sectional area having a correlation with the welding strength tends to be small. Note that no additive wire or flux-cored wire is used in this laser welding. Further, the hollow material to be welded is an aluminum alloy, and it is not described that it is applied to stainless steel or low carbon steel, which are materials having completely different materials, characteristics, and melting points.

特許文献4に開示された技術では、フラックス入りワイヤの送給量の増減や送給方向によって溶け込み深さやワイヤ溶融状態が大きく変化するという問題がある。また、特許文献4は、上下T型継手の溶接を想定していない。   The technique disclosed in Patent Document 4 has a problem that the penetration depth and the wire melting state vary greatly depending on the increase / decrease of the feeding amount of the flux-cored wire and the feeding direction. Further, Patent Document 4 does not assume welding of the upper and lower T-shaped joints.

特許文献5に開示された技術では、前記特許文献3の場合と同様に、フラックス入りワイヤの送給量の増減や送給方向によって溶け込み深さやワイヤ溶融状態が大きく変化するという問題がある。また、特許文献5は、上下T型継手の溶接は想定していない。   In the technique disclosed in Patent Document 5, similarly to the case of Patent Document 3, there is a problem that the penetration depth and the wire melting state vary greatly depending on the increase / decrease of the feeding amount of the flux-cored wire and the feeding direction. Patent Document 5 does not assume welding of the upper and lower T-shaped joints.

特許文献6に開示された技術では、上板表面には溝状の開先が設けられており、開先上部まで積層するために複数パスの溶接工程が必要となり煩雑である。また、特許文献6では、交番磁界を与えるために特殊な交番磁界装置を使用する必要があり、新たな設備投資に伴って製造コストが高騰するという問題がある。   In the technique disclosed in Patent Document 6, a groove-like groove is provided on the surface of the upper plate, and a multi-pass welding process is required for stacking up to the upper part of the groove, which is complicated. Moreover, in patent document 6, it is necessary to use a special alternating magnetic field apparatus in order to give an alternating magnetic field, and there exists a problem that manufacturing cost rises with new capital investment.

特許文献7に開示された技術では、フラックス入りワイヤを使用しない平板上での溶け込みについて検討されており、上下T型継手の溶接,突合せ継手の溶接は想定していないため、T型継手の溶け込みについて検討されていない。   In the technique disclosed in Patent Document 7, penetration on a flat plate not using a flux-cored wire has been studied, and welding of upper and lower T-type joints and butt joints is not assumed. Has not been studied.

特許文献8に開示された摩擦攪拌接合方法では、外部から溶接ワイヤ(例えば、フラックス入りワイヤやソリッドワイヤ)を接合部分に送給・溶着することができないため、接合表面側を凸形状にできないという問題がある。   In the friction stir welding method disclosed in Patent Document 8, a welding wire (for example, a flux-cored wire or a solid wire) cannot be fed and welded to the joint portion from the outside, so that the joint surface side cannot be convex. There's a problem.

特許文献9は、溶け込み促進剤(複数の金属酸化物混合のフラックス剤)の塗布後に溶接した溶融底部に微小なポロシティ(フラックス巻き込みの溶接欠陥)が発生することがあり、また、溶け込み形状の曲りや片寄りによる溶け不足が発生することがあるという問題があった。この問題は、溶け込み促進剤を塗布する前にギャップ部分及びその近傍を溶融封止すると共に、溶融封止後の継手表面に溶け込み促進剤を塗布する時の塗布膜厚を20μm以上形成することにより改善できるが、上記溶融封止の作業追加,溶け込み促進剤の刷毛塗り作業の技量アップ及び時間増加が必要になるという新たな問題が生じた。また、特許文献9は、上下T型継手の溶接は想定していない。   In Patent Document 9, there is a case where minute porosity (welding defect of flux entrainment) is generated in the melted bottom portion welded after application of a penetration accelerator (flux agent mixed with a plurality of metal oxides), and the penetration shape is bent. There was a problem that insufficient melting due to misalignment or misalignment may occur. This problem is caused by melting and sealing the gap portion and its vicinity before applying the penetration accelerator, and forming a coating film thickness of 20 μm or more when applying the penetration accelerator to the joint surface after fusion sealing. Although it can be improved, new problems have arisen in that it is necessary to add work for melting and sealing, to improve the skill of brushing work of the penetration accelerator, and to increase the time. Further, Patent Document 9 does not assume welding of the upper and lower T-shaped joints.

本発明は、前記技術の種々の点を考慮してなされたものであり、健全な溶接金属部及び十分な溶接強度を得るのに有効な上下T型継手の溶接方法及びその上下T型溶接継手並びにこれを用いた溶接構造物を提供することを目的とする。   The present invention has been made in consideration of various aspects of the above-described technique, and is a method for welding an upper and lower T-shaped joint effective for obtaining a sound weld metal part and sufficient welding strength, and the upper and lower T-shaped welded joint. It is another object of the present invention to provide a welded structure using the same.

上記課題を解決する本発明の特徴は、ワイヤを用いたアーク溶接またはレーザ溶接により上下T型溶接を行う方法であって、溶接により上板及び下板表面から立板側までの特定の溶け込み形状よりなる溶接金属部を形成する溶接方法にある。   A feature of the present invention that solves the above problem is a method of performing vertical T-type welding by arc welding or laser welding using a wire, and a specific penetration shape from the upper plate and lower plate surfaces to the vertical plate side by welding A welding method for forming a weld metal part.

本発明におけるアーク溶接は、アークの熱エネルギーを用いて高融点材のステンレス鋼又は低炭素鋼の継手材料を溶融接合(融点以上の状態で接合)するものである。上記目的を達成するために、本発明は、立板の上下両面に上板及び下板が各々配置されたステンレス鋼板からなるT型継手であって、上板及び下板の板厚T1範囲が2<T1≦6mmであり、立板の板厚T2範囲が前記板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、前記立板の上下両面に1枚ずつ配置された各板表面、又は前記立板の上下両面に2枚ずつ並列に突合せ配置された各板表面から立板側まで溶接する上下T型継手の溶接方法において、不活性ガスのシールドガスを流出するシールドガス供給手段、又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤをアーク溶接部分に送給しながら前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えることを特徴とする。   The arc welding in the present invention is a method in which a high-melting-point stainless steel or low-carbon steel joint material is fusion-bonded (joined in a state higher than the melting point) using the thermal energy of the arc. In order to achieve the above object, the present invention is a T-shaped joint made of a stainless steel plate in which an upper plate and a lower plate are respectively disposed on the upper and lower surfaces of a standing plate, and the thickness T1 range of the upper plate and the lower plate is within a range. 2 <T1 ≦ 6 mm, and the plate thickness T2 range of the vertical plate is 2 to 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1). In the welding method of the upper and lower T-shaped joints for welding from the respective plate surfaces arranged one by one or from the respective plate surfaces arranged in parallel to each other on the upper and lower surfaces of the standing plate to the standing plate side, the shielding gas of the inert gas A non-consumable electrode type arc welding using a shield gas supply means for flowing out a gas, or a double shield gas supply means for flowing out a shield gas containing an inert gas and a shield gas containing an oxidizing gas. Separate from the lower plate surface facing the upper side At the same time, the flux-cored wire with penetration depth promoting properties is melted separately to the vertical plate side while being fed to the arc welding part, and at least after the back surface penetrates from the upper plate surface or the lower plate surface Each melt width w of the standing plate is formed to be larger than the thickness T1 of the upper plate and the lower plate (w> T1), or the melt width w is formed to a size of w> T1, and at the same time the bead surface height C is set to Formed into a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface, or the welding cross-sectional area A of the penetration portion of the back surface of the upper plate and the lower plate or the melting width portion of the standing plate is the upper plate and the lower plate Or a weld metal part having a penetration shape in which both the melt width w and the weld cross-sectional area A are formed in a size of w> T1 and A> B1. It is provided on both upper and lower sides of the mold joint.

また、本発明は、立板の上下両面に上板及び下板が各々配置されたステンレス鋼板からなるT型継手であって、上板及び下板の板厚T1範囲が2<T1≦6mmであり、立板の板厚T2範囲が前記板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、前記立板の上下両面に1枚ずつ配置された各板表面、又は前記立板の上下両面に2枚ずつ並列に突合せ配置された各板表面から立板側まで溶接する上下T型継手の溶接方法において、溶接すべき箇所に照射するレーザビームの焦点位置を前記板表面より上側へずらした位置となるようにレーザトーチを配置し、焦点ぼかしの前記レーザビーム照射によるレーザ溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、レーザ溶接部分にワイヤを送給しながら前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えることを特徴とする。   Further, the present invention is a T-shaped joint made of stainless steel plates in which an upper plate and a lower plate are respectively arranged on the upper and lower surfaces of a standing plate, and the thickness T1 range of the upper plate and the lower plate is 2 <T1 ≦ 6 mm. Yes, the plate thickness T2 range of the standing plate is not less than 2 times and not more than 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1), and each plate is disposed on each of the upper and lower surfaces of the standing plate. In the welding method of the upper and lower T-shaped joints for welding from the surface or from the surface of each plate arranged in parallel to each other on the upper and lower surfaces of the vertical plate to the vertical plate side, the focal position of the laser beam irradiated to the place to be welded The laser torch is disposed so as to be shifted to the upper side from the plate surface, and laser welding by the laser beam irradiation for defocusing is performed separately from the upper plate surface or the lower plate surface facing the upper side. At the same time as performing the wire on the laser welding part Each piece is melted separately to the standing plate side while being fed, and at least the melting width w of the standing plate after passing through the back surface from the upper plate surface or the lower plate surface is the thickness of the upper plate and the lower plate. Forming larger than T1 (w> T1), or forming the melt width w to a size of w> T1, and simultaneously forming a bead surface height C 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm) Or the welding cross-sectional area A of the penetration part of the back surface of the upper plate and the lower plate or the melting width portion of the standing plate is larger than the plate thickness cross-sectional area B1 of the upper plate and the lower plate (A> B1), or the melting Penetration weld metal parts in which both the width w and the weld cross-sectional area A are formed in a size of w> T1 and A> B1 are provided on both upper and lower sides of the T-shaped joint.

特に、前記立板の上下両面に上板及び下板を2枚ずつ並列に各々突合せ配置する時には、各突合せ部にギャップGが殆どない状態又はあっても前記板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に設定し、その後に、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行し、前記立板側の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部をT型継手の上下両側に備えるとよい。   In particular, when two upper and lower plates are butt-arranged in parallel on both the upper and lower surfaces of the standing plate, the gap G is not present in each butt portion or even if it is less than 0.2 times the plate thickness T1. Is set to a small gap G range (0 ≦ G ≦ 0.2 × T1), and thereafter, non-consumable electrode type arc welding using the flux-cored wire or laser welding using the laser beam with the focus blurring is performed. It is performed separately from the upper plate surface or the lower plate surface facing the upper side, and the melting width w on the standing plate side is such that the size of w> T1 or the welding cross-sectional area A is A> B1 Or a weld metal part having a penetration shape in which both the melt width w and the weld cross-sectional area A have a size of w> T1 and A> B1 may be provided on both upper and lower sides of the T-shaped joint. .

また、立板の上面に上板を1枚配置又は2枚並列に突合せ配置して溶接する時には、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、少なくとも前記上側の板表面から裏面貫通後の立板側の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の片側に備えるとすることもできる。   Further, when welding by placing one upper plate on the upper surface of the standing plate or placing two upper plates in parallel but facing each other, arc welding of the non-consumable electrode method using the flux-cored wire or the laser beam for defocusing was used. By performing laser welding, at least the melt width w from the upper plate surface after passing through the back surface is formed larger than the upper plate thickness T1 (w> T1), or the melt width w is w> T1. At the same time, the bead surface height C is formed in a convex shape 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or the weld cross section of the penetration portion on the back side of the upper plate or the melt width portion on the standing plate side A weld metal having a penetration shape in which A is formed to be larger than the upper plate thickness cross-sectional area B1 (A> B1), or both the melt width w and the weld cross-sectional area A are w> T1 and A> B1. On one side of the T-joint It can also be provided.

また、少なくとも前記立板の上下両面に上板及び下板を1枚配置又は2枚並列に突合せ配置して上下T型継手の形状を構成する第1工程と、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接の遂行によって上側の板表面から立板側まで溶接し、前記上側の板表面から裏面貫通後の立板の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は上板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の片方に備える第2工程と、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接の遂行によって前記上側と対向する下側の板表面から立板側まで溶接し、前記下側の板表面から裏面貫通後の立板の溶け幅wを前記下側の板厚T1より大きく(w>T1)形成、又は下板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを下側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の他方に備える第3工程と、を有するとよい。   Further, at least one upper plate and two lower plates are arranged on both the upper and lower surfaces of the standing plate, or a parallel arrangement of the two upper and lower plates to form the shape of the upper and lower T-shaped joints, and the non-contact method using the flux-cored wire. By performing consumable electrode type arc welding, welding is performed from the upper plate surface to the standing plate side, and the melting width w of the standing plate after passing through the back surface from the upper plate surface is larger than the upper plate thickness T1 (w> T1). ) The welded metal part of the penetration shape formed or formed with the weld cross-sectional area A of the penetration part on the back side of the upper plate or the melt width part on the vertical plate side larger than the upper plate thickness cross-sectional area B1 (A> B1) The lower plate surface is welded from the lower plate surface facing the upper side to the vertical plate side by performing the second step provided on one of the above and the non-consumable electrode type arc welding using the flux-cored wire. Standing plate melts after passing through the back The w is formed larger than the lower plate thickness T1 (w> T1), or the weld cross-sectional area A of the lower plate through-hole or the standing plate melting width is larger than the lower plate thickness cross-sectional area B1 (A > B1) It is good to have the 3rd process which equips the other of a T-shaped joint with the formed weld metal part of the penetration shape.

また、少なくとも前記立板の上下両面に上板及び下板を1枚配置又は2枚並列に突合せ配置して上下T型継手の形状を構成する第1工程と、前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって上側の板表面から立板側まで溶接し、前記上側の板表面から裏面貫通後の立板の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は上板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の片方に備える第2工程と、前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって前記上側と対向する下側の板表面から立板側まで溶接し、前記下側の板表面から裏面貫通後の立板の溶け幅wを前記下側の板厚T1より大きく(w>T1)形成、又は下板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを下側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の他方に備える第3工程と、を有するとよい。   Further, at least one upper plate and two lower plates are arranged on at least the upper and lower surfaces of the standing plate, or two of them are arranged in parallel to form the shape of the upper and lower T-shaped joints, and the focus-blurred laser beam is used. Welding from the upper plate surface to the standing plate side by performing laser welding, and forming the melting width w of the standing plate after passing through the back surface from the upper plate surface to be larger than the upper plate thickness T1 (w> T1), Alternatively, one of the T-shaped joints is provided with a weld metal portion having a penetration shape in which the weld cross-sectional area A of the penetration portion on the back surface of the upper plate or the melting width portion of the vertical plate is larger than the upper plate thickness cross-sectional area B1 (A> B1). The second step and welding from the lower plate surface facing the upper side to the vertical plate side by performing laser welding using the laser beam of the focal blur, and the vertical plate after the back surface penetrates from the lower plate surface The melting width w of the lower plate thickness T1 Penetration weld metal formed large (w> T1), or formed with a weld cross-sectional area A of a penetration portion on the back side of the lower plate or a melting width portion of the standing plate larger than the lower plate thickness cross-sectional area B1 (A> B1) It is good to have a 3rd process with which a part is provided in the other of a T-shaped coupling.

また、前記フラックス入りワイヤの内部に充填されているフラックス剤は、少なくともTiO2,Cr23及びSiO2からなる酸化物が混合された粉末剤であり、前記非消耗電極方式のアーク溶接部分又は前記焦点ぼかしのレーザビーム照射によるレーザ溶接部分に送給されるフラックス入りワイヤの溶着量が1g/分以上7g/分以下の範囲であり、かつ、前記立板の溶け幅wが前記上板及び下板の板厚T1より大きく(w>T1)形成されていると共に、前記溶接金属部に含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であるとよい。 Further, the flux agent filled in the flux-cored wire is a powder agent in which an oxide composed of at least TiO 2 , Cr 2 O 3 and SiO 2 is mixed, and the arc welding part of the non-consumable electrode type Alternatively, the welding amount of the flux-cored wire fed to the laser welding portion by the laser beam irradiation of the focal blur is in the range of 1 g / min to 7 g / min, and the melting width w of the standing plate is the upper plate And the thickness of the lower plate is larger than the plate thickness T1 (w> T1), and the content of oxygen gas contained in the weld metal part is preferably in the range of 100 wt.ppm to 200 wt.ppm.

また、前記溶け込み促進性のフラックス入りワイヤの代わりにソリッドワイヤ若しくはストランドワイヤを使用する時には、前記フラックス入りワイヤ使用の時よりも、前記酸化性ガスの濃度を倍増したシールドガスを使用又は前記酸化性ガス入りのシールドガスの流量若しくは流速を増加したシールドガスを使用し、前記上側の板表面又は前記上側と対向する下側の板表面から前記非消耗電極方式のアーク溶接を各々別々に遂行し、前記立板の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部をT型継手の上下両側に備えるとよい。   Further, when using a solid wire or a strand wire instead of the flux-promoting flux-cored wire, a shield gas in which the concentration of the oxidizing gas is doubled than when the flux-cored wire is used, or the oxidizing property is used. Using shield gas with increased flow rate or flow velocity of shield gas containing gas, separately performing arc welding of the non-consumable electrode method from the upper plate surface or the lower plate surface facing the upper side, Each of the standing plates has a melting width w> T1 or a welding cross-sectional area A of A> B1, or both the melting width w and the welding cross-sectional area A are w> T1 and A>. It is good to provide the weld metal part of the penetration shape which has either of the magnitude | size of B1 in the up-and-down both sides of a T-shaped coupling.

また、前記T型継手を横向姿勢又は立向姿勢で溶接する時には、継手部材を横向姿勢又は立向姿勢に組立配置した後に、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、一方の板表面から横向姿勢又は立向姿勢の状態で立板側まで溶接し、その後に他方の板表面から横向姿勢又は立向姿勢の状態で立板側まで溶接し、又は前記フラックス入りワイヤを用いた2組のアーク溶接又は前記焦点ぼかしのレーザビームを用いた2組のレーザ溶接の遂行によって、時間的及び空間的に遠く離れた位置で左右両側の継手部を横向姿勢又は立向姿勢の状態で立板側まで各々別々に溶接し、少なくとも前記立板の溶け幅wがw>T1の大きさを有する溶け込み形状の溶接金属部を左右T型継手の両側に備えるとすることもできる。   Further, when welding the T-shaped joint in a horizontal posture or a vertical posture, the joint member is assembled and arranged in a horizontal posture or a vertical posture, and then the non-consumable electrode type arc welding using the flux-cored wire or the focal point is used. By performing laser welding using a blurred laser beam, welding is performed from one plate surface to the vertical plate side in a horizontal or vertical posture, and then from the other plate surface in a horizontal or vertical posture. By performing two sets of arc welding using the flux-cored wire or two sets of laser welding using the focus-blurred laser beam at a position far away in time and space. The joints on the left and right sides are welded separately to the vertical plate side in the horizontal or vertical posture, and at least the melt width w of the vertical plate has a size of w> T1. It is also possible to comprise a metal part on both sides of the left and right T-shaped joint.

また、上記目的を達成するために、本発明は、立板の上下両面に上板及び下板が各々配置されたステンレス鋼板からなるT型継手であって、上板及び下板の板厚T1範囲が2<T1≦6mmであり、立板の板厚T2範囲が前記板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、前記立板の上下両面に1枚ずつ配置された各板表面、又は前記立板の上下両面に2枚ずつ並列に突合せ配置された各板表面から立板側まで溶接された上下T型溶接継手において、不活性ガスのシールドガスを流出するシールドガス供給手段、又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤをアーク溶接部分に送給しながらの前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えた構造にしたことを特徴とする。   In order to achieve the above object, the present invention is a T-shaped joint made of a stainless steel plate in which an upper plate and a lower plate are respectively arranged on both upper and lower surfaces of a standing plate, and the plate thickness T1 of the upper plate and the lower plate. The range is 2 <T1 ≦ 6 mm, and the plate thickness T2 range is 2 to 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1). Shielding of inert gas in each plate surface arranged one by one, or in upper and lower T-type welded joints welded from the plate surfaces arranged in parallel to each other on the upper and lower surfaces of the standing plate to the standing plate side The upper plate surface is subjected to non-consumable electrode type arc welding using shield gas supply means for flowing out gas, or double shield gas supply means for flowing out shield gas containing inert gas and shield gas containing oxidizing gas. Or separate from the lower plate surface facing the upper side At the same time, the flux-cored wire having a penetration depth promoting property is separately melted up to the vertical plate side while being fed to the arc welding part, and at least the upper plate surface or the lower plate surface to the back surface. Each melt width w of the standing plate after penetrating is formed to be larger than the plate thickness T1 of the upper plate and the lower plate (w> T1), or the melt width w is formed to a size of w> T1 and at the same time the bead surface height. C is formed in a convex shape 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or each weld cross-sectional area A of the upper plate and the lower plate through-hole portion or the stand-up plate melt width portion is defined as the upper plate and A weld metal part having a penetration shape that is larger than the plate thickness cross-sectional area B1 of the lower plate (A> B1), or has both the melt width w and the weld cross-sectional area A so that w> T1 and A> B1. With a structure equipped on both the upper and lower sides of the T-shaped joint And features.

また、本発明は、立板の上下両面に上板及び下板が各々配置されたステンレス鋼板からなるT型継手であって、上板及び下板の板厚T1範囲が2<T1≦6mmであり、立板の板厚T2範囲が前記板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、前記立板の上下両面に1枚ずつ配置された各板表面、又は前記立板の上下両面に2枚ずつ並列に突合せ配置された各板表面から立板側まで溶接された上下T型溶接継手において、溶接すべき箇所に照射するレーザビームの焦点位置を前記板表面より上側へずらした位置となるようにレーザトーチを配置し、焦点ぼかしの前記レーザビーム照射によるレーザ溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、レーザ溶接部分にワイヤを送給しながら前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えた構造にしたことを特徴とする。   Further, the present invention is a T-shaped joint made of stainless steel plates in which an upper plate and a lower plate are respectively arranged on the upper and lower surfaces of a standing plate, and the thickness T1 range of the upper plate and the lower plate is 2 <T1 ≦ 6 mm. Yes, the plate thickness T2 range of the standing plate is not less than 2 times and not more than 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1), and each plate is disposed on each of the upper and lower surfaces of the standing plate. The focal position of the laser beam that irradiates the area to be welded in the upper and lower T-shaped welded joints welded from the surface of each surface to the vertical plate side. The laser torch is arranged so as to be shifted to the upper side from the plate surface, and laser welding by the laser beam irradiation for defocusing is performed separately from the upper plate surface or the lower plate surface facing the upper side. At the same time, the wire is sent to the laser welding part. While melting separately up to the standing plate side, each melting width w of the standing plate after passing through the back surface from at least the upper plate surface or the lower plate surface is determined from the plate thickness T1 of the upper plate and the lower plate. Forming a large (w> T1), or forming the melt width w to a size of w> T1, and simultaneously forming a bead surface height C in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface, or Each weld cross-sectional area A of the penetration part of the back surface of the upper plate and the lower plate or the melting width portion of the standing plate is made larger than the plate thickness cross-sectional area B1 of the upper plate and the lower plate (A> B1), or the melting width w In addition, the welding cross-sectional area A has a structure in which weld metal parts having a penetration shape in which both w> T1 and A> B1 are formed are provided on both upper and lower sides of the T-shaped joint.

特に、前記立板の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部が、前記フラックス入りワイヤを用いたTIGアーク溶接によってT型継手の上下両側に1パスずつ形成され、又は前記焦点ぼかしのレーザビームを用いたレーザ溶接によってT型継手の上下両側に1パスずつ形成されているとよい。   In particular, each melt width w of the standing plate is such that w> T1, or the weld cross-sectional area A is A> B1, or both the melt width w and the weld cross-sectional area A are w> T1 and A weld metal portion having a penetration shape having a size of A> B1 is formed by one pass on both upper and lower sides of the T-shaped joint by TIG arc welding using the flux-cored wire, or the laser beam for blurring the focus It is preferable that one pass is formed on each of the upper and lower sides of the T-shaped joint by laser welding using.

また、前記立板の上下両面に溶接された上板及び下板、又は前記立板の上面のみに溶接された上側の平板は、少なくとも溶接線の部分及びその近傍部分を除外した他の部分の板面に多数の孔が予め形成されている多孔板であり、かつ、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、前記孔及び近傍が溶損されることなく、板端面部の複数の溶接線部分又は板面部の複数の溶接線部分が立板側に各々溶接された構造になっているとすることもできる。   Further, the upper and lower plates welded to the upper and lower surfaces of the upright plate, or the upper flat plate welded only to the upper surface of the upright plate, are at least other portions excluding the weld line portion and the vicinity thereof. By performing a non-consumable electrode type arc welding using the flux-cored wire or a laser welding using the defocused laser beam, the porous plate has a large number of holes formed in advance on the plate surface. It can also be considered that a plurality of weld line portions of the plate end surface portion or a plurality of weld line portions of the plate surface portion are welded to the standing plate side without melting the holes and the vicinity thereof.

さらに、前記立板の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の前記溶接金属部をT型継手の上下両側又はT型継手の片側のいずれかに備えた構造の溶接継手が、原子力機器又は火力機器に使用される溶接構造物に組み込まれ、かつ、前記上下T型溶接継手の溶接部又は該上下T型溶接継手と並んでいる角型溶接継手の溶接部を含む溶接構造物が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されているとよい。   Further, each melting width w of the upright plate has a size of w> T1, or the welding sectional area A is a size of A> B1, or both the melting width w and the welding sectional area A are w> T1 and A welded joint having a structure in which the weld metal part having a penetration shape having a size of A> B1 is provided on either the upper or lower side of the T-type joint or one side of the T-type joint is used for nuclear equipment or thermal equipment. A welded structure incorporated in a welded structure and including a welded portion of the upper and lower T-type welded joints or a welded part of a square welded joint aligned with the upper and lower T-shaped welded joints is a high-temperature steam medium or corrosive It is good to be deployed in an environmental state in contact with the medium.

すなわち、本発明の上下T型継手の溶接方法では、不活性ガスのシールドガスを流出するシールドガス供給手段、又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤをアーク溶接部分に送給しながらの前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えることにより、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び平板側の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   That is, in the welding method of the upper and lower T-shaped joints of the present invention, the shield gas supply means for flowing out the shield gas of the inert gas, or the double shield for flowing out of the shield gas of the inert gas and the shield gas containing the oxidizing gas A non-consumable electrode type arc welding is separately performed from the upper plate surface or the lower plate surface opposite to the upper side using a gas supply means, and at the same time, a flux-cored wire with a penetration depth promoting property is arc-welded. Each of the melted widths w of the standing plate after passing through the back surface from at least the upper plate surface or the lower plate surface is melted separately up to the standing plate side while feeding to the part, and the upper plate and the lower plate. Convex shape (1 ≦ C ≦ 3 mm) which is larger than the plate thickness T1 (w> T1) or has the melt width w of w> T1 and the bead surface height C is 1 to 3 mm higher than the plate surface. ) Or the weld cross-sectional area A of the penetration portion of the back surface of the upper plate and the lower plate or the melted width portion of the vertical plate is larger than the plate thickness cross-sectional area B1 of the upper plate and the lower plate (A> B1), or By providing the weld metal parts of the penetration shape in which both the melt width w and the weld cross-sectional area A are formed in the size of w> T1 and A> B1 on both upper and lower sides of the T-shaped joint, It is possible to obtain weld strength (for example, tensile strength) equal to or higher than the material strength on the upper and lower T-type welded joints and the flat plate side having a weld metal portion with good quality without weld defects such as porosity. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

前記非消耗電極方式のアーク溶接は、例えば、TIGアーク溶接であり、若しくはプラズマアーク溶接であってもよく、特殊な溶接設備を新たに導入する必要がなく、既存の溶接機を使用することができる。特に、溶け込み深さ促進性のフラックス入りワイヤを前記アーク溶接(TIGアーク溶接、若しくはプラズマアーク溶接)部分に送給しながら溶接することにより、前記フラックス入りワイヤの内部に含有されている複数の金属酸化物の加熱反応(例えば、溶融中の金属酸化物から酸素が解離し、その解離した酸素の多くが溶融プール内に溶解する化学反応)によって、アーク直下の溶融プール(溶融金属)の対流が深さ方向及び内向き方向に変化して溶け込み深さを促進する。溶け込み促進の結果、上板表面から立板側まで深く溶融して溶け込むと同時に、その立板の溶け幅wが平板の板厚T1より大きく(w>T1)形成でき、また、立板の溶け幅w部分の溶接断面積Aも平板の板厚断面積B1より大きく(A>B1)形成することができる。さらに、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接(TIGアーク溶接、若しくはプラズマアーク溶接)は、対流型(及び熱伝導型)の溶融形態で深く溶け込むと同時に、スパッタ(溶融金属の飛散)の発生が全くない。さらに、フラックス剤を板表面に塗布する必要もない。   The non-consumable electrode type arc welding may be, for example, TIG arc welding or plasma arc welding, and it is not necessary to newly introduce special welding equipment, and an existing welding machine can be used. it can. In particular, a plurality of metals contained in the flux-cored wire are welded while feeding a flux-cored wire that promotes penetration depth to the arc welding (TIG arc welding or plasma arc welding) portion. Oxide heating reaction (for example, a chemical reaction in which oxygen is dissociated from a molten metal oxide and most of the dissociated oxygen is dissolved in the molten pool) causes convection of the molten pool (molten metal) directly under the arc. Changes depth direction and inward direction to promote penetration depth. As a result of the promotion of melting, it melts deeply from the upper plate surface to the vertical plate side, and at the same time, the vertical width w of the vertical plate can be formed larger than the plate thickness T1 (w> T1), and the vertical plate melts. The weld cross-sectional area A of the width w portion can also be formed larger than the plate thickness cross-sectional area B1 (A> B1). Furthermore, non-consumable electrode type arc welding (TIG arc welding or plasma arc welding) using the flux-cored wire melts deeply in a convection type (and heat conduction type) melting mode, and at the same time, sputter (of molten metal). There is no occurrence of scattering). Furthermore, it is not necessary to apply a flux agent to the plate surface.

なお、前記フラックス入りワイヤに充填されているフラックス剤は、複数の金属酸化物であり、例えば、TiO2,Cr23,SiO2等の成分からなる酸化物の粉末である。溶け込み深さ促進性のフラックス入りワイヤは、これら成分粉末の金属酸化物を適正比率で複数混合して充填された特殊なワイヤであり、アーク溶接中に発生する前記加熱反応によって溶け込み状態を促進するため、溶け込み深さが増加する作用及び効果を有しているものである。このような溶け込み深さ促進性のフラックス入りワイヤは、脱酸剤や塩基性造滓剤入りの従来ワイヤ(フラックス入りワイヤ)とは成分及び作用が全く異なるものであり、溶け込み深さを促進する前記金属酸化物の粉末が充填されている特殊なワイヤであり、また、耐食性にも優れたステンレス鋼からなるフラックス入りワイヤであり、既に公知の市販品を使用すればよい。 The flux agent filled in the flux-cored wire is a plurality of metal oxides, for example, an oxide powder composed of components such as TiO 2 , Cr 2 O 3 , and SiO 2 . The penetration depth facilitating flux-cored wire is a special wire filled with a mixture of metal oxides of these component powders in an appropriate ratio, and promotes the penetration state by the heating reaction that occurs during arc welding. Therefore, it has the action and effect of increasing the penetration depth. Such penetration depth facilitating flux cored wire is completely different from the conventional wire (flux cored wire) containing a deoxidizer and a basic iron making agent, and promotes the penetration depth. It is a special wire filled with the metal oxide powder and is a flux-cored wire made of stainless steel having excellent corrosion resistance, and a known commercial product may be used.

一方、前記二重シールド供給手段(例えば、二重シールド構造の溶接トーチ)の外側ノズルのノズル孔から数パーセントの酸化性ガス(例えば、O2やCO2)と不活性ガス(例えば、ArやHe)との混合ガス(酸化性ガス入りのシールドガス)をアーク直下の溶融プール部分に流すと共に、溶け込み促進性の前記フラックス入りワイヤをアーク溶接部分に送給しながら溶接することにより、前記酸化性ガスから解離した酸素、さらに、溶融中の前記フラックス入りワイヤから解離した酸素の両方が溶融プール内に多く溶解する。この酸素溶解によって、アーク直下の溶融プール(溶融金属)の対流が深さ方向及び内向き方向に大きく変化して溶け込みがさらに深くなる。溶け込み深さ促進の結果、上板表面から立板側まで深く溶融して溶け込むと同時に、その立板の溶け幅wが平板の板厚T1より大きく(w>T1)形成でき、また、立板の溶け幅w部分の溶接断面積Aも平板の板厚断面積B1より大きく(A>B1)形成することができる。前記酸化性ガス(O2やCO2)と不活性ガス(ArやHe)との混合ガスは、既に公知の市販品を使用すればよい。 On the other hand, several percent of oxidizing gas (for example, O 2 or CO 2 ) and inert gas (for example, Ar or the like) from the nozzle hole of the outer nozzle of the double shield supply means (for example, a welding torch having a double shield structure). A gas mixture with He) (a shielding gas containing an oxidizing gas) is passed through the molten pool portion directly under the arc and welding is performed while feeding the flux-cored wire that promotes penetration to the arc welding portion. Both the oxygen dissociated from the sex gas and the oxygen dissociated from the flux-cored wire being melted are dissolved in the molten pool. By this oxygen dissolution, the convection of the molten pool (molten metal) immediately below the arc is greatly changed in the depth direction and the inward direction, and the penetration is further deepened. As a result of promoting the penetration depth, it is possible to form a melt with the depth w of the standing plate larger than the plate thickness T1 (w> T1) at the same time as melting from the upper plate surface to the standing plate side. The weld cross-sectional area A of the melting width w of the steel plate can also be formed larger than the plate thickness cross-sectional area B1 (A> B1). As the mixed gas of the oxidizing gas (O 2 or CO 2 ) and the inert gas (Ar or He), a known commercial product may be used.

溶け込み形態や溶け幅の調整は、前記フラックス入りワイヤの送給量や前記金属酸化物の含有量又は混合比率の調整によって調整可能であり、また、前記酸化性ガスの含有量やそのガス流量の調整によっても調整可能である。さらに、溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚や用途に応じて所定範囲の溶け幅w若しくは溶接断面積Aを確保するように、事前に確認試験を行って調整するとよい。   The adjustment of the melting form and the melting width can be adjusted by adjusting the feeding amount of the flux-cored wire, the content of the metal oxide, or the mixing ratio, and the content of the oxidizing gas and the gas flow rate thereof can be adjusted. Adjustment is also possible by adjustment. Furthermore, it can be adjusted according to the size of welding heat input conditions such as welding current and welding speed, and a predetermined range of melting width w or welding cross-sectional area A is secured in advance depending on the plate thickness and application of the joint member. It is recommended to perform a confirmation test.

また、本発明の上下T型継手の溶接方法では、溶接すべき箇所に照射するレーザビームの焦点位置を前記板表面より上側へずらした位置となるようにレーザトーチを配置し、焦点ぼかしの前記レーザビーム照射によるレーザ溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、レーザ溶接部分にワイヤを送給しながら前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えることにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び平板側の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   In the welding method for the upper and lower T-shaped joints according to the present invention, the laser torch is arranged so that the focal position of the laser beam irradiated to the place to be welded is shifted upward from the plate surface, and the laser for defocusing the laser. Laser welding by beam irradiation is performed separately from the upper plate surface or the lower plate surface opposite to the upper side, and at the same time, the wires are fed to the laser welding portion and melted separately to the standing plate side. Each melt width w of the upright plate after passing through the back surface from at least the upper plate surface or the lower plate surface is larger than the plate thickness T1 of the upper plate and the lower plate (w> T1), or the melt width w is formed in a size of w> T1, and at the same time, the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) which is 1 to 3 mm higher than the plate surface; Standing board melting width Each weld cross section A of the portion is formed larger than the plate thickness cross section B1 of the upper plate and the lower plate (A> B1), or both the melt width w and the weld cross section A are w> T1 and A> B1 By providing the weld metal parts of the penetration shape formed in the size on the upper and lower sides of the T-shaped joint, as described above, the upper and lower parts having good quality weld metal parts without welding defects such as insufficient melting and undercut and porosity. A weld strength (for example, tensile strength) equal to or greater than the material strength of the T-type welded joint and the flat plate side can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

特に、前記焦点ぼかしのレーザビームを用いたレーザ溶接を遂行することによって、深さ方向に深く溶け込む従来のキーホール型の溶け込み形態から幅方向に溶け広がる溶け込み形態に変化させることができる。その結果、金属蒸気及びスパッタ発生が激減すると同時に、立板の溶け幅wが平板の板厚T1より大きく(w>T1)形成でき、また、立板側の溶け幅w部分の溶接断面積Aも平板の板厚断面積B1より大きく(A>B1)形成することができる。レーザビームについては、既に市販のCO2レーザ又はYAGレーザ又はファイバーレーザ又はディスクレーザのいずれかを使用すればよい。なお、前記レーザビームの焦点位置が上板表面となるジャストホーカス(距離L=0)に定めた時やT型継手の内部側(距離L<0)に定めた時には、深さ方向に深く溶け込む従来のキーホール型の溶け込み形態によって深い溶け込み形状になり、金属蒸気及びスパッタが多発すると共に、溶接幅方向の溶け込み幅が狭くなってしまうため、立板の溶け幅wを上板の板厚T1より大きく(w>T1)形成することができないので好ましくない。 In particular, by performing laser welding using the laser beam with the focal blur, it is possible to change from a conventional keyhole-type penetration shape that melts deeply in the depth direction to a penetration shape that spreads in the width direction. As a result, the generation of metal vapor and spatter is drastically reduced, and at the same time, the melting width w of the vertical plate can be formed larger than the plate thickness T1 (w> T1), and the welding cross-sectional area A of the melting width w portion on the vertical plate side. Can be formed larger than the plate thickness cross-sectional area B1 (A> B1). As for the laser beam, any commercially available CO 2 laser, YAG laser, fiber laser, or disk laser may be used. When the focal position of the laser beam is determined to be just hocus (distance L = 0), which is the upper plate surface, or when it is determined on the inner side of the T-shaped joint (distance L <0), it deeply melts in the depth direction. The conventional keyhole-type penetration form results in a deep penetration shape, and metal vapor and spatter frequently occur, and the penetration width in the welding width direction becomes narrow. Therefore, the vertical width of the vertical plate is set to the thickness T1 of the upper plate. Since larger (w> T1) cannot be formed, it is not preferable.

T型継手に使用する上板及び下板((水平方向に配置されている上下の平板))の板厚T1範囲は2<T1≦6mmであり、好ましくは2<T1≦5mmの範囲に抑えて設定することにより、板表面から立板側まで確実に溶融接合することができ、所定形状の健全な溶け込みを有する溶接金属部及び上下T型溶接継手を得ることができる。また、立板の板厚T2範囲を前記上板の板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)に設定することにより、溶接すべき上板側の溶接線又は下板側の溶接線と立板側との位置合わせに位置ずれが少々ある状態であっても、立板側の端面部に溶けダレがない健全な溶け込み形状を有する溶接金属部及び上下T型溶接継手を得ることができる。   The thickness T1 range of the upper and lower plates ((upper and lower flat plates arranged in the horizontal direction)) used for the T-shaped joint is 2 <T1 ≦ 6 mm, preferably 2 <T1 ≦ 5 mm. Therefore, it is possible to reliably melt and join from the plate surface to the upright plate side, and to obtain a weld metal part and an upper and lower T-shaped welded joint having a predetermined shape of sound penetration. Further, by setting the range of the plate thickness T2 of the upright plate to be not less than 2 times and not more than 5 times the plate thickness T1 of the upper plate (2 × T1 ≦ T2 ≦ 5 × T1), the weld line on the upper plate side to be welded Or, even if there is a slight misalignment in the alignment between the welding line on the lower plate side and the vertical plate side, the weld metal part having a sound penetration shape without melting and sagging on the end surface part on the vertical plate side and the upper and lower T A mold welded joint can be obtained.

なお、前記上板及び下板の板厚T1が2mmより薄いと、溶け過ぎによる溶接変形が増大し易い。反対に、前記上板及び下板の板厚T1が6mmより厚いと、上側又は下側の板表面から裏面貫通して立板側まで溶融し難く、また、立板の溶け幅wを十分な大きさに形成することも難しくなる。強制的に溶融するには、大出力の溶接装置が必要になると共に、溶け過ぎによる溶接変形が増大し易いので好ましくない。一方、立板側の板厚T2が上板及び下板の板厚T1の2倍より薄いと、例えば、溶接すべき上板側の溶接線又は下板側の溶接線と立板側との位置合わせに位置ずれがあったりする場合に、立板側の片端面部に溶けダレが発生したり、溶け込みが偏ったり歪な形状になったりし易い。反対に、立板の板厚T2が上板及び下板の板厚T1の5倍より厚いと、立板側の板厚T2に対する立板側の溶け幅w及び溶接断面積Aの比率が低下すると共に、上板及び下板の板厚T1との板厚バランスが悪化したり、素材自身の重量が増大したりするので好ましくない。   If the plate thickness T1 of the upper plate and the lower plate is less than 2 mm, welding deformation due to excessive melting tends to increase. On the contrary, if the plate thickness T1 of the upper plate and the lower plate is larger than 6 mm, it is difficult to melt from the upper or lower plate surface through the back surface to the vertical plate side and the melting width w of the vertical plate is sufficient. It becomes difficult to form in size. Forcibly melting requires a high-power welding device, and welding deformation due to excessive melting tends to increase, which is not preferable. On the other hand, when the plate thickness T2 on the standing plate side is thinner than twice the plate thickness T1 on the upper plate and the lower plate, for example, the welding line on the upper plate side to be welded or the welding line on the lower plate side and the standing plate side When there is a misalignment in alignment, melting is likely to occur at one end surface portion on the standing plate side, or the penetration is likely to be uneven or distorted. On the other hand, if the plate thickness T2 of the upright plate is greater than 5 times the plate thickness T1 of the upper plate and the lower plate, the ratio of the melt width w on the upright plate side and the weld cross-sectional area A to the plate thickness T2 on the upright plate side decreases. In addition, the plate thickness balance with the plate thickness T1 of the upper plate and the lower plate is deteriorated, and the weight of the material itself is increased.

前記立板の上下両面に上板及び下板を2枚ずつ並列に各々突合せ配置する時には、各突合せ部にギャップGが殆どない状態又はあっても前記板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に設定し、好ましくは0.1倍以下の0≦G≦0.1×T1の範囲に抑えて設定することにより、組立精度や位置決め精度が高まり、溶接品質に悪影響(例えば、不均一な溶け込み,不揃いなビード形状,アンダーカットなど)を及ぼすことがある要因の一つを取り除くことができる。そして、突合せ配置の終了後に、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行し、前記立板の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部をT型継手の上下両側に備えることにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   When two upper and lower plates are butt-arranged in parallel on both the upper and lower surfaces of the upright plate, there is almost no gap G in each butt portion, or even if there is almost no gap G, it is smaller than 0.2 times the plate thickness T1. Set the gap G range (0 ≦ G ≦ 0.2 × T1), preferably within the range of 0 ≦ G ≦ 0.1 × T1, which is less than 0.1 times, so that the assembly accuracy and positioning accuracy This can remove one of the factors that can adversely affect weld quality (eg, uneven penetration, uneven bead shape, undercut, etc.). Then, after the end of the butt arrangement, non-consumable electrode type arc welding using the flux-cored wire or laser welding using the defocused laser beam is performed on the upper plate surface or the lower plate facing the upper side. Each of the standing plates has a melting width w such that w> T1, or the welding cross-sectional area A is A> B1, or the melting width w and the welding cross-sectional area A. By providing the weld metal parts of the penetration shape having both of the sizes of w> T1 and A> B1 on both the upper and lower sides of the T-shaped joint, as described above, welding such as insufficient melting, undercut and porosity Welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints and the upper and lower plates having a weld metal part with good quality without defects can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

また、立板の溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成することにより、所定形状の健全な溶接金属部が得られると共に、上下T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。なお、ビード表面高さCが1mmより小さいと、ビード境界部にアンダーカットが生じ易い。反対に、ビード表面高さCが3mmより大き過ぎると、溶け込み深さが浅くなったり、ビード外観が悪くなったり、過剰な出っ張り部分が邪魔になったりするので好ましくない。   In addition, the melt width w of the standing plate is formed to a size of w> T1, and at the same time, the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface. A sound weld metal part can be obtained, and a good weld bead having a convex shape without a dent or undercut on the weld surface of the upper and lower T-shaped joints can be obtained. If the bead surface height C is less than 1 mm, an undercut is likely to occur at the bead boundary. On the other hand, if the bead surface height C is larger than 3 mm, the penetration depth becomes shallow, the bead appearance is deteriorated, and an excessive protruding portion is not preferable.

また、立板の上面に上板を1枚配置又は2枚並列に突合せ配置して溶接する時には、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、少なくとも前記上側の板表面から裏面貫通後の立板の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の片側に備えることにより、品質良好な溶接金属部を有する上下T型溶接継手及び上側の板厚材料強度と同等以上の溶接強度を得ることができる。   Further, when welding by placing one upper plate on the upper surface of the standing plate or placing two upper plates in parallel but facing each other, arc welding of the non-consumable electrode method using the flux-cored wire or the laser beam for defocusing was used. By performing laser welding, at least the melt width w of the standing plate after passing through the back surface from the upper plate surface is made larger than the upper plate thickness T1 (w> T1), or the melt width w is larger than w> T1. At the same time, the bead surface height C is formed in a convex shape 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or the weld cross-sectional area A of the penetration portion on the back surface of the upper plate or the melting width portion of the standing plate is set. A weld metal part having a penetration shape formed larger than the upper plate thickness cross-sectional area B1 (A> B1), or in which both the melt width w and the weld cross-sectional area A are w> T1 and A> B1. Provided on one side of T-shaped joint By doing this, it is possible to obtain a weld strength equal to or higher than the strength of the upper and lower T-type welded joints having a good quality weld metal part and the upper plate thickness material.

また、少なくとも前記立板の上下両面に上板及び下板を1枚配置又は2枚並列に突合せ配置して上下T型継手の形状を構成する第1工程と、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接の遂行によって上側の板表面から立板側まで溶接し、前記上側の板表面から裏面貫通後の立板の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は上板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の片方に備える第2工程と、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接の遂行によって前記上側と対向する下側の板表面から立板側まで溶接し、前記下側の板表面から裏面貫通後の立板の溶け幅wを前記下側の板厚T1より大きく(w>T1)形成、又は下板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを下側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の他方に備える第3工程とを有することにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   Further, at least one upper plate and two lower plates are arranged on both the upper and lower surfaces of the standing plate, or a parallel arrangement of the two upper and lower plates to form the shape of the upper and lower T-shaped joints, and the non-contact method using the flux-cored wire. By performing consumable electrode type arc welding, welding is performed from the upper plate surface to the standing plate side, and the melting width w of the standing plate after passing through the back surface from the upper plate surface is larger than the upper plate thickness T1 (w> T1). ) The welded cross-sectional weld metal part A formed or the weld cross-sectional area A of the penetration part on the back side of the upper plate or the melted width part of the vertical plate is larger than the upper plate thickness cross-sectional area B1 (A> B1). Welding from the lower plate surface facing the upper side to the upright plate side by performing the second step provided on one side and arc welding of the non-consumable electrode method using the flux-cored wire, from the lower plate surface Standing plate melt width after back surface penetration Is formed larger than the lower plate thickness T1 (w> T1), or the weld cross-sectional area A of the lower plate back surface through-hole portion or the melted width portion of the standing plate is larger than the lower plate thickness cross-sectional area B1 (A> B1) By having the third step of providing the formed weld metal part of the penetration shape on the other side of the T-shaped joint, as described above, the weld metal having good quality without welding defects such as insufficient melting, undercut and porosity. It is possible to obtain a welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints and the upper and lower plates. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

また、少なくとも前記立板の上下両面に上板及び下板を1枚配置又は2枚並列に突合せ配置して上下T型継手の形状を構成する第1工程と、前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって上側の板表面から立板側まで溶接し、前記上側の板表面から裏面貫通後の立板の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は上板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の片方に備える第2工程と、前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって前記上側と対向する下側の板表面から立板側まで溶接し、前記下側の板表面から裏面貫通後の立板の溶け幅wを前記下側の板厚T1より大きく(w>T1)形成、又は下板裏面の貫通部分若しくは立板の溶け幅部分の溶接断面積Aを下側の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部をT型継手の他方に備える第3工程とを有することにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   Further, at least one upper plate and two lower plates are arranged on at least the upper and lower surfaces of the standing plate, or two of them are arranged in parallel to form the shape of the upper and lower T-shaped joints, and the focus-blurred laser beam is used. Welding from the upper plate surface to the standing plate side by performing laser welding, and forming the melting width w of the standing plate after passing through the back surface from the upper plate surface to be larger than the upper plate thickness T1 (w> T1), Alternatively, one of the T-shaped joints is provided with a weld metal portion having a penetration shape in which the weld cross-sectional area A of the penetration portion on the back surface of the upper plate or the melting width portion of the vertical plate is larger than the upper plate thickness cross-sectional area B1 (A> B1). The second step and welding from the lower plate surface facing the upper side to the vertical plate side by performing laser welding using the laser beam of the focal blur, and the vertical plate after the back surface penetrates from the lower plate surface The melting width w of the lower plate thickness T1 Penetration weld metal formed large (w> T1), or formed with a weld cross-sectional area A of a penetration portion on the back side of the lower plate or a melting width portion of the standing plate larger than the lower plate thickness cross-sectional area B1 (A> B1) And the third step of providing the other part of the T-shaped joint with the upper and lower T-shaped welded joints having a good quality weld metal part free from welding defects such as insufficient melting and undercut and porosity, as described above, and A welding strength (for example, tensile strength) equal to or higher than the material strength of the upper plate and the lower plate can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

前記フラックス入りワイヤの内部に充填されているフラックス剤は、少なくともTiO2,Cr23及びSiO2からなる酸化物が混合された粉末剤であり、前記非消耗電極方式のアーク溶接部分又は前記焦点ぼかしのレーザビーム照射によるレーザ溶接部分に送給されるフラックス入りワイヤの溶着量が1g/分以上7g/分以下の範囲であり、好ましくは2g/分以上5g/分以下の範囲であり、かつ、前記立板の溶け幅wが前記上板及び下板の板厚T1より大きく(w>T1)形成されていると共に、前記溶接金属部に含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、品質良好な溶接金属部を有する上下T型溶接継手及び上板及び下板の材料強度と同等以上の引張強度を得ることができる。 The flux agent filled inside the flux-cored wire is a powder agent in which an oxide composed of at least TiO 2 , Cr 2 O 3 and SiO 2 is mixed, and the arc welding part of the non-consumable electrode type or the The amount of welding of the flux-cored wire fed to the laser welding portion by laser beam irradiation with defocusing is in the range of 1 g / min to 7 g / min, preferably in the range of 2 g / min to 5 g / min. And the melting width w of the said standing board is formed larger than board thickness T1 of the said upper board and lower board (w> T1), and content of the oxygen gas contained in the said weld metal part is 100 wt.ppm or more By being in the range of 200 wt.ppm or less, it is possible to obtain a tensile strength equal to or higher than the material strength of the upper and lower T-type welded joints having a good quality weld metal part and the upper and lower plates.

なお、フラックス入りワイヤの溶着量が1g/分より少ないと、フラックス入りワイヤが溶融プール内へスムーズに入らすに不規則な溶着状態になると共に酸素の溶解量が過少な状態になるため、溶接ビードが不整な形状になると同時に、溶け込み深さが浅い形状になって立板側まで溶け込まず、若しくは立板側まで溶けても溶け幅wが確保できなくなるので好ましくない。一方、フラックス入りワイヤの溶着量が7g/分より多いと、アークエネルギー又はレーザエネルギーがワイヤの溶融に消費されると共に酸素の溶解量が過大な状態になるため、溶け込み深さが浅い形状になると同時に、溶接金属部に含まれる酸素ガスの含有量が許容基準(例えば、200wt.ppm以下)を超えると共に、溶接金属部の靭性強度が低下するので好ましくない。したがって、溶接金属部に含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、母材強度と同程度の溶接強度及び靭性強度を有する溶接金属部及びその上下T型溶接継手を得ることができる。   If the welding amount of the flux-cored wire is less than 1 g / min, the flux-cored wire will be in an irregular welding state so that it smoothly enters the molten pool, and the amount of dissolved oxygen will be too small. At the same time, the bead has an irregular shape and the depth of penetration is shallow, so that it does not melt to the standing plate side, or even if it melts to the standing plate side, the melt width w cannot be secured, which is not preferable. On the other hand, if the welding amount of the flux-cored wire is more than 7 g / min, the arc energy or laser energy is consumed for melting the wire and the amount of dissolved oxygen becomes excessive, so that the penetration depth becomes shallow. At the same time, the content of oxygen gas contained in the weld metal part exceeds an acceptable standard (for example, 200 wt. Ppm or less), and the toughness strength of the weld metal part decreases, which is not preferable. Therefore, when the content of oxygen gas contained in the weld metal part is in the range of 100 wt. Ppm or more and 200 wt. Ppm or less, the weld metal part having the same weld strength and toughness strength as the base metal strength and its upper and lower T A mold welded joint can be obtained.

また、前記溶け込み促進性のフラックス入りワイヤの代わりにソリッドワイヤ若しくはストランドワイヤを使用する時には、前記フラックス入りワイヤ使用の時よりも前記酸化性ガスの濃度を倍増したシールドガスを使用又は前記酸化性ガス入りのシールドガスの流量若しくは流速を増加したシールドガスを使用して非消耗電極方式のアーク溶接を遂行することによって、酸化性ガスから解離した酸素が溶融プール内に多く溶解するので特定深さまで溶融させることができ、健全な溶け込み形状を有する溶接金属部及びその上下T型溶接継手を得ることができる。   Further, when a solid wire or a strand wire is used instead of the flux-promoting flux-cored wire, a shield gas in which the concentration of the oxidizing gas is doubled than when the flux-cored wire is used or the oxidizing gas is used. By performing non-consumable electrode arc welding using a shield gas with an increased flow rate or flow velocity of the contained shield gas, a large amount of oxygen dissociated from the oxidizing gas dissolves in the molten pool, so it melts to a specific depth. It is possible to obtain a weld metal part having a sound penetration shape and its upper and lower T-shaped welded joints.

さらに、前記T型継手を横向姿勢又は立向姿勢で溶接する時には、継手部材を横向姿勢又は立向姿勢に組立配置した後に、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、一方の板表面から横向姿勢又は立向姿勢の状態で立板側まで溶接し、その後に他方の板表面から横向姿勢又は立向姿勢の状態で立板側まで溶接し、又は前記フラックス入りワイヤを用いた2組のアーク溶接又は前記焦点ぼかしのレーザビームを用いた2組のレーザ溶接の遂行によって、時間的及び空間的に遠く離れた位置で左右両側の継手部を横向姿勢又は立向姿勢の状態で立板側まで各々別々に溶接し、少なくとも前記立板の溶け幅wがw>T1の大きさを有する溶け込み形状の溶接金属部を左右T型継手の両側に備えることにより、溶接作業時間が大幅に短縮できると共に、健全な溶け込み形状を有する溶接金属部及びその上下T型溶接継手を得ることができる。   Further, when welding the T-shaped joint in a horizontal posture or a vertical posture, the joint member is assembled and arranged in a horizontal posture or a vertical posture, and then the non-consumable electrode type arc welding using the flux-cored wire or the focal point is used. By performing laser welding using a blurred laser beam, welding is performed from one plate surface to the vertical plate side in a horizontal or vertical posture, and then from the other plate surface in a horizontal or vertical posture. By performing two sets of arc welding using the flux-cored wire or two sets of laser welding using the focus-blurred laser beam at a position far away in time and space. The joint portions on both the left and right sides are welded separately to the vertical plate side in the state of the horizontal posture or the vertical posture, and at least the melting width w of the vertical plate is a penetration shape having a size of w> T1. By providing the contact metal part on both sides of the left and right T-shaped joint, with the welding operation time can be greatly reduced, it is possible to obtain a weld metal portion and the upper and lower T-welded joint having healthy penetration shape.

また、本発明の上下T型溶接継手では、不活性ガスのシールドガスを流出するシールドガス供給手段、又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いて非消耗電極方式のアーク溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤをアーク溶接部分に送給しながらの前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えた構造にしたことにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   Further, in the upper and lower T-type welded joints of the present invention, shield gas supply means for flowing out the shield gas of inert gas, or double shield gas supply for flowing out of the shield gas of inert gas and the shield gas containing oxidizing gas Non-consumable electrode type arc welding is performed separately from the upper plate surface or the lower plate surface opposite to the upper side, and at the same time, a flux-cored wire that promotes penetration depth is applied to the arc welding portion. Each of the upper plate and the lower plate is melted separately up to the standing plate side while being fed, and at least the melting width w of the standing plate after passing through the back surface from the upper plate surface or the lower plate surface. Forming larger than thickness T1 (w> T1), or forming the melting width w such that w> T1, and simultaneously forming a bead surface height C 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm) Formation, also Is formed such that the weld cross-sectional area A of the penetration portion of the back surface of the upper plate and the lower plate or the melt width portion of the standing plate is larger than the plate thickness cross-sectional area B1 of the upper plate and the lower plate (A> B1) As described above, the weld metal parts in the shape of penetration formed by forming both w and the weld cross-sectional area A in the size of w> T1 and A> B1 are provided on both upper and lower sides of the T-shaped joint. It is possible to obtain a welding strength (for example, tensile strength) equal to or higher than the material strength of upper and lower T-type welded joints and upper and lower plates having welded metal parts with good quality without melting defects, undercuts and porosity. it can. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

また、本発明の上下T型溶接継手では、溶接すべき箇所に照射するレーザビームの焦点位置を前記板表面より上側へずらした位置となるようにレーザトーチを配置し、焦点ぼかしの前記レーザビーム照射によるレーザ溶接を前記上側の板表面又は前記上側と対向する下側の板表面から各々別々に遂行すると同時に、レーザ溶接部分にワイヤを送給しながら前記立板側まで各々別々に溶融させ、少なくとも前記上側の板表面又は前記下側の板表面から裏面貫通後の立板の各溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板の板裏面の貫通部分若しくは立板の溶け幅部分の各溶接断面積Aを上板及び下板の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部をT型継手の上下両側に備えた構造にしたことにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   In the upper and lower T-type welded joints of the present invention, the laser torch is arranged so that the focal position of the laser beam irradiated to the place to be welded is shifted upward from the plate surface, and the laser beam irradiation for defocusing is performed. And performing laser welding separately from the upper plate surface or the lower plate surface opposite to the upper side, respectively, and at the same time, separately feeding the laser welding portion to the vertical plate side while melting the wire, Each melt width w of the upright plate after passing through the back surface from the upper plate surface or the lower plate surface is formed larger than the plate thickness T1 of the upper plate and the lower plate (w> T1), or the melt width w is At the same time as forming w> T1, the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) which is 1 to 3 mm higher than the plate surface, or through portions or standing plates on the back surface of the upper and lower plates Of melting width part Each weld cross-sectional area A is formed larger than the plate thickness cross-sectional area B1 of the upper plate and the lower plate (A> B1), or both the melt width w and the weld cross-sectional area A are w> T1 and A> B1. As described above, a weld metal part with good quality free from welding defects such as insufficient melting and undercut and porosity is obtained. Welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints and the upper and lower plates can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

また、前記立板の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部が、前記フラックス入りワイヤを用いたTIGアーク溶接によってT型継手の上下両側に1パスずつ形成され、又は前記焦点ぼかしのレーザビームを用いたレーザ溶接によってT型継手の上下両側に1パスずつ形成されていることにより、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、また、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業も削減することもできる。   Further, each melt width w of the standing plate is such that w> T1, or the weld cross-sectional area A is A> B1, or both the melt width w and the weld cross-sectional area A are w> T1 and A weld metal portion having a penetration shape having a size of A> B1 is formed by one pass on both upper and lower sides of the T-shaped joint by TIG arc welding using the flux-cored wire, or the laser beam for blurring the focus Since one pass is formed on each of the upper and lower sides of the T-shaped joint by laser welding using, the number of work steps can be greatly reduced compared to conventional multi-pass welding and flux coating type welding. Since the amount of deformation is greatly reduced compared to the large deformation that has occurred in welding, the work for removing distortion can also be reduced.

また、前記立板の上下両面に溶接された上板及び下板、又は前記立板の上面のみに溶接された上側の平板は、少なくとも溶接線の部分及びその近傍部分を除外した他の部分の板面に多数の孔が予め形成されている多孔板であり、かつ、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、前記孔及び近傍が溶損されることなく、板端面部の複数の溶接線部分又は板面部の複数の溶接線部分が立板側に各々溶接された構造になっていることにより、前記孔に阻害されずに所定の溶接線部分を正常に溶接でき、品質良好な溶接金属部を有する上下T型溶接継手を得ることができる。また、高温水蒸気体若しくは腐食性流体が前記孔を通過する構造の溶接構造物に組み込むことができる。   Further, the upper and lower plates welded to the upper and lower surfaces of the upright plate, or the upper flat plate welded only to the upper surface of the upright plate, are at least other portions excluding the weld line portion and the vicinity thereof. By performing a non-consumable electrode type arc welding using the flux-cored wire or a laser welding using the defocused laser beam, the porous plate has a large number of holes formed in advance on the plate surface. The holes are not obstructed by the holes by virtue of the structure in which a plurality of weld line portions of the plate end surface portion or a plurality of weld line portions of the plate surface portion are welded to the standing plate side, respectively, without melting the hole and the vicinity. Thus, a predetermined weld line portion can be normally welded, and an upper and lower T-shaped welded joint having a weld metal part with good quality can be obtained. Moreover, a high-temperature steam body or corrosive fluid can be incorporated into a welded structure having a structure that passes through the hole.

さらに、前記立板の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の前記溶接金属部をT型継手の上下両側又はT型継手の片側のいずれかに備えた構造の溶接継手が、原子力機器又は火力機器に使用される溶接構造物に組み込まれ、かつ、前記上下T型溶接継手の溶接部又は該上下T型溶接継手と並んでいる角型溶接継手の溶接部を含む溶接構造物が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されていることにより、原子力機器又は火力機器の稼動によって蒸気媒体環境下若しくは腐食環境下で長期間適用されても、耐食性及び溶接強度が高いので確保腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   Further, each melting width w of the upright plate has a size of w> T1, or the welding cross-sectional area A is a size of A> B1, or both the melting width w and the welding cross-sectional area A are w> T1 and A welded joint having a structure in which the weld metal part having a penetration shape having a size of A> B1 is provided on either the upper or lower side of the T-type joint or one side of the T-type joint is used for nuclear equipment or thermal equipment. A welded structure incorporated in a welded structure and including a welded portion of the upper and lower T-type welded joints or a welded part of a square welded joint aligned with the upper and lower T-shaped welded joints is a high-temperature steam medium or corrosive Because it is deployed in an environmental state that comes into contact with the medium, even if it is applied for a long time in a steam medium environment or a corrosive environment due to the operation of nuclear equipment or thermal equipment, the corrosion resistance and welding strength are high, so ensuring corrosion cracking, etc. Prevent event Come, it can contribute to the long life.

以上述べたように、本発明の上下T型継手の溶接方法及びその上下T型溶接継手並びにこれを用いた溶接構造物によれば、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部を有する上下T型溶接継手及びこれを用いた溶接構造物が得られる。また、立板の溶け幅w部分の溶接断面積Aが確保(A>B1)されているので、上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。さらに、原子力機器又は火力機器の稼動によって蒸気媒体環境下若しくは腐食環境下で長期間適用されても、耐食性及び溶接強度が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   As described above, according to the welding method of the upper and lower T-shaped joints of the present invention, the upper and lower T-shaped welded joints, and the welded structure using the same, good quality free from welding defects such as insufficient melting and undercut and porosity. An upper and lower T-type welded joint having a weld metal part and a welded structure using the same are obtained. Moreover, since the welding cross-sectional area A of the melt width w portion of the standing plate is ensured (A> B1), a welding strength (for example, tensile strength) equal to or higher than the material strength of the upper plate and the lower plate can be obtained. . In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs. Furthermore, even if it is applied for a long period of time in a steam medium environment or a corrosive environment due to the operation of nuclear equipment or thermal equipment, the corrosion resistance and welding strength are high, so it is possible to prevent corrosion cracking and other events and contribute to a longer life. it can.

本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わる溶接手順及び溶け込み形状の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the welding procedure and penetration shape regarding the welding method of the upper and lower T type | mold joint of this invention, and its upper and lower T type | mold weld joint. 本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わる溶接手順及び溶け込み形状の他の一実施形態を示す説明図である。It is explanatory drawing which shows other one Embodiment of the welding procedure and penetration shape regarding the welding method of the upper and lower T type | mold joint of this invention, and its upper and lower T type | mold weld joint. 本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わる溶接手順及び溶け込み形状のさらに他の実施形態を示す説明図である。It is explanatory drawing which shows further another embodiment of the welding procedure and penetration shape regarding the welding method of the upper and lower T type | mold joint of this invention, and its upper and lower T type | mold weld joint. 本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わるレーザ溶接手順及び溶け込み形状の実施形態を示す説明図である。It is explanatory drawing which shows the welding method of the upper and lower T type | mold joint of this invention, and the laser welding procedure and penetration shape concerning the upper and lower T type | mold weld joint. 本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わるレーザ溶接手順及び溶け込み形状の他の実施形態を示す説明図である。It is explanatory drawing which shows the welding method of the upper and lower T type | mold joint of this invention, the laser welding procedure concerning the upper and lower T type | mold weld joint, and other embodiment of a penetration shape. 図1に示される溶接方法を適用した時の板厚別の溶接電流Iと立板3の溶け幅w及び溶け込み深さhの関係を示す実施例である。It is an Example which shows the relationship between the welding current I according to board thickness when the welding method shown by FIG. 1 is applied, the melting width w of the standing board 3, and the penetration depth h. 図1に示した溶接方法を適用した時のT型継手の溶接電流Iと入熱量Q及び上板表面からの溶け込み深さHの関係を示す実施例である。It is an Example which shows the relationship between the welding current I of the T-type joint when applying the welding method shown in FIG. 1, heat input Q, and penetration depth H from the upper plate surface. 図1に示される溶接方法を適用した時のフラックス入りワイヤの溶着量と溶け込み深さ及び溶金部のOガス含有量の関係を示す実施例である。It is an Example which shows the relationship between the welding amount of a flux cored wire at the time of applying the welding method shown by FIG. 1, a penetration depth, and O gas content of a molten metal part. 複数のT型継手及び溶接線を有する溶接構造物の概略を示す一実施例の斜視図である。It is a perspective view of one example showing an outline of a welding structure which has a plurality of T type joints and a welding line. 従来のTIG溶接方法による開先溝付きT型継手の多パス溶接形状を示す比較例の断面図である。It is sectional drawing of the comparative example which shows the multipass welding shape of the T-shaped joint with a groove by the conventional TIG welding method. 従来のTIG溶接方法によるギャップ付きT型継手の多パス溶接形状を示す他の比較例の断面図である。It is sectional drawing of the other comparative example which shows the multipass welding shape of the T-shaped joint with a gap by the conventional TIG welding method. 従来のTIG溶接方法によるギャップ付きT型継手の多パス溶接形状を示すさらに他の比較例の断面図である。It is sectional drawing of the further another comparative example which shows the multipass welding shape of the T-shaped joint with a gap by the conventional TIG welding method. 従来のレーザ溶接方法によるT型継手の溶け込み形状を示す比較例の断面図である。It is sectional drawing of the comparative example which shows the penetration shape of the T-shaped coupling by the conventional laser welding method.

以下、本発明の内容について、図1〜図9に示される実施形態を用いて具体的に説明する。   Hereinafter, the content of the present invention will be specifically described with reference to the embodiments shown in FIGS.

〔実施形態1〕
図1は、上下T型継手の溶接方法及びその上下T型溶接継手に係わる溶接手順及び溶け込み形状の一実施形態を示す説明図である。すなわち、最初の第1工程31では、図1の(1)に示すように、床面に対して垂直方向に沿った立板3の上下面(立板両面)に、水平方向に沿った上板及び下板1a,1bを1枚ずつ配置、又は上板及び下板1a,1b,2a,2bを2枚ずつ並列に突合せ配置して上下T字状に構成したT型継手を製作する。溶接対象のT型継手は、例えば、原子力機器又は火力機器等に組み込まれる溶接物である。特に耐食性に優れたステンレス鋼材若しくは一般の炭素鋼材からなり、上板及び下板の板厚T1範囲は、2<T1≦6mmである。好ましくは2<T1≦5mmの範囲に抑えるとさらによい。また、立板3の板厚T2範囲は、前記上板及び下板の板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、立板3の上下両面に板厚T1の上板及び下板を水平方向に1枚ずつ配置又は2枚ずつ並列に突合せ配置して上下T字状に継手が構成されている。前記上板及び下板1a,1b,2a,2bの突合せ部にはギャップGがほとんどない状態、また、上板及び下板1a,1b,2a,2bとその中間にある立板3との継手面も隙間がほとんどない状態にあり、比較的高精度に位置決め配置されている。なお、図中に記載しているB1は、上板及び下板1a,1b,2a,2bの板厚T1方向から見た板厚断面積のことである。
Embodiment 1
FIG. 1 is an explanatory view showing an embodiment of a welding method of an upper and lower T-shaped joint, a welding procedure and a penetration shape related to the upper and lower T-shaped welded joint. That is, in the first first step 31, as shown in FIG. 1 (1), the upper and lower surfaces (both surfaces of the vertical plate) along the vertical direction with respect to the floor surface are aligned along the horizontal direction. A T-shaped joint having a top and bottom T-shape is manufactured by arranging one plate and one lower plate 1a, 1b one by one, or two upper plates and two lower plates 1a, 1b, 2a, 2b arranged in parallel. The T-shaped joint to be welded is, for example, a welded article incorporated in nuclear equipment or thermal equipment. In particular, it is made of a stainless steel material or a general carbon steel material excellent in corrosion resistance, and the thickness T1 range of the upper plate and the lower plate is 2 <T1 ≦ 6 mm. Preferably, it is further better to keep it in the range of 2 <T1 ≦ 5 mm. Further, the plate thickness T2 range of the upright plate 3 is not less than 2 times and not more than 5 times (2 × T1 ≦ T2 ≦ 5 × T1) of the plate thickness T1 of the upper plate and the lower plate. The upper and lower plates of the plate thickness T1 are arranged one by one in the horizontal direction or two in parallel butted in parallel to form a joint in a vertical T shape. The joint between the upper and lower plates 1a, 1b, 2a, 2b and the standing plate 3 in the middle thereof, with no gap G at the butted portion of the upper and lower plates 1a, 1b, 2a, 2b The surface also has almost no gap, and is positioned and arranged with relatively high accuracy. In addition, B1 described in the figure is a plate | board thickness cross-sectional area seen from plate | board thickness T1 direction of upper board and lower board 1a, 1b, 2a, 2b.

前記上板及び下板1a,1b,2a,2b(水平方向に配置されている上下の平板)の板厚T1範囲を2<T1≦6mmに設定することにより、好ましくは2<T1≦5mmの範囲に抑えて設定することにより、上板及び下板1a,1b,2a,2bの表面から裏面貫通して立板3側まで確実に溶融接合することができ、品質良好な溶け込み形状の溶接金属部7b,8bをT型継手の上下両側に備えた上下T型溶接継手12を得ることができる。また、前記立板3の板厚T2範囲を前記上板及び下板1a,1b,2a,2bの板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)に設定することにより、溶接すべき上板及び下板1a,1b,2a,2bの溶接線とその中間にある立板3の両面との位置合わせに位置ずれが少々ある状態であっても、立板3の端面部に溶けダレがない健全な溶け込み形状を有する溶接金属部7b,8b及び上下T型溶接継手12を得ることができる。   By setting the plate thickness T1 range of the upper and lower plates 1a, 1b, 2a, 2b (upper and lower flat plates arranged in the horizontal direction) to 2 <T1 ≦ 6 mm, preferably 2 <T1 ≦ 5 mm By setting it within the range, it is possible to reliably melt and join the upper plate and the lower plate 1a, 1b, 2a, 2b from the front surface to the back plate 3 side through the back surface, and a weld metal having a good penetration shape. The upper and lower T-type welded joints 12 provided with the portions 7b and 8b on the upper and lower sides of the T-type joint can be obtained. Further, the plate thickness T2 range of the upright plate 3 is set to be not less than 2 times and not more than 5 times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (2 × T1 ≦ T2 ≦ 5 × T1). Accordingly, even if there is a slight misalignment in the alignment between the welding lines of the upper and lower plates 1a, 1b, 2a, 2b to be welded and both surfaces of the standing plate 3 in the middle thereof, the standing plate 3 It is possible to obtain the weld metal portions 7b and 8b and the upper and lower T-shaped welded joints 12 having a sound penetration shape without melting and sagging at the end face portions.

なお、前記上板及び下板1a,1b,2a,2bの板厚T1が2mmより薄いと、溶け過ぎによる溶接変形が増大し易い。反対に、前記上板及び下板1a,1b,2a,2bの板厚T1が6mmより厚いと、上側又は下側の板表面から裏面貫通して立板3側まで溶融し難く、また、立板3の溶け幅wを十分な大きさに形成することも難しくなる。強制的に溶融接合するには、大出力の溶接装置が必要になると共に、上板及び下板1a,1b,2a,2bの溶け過ぎによる溶接変形が増大し易いので好ましくない。一方、前記立板3の板厚T2が上板及び下板1a,1b,2a,2bの板厚T1の2倍より薄いと、例えば、溶接すべき上板及び下板1a,1b,2a,2bの溶接線と立板3両面との位置合わせに位置ずれがあったりする場合に、立板3の片端面部に溶けダレが発生したり、溶け込みが偏ったり歪な形状になったりし易い。反対に、立板3の板厚T2が上板及び下板1a,1b,2a,2bの板厚T1の5倍より厚いと、立板3の板厚T2に対する立板3の溶け幅w及び溶接断面積Aの比率が低下すると共に、上板及び下板1a,1b,2a,2bの板厚T1との板厚バランスが悪化したり、素材自身の重量が増大したりするので好ましくない。   If the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b is less than 2 mm, welding deformation due to excessive melting tends to increase. On the other hand, if the thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b is greater than 6 mm, it is difficult to melt from the upper or lower plate surface to the vertical plate 3 through the back surface. It is also difficult to form the melt width w of the plate 3 to a sufficient size. In order to forcibly melt and join, a welding apparatus with a high output is required, and welding deformation due to excessive melting of the upper and lower plates 1a, 1b, 2a, and 2b tends to increase. On the other hand, if the plate thickness T2 of the standing plate 3 is thinner than twice the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b, for example, the upper and lower plates 1a, 1b, 2a, When the position of the welding line 2b and the both sides of the standing plate 3 is misaligned, the one end surface portion of the standing plate 3 is likely to melt and sag, or the penetration is likely to be uneven or distorted. On the contrary, if the plate thickness T2 of the standing plate 3 is thicker than five times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b, the melting width w of the standing plate 3 with respect to the plate thickness T2 of the standing plate 3 and This is not preferable because the ratio of the weld cross-sectional area A is reduced, and the balance of the plate thickness T1 with the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b is deteriorated and the weight of the material itself is increased.

次の第2工程32では、図1の(2)に示すように、ノズル9aの内周から不活性ガス(例えば、純ArガスやHeガス、又はArとHeとの混合ガス)のシールドガス9bを流出するシールド構造の溶接トーチ11(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aの板表面側から立板3まで溶融接合させる。特に、この溶融接合によって、少なくとも上板1a,2aの板表面から裏面貫通後の立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板1a,2aの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7aを得るようにしている。   In the next second step 32, as shown in FIG. 1 (2), a shielding gas of an inert gas (for example, pure Ar gas, He gas, or a mixed gas of Ar and He) from the inner periphery of the nozzle 9a. A non-consumable electrode type arc welding is performed by using a shielded welding torch 11 (shield gas supply means) that flows out of 9b, and at the same time, a flux-cored wire 4 that promotes penetration depth is fed to the arc 6 welding portion. However, the upper plate 1a, 2a is melt-bonded from the plate surface side to the standing plate 3. In particular, by this fusion bonding, at least the melt width w of the upright plate 3 after penetrating the back surface from the plate surface of the upper plates 1a, 2a is made larger than the plate thickness T1 of the upper plates 1a, 2a (w> T1), or the melting is performed. The width w is formed in a size of w> T1, and the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) higher by 1 to 3 mm than the plate surface, or the through portion of the back surface of the upper plates 1a and 2a Alternatively, the welding cross-sectional area A of the melting width portion of the upright plate 3 is formed larger than the plate thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1), or both the melting width w and the welding cross-sectional area A> w> A weld metal part 7a having a penetration shape formed to have a size of T1 and A> B1 is obtained.

なお、立板3の溶け幅w部分の溶接断面積Aは、前記立板3の溶け幅wと溶接線長さLとの積(A=w×L)で求められる。同様に、前記板厚T1方向の板厚断面積B1は、上板1,2の板厚T1と溶接線長さLとの積(B1=T1×L)で求められ、前記溶け幅wをw>T1に形成すれば、その時の溶接断面積Aは、前記板厚断面積B1より大きく(A>B1)形成されたことになる。   In addition, the welding cross-sectional area A of the melt width w portion of the upright plate 3 is obtained by the product (A = w × L) of the melt width w of the upright plate 3 and the weld line length L. Similarly, the plate thickness cross-sectional area B1 in the plate thickness T1 direction is obtained by the product of the plate thickness T1 of the upper plates 1 and 2 and the weld line length L (B1 = T1 × L), and the melting width w is defined as If formed so as to satisfy w> T1, the weld cross-sectional area A at that time is formed larger than the plate thickness cross-sectional area B1 (A> B1).

前記非消耗電極方式のアーク溶接は、例えば、TIGアーク溶接であり、若しくはプラズマアーク溶接であり、特殊な溶接設備を新たに導入する必要がなく、既存の溶接機を使用することができる。特に、溶け込み深さ促進性のフラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接(TIGアーク溶接、若しくはプラズマアーク溶接)を遂行することにより、フラックス入りワイヤ4の内部に含有している複数の金属酸化物の加熱反応(例えば、溶融中の金属酸化物から酸素が解離し、その解離した酸素の多くが溶融プール7a内に溶解する化学反応)によって、アーク6直下の溶融プール7a(溶融金属)の対流が深さ方向及び内向き方向に変化して溶け込み深さを促進する。溶け込み促進の結果、上板1a,2aの板表面から立板3まで深く溶融して溶け込み、その立板3の溶け幅wが上板1a,2aの板厚T1より大きく(w>T1)形成し、また、上板裏面の貫通部分及び立板の溶け幅w部分の溶接断面積Aも上板1a,2aの板厚断面積B1より大きく(A>B1)形成し、上板材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。さらに、前記フラックス入りワイヤを用いた非消耗電極方式のアーク溶接(TIGアーク溶接、若しくはプラズマアーク溶接)は、対流型(及び熱伝導型)の溶融形態で深く溶け込むと同時に、スパッタ(溶融金属の飛散)の発生が全くない。さらに、フラックス剤を板表面に塗布する必要もない。   The non-consumable electrode type arc welding is, for example, TIG arc welding or plasma arc welding, and it is not necessary to newly introduce special welding equipment, and an existing welding machine can be used. In particular, by performing non-consumable electrode type arc welding (TIG arc welding or plasma arc welding) using a flux-cored wire 4 that promotes penetration depth, a plurality of materials contained in the flux-cored wire 4 are contained. By a heating reaction of the metal oxide (for example, a chemical reaction in which oxygen is dissociated from the molten metal oxide and most of the dissociated oxygen is dissolved in the molten pool 7a). Metal) convection changes in the depth direction and inward direction to promote penetration depth. As a result of the promotion of melting, the upper plate 1a, 2a is melted deeply from the plate surface to the standing plate 3, and the melting width w of the standing plate 3 is larger than the thickness T1 of the upper plates 1a, 2a (w> T1). In addition, the weld cross-sectional area A of the penetration portion on the back surface of the upper plate and the melting width w portion of the vertical plate is also made larger than the plate thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1), A weld strength (for example, tensile strength) equal to or higher than that can be obtained. Furthermore, non-consumable electrode type arc welding (TIG arc welding or plasma arc welding) using the flux-cored wire melts deeply in a convection type (and heat conduction type) melting mode, and at the same time, sputter (of molten metal). There is no occurrence of scattering). Furthermore, it is not necessary to apply a flux agent to the plate surface.

このような溶け込み形態や溶け幅wの調整は、前記溶け込み深さ促進性のフラックス入りワイヤ4の送給量や前記金属酸化物の含有量又は混合比率の調整によって調整可能である。また、溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚や用途に応じて所定範囲の溶け幅wや溶接断面積Aを確保するように、事前に確認試験を行って調整するとよい。   Such adjustment of the melting form and the melting width w can be adjusted by adjusting the feeding amount of the flux-cored wire 4 that promotes the penetration depth, the content of the metal oxide, or the mixing ratio. In addition, it can be adjusted according to the welding heat input conditions such as welding current and welding speed, and in advance to ensure a predetermined range of melt width w and welding cross-sectional area A according to the plate thickness and application of the joint member. It is recommended to perform a confirmation test.

なお、前記フラックス入りワイヤに充填されているフラックス剤は、複数の金属酸化物であり、例えば、TiO2,Cr23,SiO2等の成分からなる酸化物の粉末である。溶け込み深さ促進性のフラックス入りワイヤ4は、これら成分粉末の金属酸化物を適正比率で複数混合して充填された特殊なワイヤであり、アーク溶接中に発生する前記加熱反応によって溶け込み状態を促進するため、溶け込み深さが増加する作用及び効果を有しているものである。このような溶け込み深さ促進性のフラックス入りワイヤ4は、脱酸剤や塩基性造滓剤入りの従来ワイヤ(フラックス入りワイヤ)とは成分及び作用が全く異なるものであり、溶け込み深さを促進する前記金属酸化物の粉末が充填されている特殊なワイヤであり、また、耐食性にも優れたステンレス鋼からなるフラックス入りワイヤであり、既に公知の市販品を使用すればよい。 The flux agent filled in the flux-cored wire is a plurality of metal oxides, for example, an oxide powder composed of components such as TiO 2 , Cr 2 O 3 , and SiO 2 . The penetration depth-promoting flux-cored wire 4 is a special wire filled with a mixture of metal oxides of these component powders at an appropriate ratio, and promotes the penetration state by the heating reaction that occurs during arc welding. Therefore, it has the action and effect of increasing the penetration depth. Such a penetration depth promoting flux-cored wire 4 is completely different in composition and action from a conventional wire (flux-cored wire) containing a deoxidizer and a basic iron making agent, and promotes the penetration depth. It is a special wire filled with the metal oxide powder, and is a flux-cored wire made of stainless steel having excellent corrosion resistance, and a known commercial product may be used.

また、非消耗性の電極5は、溶接トーチ11の先端に設けられるタングステン電極であり、例えば、高融点材のLa23入りW,Y23入りW,ThO2入りWなど、市販品の電極棒を使用すればよい。また、アーク6溶接部分及び電極5を保護するシールドガス9bは、ノズル9aの内周から流出させる不活性ガスであり、例えば、純ArガスやHeガスであり、また、Ar主体の混合ガスも使用可能であり、市販品のガスを使用すればよい。 The non-consumable electrode 5 is a tungsten electrode provided at the tip of the welding torch 11, and is commercially available such as W containing La 2 O 3, W containing Y 2 O 3 and W containing ThO 2. Product electrode rods may be used. The shield gas 9b that protects the welded part of the arc 6 and the electrode 5 is an inert gas that flows out from the inner periphery of the nozzle 9a, for example, pure Ar gas or He gas, and an Ar-based mixed gas is also used. It is possible to use a commercially available gas.

前記第2工程32の溶接終了後に継手部材を裏返し反転する。その後に、次の第3工程33に移行する。すなわち、第3工程33では、図1の(3)に示すように、不活性ガスのシールドガス9bを流出するシールド構造の溶接トーチ11(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aと対向する下板1b,2b(継手部材を上下反転しているので該当する下板1b,2bは上側の位置にある)の板表面から立板3まで溶融させる。特に、この溶融接合によって、前記第2工程32の時と同様に、下板1b,2bの板表面から裏面貫通後の立板3の溶け幅wを下板1b,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は下板1b,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを下板1b,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部8aを得ると共に、さらに、2つの溶接金属部7b,8bをT型継手の上下に備えた上下T型溶接継手12を得るようにしている。   After completion of the welding in the second step 32, the joint member is turned over. Thereafter, the process proceeds to the next third step 33. That is, in the third step 33, as shown in FIG. 1 (3), a non-consumable electrode type arc is used by using a welding torch 11 (shield gas supply means) having a shield structure that flows out a shield gas 9b of an inert gas. At the same time as performing welding, while feeding the flux-cored wire 4 that promotes penetration depth to the arc 6 welded portion, the lower plates 1b, 2b facing the upper plates 1a, 2a (because the joint members are turned upside down) The corresponding lower plates 1b and 2b are melted from the plate surface to the standing plate 3 in the upper position. In particular, as in the case of the second step 32, the melt width w of the upright plate 3 after passing through the back surface from the plate surface of the lower plate 1b, 2b is larger than the plate thickness T1 of the lower plate 1b, 2b. (W> T1) formation, or forming the melt width w to a size of w> T1, and simultaneously forming a bead surface height C in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface, or below The welding cross-sectional area A of the penetration part of the plate back surface of the plates 1b and 2b or the melting width portion of the standing plate 3 is made larger than the plate thickness cross-sectional area B1 of the lower plates 1b and 2b (A> B1), or the melting width w and A weld metal portion 8a having a penetration shape in which both of the weld cross-sectional areas A are formed in a size of w> T1 and A> B1 is obtained, and two weld metal portions 7b and 8b are provided at the top and bottom of the T-shaped joint. The upper and lower T-shaped welded joints 12 are obtained.

このような溶接施工の構成により、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7a,7b,8a,8bを上下に備えた上下T型溶接継手12及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   With such a welding construction, the upper and lower T-type welded joints 12 and the upper plate having the upper and lower weld metal portions 7a, 7b, 8a and 8b having good quality without welding defects such as lack of melting, undercut and porosity, A welding strength (for example, tensile strength) equal to or higher than the material strength of the lower plate can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

また、立板3の溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成することにより、所定形状の健全な溶接金属部7a,7bが得られると共に、T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。なお、ビード表面高さCが1mmより小さいと、ビード境界部にアンダーカットが生じ易い。反対に、ビード表面高さCが3mmより大き過ぎると、溶け込み深さが浅くなったり、ビード外観が悪くなったり、過剰な出っ張り部分が邪魔になったりするので好ましくない。   Further, the melt width w of the upright plate 3 is formed so that w> T1, and at the same time the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface. The weld metal parts 7a and 7b can be obtained, and a good weld bead having a convex shape without a dent or undercut can be obtained on the weld surface of the T-shaped joint. If the bead surface height C is less than 1 mm, an undercut is likely to occur at the bead boundary. On the other hand, if the bead surface height C is larger than 3 mm, the penetration depth becomes shallow, the bead appearance is deteriorated, and an excessive protruding portion is not preferable.

前記フラックス入りワイヤ4の内部に充填されているフラックス剤は、少なくともTiO2,Cr23及びSiO2からなる酸化物が混合された粉末剤であり、前記非消耗電極方式のアーク6溶接部分に送給されるフラックス入りワイヤの溶着量は1g/分以上7g/分以下の範囲であり、好ましくは2g/分以上5g/分以下の範囲であり、かつ、立板3の溶け幅wが上板及び下板1a,1b,2a,2bの板厚T1より大きく(w>T1)形成されていると共に、溶接金属部7b,8bに含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、品質良好な溶接金属部7b,8bを上下両側に有する上下T型溶接継手及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。 The flux agent filled in the flux-cored wire 4 is a powder agent in which an oxide composed of at least TiO 2 , Cr 2 O 3 and SiO 2 is mixed, and the arc 6 welding portion of the non-consumable electrode type The amount of welding of the flux-cored wire fed to is in the range of 1 g / min to 7 g / min, preferably in the range of 2 g / min to 5 g / min, and the melting width w of the standing plate 3 is The upper and lower plates 1a, 1b, 2a, 2b are formed to have a thickness larger than the plate thickness T1 (w> T1), and the content of oxygen gas contained in the weld metal portions 7b, 8b is 100 wt. Ppm or more and 200 wt. Equal to the material strength of the upper and lower T-type welded joints having the weld metal parts 7b and 8b with good quality on both the upper and lower sides and the plate thickness T1 of the upper and lower plates 1a, 1b, 2a and 2b. Above weld strength (example For example, tensile strength) can be obtained.

なお、フラックス入りワイヤ4の溶着量が1g/分より少ないと、フラックス入りワイヤ4が溶融プール7a,8a内(溶融金属内)へスムーズに入らずに不規則な溶着状態になると共に酸素の溶解量が過少な状態になるため、溶接ビードが不整な形状になると同時に、溶け込み深さが浅い形状になって立板3まで溶け込まず、若しくは立板3まで溶けても溶け幅wが確保(w>T1)できないので好ましくない。一方、フラックス入りワイヤ4の溶着量が7g/分より多いと、アークエネルギーがワイヤの溶融に消費されると共に酸素の溶解量が過大な状態になるため、溶け込み深さが浅い形状になると同時に、溶接金属部7b,8bに含まれる酸素ガスの含有量が許容基準(例えば、200wt.ppm以下)を超えると共に、溶接金属部7b,8bの靭性強度が低下するので好ましくない。したがって、溶接金属部7b,8bに含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、母材強度と同程度の溶接強度及び靭性強度を有する溶接金属部7b,8b及びその上下T型溶接継手12を得ることができる。   In addition, when the welding amount of the flux-cored wire 4 is less than 1 g / min, the flux-cored wire 4 does not smoothly enter the molten pools 7a and 8a (in the molten metal) and enters an irregular welding state and dissolves oxygen Since the amount becomes too small, the weld bead has an irregular shape, and at the same time, the melt depth is shallow so that it does not melt to the standing plate 3 or even if it melts to the standing plate 3, the melt width w is secured (w > T1) This is not preferable because it cannot be performed. On the other hand, if the welding amount of the flux-cored wire 4 is more than 7 g / min, the arc energy is consumed for melting the wire and the amount of dissolved oxygen becomes excessive, so that the penetration depth becomes shallow, This is not preferable because the content of the oxygen gas contained in the weld metal parts 7b and 8b exceeds an acceptable standard (for example, 200 wt. Ppm or less) and the toughness strength of the weld metal parts 7b and 8b is lowered. Therefore, when the content of oxygen gas contained in the weld metal portions 7b and 8b is in the range of 100 wt. Ppm to 200 wt. Ppm, the weld metal portion 7b having a weld strength and toughness similar to the base metal strength. , 8b and its upper and lower T-shaped welded joints 12 can be obtained.

また、前記溶け込み深さ促進性のフラックス入りワイヤ4は、溶接進行方向の前方からアーク6溶接部分に送給、又は溶接進行方向の後方からアーク6溶接部分に送給することができる。特に、溶け込み深さ促進性のフラックス入りワイヤ4の先端部を溶融プールへ接触又は挿入させるように送給することにより、例えば、小電流から大電流まで広範囲の溶接電流(例えば100A〜350A)を出力させる場合や低速送りの少量ワイヤの場合であっても、フラックス入りワイヤ4がアーク6直下の溶融プール7a内にスムーズに入り、大きな溶滴にならずに安定して溶融及び溶着させることができる。同時に、上板1a,2aの板表面又は下板1b,2bの板表面から立板3まで深く溶け込み、この立板3の溶け幅wを上板及び下板1a,1b,2a,2bの板厚T1より大きく(w>T1)形成することができると共に、品質良好な溶接金属部7b,8bを上下両側に有する上下T型溶接継手及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。   The penetration depth-promoting flux-cored wire 4 can be fed from the front in the welding progress direction to the arc 6 welding portion or from the rear in the welding progress direction to the arc 6 welding portion. In particular, by feeding the tip portion of the flux-cored wire 4 that promotes the penetration depth into the molten pool, for example, a wide range of welding current (for example, 100 A to 350 A) from a small current to a large current can be obtained. Even in the case of output or in the case of a small amount of wire that is fed at a low speed, the flux-cored wire 4 can smoothly enter the melt pool 7a directly under the arc 6 and be stably melted and welded without forming large droplets. it can. At the same time, it deeply melts from the plate surface of the upper plates 1a, 2a or the plate surface of the lower plates 1b, 2b to the standing plate 3, and the melting width w of this standing plate 3 is the plate of the upper and lower plates 1a, 1b, 2a, 2b. Plates of upper and lower T-type welded joints and upper and lower plates 1a, 1b, 2a and 2b which can be formed larger than thickness T1 (w> T1) and have weld metal parts 7b and 8b of good quality on both upper and lower sides A welding strength (for example, tensile strength) equal to or higher than the material strength of the thickness T1 can be obtained.

さらに、前記T型継手を下向姿勢から横向姿勢又は立向姿勢に変更して溶接する時には、継手部材1a,1b,2a,2b,3を横向姿勢又は立向姿勢に組立配置(継手部材1a,1b,2a,2b,3を90度左回転させた姿勢状態)した後に、前記フラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接の遂行によって、一方(例えば上板1a,2a側)の板表面から横向姿勢又は立向姿勢の状態で立板3まで溶接し、その後に他方(例えば下板1b,2b側)の板表面から横向姿勢又は立向姿勢の状態で立板3まで溶接し、又は前記フラックス入りワイヤ4を用いた2組のアーク溶接の遂行によって、時間的及び空間的に遠く離れた位置で左右両側の継手部を横向姿勢又は立向姿勢の状態で立板3まで各々別々に溶接し、少なくとも立板3の溶け幅wがw>T1の大きさを有する溶け込み形状の溶接金属部7a,7b,8a,8bをT型継手の左右両側に備えることにより、溶接作業時間が大幅に短縮できると共に、健全な溶け込み形状を有する溶接金属部7b,8b及びその上下T型溶接継手12を得ることができる。   Further, when the T-shaped joint is welded by changing from the downward posture to the horizontal posture or the vertical posture, the joint members 1a, 1b, 2a, 2b, 3 are assembled and arranged in the horizontal posture or the vertical posture (the joint member 1a). , 1b, 2a, 2b, 3 after rotating 90 degrees counterclockwise) and then performing non-consumable electrode type arc welding using the flux-cored wire 4 (for example, the upper plate 1a, 2a side) Weld from the surface of the plate to the vertical plate 3 in the horizontal or vertical posture, and then weld to the vertical plate 3 from the other (for example, the lower plate 1b, 2b side) plate surface in the horizontal or vertical posture. Alternatively, by performing two sets of arc welding using the flux-cored wire 4, the joints on both the left and right sides are moved to the upright plate 3 in a lateral or vertical position at positions far apart in time and space. Weld each separately, less Further, by providing the weld metal portions 7a, 7b, 8a, and 8b in the shape of penetration having the melt width w of the upright plate 3 such that w> T1, the welding work time can be greatly shortened. At the same time, the weld metal portions 7b and 8b having a sound penetration shape and the upper and lower T-shaped welded joints 12 can be obtained.

また、図1の(2)と(3)及び(4)に示すように、本発明の上下T型溶接継手では、不活性ガスのシールドガス9bを流出させるシールド構造の溶接トーチ11(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を上板1a,2aの板表面又は前記上板1a,2aと対向する下板1b,2bの板表面から各々別々に遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら立板3まで各々別々に溶融させ、少なくとも前記上板1a,2aの板表面又は前記下板1b,2bの板表面から裏面貫通後の立板3の各溶け幅wを前記上板及び下板1a,1b,2a,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板1a,1b,2a,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の各溶接断面積Aを上板及び下板1a,1b,2a,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7a,7b,8a,8bをT型継手の上下両側に備えた構造の上下T型溶接継手12にすることもできる。   Further, as shown in FIGS. 1 (2), (3) and (4), in the upper and lower T-type welded joints of the present invention, a welding torch 11 (shield gas) having a shield structure for allowing the shield gas 9b of an inert gas to flow out. The non-consumable electrode type arc welding is performed separately from the surface of the upper plate 1a, 2a or from the surface of the lower plate 1b, 2b opposite to the upper plate 1a, 2a using the supply means). The flux-cored wire 4 that promotes the thickness is melted separately up to the standing plate 3 while being fed to the arc 6 welding portion, and at least the plate surface of the upper plate 1a, 2a or the plate surface of the lower plate 1b, 2b Each melt width w of the standing plate 3 after penetrating is formed larger than the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (w> T1), or the melt width w is larger than w> T1. At the same time as the bead surface height C Formed into a convex shape (1 ≦ C ≦ 3 mm) that is 1 to 3 mm higher than the plate surface, or welding cuts in the penetration portion of the upper plate and the lower plate 1a, 1b, 2a, 2b on the back side of the plate or the melting width portion of the vertical plate 3 The area A is formed larger than the plate thickness cross-sectional area B1 of the upper and lower plates 1a, 1b, 2a, 2b (A> B1), or both the melt width w and the weld cross-sectional area A are set as w> T1 and A>. The weld metal portions 7a, 7b, 8a and 8b having a penetration shape formed in the size of B1 can be formed into an upper and lower T-type weld joint 12 having a structure provided on both upper and lower sides of the T-type joint.

また、前記立板3の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部7a,7b,8a,8bが、前記フラックス入りワイヤを用いた前記消耗電極方式のアーク溶接によってT型継手の上下両側に1パスずつ形成されているとすることもできる。   Further, each melting width w of the standing plate 3 is such that w> T1, or the welding cross-sectional area A is A> B1, or both the melting width w and the welding cross-sectional area A are w> T1. And weld metal parts 7a, 7b, 8a and 8b having a penetration shape having a size of any of A> B1 are provided on both upper and lower sides of the T-shaped joint by arc welding of the consumable electrode method using the flux-cored wire. It can also be assumed that each pass is formed.

このような構成により、開先溝やギャップの形成作業をなくすと共に、溶接パス数を削減し、フラックス剤の塗布作業も不要にし、また、溶接中に金属蒸気及びスパッタの発生もなくすため確実に溶融接合された溶け込み及び溶け幅を有する溶接が可能となる。その結果、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7b,8bを上下両側に有する上下T型溶接継手12及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   This configuration eliminates the need for groove grooves and gaps, reduces the number of welding passes, eliminates the need for flux agent application, and eliminates the generation of metal vapor and spatter during welding. It is possible to weld with a melt-bonded penetration and a fusion width. As a result, as described above, the upper and lower T-type welded joints 12 and the upper and lower plates 1a and 1b having the weld metal portions 7b and 8b of good quality without welding defects such as lack of melting, undercut and porosity on the upper and lower sides. , 2a, 2b can have a weld strength (for example, tensile strength) equal to or greater than the material strength of the plate thickness T1. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

〔実施形態2〕
図2は、上下T型継手の溶接方法及びその上下T型溶接継手に係わる溶接手順及び溶け込み形状の他の一実施形態を示す説明図である。図1との主な相違点は、立板3の上下両面に上板1a,2a及び下板2b,2bを2枚ずつ並列に突合せ配置する時に、上板1a,2a同士の突合せ部又は下板1b,2b同士の突合せ部にギャップGがあったりなかったりするT型継手の実施例であり、その他の部分や符号は、図1と略同じである。
[Embodiment 2]
FIG. 2 is an explanatory view showing another embodiment of the welding method of the upper and lower T-shaped joints, the welding procedure related to the upper and lower T-shaped welded joints, and the penetration shape. The main difference from FIG. 1 is that when two upper plates 1a, 2a and two lower plates 2b, 2b are butt-arranged in parallel on the upper and lower surfaces of the upright plate 3, the butt portion between the upper plates 1a, 2a or lower This is an example of a T-shaped joint in which there is no gap G at the abutting portion between the plates 1b and 2b, and other portions and symbols are substantially the same as those in FIG.

例えば、溶接線の長い部材のT型継手では、ギャップGがない状態に組み立てることが意外と難しく、上板1a,2a同士の突合せ部又は下板1b,2b同士の突合せ部にギャップGがあったりなかったりする状態になり易く、また、前記上板1a,2aと立板3の上面又は前記下板1b,2bと立板3の下面との継手密着面にも僅かな隙間があったりなかったりすることがある。特に、前記ギャップGが全体的に過大な場合や、許容値を時々超えたりするバラツキの大きなギャップG変化の場合には、溶接品質に悪影響(例えば、不均一な溶け込み,不揃いなビード形状,アンダーカットなど)が発生し易い。これを避けるため、本実施例では、許容可能なギャップG範囲を以下のように限定している。   For example, in a T-shaped joint of a member having a long weld line, it is unexpectedly difficult to assemble in a state where there is no gap G, and there is a gap G in the butt portion between the upper plates 1a and 2a or the butt portion between the lower plates 1b and 2b. And there is no slight gap on the upper surface of the upper plate 1a, 2a and the upright plate 3 or the joint contact surface between the lower plate 1b, 2b and the lower surface of the upright plate 3. There are things to do. In particular, when the gap G is excessively large as a whole, or when the gap G changes greatly, which sometimes exceeds the allowable value, the welding quality is adversely affected (for example, uneven penetration, uneven bead shape, Cut). In order to avoid this, in this embodiment, the allowable gap G range is limited as follows.

すなわち、図2の(1)に示すように、最初の第1工程31では、立板3の上下両面面に上板1a,2a及び下板1b,2bを2枚ずつ並列に突合せ配置する時に、各突合せ部にギャップGが殆んどない状態又はあっても上板及び下板1a,1b,2a,2bの板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に設定している。好ましくは0.1倍以下の0≦G≦0.1×T1の範囲に抑えて設定するとさらによい。また、上板1a,2aと上板3の上面又は下板1b,2bと立板3の下面との隙間が殆どない状態又はあっても0.5mm以下に抑制するとよい。このように、ギャップG範囲や隙間を抑制することによって、組立精度や位置決め精度が高まり、溶接品質に悪影響を及ぼすことがある要因の一つを取り除くことができる。   That is, as shown in (1) of FIG. 2, in the first first step 31, when two upper plates 1a, 2a and two lower plates 1b, 2b are arranged in parallel on the upper and lower surfaces of the upright plate 3, respectively. Even if there is almost no gap G at each butting portion, a small gap G range not more than 0.2 times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (0 ≦ G ≦ 0) .2 × T1). It is more preferable to set it within a range of 0 ≦ G ≦ 0.1 × T1, which is preferably 0.1 times or less. Further, it is preferable that the upper plate 1a, 2a and the upper surface of the upper plate 3 or the lower plate 1b, 2b and the lower surface of the upright plate 3 have almost no gap or even 0.5 mm or less. In this way, by suppressing the gap G range and the gap, assembly accuracy and positioning accuracy are increased, and one of factors that may adversely affect the welding quality can be removed.

上述したように、溶接対象のT型継手は、例えば、原子力機器又は火力機器等に組み込まれる溶接物である。特に耐食性に優れたステンレス鋼材若しくは一般の炭素鋼材からなり、上板及び下板1a,1b,2a,2bの板厚T1範囲は、2<T1≦6mmであり、また、立板3の板厚T2範囲は、前記上板及び下板1a,1b,2a,2bの板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、立板3の上下両面に板厚T1の上板及び下板1a,1b,2a,2bを水平方向に2枚ずつ並列に突合せ配置して上下T字状に継手が構成されている。   As described above, the T-shaped joint to be welded is, for example, a welded product incorporated in nuclear equipment or thermal equipment. Particularly, it is made of stainless steel or general carbon steel excellent in corrosion resistance, and the plate thickness T1 range of the upper plate and lower plate 1a, 1b, 2a, 2b is 2 <T1 ≦ 6 mm, and the plate thickness of the upright plate 3 The range of T2 is not less than 2 times and not more than 5 times (2 × T1 ≦ T2 ≦ 5 × T1) the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b. An upper plate and a lower plate 1a, 1b, 2a, 2b having a thickness T1 are arranged in parallel in a horizontal direction so that a joint is formed in an upper and lower T shape.

次の第2工程32では、図2の(2)に示すように、上記ギャップG有無のT型継手をアーク溶接する場合、ノズル9aの内周から不活性ガス(例えば、純ArガスやHeガス、又はArとHeとの混合ガス)のシールドガス9bを流出するシールド構造の溶接トーチ11(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aの板表面から立板3まで溶融接合させる。特に、この溶融接合によって、少なくとも上板1a,2aの板表面から裏面貫通後の立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板1a,2aの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7aを得るようにしている。   In the next second step 32, as shown in FIG. 2 (2), when arc welding the T-shaped joint with or without the gap G, an inert gas (for example, pure Ar gas or He is used from the inner periphery of the nozzle 9a. Gas welding or non-consumable electrode arc welding using a welding torch 11 (shielding gas supply means) having a shield structure that flows out a shielding gas 9b (mixed gas of Ar and He) and at the same time promotes penetration depth The flux-cored wire 4 is melt-bonded from the surface of the upper plates 1a and 2a to the standing plate 3 while being fed to the arc 6 welding portion. In particular, by this fusion bonding, at least the melt width w of the upright plate 3 after penetrating the back surface from the plate surface of the upper plates 1a, 2a is made larger than the plate thickness T1 of the upper plates 1a, 2a (w> T1), or the melting is performed. The width w is formed in a size of w> T1, and the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) higher by 1 to 3 mm than the plate surface, or the through portion of the back surface of the upper plates 1a and 2a Alternatively, the welding cross-sectional area A of the melting width portion of the upright plate 3 is formed larger than the plate thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1), or both the melting width w and the welding cross-sectional area A> w> A weld metal part 7a having a penetration shape formed to have a size of T1 and A> B1 is obtained.

前記第2工程32の溶接終了後に継手部材を裏返し反転する。その後に、次の第3工程33に移行する。すなわち、第3工程33では、図2の(3)に示すように、不活性ガスのシールドガス9bを流出するシールド構造の溶接トーチ11(シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aと対向する下板1b,2b(継手部材を上下反転しているので該当する下板1b,2bは上側の位置にある)の板表面から立板3まで溶融させる。特に、この溶融接合によって、前記第2工程32の時と同様に、下板1b,2bの板表面から裏面貫通後の立板3の溶け幅wを下板1b,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は下板1b,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを下板1b,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部8aを得ると共に、さらに、2つの溶接金属部7b,8bをT型継手の上下両側に備えた上下T型溶接継手12を得るようにしている。   After completion of the welding in the second step 32, the joint member is turned over. Thereafter, the process proceeds to the next third step 33. That is, in the third step 33, as shown in (3) of FIG. 2, a non-consumable electrode type arc is used by using a welding torch 11 (shield gas supply means) having a shield structure that flows out the shield gas 9b as an inert gas. At the same time as performing welding, while feeding the flux-cored wire 4 that promotes penetration depth to the arc 6 welded portion, the lower plates 1b, 2b facing the upper plates 1a, 2a (because the joint members are turned upside down) The corresponding lower plates 1b and 2b are melted from the plate surface of the upper plate) to the standing plate 3. In particular, as in the case of the second step 32, the melt width w of the upright plate 3 after passing through the back surface from the plate surface of the lower plate 1b, 2b is larger than the plate thickness T1 of the lower plate 1b, 2b. (W> T1) formation, or forming the melt width w to a size of w> T1, and simultaneously forming a bead surface height C in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface, or below The welding cross-sectional area A of the penetration part of the plate back surface of the plates 1b and 2b or the melting width portion of the standing plate 3 is made larger than the plate thickness cross-sectional area B1 of the lower plates 1b and 2b (A> B1), or the melting width w and A weld metal part 8a having a penetration shape in which both of the weld cross-sectional areas A are formed in a size of w> T1 and A> B1 is obtained, and two weld metal parts 7b and 8b are provided on both upper and lower sides of the T-shaped joint. The upper and lower T-type welded joints 12 provided are obtained.

このような溶接施工の構成により、前記突合せ部にギャップGがあったりなかったりするT型継手であっても、ワイヤ溶着充填及び前記溶接断面積Aの確保(A>B1)によって、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7a,7b,8a,8bを上下に備えた上下T型溶接継手12及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   Even with a T-shaped joint with or without a gap G in the butt portion due to the construction of such welding, as described above, by wire welding filling and securing of the weld cross-sectional area A (A> B1). In addition, it is equivalent to the material strength of the upper and lower T-type welded joints 12 having upper and lower welded metal parts 7a, 7b, 8a, 8b having good quality without melting defects, undercuts and porosity, etc. The above welding strength (for example, tensile strength) can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

なお、所定形状の溶接金属部7b,8bを上下両側に有する上下T型溶接継手12を1パスずつの溶接によって達成することが最も好ましいが、例えば、ワイヤ溶着量の不足によって溶接ビード表面部に余盛り不足やアンダーカットが発生した時には、2パス目の溶接を追加するとよい。立板3の溶け幅w及び溶接断面積Aは、既に1パス目の溶接によって所定(w>T1,A>B1)の大きさに形成済みである。したがって、2パス目の溶接を行う時には、上板1a,2a又は下板1b,2bの各溶接ビード表面が所定範囲(1≦C≦3mm)の高さになるように、1パス目溶接の施工条件を見直して2パス目の溶接施工条件を定め、前層溶接のビード表面部から前記フラックス入りワイヤ4送りのアーク溶接を再度遂行することによって、前記余盛り不足及びアンダーカットが解消されて、健全な余盛り高さの溶接ビード及び溶け込み形状を有する溶接金属部7bに改善することができる。また、2パス目の溶接では、前記フラックス入りワイヤ4の代わりにソリッドワイヤ若しくはストランドワイヤを使用して溶接することも可能であり、前記余盛り不足及びアンダーカットを解消することができる。   It is most preferable to achieve the upper and lower T-type welded joints 12 having the weld metal portions 7b and 8b having a predetermined shape on both the upper and lower sides by welding one pass at a time. When surplus or undercut occurs, a second pass of welding should be added. The melting width w and the welding cross-sectional area A of the upright plate 3 have already been formed to a predetermined size (w> T1, A> B1) by the first pass welding. Therefore, when welding in the second pass, the welding of the first pass is performed so that the surface of each weld bead of the upper plate 1a, 2a or the lower plate 1b, 2b is in a predetermined range (1 ≦ C ≦ 3 mm). By reviewing the construction conditions, determining the welding conditions for the second pass, and performing arc welding of the flux-cored wire 4 feed from the bead surface part of the previous layer welding, the above-mentioned insufficient surplus and undercut are resolved. It is possible to improve the weld metal portion 7b having a weld bead with a surplus height and a penetration shape. Further, in the second-pass welding, it is possible to use a solid wire or a strand wire instead of the flux-cored wire 4, and it is possible to eliminate the above-mentioned insufficient filling and undercut.

また、下板1b,2bがないT型継手の場合には、第3工程33の溶接が不要となり、第2工程のアーク溶接の遂行によって上板1b,2bを立板3に溶接すればよい。すなわち、立板3の上面に上板1a,2aを1枚配置又は2枚並列に突合せ配置して溶接する時には、図1の(2)及び図2の(2)に示したように、前記フラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接の遂行によって、上板1a,2aの板表面から裏面貫通後の立板3の溶け幅wを前記上側の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は立板3の溶け幅w部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7a,7bをT型継手の片側に備えるようにするとよい。これにより、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7bを有する上下T型溶接継手12及び上側の板厚材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。   Further, in the case of a T-type joint without the lower plates 1b and 2b, the welding in the third step 33 is not necessary, and the upper plates 1b and 2b may be welded to the standing plate 3 by performing arc welding in the second step. . That is, when the upper plate 1a, 2a is placed on the upper surface of the upright plate 3 or two are butt-arranged and welded in parallel, as shown in (2) of FIG. 1 and (2) of FIG. By performing non-consumable electrode type arc welding using the flux-cored wire 4, the melting width w of the upright plate 3 after passing through the back surface from the plate surface of the upper plates 1a, 2a is larger than the upper plate thickness T1 (w> T1) forming or forming the melt width w to a size of w> T1, and at the same time forming a bead surface height C to be 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or of the standing plate 3 The weld cross-sectional area A of the melt width w is formed larger than the upper plate thickness cross-sectional area B1 (A> B1), or both the melt width w and the weld cross-sectional area A are w> T1 and A> B1. The weld metal parts 7a and 7b having a penetration shape formed on the T-type joint are provided on one side. It is good to do so. Accordingly, the weld strength (for example, tensile strength) equal to or higher than the strength of the upper and lower T-type welded joints 12 and the upper plate thickness material having the weld metal portion 7b having good quality without welding defects such as insufficient melting, undercut and porosity. Can be obtained.

〔実施形態3〕
図3は、上下T型継手の溶接方法及びその上下T型溶接継手に係わる溶接手順及び溶け込み形状のさらに他の実施形態を示す説明図である。図1及び図2との主な相違点は、不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールド構造の溶接トーチ13(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行するようにしたことである。T型継手の形状や溶接部分の溶け込み形状は、図1及び図2と略同じである。
[Embodiment 3]
FIG. 3 is an explanatory view showing another embodiment of the welding method of the upper and lower T-shaped joints, the welding procedure related to the upper and lower T-shaped welded joints, and the penetration shape. The main difference between FIG. 1 and FIG. 2 is that a double shield structure welding torch 13 (double shield gas supply means) that flows out a shield gas containing an inert gas and a shield gas containing an oxidizing gas is used. This is to perform non-consumable electrode type arc welding. The shape of the T-shaped joint and the penetration shape of the welded portion are substantially the same as those in FIGS.

すなわち、図3の(2)に示すように、内管と外管とが同軸状に配設された二重シールド構造の溶接トーチ13(二重シールドガス供給手段)を使用し、外側ノズル10aのノズル孔から数パーセントの酸化性ガス(例えば、O2やCO2)と不活性ガス(ArやHe)との混合ガス10b(酸化性ガス入りのシールドガス)を流出させ、同時に、内側ノズル9aのノズル孔から不活性ガス9b(ArやHe)のシールドガスを流出させる。この二重シールドガスの雰囲気内で、非消耗電極方式のアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aの板表面から立板3まで溶融接合させる。特に、この溶融接合によって、上述したように、上板1a,2aの板表面から裏面貫通後の立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板1a,2aの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7aを得るようにしている。 That is, as shown in (2) of FIG. 3, a double shield structure welding torch 13 (double shield gas supply means) in which an inner tube and an outer tube are coaxially arranged is used, and an outer nozzle 10a. A mixed gas 10b (shield gas containing oxidizing gas) of several percent oxidizing gas (for example, O 2 or CO 2 ) and inert gas (Ar or He) is allowed to flow out from the nozzle hole of the nozzle, and at the same time, the inner nozzle A shielding gas of inert gas 9b (Ar or He) is caused to flow out from the nozzle hole 9a. In this double shield gas atmosphere, the non-consumable electrode type arc welding is performed, and at the same time, the flux-cored wire 4 having a penetration depth promoting property is fed to the arc 6 welding portion, while the plates of the upper plates 1a and 2a. It melt-bonds from the surface to the standing board 3. In particular, as described above, by this fusion bonding, the melting width w of the upright plate 3 after passing through the back surface from the plate surface of the upper plate 1a, 2a is made larger than the plate thickness T1 of the upper plate 1a, 2a (w> T1). Alternatively, the melt width w is formed so that w> T1 and at the same time the bead surface height C is 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or the upper plates 1a and 2a The weld cross-sectional area A of the through portion on the back surface or the melted width portion of the upright plate 3 is formed larger than the plate thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1), or the melt width w and the weld cross-sectional area A weld metal portion 7a having a penetration shape, both of which are formed in the size of w> T1 and A> B1, is obtained.

例えば、数パーセントの酸化性ガス(例えば、O2やCO2)と不活性ガス(例えば、ArやHe)との混合ガス10b(酸化性ガス入りのシールドガス)をアーク直下の溶融プール部分に流すと共に、前記溶け込み促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら溶接すると、前記酸化性ガスから解離した酸素、さらに、溶融中の前記フラックス入りワイヤ4から解離した酸素の両方が溶融プール内に多く溶解する。この酸素溶解によって、アーク6直下の溶融プール7a(溶融金属)の対流が深さ方向及び内向き方向に大きく変化して溶け込みがさらに深くなる。溶け込み深さ促進の結果、上板1a,2a表面から立板3まで深く溶融して溶け込むと同時に、その立板3の溶け幅wが上板1a,2aの板厚T1より大きく(w>T1)形成でき、また、立板3の溶け幅w部分の溶接断面積Aも上板1a,2aの板厚断面積B1より大きく(A>B1)形成することができる。前記フラックス入りワイヤ4及び前記二重シールド構造の溶接トーチ13を用いた非消耗電極方式のアーク溶接(TIGアーク溶接、若しくはプラズマアーク溶接)は、対流型(及び熱伝導型)の溶融形態で深く溶け込むと同時に、スパッタ(溶融金属の飛散)の発生が全くない。さらに、フラックス剤を板表面に塗布する必要もない。 For example, a mixed gas 10b (shield gas containing oxidizing gas) of several percent oxidizing gas (for example, O 2 or CO 2 ) and inert gas (for example, Ar or He) is applied to the molten pool portion directly under the arc. When the flux-cored wire 4 that promotes penetration is fed to the arc 6 welding portion while flowing, both oxygen dissociated from the oxidizing gas and oxygen dissociated from the flux-cored wire 4 during melting Dissolves in the molten pool. By this oxygen dissolution, the convection of the molten pool 7a (molten metal) immediately below the arc 6 is greatly changed in the depth direction and the inward direction, and the penetration is further deepened. As a result of promoting the penetration depth, from the surface of the upper plates 1a, 2a to the standing plate 3, the melting width w of the standing plate 3 is larger than the thickness T1 of the upper plates 1a, 2a (w> T1). In addition, the welding cross-sectional area A of the melting width w portion of the upright plate 3 can also be formed larger than the thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1). The non-consumable electrode type arc welding (TIG arc welding or plasma arc welding) using the flux-cored wire 4 and the welding torch 13 having the double shield structure is deep in a convection type (and heat conduction type) melting mode. At the same time as melting, there is no spatter (spatter of molten metal). Furthermore, it is not necessary to apply a flux agent to the plate surface.

なお、酸化性ガス(O2やCO2)と不活性ガス(ArやHe)との混合ガスのシールドガス10bは、既に公知の市販品を使用すればよい。また、不活性ガスのシールドガス9bと酸化性ガス入りのシールドガス10bとを流出させる方法については、二重シールド構造の溶接トーチ13を使用すればよい。 Incidentally, the shielding gas 10b of a gas mixture of an oxidizing gas (O 2 and CO 2) and inert gas (Ar or He) is already may be used a known commercial products. Further, a welding shield torch 13 having a double shield structure may be used as a method of causing the shielding gas 9b of inert gas and the shielding gas 10b containing oxidizing gas to flow out.

また、溶け込み形態や溶け幅の調整については、前記フラックス入りワイヤ4の送給量や前記金属酸化物の含有量又は混合比率の調整によって調整可能であり、また、前記酸化性ガスの含有量やそのガス流量の調整によっても調整可能である。さらに、溶接電流や溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚や用途に応じて所定範囲の溶け幅w若しくは溶接断面積Aを確保するように、事前に確認試験を行って調整するとよい。   Further, the adjustment of the melting form and the melting width can be adjusted by adjusting the feeding amount of the flux-cored wire 4, the content of the metal oxide or the mixing ratio, and the content of the oxidizing gas, Adjustment is also possible by adjusting the gas flow rate. Furthermore, it can be adjusted according to the size of welding heat input conditions such as welding current and welding speed, and a predetermined range of melting width w or welding cross-sectional area A is secured in advance depending on the plate thickness and application of the joint member. It is recommended to perform a confirmation test.

最初の第1工程31では、図3の(1)に示すように、床面に対して垂直方向に沿った立板3の上下面(立板両面)に、水平方向に沿った上板及び下板1a,1b,2a,2bを1枚ずつ配置、又は上板及び下板1a,1b,2a,2bを2枚ずつ並列に突合せ配置して上下T字状に構成したT型継手を製作する。上述したように、溶接対象のT型継手は、例えば、原子力機器又は火力機器等に組み込まれる溶接物である。特に耐食性に優れたステンレス鋼材若しくは一般の炭素鋼材からなり、上板及び下板1a,1b,2a,2bの板厚T1範囲は、2<T1≦6mmである。好ましくは2<T1≦5mmの範囲に抑えるとさらによい。また、立板3の板厚T2範囲は、前記上板及び下板1a,1b,2a,2bの板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、立板3の上下両面に板厚T1の上板及び下板1a,1b,2a,2bを1枚ずつ配置又は2枚ずつ並列に突合せ配置して上下T字状に継手が構成されている。前記上板及び下板1a,1b,2a,2bの突合せ部にはギャップGがほとんどない状態、また、上板及び下板1a,1b,2a,2bとその中間にある立板3との継手面も隙間がほとんどない状態にあり、比較的高精度に位置決め配置されている。なお、図中に記載しているB1は、上板及び下板1a,1b,2a,2bの板厚T1方向から見た板厚断面積のことである。   In the first first step 31, as shown in (1) of FIG. 3, the upper plate along the horizontal direction and the upper and lower surfaces (both standing plate) along the vertical direction with respect to the floor surface Produces T-shaped joints that are arranged in a T-shape by placing the lower plates 1a, 1b, 2a, 2b one by one, or placing the upper and lower plates 1a, 1b, 2a, 2b side by side in parallel. To do. As described above, the T-shaped joint to be welded is, for example, a welded product incorporated in nuclear equipment or thermal equipment. The plate thickness T1 of the upper and lower plates 1a, 1b, 2a, and 2b is 2 <T1 ≦ 6 mm. Preferably, it is further better to keep it in the range of 2 <T1 ≦ 5 mm. The plate thickness T2 range of the upright plate 3 is not less than 2 times and not more than 5 times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (2 × T1 ≦ T2 ≦ 5 × T1), The upper plate and the lower plate 1a, 1b, 2a, 2b of the plate thickness T1 are arranged one by one on both the upper and lower surfaces of the upright plate 3 or two in parallel butts are arranged in a vertical T shape. The joint between the upper and lower plates 1a, 1b, 2a, 2b and the standing plate 3 in the middle thereof, with no gap G at the butted portion of the upper and lower plates 1a, 1b, 2a, 2b The surface also has almost no gap, and is positioned and arranged with relatively high accuracy. In addition, B1 described in the figure is a plate | board thickness cross-sectional area seen from plate | board thickness T1 direction of upper board and lower board 1a, 1b, 2a, 2b.

また、前記第1工程31において、立板3の上下両面に上板1a,2a及び下板1b,2bを2枚ずつ並列に各々突合せ配置する時には、各突合せ部にギャップGが殆どない状態に設定し、若しくは図2の(1)に示したように、ギャップGがあっても上板及び下板1a,1b,2a,2bの板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に設定している。好ましくは0.1倍以下の0≦G≦0.1×T1の範囲に抑えて設定するとさらによい。また、上板1a,2aと上板3の上面又は下板1b,2bと立板3の下面との隙間が殆どない状態又はあっても0.5mm以下に抑制するとよい。このように、ギャップG範囲や隙間を抑制することによって、組立精度や位置決め精度が高まり、溶接品質に悪影響を及ぼすことがある要因の一つを取り除くことができる。   Further, in the first step 31, when two upper plates 1a, 2a and two lower plates 1b, 2b are butt-arranged in parallel on the upper and lower surfaces of the upright plate 3, there is almost no gap G in each butt portion. 2 or a small gap G range (less than 0.2 times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b even if there is a gap G, as shown in (1) of FIG. 0 ≦ G ≦ 0.2 × T1). It is more preferable to set it within a range of 0 ≦ G ≦ 0.1 × T1, which is preferably 0.1 times or less. Further, it is preferable that the upper plate 1a, 2a and the upper surface of the upper plate 3 or the lower plate 1b, 2b and the lower surface of the upright plate 3 have almost no gap or even 0.5 mm or less. In this way, by suppressing the gap G range and the gap, assembly accuracy and positioning accuracy are increased, and one of factors that may adversely affect the welding quality can be removed.

次の第2工程32では、図3の(2)に示すように、不活性ガスのシールドガス9bと酸化性ガス入りのシールドガス10bとを流出する二重シールド構造の溶接トーチ13(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行する。同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら上板1a,2bの板表面から立板3まで溶融させ、上述したように、立板3の溶け幅wを上板1a,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時に上板1a,2aのビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板1a,2a裏面の貫通部分若しくは立板3の溶け幅w部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7aを得るようにしている。   In the next second step 32, as shown in FIG. 3 (2), a welding torch 13 (double-layered) having a double shield structure that flows out the shielding gas 9b of inert gas and the shielding gas 10b containing oxidizing gas. A non-consumable electrode type arc welding is performed using a shield gas supply means). At the same time, the flux-cored wire 4 that promotes the penetration depth is melted from the plate surfaces of the upper plates 1a and 2b to the standing plate 3 while being fed to the arc 6 welding portion, and as described above, the melting width w of the standing plate 3 Is formed larger than the plate thickness T1 of the upper plates 1a and 2b (w> T1), or the melt width w is formed to a size of w> T1, and at the same time the bead surface height C of the upper plates 1a and 2a is set from the plate surface. Formed in a convex shape 1 to 3 mm higher (1 ≦ C ≦ 3 mm), or the thickness of the upper plate 1a, 2a is cut through the weld cross section A of the penetration portion of the back surface of the upper plate 1a, 2a or the melting width w portion of the standing plate 3 Forming a weld metal part 7a having a penetration shape larger than the area B1 (A> B1) or having both the melt width w and the weld cross-sectional area A in the size of w> T1 and A> B1. Yes.

前記第2工程32の溶接終了後に継手部材を裏返し反転する。その後に、次の第3工程33に移行する。すなわち、第3工程33では、図3の(3)に示すように、不活性ガスのシールドガス9bと酸化性ガス入りのシールドガス10bとを流出させる二重シールド構造の溶接トーチ13(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aと対向する下板1b,2b(継手部材を上下反転しているので該当する下板1b,2bは上側の位置にある)の板表面から立板3まで溶融させる。特に、この溶融接合によって、前記第2工程32の時と同様に、下板1b,2bの板表面から裏面貫通後の立板3の溶け幅wを下板1b,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は下板1b,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを下板1b,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部8aを得ると共に、さらに、2つの溶接金属部7b,8bをT型継手の上下に備えた上下T型溶接継手12を得るようにしている。   After completion of the welding in the second step 32, the joint member is turned over. Thereafter, the process proceeds to the next third step 33. That is, in the third step 33, as shown in FIG. 3 (3), the welding torch 13 having a double shield structure (double gas) that allows the shielding gas 9 b of inert gas and the shielding gas 10 b containing oxidizing gas to flow out. The non-consumable electrode type arc welding is performed using the shielding gas supply means), and at the same time, the flux-cored wire 4 that promotes the penetration depth is fed to the arc 6 welding portion, while facing the upper plates 1a and 2a. The plate 1b, 2b is melted from the plate surface of the plate 1b, 2b (the corresponding lower plate 1b, 2b is in the upper position because the joint member is turned upside down) to the standing plate 3. In particular, as in the case of the second step 32, the melt width w of the upright plate 3 after passing through the back surface from the plate surface of the lower plate 1b, 2b is larger than the plate thickness T1 of the lower plate 1b, 2b. (W> T1) formation, or forming the melt width w to a size of w> T1, and simultaneously forming a bead surface height C in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface, or below The welding cross-sectional area A of the penetration part of the plate back surface of the plates 1b and 2b or the melting width portion of the standing plate 3 is made larger than the plate thickness cross-sectional area B1 of the lower plates 1b and 2b (A> B1), or the melting width w and A weld metal portion 8a having a penetration shape in which both of the weld cross-sectional areas A are formed in a size of w> T1 and A> B1 is obtained, and two weld metal portions 7b and 8b are provided at the top and bottom of the T-shaped joint. The upper and lower T-shaped welded joints 12 are obtained.

このような溶接施工の構成により、ワイヤ溶着充填及び溶接断面積Aの確保(A>B1)によって、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7a,7b,8a,8bを上下に備えた上下T型溶接継手12及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   With such a welding construction, as described above, the weld metal part with good quality without welding defects such as lack of melting and undercut and porosity by wire welding filling and securing of the welding cross-sectional area A (A> B1). It is possible to obtain a welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints 12 having the upper and lower portions 7a, 7b, 8a, and 8b and the upper and lower plates. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

前記フラックス入りワイヤ4の内部に充填されているフラックス剤は、上述したように、少なくともTiO2,Cr23及びSiO2からなる酸化物が混合された粉末剤であり、前記非消耗電極方式のアーク6溶接部分に送給されるフラックス入りワイヤの溶着量は1g/分以上7g/分以下の範囲であり、好ましくは2g/分以上5g/分以下の範囲であり、かつ、立板3の溶け幅wが上板及び下板1a,1b,2a,2bの板厚T1より大きく(w>T1)形成されていると共に、溶接金属部7b,8bに含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、品質良好な溶接金属部7b,8bを上下両側に有する上下T型溶接継手及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。 As described above, the flux agent filled in the flux-cored wire 4 is a powder agent in which an oxide composed of at least TiO 2 , Cr 2 O 3 and SiO 2 is mixed. The amount of welding of the flux-cored wire fed to the arc 6 welded part is in the range of 1 g / min to 7 g / min, preferably in the range of 2 g / min to 5 g / min. The melting width w is larger than the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (w> T1), and the content of oxygen gas contained in the weld metal portions 7b, 8b is 100 wt. The thickness T1 of the upper and lower T-type welded joints and the upper and lower plates 1a, 1b, 2a and 2b having the weld metal portions 7b and 8b with good quality on both the upper and lower sides by being in the range of .ppm to 200wt.ppm. Equal to or less than the material strength of The above weld strength (eg, tensile strength) can be obtained.

なお、フラックス入りワイヤ4の溶着量が1g/分より少ないと、フラックス入りワイヤ4が溶融プール7a,8a内(溶融金属内)へスムーズに入らすに不規則な溶着状態になると共に酸素の溶解量が過少な状態になるため、溶接ビードが不整な形状になると同時に、溶け込み深さが浅い形状になって立板3まで溶け込まず、若しくは立板3まで溶けても溶け幅wが確保(w>T1)できないので好ましくない。一方、フラックス入りワイヤ4の溶着量が7g/分より多いと、アークエネルギーがワイヤの溶融に消費されると共に酸素の溶解量が過大な状態になるため、溶け込み深さが浅い形状になると同時に、溶接金属部7b,8bに含まれる酸素ガスの含有量が許容基準(例えば、200wt.ppm以下)を超えると共に、溶接金属部7b,8bの靭性強度が低下するので好ましくない。したがって、溶接金属部7b,8bに含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、母材強度と同程度の溶接強度及び靭性強度を有する溶接金属部7b,8b及びその上下T型溶接継手12を得ることができる。   If the welding amount of the flux-cored wire 4 is less than 1 g / min, the flux-cored wire 4 becomes irregularly welded and smoothly dissolves in order to smoothly enter the molten pools 7a and 8a (in the molten metal). Since the amount becomes too small, the weld bead has an irregular shape, and at the same time, the melt depth is shallow so that it does not melt to the standing plate 3 or even if it melts to the standing plate 3, the melt width w is secured (w > T1) This is not preferable because it cannot be performed. On the other hand, if the welding amount of the flux-cored wire 4 is more than 7 g / min, the arc energy is consumed for melting the wire and the amount of dissolved oxygen becomes excessive, so that the penetration depth becomes shallow, This is not preferable because the content of the oxygen gas contained in the weld metal parts 7b and 8b exceeds an acceptable standard (for example, 200 wt. Ppm or less) and the toughness strength of the weld metal parts 7b and 8b is lowered. Therefore, when the content of oxygen gas contained in the weld metal portions 7b and 8b is in the range of 100 wt. Ppm to 200 wt. Ppm, the weld metal portion 7b having a weld strength and toughness similar to the base metal strength. , 8b and its upper and lower T-shaped welded joints 12 can be obtained.

また、上述したように、前記フラックス入りワイヤ4は、溶接進行方向の前方からアーク6溶接部分に送給、又は溶接進行方向の後方からアーク6溶接部分に送給することができる。特に、前記フラックス入りワイヤ4の先端部を溶融プールへ接触又は挿入させるように送給することにより、例えば、小電流から大電流まで広範囲の溶接電流(例えば100A〜350A)を出力させる場合や低速送りの少量ワイヤの場合であっても、前記フラックス入りワイヤ4がアーク6直下の溶融プール7a内にスムーズに入り、大きな溶滴にならずに安定して溶融及び溶着させることができる。同時に、上板1a,2aの板表面又は下板1b,2bの板表面からの立板3まで深く溶け込み、その立板3の溶け幅wを上板及び下板1a,1b,2a,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅w部分の溶接断面積Aを前記板厚T1部分の板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部7b,8bを得ることができる。   Further, as described above, the flux cored wire 4 can be fed from the front in the welding progress direction to the arc 6 welding portion, or can be fed from the rear in the welding progress direction to the arc 6 welding portion. In particular, by feeding the tip of the flux-cored wire 4 so as to contact or insert into the molten pool, for example, when outputting a wide range of welding current (eg, 100 A to 350 A) from a small current to a large current or a low speed Even in the case of a small amount of wire, the flux-cored wire 4 can smoothly enter the melt pool 7a directly under the arc 6 and can be stably melted and welded without forming large droplets. At the same time, it deeply melts up to the standing plate 3 from the plate surface of the upper plates 1a, 2a or the plate surface of the lower plates 1b, 2b, and the melting width w of the standing plate 3 is set to the upper plate and the lower plates 1a, 1b, 2a, 2b. A weld metal part having a penetration shape formed larger than the plate thickness T1 (w> T1) or formed so that the weld cross-sectional area A of the melt width w portion is larger than the plate thickness cross-sectional area B1 of the plate thickness T1 portion (A> B1). 7b and 8b can be obtained.

さらに、前記溶け込み促進性のフラックス入りワイヤ4の代わりにソリッドワイヤ若しくはストランドワイヤを使用する時には、前記フラックス入りワイヤ4使用の時よりも、前記酸化性ガスの濃度を倍増したシールドガス10bを使用又は前記酸化性ガス入りのシールドガス10bの流量若しくは流速を増加したシールドガスを使用して非消耗電極方式のアーク溶接を遂行することによって、酸化性ガスから解離した酸素が溶融プール内に多く溶解するので特定深さまで溶融させることができる。同時に、ワイヤ溶着充填及び溶接断面積Aの確保(A>B1)によって、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7a,7b,8a,8bを上下に備えた上下T型溶接継手12及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。   Further, when a solid wire or a strand wire is used instead of the flux-promoting wire 4 that promotes the penetration, the shield gas 10b in which the concentration of the oxidizing gas is doubled than when the flux-cored wire 4 is used, or A large amount of oxygen dissociated from the oxidizing gas is dissolved in the molten pool by performing non-consumable electrode type arc welding using the shielding gas having an increased flow rate or flow rate of the shielding gas 10b containing the oxidizing gas. Therefore, it can be melted to a specific depth. At the same time, as described above, the weld metal parts 7a, 7b, 8a, and 8b with good quality are free from welding defects such as insufficient melting, undercut and porosity by securing the welding cross-sectional area A (A> B1). It is possible to obtain a welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints 12 and the upper and lower plates.

一方、下板1b,2bがなく、上板1a,2aのみがあるT型継手を溶接する時には、図3の(2)に示したように、前記二重シールド構造の溶接トーチ13及びフラックス入りワイヤ4を用いた非消耗電極方式のアーク溶接の遂行によって、上板1a,2aの板表面から裏面貫通後の立板3の溶け幅wを上側の板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は立板3の溶け幅部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7a,7bをT型継手の片側に備えるようにするとよい、これにより、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7bを有する上下T型溶接継手12及び上側の板厚材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。   On the other hand, when welding a T-type joint without the lower plates 1b and 2b and having only the upper plates 1a and 2a, as shown in FIG. By performing non-consumable electrode type arc welding using the wire 4, the melting width w of the upright plate 3 after passing through the back surface from the plate surface of the upper plates 1a and 2a is made larger than the upper plate thickness T1 (w> T1). Alternatively, the melt width w is formed in a size of w> T1, and the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) 1 to 3 mm higher than the plate surface, or the melt width portion of the upright plate 3 The weld cross-sectional area A is larger than the upper plate thickness cross-sectional area B1 (A> B1), or the melt width w and the weld cross-sectional area A are both formed as w> T1 and A> B1. Shaped weld metal parts 7a and 7b are provided on one side of the T-shaped joint. In this way, the weld strength (equivalent to or higher than the strength of the upper and lower T-type welded joints 12 having the weld metal portion 7b with good quality without welding defects such as insufficient melting, undercut and porosity) For example, tensile strength) can be obtained.

また、図3の(2)と(3)及び(4)に示すように、本発明の上下T型溶接継手では、不活性ガスのシールドガス9bと酸化性ガス入りのシールドガス10bとを流出させる二重シールド構造の溶接トーチ13(二重シールドガス供給手段)を用いて非消耗電極方式のアーク溶接を上板1a,2aの板表面又は前記上板1a,2aと対向する下板1b,2bの板表面から各々別々に遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら立板3まで各々別々に溶融させ、少なくとも前記上板1a,2aの板表面又は前記下板1b,2bの板表面から裏面貫通後の立板3の各溶け幅wを前記上板及び下板1a,1b,2a,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板及び下板1a,1b,2a,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の各溶接断面積Aを上板及び下板1a,1b,2a,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7a,7b,8a,8bをT型継手の上下両側に備えた構造の上下T型溶接継手12にすることもできる。   Further, as shown in FIGS. 3 (2), (3) and (4), the upper and lower T-type welded joints of the present invention flow out of the shielding gas 9b containing inert gas and the shielding gas 10b containing oxidizing gas. A non-consumable electrode type arc welding using a double shield structure welding torch 13 (double shield gas supply means) to be formed, or the lower plate 1b facing the upper plate 1a, 2a or the upper plate 1a, 2a, 2b is performed separately from the surface of the plate 2b, and at the same time, the flux-cored wire 4 that promotes the penetration depth is melted separately up to the standing plate 3 while being fed to the arc 6 welding portion, and at least the upper plates 1a and 2a Each melt width w of the upright plate 3 after passing through the back surface from the plate surface or the plate surface of the lower plate 1b, 2b is larger than the plate thickness T1 of the upper plate and the lower plate 1a, 1b, 2a, 2b (w> T1). Formation or the melting width w is w> At the same time, the bead surface height C is formed in a convex shape 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or the upper and lower plates 1a, 1b, 2a, 2b Each weld cross-sectional area A of the penetration portion or the melt width portion of the upright plate 3 is formed larger than the plate thickness cross-sectional area B1 of the upper and lower plates 1a, 1b, 2a, 2b (A> B1), or the melt width w and Upper and lower T-type welding having a structure in which weld metal parts 7a, 7b, 8a, and 8b are formed on both the upper and lower sides of the T-type joint in which both of the weld cross-sectional areas A are formed in the size of w> T1 and A> B1. A joint 12 can also be provided.

また、前記立板3の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部7b,8bが、前記フラックス入りワイヤ4及び二重シールドガス供給手段を用いた非消耗電極方式のアーク溶接によってT型継手の上下両側に1パスずつ形成されているとすることもできる。   Further, each melting width w of the standing plate 3 is such that w> T1, or the welding cross-sectional area A is A> B1, or both the melting width w and the welding cross-sectional area A are w> T1. And weld metal parts 7b and 8b having a penetration shape having a size of any of A> B1 are formed on the T-shaped joint by arc welding of the non-consumable electrode method using the flux-cored wire 4 and the double shield gas supply means. One pass may be formed on both the upper and lower sides.

このような構成により、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7b,8bを上下両側に有する上下T型溶接継手12及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。   With such a configuration, as described above, the upper and lower T-type welded joints 12 and the upper and lower plates having weld metal portions 7b and 8b of good quality without welding defects such as lack of melting, undercut and porosity on the upper and lower sides. A welding strength (for example, tensile strength) equal to or higher than the material strength of the plate thickness T1 of 1a, 1b, 2a, 2b can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs.

〔実施形態4〕
図4は、本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わるレーザ溶接手順及び溶け込み形状の実施形態を示す説明図である。図1及び図3との主な相違点は、前記アーク溶接の代わりに、レーザトーチを用いて焦点ぼかしのレーザビーム照射によるレーザ溶接を遂行すると同時に、レーザ溶接部分にワイヤを送給しながら下側の立板まで溶融させるようにしたことである。他の部分や符号は、図1及び図3と略同じである。
[Embodiment 4]
FIG. 4 is an explanatory view showing an embodiment of the welding method of the upper and lower T-shaped joint of the present invention, the laser welding procedure and the penetration shape related to the upper and lower T-shaped welded joint. The main difference from FIG. 1 and FIG. 3 is that, instead of arc welding, laser welding is performed by irradiating a laser beam with a focus blur using a laser torch, and at the same time a wire is fed to the laser welding portion while It was made to melt even to the standing plate. Other parts and symbols are substantially the same as those in FIGS. 1 and 3.

すなわち、図4の(2)に示すように、焦点ぼかしのレーザ溶接(第2工程35)では、レーザビーム18の焦点位置19を上板1a,2aの板表面より上側へずらした位置(距離L)となるようにレーザトーチ17を配置し、前記焦点ぼかしのレーザビーム18照射によるレーザ溶接を遂行すると同時に、レーザ溶接部分にワイヤ44を送給しながら立板3まで溶融させ、少なくとも上板1a,2a裏面貫通後の立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時に上板1a,2aのビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は上板1a,2aの裏面の貫通部分若しくは立板3の溶け幅w部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部77aを得るようにしている。   That is, as shown in (2) of FIG. 4, in the focus-blurring laser welding (second step 35), the position (distance) where the focal position 19 of the laser beam 18 is shifted upward from the plate surfaces of the upper plates 1a and 2a. L), the laser torch 17 is arranged so that the laser beam 18 is irradiated with the laser beam 18 for defocusing, and at the same time, the wire 44 is fed to the laser welding portion and melted to the standing plate 3 to at least the upper plate 1a. , 2a The melting width w of the upright plate 3 after penetrating the back surface is formed to be larger than the thickness T1 of the upper plates 1a, 2a (w> T1), or the melting width w is formed to the size of w> T1 and the upper plate at the same time The bead surface height C of 1a, 2a is formed in a convex shape 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm), or the penetration portion of the back surface of the upper plates 1a, 2a or the melting width w portion of the standing plate 3 Weld cross section A is the upper plate 1a, A weld metal portion 77a having a penetration shape that is larger than the plate thickness cross-sectional area B1 of 2a (A> B1) or in which both the melt width w and the weld cross-sectional area A are w> T1 and A> B1. Like to get.

特に、使用するレーザビーム18の焦点位置19を、少なくとも前記上板1a,2aの板表面より上側へずらした位置L(例えば、上板1a,2aの板厚T1より大きな距離L>T1だけ上側へ離した位置)となるようにレーザトーチ17(例えば、レーザビーム18を集光して加工物に照射する集光レンズ等から構成されているレーザ加工トーチ)を配置して、焦点ぼかしのレーザビーム18を溶接すべき箇所に照射することが重要である。このような焦点ぼかしのレーザビーム18を用いたレーザ溶接を遂行することによって、深さ方向に深く溶け込む従来のキーホール型の溶け込み形態から幅方向に溶け広がる溶け込み形態に変化させることができる。この溶け込み形態の変化によって、金属蒸気及びスパッタ発生が激減できると同時に、立板3の溶け幅wが上板1a,2aの板厚T1より大きく(w>T1)形成、また、立板3の溶け幅w部分の溶接断面積Aも上板1a,2aの板厚断面積B1より大きく(A>B1)形成した溶け込み形状の溶接金属部77aを得ることができる。レーザビーム18については、既に市販のCO2レーザ又はYAGレーザ又はファイバーレーザ又はディスクレーザのいずれかを使用すればよい。 In particular, the focus position 19 of the laser beam 18 to be used is shifted upward by at least a position L (for example, a distance L> T1 larger than the plate thickness T1 of the upper plates 1a and 2a) from the upper surface of the upper plates 1a and 2a. A laser torch 17 (for example, a laser processing torch composed of a condensing lens or the like for condensing the laser beam 18 and irradiating the workpiece) so that the laser beam is defocused. It is important to irradiate the part to be welded 18. By performing laser welding using the laser beam 18 with such a defocused focus, it is possible to change from a conventional keyhole-type penetration configuration that deeply melts in the depth direction to a penetration configuration that spreads in the width direction. Due to this change in the melting form, the generation of metal vapor and spatter can be drastically reduced, and at the same time, the melting width w of the upright plate 3 is formed larger than the plate thickness T1 (w> T1) of the upper plates 1a and 2a. It is possible to obtain a weld metal portion 77a having a penetration shape in which the weld cross section A of the melt width w is larger than the plate thickness cross section B1 of the upper plates 1a and 2a (A> B1). For the laser beam 18, a commercially available CO 2 laser, YAG laser, fiber laser, or disk laser may be used.

なお、前記レーザビーム18の焦点位置が板表面となるジャストホーカス(距離L=0)に定めた時やT型継手の内部側(距離L<0)に定めた時には、深さ方向に深く溶け込む従来のキーホール型の溶け込み形態によって深い溶け込み形状になり、反対に、溶接幅方向の溶け込み幅が狭くなってしまうため、立板3の溶け幅wを上板の板厚T1より大きく(w>T1)形成することができない。さらに、金属蒸気及びスパッタが多発するので好ましくない。   When the focal position of the laser beam 18 is determined to be just hocus (distance L = 0), which is the plate surface, or when it is determined on the inner side of the T-shaped joint (distance L <0), it deeply melts in the depth direction. The conventional keyhole-type penetration form results in a deep penetration shape, and conversely, the penetration width in the welding width direction is narrowed. Therefore, the melting width w of the upright plate 3 is larger than the thickness T1 of the upper plate (w> T1) It cannot be formed. Furthermore, since metal vapor and spatter frequently occur, it is not preferable.

レーザ溶接部分に送給するワイヤ44は、T型継手の部材と同質系のソリッドワイヤ又はストランドワイヤを使用すればよい。また、前記溶け込み促進性のフラックス入りワイヤ4を使用することも可能である。レーザ溶接部分に流すシールドガス9cについては、Arガス又はN2ガスを使用すればよい。このように、シールドガス9cの雰囲気中で、かつ、焦点ぼかしのレーザビーム18照射によるレーザ溶接の遂行及びレーザ溶接部分にワイヤ44を送給及び溶着させることによって、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77b,88b及び該溶接金属部77b,88bを上下に備えた上下T型溶接継手14を得ることができる。 The wire 44 fed to the laser welded portion may be a solid wire or a strand wire that is the same type as that of the T-shaped joint member. It is also possible to use the flux-cored wire 4 that promotes melting. Ar gas or N 2 gas may be used for the shield gas 9c flowing through the laser welding portion. As described above, in the atmosphere of the shielding gas 9c, by performing laser welding by irradiating the laser beam 18 with the focus blurring and feeding and welding the wire 44 to the laser welded portion, insufficient melting, undercut, porosity, etc. It is possible to obtain the weld metal parts 77b and 88b with good quality without any weld defects and the upper and lower T-type welded joints 14 provided with the weld metal parts 77b and 88b on the upper and lower sides.

第1工程31では、図4の(1)に示すように、床面に対して垂直方向に沿った立板3の上下面(立板両面)に、水平方向に沿った上板及び下板1a,1b,2a,2bを1枚ずつ配置、又は上板及び下板1a,1b,2a,2bを2枚ずつ並列に突合せ配置して上下T字状に構成したT型継手を製作する。上述したように、溶接対象のT型継手は、原子力機器又は火力機器等に組み込まれる溶接物である。特に耐食性に優れたステンレス鋼材若しくは一般の炭素鋼材からなり、上板及び下板1a,1b,2a,2bの板厚T1範囲は、2<T1≦6mmである。好ましくは2<T1≦5mmの範囲に抑えるとさらによい。また、立板3の板厚T2範囲は、前記上板及び下板1a,1b,2a,2bの板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、立板3の上下両面に板厚T1の上板及び下板1a,1b,2a,2bを1枚ずつ配置又は2枚ずつ並列に突合せ配置して上下T字状に継手が構成されている。前記上板及び下板1a,1b,2a,2bの突合せ部にはギャップGがほとんどない状態、また、上板及び下板1a,1b,2a,2bとその中間にある立板3との継手面も隙間がほとんどない状態にあり、比較的高精度に位置決め配置されている。   In the first step 31, as shown in FIG. 4 (1), the upper plate and the lower plate along the horizontal direction on the upper and lower surfaces (both surfaces of the vertical plate) along the vertical direction with respect to the floor surface. A T-shaped joint is formed by arranging 1a, 1b, 2a, 2b one by one, or two upper and lower plates 1a, 1b, 2a, 2b in parallel butting in parallel. As described above, the T-shaped joint to be welded is a welded article incorporated in nuclear equipment or thermal equipment. The plate thickness T1 of the upper and lower plates 1a, 1b, 2a, and 2b is 2 <T1 ≦ 6 mm. Preferably, it is further better to keep it in the range of 2 <T1 ≦ 5 mm. The plate thickness T2 range of the upright plate 3 is not less than 2 times and not more than 5 times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (2 × T1 ≦ T2 ≦ 5 × T1), The upper plate and the lower plate 1a, 1b, 2a, 2b of the plate thickness T1 are arranged one by one on both the upper and lower surfaces of the upright plate 3 or two in parallel butts are arranged in a vertical T shape. The joint between the upper and lower plates 1a, 1b, 2a, 2b and the standing plate 3 in the middle thereof, with no gap G at the butted portion of the upper and lower plates 1a, 1b, 2a, 2b The surface also has almost no gap, and is positioned and arranged with relatively high accuracy.

なお、上述したように、上板及び下板1a,1b,2a,2bの板厚T1が2mmより薄いと、溶け過ぎによる溶接変形が増大し易い。反対に、前記上板及び下板1a,1b,2a,2bの板厚T1が6mmより厚いと、立板3の溶け幅wを十分な大きさに形成することが難しくなる。強制的に溶融接合するには、大出力のレーザ発信装置が必要になると共に、上板及び下板1a,1b,2a,2bの溶け過ぎによる溶接変形が増大し易いので好ましくない。一方、前記立板3の板厚T2が上板及び下板1a,1b,2a,2bの板厚T1の2倍より薄いと、例えば、溶接すべき上板及び下板1a,1b,2a,2bの溶接線と立板3両面との位置合わせに位置ずれがあったりする場合に、立板3の片端面部に溶けダレが発生したり、溶け込みが偏ったり歪な形状になったりし易い。反対に、立板3の板厚T2が上板及び下板1a,1b,2a,2bの板厚T1の5倍より厚いと、立板3の板厚T2に対する立板3の溶け幅w及び溶接断面積Aの比率が低下すると共に、上板及び下板1a,1b,2a,2bの板厚T1との板厚バランスが悪化したり、素材自身の重量が増大したりするので好ましくない。   As described above, if the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b is less than 2 mm, welding deformation due to excessive melting tends to increase. On the contrary, if the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b is larger than 6 mm, it becomes difficult to form the melt width w of the upright plate 3 to a sufficient size. Forcibly melting and bonding requires a high-power laser transmission device and is not preferable because welding deformation due to excessive melting of the upper and lower plates 1a, 1b, 2a, and 2b tends to increase. On the other hand, if the plate thickness T2 of the standing plate 3 is thinner than twice the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b, for example, the upper and lower plates 1a, 1b, 2a, When the position of the welding line 2b and the both sides of the standing plate 3 is misaligned, the one end surface portion of the standing plate 3 is likely to melt and sag, or the penetration is likely to be uneven or distorted. On the contrary, if the plate thickness T2 of the standing plate 3 is thicker than five times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b, the melting width w of the standing plate 3 with respect to the plate thickness T2 of the standing plate 3 and This is not preferable because the ratio of the weld cross-sectional area A is reduced, and the balance of the plate thickness T1 with the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b is deteriorated and the weight of the material itself is increased.

また、上述したように、図4中に記載しているB1は、上板及び下板1a,1b,2a,2bの板厚T1方向から見た板厚断面積のことであり、さらに、立板3の溶け幅w部分の溶接断面積Aは、前記立板3の溶け幅wと溶接線長さLとの積(A=w×L)で求められる。同様に、前記板厚T1方向の板厚断面積B1は、上板1,2の板厚T1と溶接線長さLとの積(B1=T1×L)で求められ、前記溶け幅wをw>T1に形成すれば、その時の溶接断面積Aは、前記板厚断面積B1より大きく(A>B1)形成されたことになる。   In addition, as described above, B1 described in FIG. 4 is the plate thickness cross-sectional area of the upper and lower plates 1a, 1b, 2a, 2b as viewed from the plate thickness T1 direction. The weld cross-sectional area A of the melt width w portion of the plate 3 is obtained by the product (A = w × L) of the melt width w of the upright plate 3 and the weld line length L. Similarly, the plate thickness cross-sectional area B1 in the plate thickness T1 direction is obtained by the product of the plate thickness T1 of the upper plates 1 and 2 and the weld line length L (B1 = T1 × L), and the melting width w is defined as If formed so as to satisfy w> T1, the weld cross-sectional area A at that time is formed larger than the plate thickness cross-sectional area B1 (A> B1).

次の第2工程35では、図4の(2)に示すように、前記焦点ぼかしのレーザビーム18照射によるレーザ溶接を遂行すると同時に、レーザ溶接部分にワイヤ44を送給しながら上板1a,2aの板表面から立板3まで溶融させ、少なくとも立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記立板3の溶け幅w部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部77aを得るようにしている。これにより、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77b,77bを片方に備えた上下T型溶接継手14及び上板1a,2aの材料強度と同等以上の溶接強度を得ることができる。   In the next second step 35, as shown in FIG. 4 (2), while performing laser welding by irradiating the laser beam 18 for defocusing, the upper plate 1a, 2a is melted from the plate surface to the standing plate 3, and at least the melting width w of the standing plate 3 is formed larger than the plate thickness T1 of the upper plates 1a, 2a (w> T1), or the melting width w portion of the standing plate 3 The welding cross-sectional area A is formed larger than the plate thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1), or both the melt width w and the welding cross-sectional area A are set to w> T1 and A> B1 The formed weld metal portion 77a having a penetration shape is obtained. As a result, the weld strength equal to or higher than the material strength of the upper and lower T-type welded joints 14 and the upper plates 1a and 2a provided with weld metal portions 77b and 77b of good quality without welding defects such as lack of melting, undercut and porosity. Strength can be obtained.

前記第2工程35の溶接終了後に継手部材を裏返し反転する。その後に、次の第3工程36に移行する。すなわち、第3工程36では、図4の(3)に示すように、前記焦点ぼかしのレーザビーム18照射によるレーザ溶接を遂行すると同時にレーザ溶接部分にワイヤ44を送給しながら、前記上板1a,2aと対向する下板1b,2b(継手部材を上下反転しているので該当する下板1b,2bは上側の位置にある)の板表面から立板3まで溶融させる。特に、この溶融接合によって、前記第2工程35の時と同様に、少なくとも前記立板3の溶け幅wを下板1b,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は下板1b,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを下板1b,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部88aを得ると共に、さらに、2つの溶接金属部77b,88bをT型継手の上下に備えた上下T型溶接継手14を得るようにしている。   After completion of the welding in the second step 35, the joint member is turned over. Thereafter, the process proceeds to the next third step 36. That is, in the third step 36, as shown in FIG. 4 (3), while performing laser welding by irradiating the laser beam 18 for defocusing, the upper plate 1 a , 2a, the lower plate 1b, 2b is melted from the plate surface of the lower plate 1b, 2b (the corresponding lower plate 1b, 2b is in the upper position because the joint member is turned upside down) to the standing plate 3. In particular, as in the case of the second step 35, at least the melt width w of the standing plate 3 is formed larger than the plate thickness T1 (w> T1) of the lower plates 1b and 2b by the melt bonding, or the melt width w is formed in the size of w> T1, and at the same time, the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) higher by 1 to 3 mm than the plate surface, or the through portion of the back surface of the lower plates 1b and 2b or The welding cross-sectional area A of the melting width portion of the upright plate 3 is formed larger than the plate thickness cross-sectional area B1 of the lower plates 1b and 2b (A> B1), or both the melting width w and the welding cross-sectional area A are w> T1. A weld metal portion 88a having a penetration shape formed in a size of A> B1 is obtained, and an upper and lower T-type weld joint 14 having two weld metal portions 77b and 88b provided above and below the T-type joint is obtained. ing.

このような溶接施工の構成により、ワイヤ溶着充填及び溶接断面積Aの確保(A>B1)によって、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77b,77b,88a,88bを上下に備えた上下T型溶接継手14及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減することができる。さらに、アーク溶接と比べてレーザ溶接の入熱量が少なく、変形量も減少するので歪取り作業が削減でき、生産性をさらに高めることできる。   With such a welding construction, as described above, the weld metal part with good quality without welding defects such as lack of melting and undercut and porosity by wire welding filling and securing of the welding cross-sectional area A (A> B1). It is possible to obtain a welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints 14 having the upper and lower portions 77b, 77b, 88a, and 88b. In addition, the number of work steps can be greatly reduced as compared with conventional multi-pass welding or flux coating type welding. Furthermore, since the amount of heat input of laser welding is smaller than that of arc welding and the amount of deformation is also reduced, the work for removing strain can be reduced and the productivity can be further increased.

また、上述したように、立板3の溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成することにより、所定形状の健全な溶接金属部が得られると共に、T型継手の溶接表面に凹みやアンダーカットのない凸形状の良好な溶接ビードを得ることができる。なお、ビード表面高さCが1mmより小さいと、ビード境界部にアンダーカットが生じ易い。反対に、ビード表面高さCが3mmより大き過ぎると、溶け込み深さが浅くなったり、ビード外観が悪くなったり、過剰な出っ張り部分が邪魔になったりするので好ましくない。   Further, as described above, the melting width w of the upright plate 3 is formed so that w> T1 and at the same time the bead surface height C is formed to be 1 to 3 mm higher than the plate surface (1 ≦ C ≦ 3 mm) As a result, a sound weld metal part having a predetermined shape can be obtained, and a good weld bead having a convex shape without a dent or undercut on the weld surface of the T-shaped joint can be obtained. If the bead surface height C is less than 1 mm, an undercut is likely to occur at the bead boundary. On the other hand, if the bead surface height C is larger than 3 mm, the penetration depth becomes shallow, the bead appearance is deteriorated, and an excessive protruding portion is not preferable.

さらに、前記T型継手を下向姿勢から横向姿勢又は立向姿勢に変更して溶接する時には、継手部材1a,1b,2a,2b,3を横向姿勢又は立向姿勢に組立配置(継手部材1a,1b,2a,2b,3を90度左回転させた姿勢状態)した後に、前記焦点ぼかしのレーザビーム18を用いたレーザ溶接の遂行によって、一方(例えば、上板1a,2a側)の板表面から横向姿勢又は立向姿勢の状態で立板3まで溶接し、その後に他方(例えば、下板1b,2b側)の板表面から横向姿勢又は立向姿勢の状態で立板3まで溶接し、又は前記焦点ぼかしのレーザビーム18を用いた2組のレーザ溶接の遂行によって、時間的及び空間的に遠く離れた位置で左右両側の継手部を横向姿勢又は立向姿勢の状態で立板3まで各々別々に溶接し、少なくとも立板3の溶け幅wがw>T1の大きさ又は前記溶け幅w部分の溶接断面積AがA>B1の大きさを有する溶け込み形状の溶接金属部77a,77b,78a,78bをT型継手の左右両側に備えることにより、溶接作業時間が大幅に短縮できると共に、健全な溶け込み形状を有する溶接金属部77b,78b及びその上下T型溶接継手14を得ることができる。   Further, when the T-shaped joint is welded by changing from the downward posture to the horizontal posture or the vertical posture, the joint members 1a, 1b, 2a, 2b, 3 are assembled and arranged in the horizontal posture or the vertical posture (the joint member 1a). , 1b, 2a, 2b, 3 rotated 90 degrees counterclockwise) and then performing laser welding using the defocused laser beam 18 (for example, the upper plate 1a, 2a side) Welding from the surface to the standing plate 3 in a horizontal posture or a vertical posture, and then welding from the other (for example, the lower plate 1b, 2b side) plate surface to the vertical plate 3 in a horizontal posture or a vertical posture. Or by performing two sets of laser welding using the defocused laser beam 18, the vertical plate 3 in the horizontal position or the vertical position with the joint portions on the left and right sides at positions far apart in time and space. Until each welded separately, less Also, the weld metal portions 77a, 77b, 78a, 78b having a penetration shape in which the melt width w of the upright plate 3 has a size of w> T1 or the weld cross-sectional area A of the melt width w portion of A> B1 is T. By providing on both the left and right sides of the mold joint, the welding operation time can be greatly shortened, and weld metal portions 77b and 78b having a sound penetration shape and the upper and lower T-shaped weld joints 14 can be obtained.

また、図4の(2)と(3)及び(4)に示すように、本発明の上下T型溶接継手では、前記焦点ぼかしのレーザビーム18を用いたレーザ溶接を上板1a,2aの板表面又は前記上板1a,2aと対向する下板1b,2bの板表面から各々別々に遂行すると同時に、レーザ溶接部分にワイヤ44を送給しながら立板3まで各々別々に溶融させ、少なくとも前記上板及び下板1a,2a,1b,2bの板表面から裏面貫通後の立板3の各溶け幅wを前記板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は前記上板及び下板1a,1b,2a,2b裏面側の貫通部分若しくは立板3の溶け幅w部分の各溶接断面積Aを上板及び下板1a,1b,2a,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部77a,77b,88a,88bをT型継手の上下両側に備えた構造の上下T型溶接継手14にすることもできる。   Further, as shown in FIGS. 4 (2), (3), and (4), in the upper and lower T-type welded joints of the present invention, laser welding using the laser beam 18 of the above-described defocusing is performed on the upper plates 1a and 2a. It is performed separately from the plate surface or the plate surfaces of the lower plates 1b and 2b facing the upper plates 1a and 2a, and at the same time, the wires 44 are fed to the laser welded portion and melted separately up to the standing plate 3, respectively. Each melt width w of the upright plate 3 after back surface penetration from the plate surface of the upper and lower plates 1a, 2a, 1b, 2b is formed larger than the plate thickness T1 (w> T1), or the melt width w is set to w > T1 is formed in a convex shape (1 ≦ C ≦ 3 mm) with a bead surface height C 1 to 3 mm higher than the plate surface at the same time, or the back side of the upper and lower plates 1a, 1b, 2a and 2b Each welding cross-sectional area A of the penetration part of the above or the melting width w part of the upright plate 3 The upper and lower plates 1a, 1b, 2a and 2b are formed larger than the plate thickness cross-sectional area B1 (A> B1), or both the melt width w and the weld cross-sectional area A are larger than w> T1 and A> B1. The weld metal portions 77a, 77b, 88a, 88b having a penetration shape formed on the upper and lower sides can be formed into the upper and lower T-type weld joint 14 having a structure provided on both upper and lower sides of the T-type joint.

また、前記立板3の各溶け幅wがw>T1の大きさ、又は前記溶接断面積AがA>B1の大きさ、又は前記溶け幅w及び前記溶接断面積Aの両方がw>T1及びA>B1の大きさのいずれかを有する溶け込み形状の溶接金属部77b,88bが、前記焦点ぼかしのレーザビーム用いたレーザ溶接によってT型継手の上下両側に1パスずつ形成されているとすることもできる。   Further, each melting width w of the standing plate 3 is such that w> T1, or the welding cross-sectional area A is A> B1, or both the melting width w and the welding cross-sectional area A are w> T1. And weld metal parts 77b and 88b having a penetration shape having a size of either A> B1 are formed on each of the upper and lower sides of the T-shaped joint by laser welding using the laser beam with the defocusing. You can also.

このような構成により、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77b,88bを上下両側に有する上下T型溶接継手14及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減することができる。さらに、アーク溶接と比べてレーザ溶接の入熱量が少なく、変形量も減少するので歪取り作業が削減でき、生産性をさらに高めることできる。   With such a configuration, as described above, the upper and lower T-type welded joints 14 and the upper and lower plates having the weld metal portions 77b and 88b of good quality without welding defects such as insufficient melting and undercut and porosity on the upper and lower sides. A welding strength (for example, tensile strength) equal to or higher than the material strength of the plate thickness T1 of 1a, 1b, 2a, 2b can be obtained. In addition, the number of work steps can be greatly reduced as compared with conventional multi-pass welding or flux coating type welding. Furthermore, since the amount of heat input of laser welding is smaller than that of arc welding and the amount of deformation is also reduced, the work for removing strain can be reduced and the productivity can be further increased.

〔実施形態5〕
図5は、本発明の上下T型継手の溶接方法及びその上下T型溶接継手に係わるレーザ溶接手順及び溶け込み形状の他の実施形態を示す説明図である。図4との主な相違点は、立板3の上下両面に上板1a,2a及び下板2b,2bを2枚ずつ並列に突合せ配置する時に、上板1a,2a同士の突合せ部又は下板1b,2b同士の突合せ部にギャップGがあったりなかったりするT型継手の実施例であり、その他の部分や符号は、図4と略同じである。
[Embodiment 5]
FIG. 5 is an explanatory view showing another embodiment of the welding method for the upper and lower T-shaped joints of the present invention, the laser welding procedure and the penetration shape relating to the upper and lower T-shaped welded joints. The main difference from FIG. 4 is that when two upper plates 1a, 2a and two lower plates 2b, 2b are butt-arranged in parallel on the upper and lower surfaces of the upright plate 3, the butt portion between the upper plates 1a, 2a or the lower plate This is an example of a T-shaped joint in which there is no gap G at the abutting portion between the plates 1b and 2b, and other parts and symbols are substantially the same as those in FIG.

上述したように、溶接線の長い部材のT型継手では、ギャップGがない状態に組み立てることが意外と難しく、上板1a,2a同士の突合せ部又は下板1b,2b同士の突合せ部にギャップGがあったりなかったりする状態になり易く、また、前記上板1a,2aと立板3の上面又は前記下板1b,2bと立板3の下面との継手密着面にも僅かな隙間があったりなかったりすることがある。特に、前記ギャップGが全体的に過大な場合や、許容値を時々超えたりするバラツキの大きなギャップG変化の場合には、溶接品質に悪影響(例えば、不均一な溶け込み,不揃いなビード形状,アンダーカットなど)が発生し易い。これを避けるため、本実施例では、許容可能なギャップG範囲を以下のように限定している。   As described above, it is unexpectedly difficult to assemble a T-shaped joint having a long weld line without the gap G, and the gap G is formed in the butt portion between the upper plates 1a and 2a or the butt portion between the lower plates 1b and 2b. In addition, there is a slight gap on the upper surface of the upper plates 1a, 2a and the upright plate 3 or on the joint contact surface between the lower plates 1b, 2b and the lower surface of the upright plate 3. May or may not be. In particular, when the gap G is excessively large as a whole, or when the gap G changes greatly, which sometimes exceeds the allowable value, the welding quality is adversely affected (for example, uneven penetration, uneven bead shape, Cut). In order to avoid this, in this embodiment, the allowable gap G range is limited as follows.

すなわち、図5の(1)に示すように、最初の第1工程31では、立板3の上下両面面に上板1a,2a及び下板1b,2bを2枚ずつ並列に突合せ配置する時に、各突合せ部にギャップGが殆んどない状態又はあっても上板及び下板1a,1b,2a,2bの板厚T1の0.2倍以下の小さいギャップG範囲(0≦G≦0.2×T1)に設定している。好ましくは0.1倍以下の0≦G≦0.1×T1の範囲に抑えて設定するとさらによい。また、上板1a,2aと上板3の上面又は下板1b,2bと立板3の下面との隙間が殆どない状態又はあっても0.5mm以下に抑制するとよい。このように、ギャップG範囲や隙間を抑制することによって、組立精度や位置決め精度が高まり、溶接品質に悪影響を及ぼすことがある要因の一つを取り除くことができる。また、上述したように、溶接対象のT型継手は、例えば、原子力機器又は火力機器等に組み込まれる溶接物である。特に耐食性に優れたステンレス鋼材若しくは一般の炭素鋼材からなり、上板及び下板1a,1b,2a,2bの板厚T1範囲は、2<T1≦6mmであり、また、立板3の板厚T2範囲は、前記上板及び下板1a,1b,2a,2bの板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、立板3の上下両面に板厚T1の上板及び下板1a,1b,2a,2bを水平方向に2枚ずつ並列に突合せ配置して上下T字状に継手が構成されている。   That is, as shown in FIG. 5 (1), in the first first step 31, when two upper plates 1a, 2a and two lower plates 1b, 2b are butt-arranged in parallel on the upper and lower surfaces of the upright plate 3, respectively. Even if there is almost no gap G at each butting portion, a small gap G range not more than 0.2 times the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b (0 ≦ G ≦ 0) .2 × T1). It is more preferable to set it within a range of 0 ≦ G ≦ 0.1 × T1, which is preferably 0.1 times or less. Further, it is preferable that the upper plate 1a, 2a and the upper surface of the upper plate 3 or the lower plate 1b, 2b and the lower surface of the upright plate 3 have almost no gap or even 0.5 mm or less. In this way, by suppressing the gap G range and the gap, assembly accuracy and positioning accuracy are increased, and one of factors that may adversely affect the welding quality can be removed. In addition, as described above, the T-shaped joint to be welded is a welded object incorporated in, for example, nuclear equipment or thermal equipment. Particularly, it is made of stainless steel or general carbon steel excellent in corrosion resistance, and the plate thickness T1 range of the upper plate and lower plate 1a, 1b, 2a, 2b is 2 <T1 ≦ 6 mm, and the plate thickness of the upright plate 3 The range of T2 is not less than 2 times and not more than 5 times (2 × T1 ≦ T2 ≦ 5 × T1) the plate thickness T1 of the upper and lower plates 1a, 1b, 2a, 2b. An upper plate and a lower plate 1a, 1b, 2a, 2b having a thickness T1 are arranged in parallel in a horizontal direction so that a joint is formed in an upper and lower T shape.

次の第2工程35では、図5の(2)に示すように、前記焦点ぼかしのレーザビーム18照射によるレーザ溶接を遂行すると同時に、レーザ溶接部分にワイヤ44を送給しながら上板1a,2aの板表面から立板3まで溶融させ、少なくとも立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時に上板1a,2aのビード表面高さCを上板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は前記立板3の溶け幅w部分の溶接断面積Aを上板1a,2aの板厚断面積B1より大きく(A>B1)形成、又は前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部77aを得ると共に、さらに、溶接金属部77a,77bをT型継手の片方に備えた上下T型溶接継手14を得るようにしている。   In the next second step 35, as shown in FIG. 5 (2), while performing laser welding by irradiation of the laser beam 18 for defocusing, the upper plate 1a, 2a is melted from the plate surface to the standing plate 3, and at least the melting width w of the standing plate 3 is formed larger than the plate thickness T1 of the upper plates 1a and 2a (w> T1), or the melting width w is larger than w> T1. At the same time, the bead surface height C of the upper plates 1a, 2a is formed in a convex shape (1 ≦ C ≦ 3 mm) which is 1 to 3 mm higher than the upper plate surface, or the welding cut of the melting width w portion of the standing plate 3 The area A is formed larger than the plate thickness cross-sectional area B1 of the upper plates 1a and 2a (A> B1), or both the melt width w and the weld cross-sectional area A are formed in the size of w> T1 and A> B1. A weld metal portion 77a having a penetration shape is obtained, and further, a weld metal The upper and lower T-type welded joints 14 having the genus parts 77a and 77b on one side of the T-type joint are obtained.

前記第2工程35の溶接終了後に継手部材を裏返し反転する。その後に、次の第3工程36に移行する。すなわち、第3工程36では、図5の(3)に示すように、前記焦点ぼかしのレーザビーム18照射によるレーザ溶接を遂行すると同時にレーザ溶接部分にワイヤ44を送給しながら、前記上板1a,2aと対向する下板1b,2b(継手部材を上下反転しているので該当する下板1b,2bは上側の位置にある)の板表面から立板3側まで溶融させる。特に、この溶融接合によって、前記第2工程35の時と同様に、少なくとも前記立板3の溶け幅wを下板1b,2bの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は下板1b,2bの板裏面の貫通部分若しくは立板3の溶け幅部分の溶接断面積Aを下板1b,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部88aを得ると共に、さらに、2つの溶接金属部77b,88bをT型継手の上下に備えた上下T型溶接継手14を得るようにしている。   After completion of the welding in the second step 35, the joint member is turned over. Thereafter, the process proceeds to the next third step 36. That is, in the third step 36, as shown in FIG. 5 (3), while performing laser welding by irradiating the laser beam 18 for defocusing, the wire 44 is fed to the laser welding portion and at the same time, the upper plate 1a. , 2a facing lower plate 1b, 2b (the corresponding lower plate 1b, 2b is at the upper position because the joint member is turned upside down) is melted from the plate surface to the standing plate 3 side. In particular, as in the case of the second step 35, at least the melt width w of the standing plate 3 is formed larger than the plate thickness T1 (w> T1) of the lower plates 1b and 2b by the melt bonding, or the melt width w is formed in the size of w> T1, and at the same time, the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) higher by 1 to 3 mm than the plate surface, or the through portion of the back surface of the lower plates 1b and 2b or The welding cross-sectional area A of the melting width portion of the upright plate 3 is formed larger than the plate thickness cross-sectional area B1 of the lower plates 1b and 2b (A> B1), or both the melting width w and the welding cross-sectional area A are w> T1. A weld metal portion 88a having a penetration shape formed in a size of A> B1 is obtained, and an upper and lower T-type weld joint 14 having two weld metal portions 77b and 88b provided above and below the T-type joint is obtained. ing.

このような溶接施工の構成により、ワイヤ溶着充填及び溶接断面積Aの確保(A>B1)によって、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77a,77b,88a,88bを上下に備えた上下T型溶接継手14及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減することができる。さらに、アーク溶接と比べてレーザ溶接の入熱量が少なく、変形量も減少するので歪取り作業が削減でき、生産性をさらに高めることできる。   With such a welding construction, as described above, the weld metal part with good quality without welding defects such as lack of melting and undercut and porosity by wire welding filling and securing of the welding cross-sectional area A (A> B1). Welding strength (for example, tensile strength) equal to or higher than the material strength of the upper and lower T-type welded joints 14 having the upper and lower portions 77a, 77b, 88a, and 88b and the upper and lower plates can be obtained. In addition, the number of work steps can be greatly reduced as compared with conventional multi-pass welding or flux coating type welding. Furthermore, since the amount of heat input of laser welding is smaller than that of arc welding and the amount of deformation is also reduced, the work for removing strain can be reduced and the productivity can be further increased.

なお、所定形状の溶接金属部77b,88bを上下両側に有する上下T型溶接継手14を1パスずつの溶接によって達成することが最も好ましいが、例えば、ワイヤ溶着量の不足によって溶接ビード表面部に余盛り不足やアンダーカットが発生した時には、2パス目の溶接を追加するとよい。立板3の溶け幅w及び溶接断面積Aは、既に1パス目の溶接によって所定(w>T1,A>B1)の大きさに形成済みである。したがって、2パス目の溶接を行う時には、上板1a,2a又は下板1b,2bの各溶接ビード表面が所定範囲(1≦C≦3mm)の高さになるように、1パス目溶接の施工条件を見直して2パス目の溶接施工条件を定め、前層溶接のビード表面部から前記焦点ぼかしのレーザビームを用いたレーザ溶接を再度遂行することによって、前記余盛り不足及びアンダーカットが解消されて、健全な余盛り高さの溶接ビード及び溶け込み形状を有する溶接金属部7bに改善することができる。   In addition, it is most preferable to achieve the upper and lower T-type welded joints 14 having the weld metal portions 77b and 88b having a predetermined shape on both upper and lower sides by welding one pass at a time. When surplus or undercut occurs, a second pass of welding should be added. The melting width w and the welding cross-sectional area A of the upright plate 3 have already been formed to a predetermined size (w> T1, A> B1) by the first pass welding. Therefore, when welding in the second pass, the welding of the first pass is performed so that the surface of each weld bead of the upper plate 1a, 2a or the lower plate 1b, 2b is in a predetermined range (1 ≦ C ≦ 3 mm). Review the work conditions, determine the welding conditions for the second pass, and re-execute laser welding using the laser beam with the focus blur from the bead surface of the previous layer welding, thereby eliminating the above-mentioned lack of surplus and undercut. Thus, it is possible to improve the weld metal part 7b having a weld bead with a surplus height and a penetration shape.

また、下板1b,2bがないT型継手の場合には、前記第3工程36のレーザ溶接が不要となり、第2工程35のレーザ溶接の遂行によって上板1b,2bを立板3に溶接すればよい。すなわち、図4の(2)及び図5の(2)に示したように、前記焦点ぼかしのレーザビーム18を用いたレーザ溶接の遂行によって、上板1a,2aの板表面から裏面貫通後の立板3の溶け幅wを前記上板1a,2aの板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は立板3側の溶け幅w部分の溶接断面積Aを上側の板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部7a,7bをT型継手の片側に備えるようにするとよい。これにより、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77bを有する上下T型溶接継手14及び上側の板厚材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。   Further, in the case of a T-type joint without the lower plates 1b and 2b, the laser welding in the third step 36 is not necessary, and the upper plates 1b and 2b are welded to the upright plate 3 by performing the laser welding in the second step 35. do it. That is, as shown in (2) of FIG. 4 and (2) of FIG. 5, by performing laser welding using the laser beam 18 for defocusing, the surface of the upper plates 1a and 2a after the back surface has been penetrated. Form the melt width w of the upright plate 3 larger than the plate thickness T1 of the upper plates 1a and 2a (w> T1), or form the melt width w so as to satisfy the size of w> T1, and simultaneously set the bead surface height C to the plate. Forming a convex shape 1 to 3 mm higher than the surface (1 ≦ C ≦ 3 mm), or forming a welding cross-sectional area A of the melting width w portion on the standing plate 3 side larger than the upper plate thickness cross-sectional area B1 (A> B1), Or it is good to provide the weld metal part 7a, 7b of the penetration shape which formed both the said melt width w and the said weld cross-sectional area A in the magnitude | size of w> T1 and A> B1 in the one side of a T-type coupling. Accordingly, as described above, the weld strength (equal or better than the strength of the upper and lower T-type welded joints 14 having the weld metal portion 77b having good quality without welding defects such as insufficient melting, undercut and porosity) For example, tensile strength) can be obtained.

また、図5の(2)と(3)及び(4)に示すように、本発明の上下T型溶接継手では、前記焦点ぼかしのレーザビーム18を用いたレーザ溶接を上板1a,2aの板表面又は前記上板1a,2aと対向する下板1b,2bの板表面から各々別々に遂行すると同時に、レーザ溶接部分にワイヤ44を送給しながら立板3まで各々別々に溶融させ、少なくとも前記上板及び下板1a,2a,1b,2bの板表面から裏面貫通後の立板3の各溶け幅wを前記板厚T1より大きく(w>T1)形成、又は前記溶け幅wをw>T1の大きさに形成すると同時にビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成、又は前記上板及び下板1a,1b,2a,2b裏面側の貫通部分若しくは立板3の溶け幅w部分の各溶接断面積Aを上板及び下板1a,1b,2a,2bの板厚断面積B1より大きく(A>B1)形成、若しくは前記溶け幅w及び前記溶接断面積Aの両方をw>T1及びA>B1の大きさに形成した溶け込み形状の溶接金属部77a,77b,88a,88bをT型継手の上下両側に備えた構造の上下T型溶接継手14にすることもできる。   Further, as shown in FIGS. 5 (2), (3) and (4), in the upper and lower T-type welded joints of the present invention, laser welding using the laser beam 18 of the above-mentioned defocusing is performed on the upper plates 1a and 2a. It is performed separately from the plate surface or the plate surfaces of the lower plates 1b and 2b facing the upper plates 1a and 2a, and at the same time, the wires 44 are fed to the laser welded portion and melted separately up to the standing plate 3, respectively. Each melt width w of the upright plate 3 after back surface penetration from the plate surface of the upper and lower plates 1a, 2a, 1b, 2b is formed larger than the plate thickness T1 (w> T1), or the melt width w is set to w > T1 is formed in a convex shape (1 ≦ C ≦ 3 mm) with a bead surface height C 1 to 3 mm higher than the plate surface at the same time, or the back side of the upper and lower plates 1a, 1b, 2a and 2b Each welding cross-sectional area A of the penetration part of the above or the melting width w part of the upright plate 3 The upper and lower plates 1a, 1b, 2a and 2b are formed larger than the plate thickness cross-sectional area B1 (A> B1), or both the melt width w and the weld cross-sectional area A are larger than w> T1 and A> B1. The weld metal portions 77a, 77b, 88a, 88b having a penetration shape formed on the upper and lower sides can be formed into the upper and lower T-type weld joint 14 having a structure provided on both upper and lower sides of the T-type joint.

このような構成により、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部77b,88bを上下両側に有する上下T型溶接継手14及び上板及び下板1a,1b,2a,2bの板厚T1の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減することができる。さらに、アーク溶接と比べてレーザ溶接の入熱量が少なく、変形量も減少するので歪取り作業が削減でき、生産性をさらに高めることできる。   With such a configuration, as described above, the upper and lower T-type welded joints 14 and the upper and lower plates having the weld metal portions 77b and 88b of good quality without welding defects such as insufficient melting and undercut and porosity on the upper and lower sides. A welding strength (for example, tensile strength) equal to or higher than the material strength of the plate thickness T1 of 1a, 1b, 2a, 2b can be obtained. In addition, the number of work steps can be greatly reduced as compared with conventional multi-pass welding or flux coating type welding. Furthermore, since the amount of heat input of laser welding is smaller than that of arc welding and the amount of deformation is also reduced, the work for removing strain can be reduced and the productivity can be further increased.

〔実施形態6〕
図6は、図1に示される溶接方法を適用した時の板厚別の溶接電流Iと立板3の溶け幅w及び溶け込み深さhの関係を示す実施例である。図6中の上部側には、溶接電流を変化させて溶接した上板側の板厚別の代表的な断面写真を開示している。なお、図6中の枠内の説明では、溶け込み深さhを「溶け深さh」と簡略化して記載する。上側の板厚T1が3,4,6mmからなる3種類(T1=3,4,6)の上板1を用意し、立板3の板厚T2が12mmで一定(T2=12)とし、何れもステンレス鋼材(SUS304L)を使用した。また、溶接速度(毎分当たりの溶接ビードの長さ)を一定(65mm/分)、フラックス入りワイヤ4の送給量を一定(2g/分)にして、上板の板厚別に溶接電流Iを変化させて溶接した。
[Embodiment 6]
FIG. 6 is an example showing the relationship between the welding current I for each plate thickness when the welding method shown in FIG. 1 is applied, the melting width w and the penetration depth h of the upright plate 3. In the upper side in FIG. 6, representative cross-sectional photographs according to the thickness of the upper plate side welded by changing the welding current are disclosed. In the description in the frame in FIG. 6, the penetration depth h is simply described as “melting depth h”. Three types (T1 = 3, 4, 6) of the upper plate 1 having an upper plate thickness T1 of 3, 4 and 6 mm are prepared, and the plate thickness T2 of the upright plate 3 is 12 mm and constant (T2 = 12). In either case, a stainless steel material (SUS304L) was used. Also, the welding speed (the length of the weld bead per minute) is constant (65 mm / min), the feeding amount of the flux-cored wire 4 is constant (2 g / min), and the welding current I is varied according to the plate thickness of the upper plate. Welded with varying

図6から明らかなように、立板3の溶け幅w及び溶け込み深さhは、溶接電流Iの増加に伴って増加し、立板3の溶け込み深さhが1mm以上の形成領域では、溶け幅wが何れも上板の板厚T1以上の大きさに形成された。例えば、立板3の溶け幅wが上板厚T1以上に形成される溶接電流Iは、上側の板厚がT1=3mmの場合で約155A以上、T1=4mmの場合で約195A以上、T1=6mmの場合で約275Aであった。また、図6中に示された板厚別の断面写真は、立板3の溶け込み深さhが約1.2〜1.7mmある部分の溶け込み形状であり、何れの断面も溶け幅wが上側の板厚T1を上回る大きさに形成された結果になっている。   As is apparent from FIG. 6, the melting width w and the penetration depth h of the upright plate 3 increase with the increase of the welding current I, and in the formation region where the penetration depth h of the upright plate 3 is 1 mm or more, the melting occurs. Each of the widths w was formed to have a size equal to or greater than the plate thickness T1 of the upper plate. For example, the welding current I formed when the melting width w of the upright plate 3 is equal to or greater than the upper plate thickness T1 is about 155 A or more when the upper plate thickness is T1 = 3 mm, about 195 A or more when T1 = 4 mm, T1 In the case of 6 mm, it was about 275 A. Moreover, the cross-sectional photograph according to the plate thickness shown in FIG. 6 shows the penetration shape of the portion where the penetration depth h of the upright plate 3 is about 1.2 to 1.7 mm, and the melting width w is the upper side in any cross section. It is the result of having formed in the magnitude | size exceeding this board thickness T1.

このように、本実施例では、各種板厚に対応した適正な溶接電流等の溶接条件を設定して非消耗電極方式のアーク溶接を遂行すると同時に前記フラックス入りワイヤ4をアーク6溶接部分に送給しながら、上板1a,2aの板表面から立板3側まで溶融させることにより、上側の板厚T1以上の溶け幅wが立板3に形成され、上板1a,2aと立板3とを確実に溶融接合した溶接金属部7b、及び上板1の板厚断面積と同等以上の溶接断面積Aを確保することができた。また、このような大きさの溶接金属部7bを備えた上下T型溶接継手を製造できることも確認できた。なお、ここでは、片方の上下T型溶接継手の溶け込み形状及びその溶接断面写真を記載したが、図1の(2)〜(4)に示したように、T型継手の両側溶接を遂行することによって、上述した溶け込み形状及び大きさの溶接金属部7b,8bを上下両側に備えた上下T型溶接継手12を得ることができる。   As described above, in this embodiment, welding conditions such as an appropriate welding current corresponding to various plate thicknesses are set to perform non-consumable electrode type arc welding, and at the same time, the flux-cored wire 4 is sent to the arc 6 welding portion. While being fed, the upper plate 1a, 2a is melted from the plate surface to the standing plate 3 side, so that a melting width w equal to or larger than the upper plate thickness T1 is formed in the standing plate 3, and the upper plates 1a, 2a and the standing plate 3 It was possible to secure a weld cross-sectional area A equal to or greater than the plate thickness cross-sectional area of the weld metal portion 7b and the upper plate 1 that were reliably melt-bonded to each other. It was also confirmed that an upper and lower T-shaped welded joint including the weld metal portion 7b having such a size can be manufactured. Here, the penetration shape of one of the upper and lower T-shaped welded joints and the weld cross-sectional photograph thereof are described. However, as shown in FIGS. 1 (2) to (4), both-side welding of the T-shaped joint is performed. Thus, the upper and lower T-type welded joints 12 having the weld metal portions 7b and 8b having the above-described penetration shape and size can be obtained.

〔実施形態7〕
図7は、図1に示される溶接方法を適用した時のT型継手の溶接電流Iと入熱量Q及び上板表面からの溶け込み深さHの関係を示す実施例である。なお、図7中の枠内の説明では、上板表面からの溶け込み深さHを「溶け込み深さH」、立板の溶け込み深さhを「溶け深さh」と簡略化して記載する。上側の板厚T1が3,4,6mmからなる3種類(T1=3,4,6mm)の上板1aを用意し、立板3の板厚T2が12mmで一定(T2=12)とし、何れもステンレス鋼材(SUS304L)を使用した。また、溶接速度(毎分当たりの溶接ビードの長さ)を一定(65mm/分)、フラックス入りワイヤの送給量を一定(2g/分)にして、上板1aの板厚別に溶接電流Iを変化させて溶接した。溶接の入熱量Q(kJ/cm)は、溶接電流I(A)とアーク電圧Va(V)及び溶接速度V(mm/分)の関係より算出した。また、上板表面からの溶け込み深さHは、上側の板厚T1と下側の立板3の溶け深さhとを加算した値(H=T1+h)となる。
[Embodiment 7]
FIG. 7 is an example showing the relationship between the welding current I, the heat input Q, and the penetration depth H from the upper plate surface when the welding method shown in FIG. 1 is applied. In the description in the frame in FIG. 7, the penetration depth H from the upper plate surface is simply described as “penetration depth H”, and the penetration depth h of the standing plate is described as “melting depth h”. Three kinds of upper plates 1a (T1 = 3, 4, 6 mm) having an upper plate thickness T1 of 3, 4, 6 mm are prepared, and the plate thickness T2 of the upright plate 3 is set to 12 mm and constant (T2 = 12). In either case, a stainless steel material (SUS304L) was used. Further, the welding speed (the length of the weld bead per minute) is constant (65 mm / min), the feeding amount of the flux-cored wire is constant (2 g / min), and the welding current I is varied according to the thickness of the upper plate 1a. Welded with varying The welding heat input Q (kJ / cm) was calculated from the relationship between the welding current I (A), the arc voltage Va (V), and the welding speed V (mm / min). The penetration depth H from the upper plate surface is a value obtained by adding the upper plate thickness T1 and the fusion depth h of the lower standing plate 3 (H = T1 + h).

図7から明らかなように、上板表面からの溶け込み深さHは、溶接速度が一定(65mm/分)の場合、何れの板厚(T1=3,4,6mm)も溶接電流Iの大きさにほぼ比例増加している。また、溶接の入熱量Qも同様に、溶接電流Iの大きさに比例して増加している。立板3の溶け幅wについては、図6に示した大きさの値になっている。したがって、立板3の溶け幅wを上板1aの板厚T1より大きく(w>T1)形成させるように、各種板厚に対応した適正な溶接電流Iや入熱量Q等の溶接条件を設定してアーク溶接を遂行すると同時に、溶け込み深さ促進性のフラックス入りワイヤ4をアーク6溶接部分に送給しながら、上側の板表面から立板3まで溶融させるとよい。このように溶接することにより、上板1aと立板3とを確実に溶融接合した溶接金属部7b及び上板1aの板厚断面積B1より大きい(A>B1)形状の溶接断面積Aを得ることができた。なお、ここでは、片方の上下T型溶接継手における溶接電流Iと入熱量Q及び板表面からの溶け込み深さHの関係を記載したが、図1の(2)〜(4)に示したように、T型継手の両側溶接を遂行することによって、上述した溶け込み形状及び大きさの溶接金属部7b,8bを上下両側に備えた上下T型溶接継手12を得ることができ、また、上板及び下板1a,1b,2a,2bの板厚断面積B1より大きい(A>B1)形状の溶接断面積Aを得ることができる。   As is apparent from FIG. 7, the penetration depth H from the upper plate surface has a large welding current I for any plate thickness (T1 = 3,4,6 mm) when the welding speed is constant (65 mm / min). It increases almost proportionally. Similarly, the heat input Q of welding increases in proportion to the magnitude of the welding current I. The melting width w of the upright plate 3 is the value shown in FIG. Therefore, appropriate welding conditions such as welding current I and heat input Q corresponding to various plate thicknesses are set so that the melting width w of the standing plate 3 is larger than the plate thickness T1 of the upper plate 1a (w> T1). At the same time as performing the arc welding, it is preferable to melt the flux-cored wire 4 that promotes the penetration depth from the upper plate surface to the upright plate 3 while feeding it to the arc 6 welding portion. By welding in this way, a weld cross section A having a larger shape (A> B1) than the plate thickness cross section B1 of the weld metal portion 7b and the upper plate 1a which reliably melt-bonded the upper plate 1a and the upright plate 3 is obtained. I was able to get it. Here, the relationship between the welding current I, the heat input Q, and the penetration depth H from the plate surface in one of the upper and lower T-type welded joints is described, but as shown in (2) to (4) of FIG. In addition, by performing both-side welding of the T-shaped joint, it is possible to obtain the upper and lower T-shaped welded joints 12 having the weld metal portions 7b and 8b having the above-described penetration shape and size on both the upper and lower sides, and the upper plate. And the welding cross-sectional area A of the shape larger than the plate | board thickness cross-sectional area B1 of the lower board 1a, 1b, 2a, 2b (A> B1) can be obtained.

〔実施形態8〕
図8は、図1に示される溶接方法を適用した時のフラックス入りワイヤの溶着量と溶け込み深さ及び溶金部のOガス含有量の関係を示す実施例である。ステンレス鋼材(材質SUS304L,板厚9.7mmの平板)を使用し、溶接速度を一定(65mm/分)、溶接電流を200〜260Aの範囲内で変化、溶け込み促進性のフラックス入りワイヤ4の送給量(0〜8.6g/分)を変化させて溶接した。所定量の溶接金属部(溶金部)を採取し、溶解赤外線吸収法によって溶金部のOガス含有量を分析測定した結果である。図8中には、使用板厚の1/2以上の溶け込み深さが確保されている領域のフラックス入りワイヤ4の溶着量範囲とOガス含有量の最小値を記載している。
[Embodiment 8]
FIG. 8 is an example showing the relationship between the welding amount of the flux-cored wire, the penetration depth, and the O gas content in the molten metal part when the welding method shown in FIG. 1 is applied. Using stainless steel (material SUS304L, plate thickness 9.7 mm), welding speed is constant (65 mm / min), welding current is changed within the range of 200 to 260 A, and penetration of flux-cored wire 4 that promotes penetration Welding was performed while changing the feeding amount (0 to 8.6 g / min). It is the result of collecting a predetermined amount of weld metal part (metal part) and analyzing and measuring the O gas content in the metal part by the melting infrared absorption method. In FIG. 8, the welding amount range of the flux-cored wire 4 and the minimum value of the O gas content in a region where a penetration depth of 1/2 or more of the used plate thickness is secured are shown.

図8から明らかなように、フラックス入りワイヤの溶着量が0g/分(ワイヤなし)の時には、溶金部のOガス含有量が17wt.ppmで少なく、母材部の値と比べて約半分の値であり、また、溶け込み深さが3mm以下で浅く、特定の溶け込み(例えば、板厚が4〜5mmの上板T1を貫通溶融し得る溶け込み深さ)に到達しておらず、溶け不足に至っている。フラックス入りワイヤの溶着量が0.8〜6.8g/分の範囲内では、溶け込み深さが5.6〜7mmに深くなっており、特定の溶け込み深さに到達している。この時のOガス含有量は、少しばらついているが、100〜250wt.ppmの範囲である。フラックス入りワイヤの溶着量が前記範囲より多い時(例えば、8.6g/分)には、溶け込み深さが3.4mmまで減少して特定深さに到達しておらず、溶け不足に至っている。T型継手の溶接では、上板1a,2aの板表面から立板3まで溶融させる必要があると共に、立板3の溶け幅wを上板1a,2aの板厚T1より大きく(w>T1)形成することが最も重要である。したがって、立板3の溶け幅w(上板と立板との接合面部)がw>T1の大きさになるフラックス入りワイヤの溶着量は、図8に示したように、0.8〜6.8g/分の範囲内であり、小数点以下を四捨五入して1g/分以上7g/以下を適正範囲とした。また、上記溶け込み深さを有する溶金部に含有されたOガス含有量は、100〜250wt.ppmの範囲であるが、200wt.ppmを超えると、溶金部の靭性強度が低下して好ましくないので切り捨てて、100wt.ppm以上200wt.ppm以下の範囲に限定した。なお、立板3の溶け幅wの調整については、前記フラックス入りワイヤの溶着量の他に、溶接電流Iや溶接速度など溶接入熱条件の大きさによって調整可能であり、継手部材の板厚や用途に応じて所定範囲の溶け幅w若しくは溶接断面積Aを確保するように、事前に確認試験を行って調整するとよい。   As is apparent from FIG. 8, when the welding amount of the flux-cored wire is 0 g / min (no wire), the O gas content in the molten metal part is as low as 17 wt.ppm, which is about half the value of the base metal part. In addition, the penetration depth is shallow at 3 mm or less, has not reached a specific penetration (for example, a penetration depth capable of penetrating and melting the upper plate T1 having a thickness of 4 to 5 mm), and is insufficiently melted. Has reached. When the welding amount of the flux-cored wire is in the range of 0.8 to 6.8 g / min, the penetration depth is as deep as 5.6 to 7 mm, and reaches a specific penetration depth. The O gas content at this time varies slightly, but is in the range of 100 to 250 wt. Ppm. When the welding amount of the flux-cored wire is larger than the above range (for example, 8.6 g / min), the penetration depth is reduced to 3.4 mm and does not reach the specific depth, resulting in insufficient melting. . In the welding of the T-shaped joint, it is necessary to melt from the plate surface of the upper plates 1a and 2a to the standing plate 3, and the melting width w of the standing plate 3 is larger than the thickness T1 of the upper plates 1a and 2a (w> T1). ) It is most important to form. Therefore, as shown in FIG. 8, the welding amount of the flux-cored wire in which the melt width w of the upright plate 3 (joint surface portion between the upper plate and the upright plate) is such that w> T1 is 0.8-6. It was within the range of 0.8 g / min, and was rounded off to the appropriate range from 1 g / min to 7 g / min. Further, the O gas content contained in the molten metal part having the penetration depth is in the range of 100 to 250 wt.ppm, but if it exceeds 200 wt.ppm, the toughness strength of the molten metal part is preferably reduced. Since it was not, it was rounded down and limited to the range of 100 wt.ppm to 200 wt.ppm. In addition, about the adjustment of the welding width w of the standing board 3, in addition to the welding amount of the said flux cored wire, it can adjust by the magnitude | size of welding heat input conditions, such as welding current I and a welding speed, The board thickness of a joint member It is preferable to perform a confirmation test in advance and make adjustments so as to ensure a predetermined range of melt width w or weld cross section A according to the application.

図1〜図5に示したように、T型継手の上板及び下板1a,2a,1b,2bの板厚T1範囲(2<T1≦6mm)対応した溶接電流でアーク溶接を遂行又は前記焦点ぼかしのレーザビーム照射によるレーザ溶接を遂行すると同時に、前記アーク溶接部分又は前記レーザ溶接部分に送給するフラックス入りワイヤの溶着量が1g/分以上7g/分以下の範囲であり、好ましくは2g/分以上5g/分以下の範囲であり、かつ、立板3の溶け幅wが前記上板及び下板1a,2a,1b,2bの板厚T1より大きく(w>T1)形成されていると共に、前記溶接金属部に含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることにより、品質良好な溶接金属部7b,77b,8b,88b、を上下両側に備えた上下T型溶接継手及び上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。   As shown in FIGS. 1 to 5, arc welding is performed with a welding current corresponding to the plate thickness T1 range (2 <T1 ≦ 6 mm) of the upper and lower plates 1a, 2a, 1b and 2b of the T-shaped joint, At the same time as performing laser welding by defocusing laser beam irradiation, the welding amount of the flux-cored wire fed to the arc welding part or the laser welding part is in the range of 1 g / min to 7 g / min, preferably 2 g. The melting width w of the upright plate 3 is larger than the plate thickness T1 of the upper and lower plates 1a, 2a, 1b, 2b (w> T1). In addition, the weld metal parts 7b, 77b, 8b, 88b having good quality are provided on both the upper and lower sides when the content of oxygen gas contained in the weld metal part is in the range of 100 wt.ppm to 200 wt.ppm. Upper and lower T-type welded joint Fine top and material strength equal to or higher than the welding strength of the lower plate (e.g. tensile strength) can be obtained.

〔実施形態9〕
図9は、複数のT型継手及び溶接線を有する溶接構造物の概略を示す一実施例の斜視図である。図9中の下段には、T型継手の溶接部の断面A,角継手の溶接部の断面Bを記載してある。床面に対して垂直方向に沿った複数の立板3の上下両面に上下両側から水平方向に沿った複数の上板1a,2a及び下板1b,2bを各々配置して上下T字状に構成されたT型継手の溶接構造物28である。この溶接構造物28は、例えば、原子力機器又は火力機器に組み込まれ、しかも、上下T型溶接継手の溶接部を含む大部分が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されることになるものである。複数の立板3の上下両面に配置されている複数の上板1a,1b及び下板2a,2bは、溶接線15,16の部分及びその近傍部分を除外した他の部分の板面に多数の孔が予め形成されている多孔板であり、太い黒線部分が溶接線15,16である。溶接構造物28の材質は、耐食性に優れたステンレス鋼であり、高温水蒸気体若しくは腐食性流体が主に前記孔を通過する構造になっている。図9中に記載の溶接線15がT型継手の溶接部、また、左右両端部にある溶接線16が角継手の溶接部である。立板3の上下両面に各々配置されている上板1a,2a及び下板1b,2bの板厚T1範囲は、上述したように、2<T1≦6mmである。
[Embodiment 9]
FIG. 9 is a perspective view of an embodiment showing an outline of a welded structure having a plurality of T-shaped joints and weld lines. In the lower part of FIG. 9, the cross section A of the welded portion of the T-shaped joint and the cross section B of the welded portion of the corner joint are shown. A plurality of upper plates 1a, 2a and lower plates 1b, 2b extending in the horizontal direction from both the upper and lower sides are arranged on the upper and lower surfaces of the plurality of standing plates 3 along the vertical direction with respect to the floor surface, respectively, so as to form a vertical T shape. It is the welded structure 28 of the comprised T-shaped joint. The welded structure 28 is incorporated in, for example, nuclear equipment or thermal equipment, and is deployed in an environmental state in which most of the welded portions of the upper and lower T-type welded joints come into contact with a high-temperature steam medium or corrosive medium. It will be. A plurality of upper plates 1a, 1b and lower plates 2a, 2b arranged on the upper and lower surfaces of the plurality of standing plates 3 are many on the plate surfaces of other portions excluding the portions of the welding lines 15 and 16 and the vicinity thereof. Are the perforated plates in which the holes are formed in advance, and the thick black line portions are the weld lines 15 and 16. The material of the welded structure 28 is stainless steel having excellent corrosion resistance, and has a structure in which a high-temperature steam body or corrosive fluid mainly passes through the holes. A welding line 15 shown in FIG. 9 is a welded portion of a T-shaped joint, and a welded line 16 at both left and right end portions is a welded portion of a corner joint. As described above, the plate thickness T1 range of the upper plates 1a and 2a and the lower plates 1b and 2b respectively disposed on the upper and lower surfaces of the upright plate 3 is 2 <T1 ≦ 6 mm.

T型継手の溶接部(溶接線15,断面A)は、図1〜図5に示した溶接方法を適用して立板3まで各々溶接されているものでおり、また、角継手の溶接部(溶接線16,断面B)においては、前記溶接方法を応用して立板3の溶け幅wがw>T1の大きさになるように角型溶接されている。すなわち、溶け込み促進性のフラックス入りワイヤ4を用いた前記非消耗電極方式のアーク溶接又は前記焦点ぼかしのレーザビームを用いたレーザ溶接の遂行によって、立板3の各溶け幅wがw>T1の大きさ、又は前記溶け幅w部分の溶接断面積AがA>B1の大きさに形成された溶け込み形状の溶接金属部7b,8bをT型継手の上下両側又は角型継手の上下両側に各々備えた構造の溶接構造物28である。   The welded portion of the T-shaped joint (weld line 15, cross section A) is welded to the vertical plate 3 by applying the welding method shown in FIGS. (Welding line 16, cross section B) is square-welded by applying the welding method so that the melting width w of the upright plate 3 is greater than w> T1. That is, by performing the non-consumable electrode type arc welding using the fusion-promoting flux-cored wire 4 or the laser welding using the laser beam of the focal blur, each melting width w of the upright plate 3 satisfies w> T1. The weld metal parts 7b and 8b having a penetration shape formed such that the weld cross-sectional area A of the melt width w portion has a size of A> B1 are provided on both the upper and lower sides of the T-type joint or the upper and lower sides of the square joint, respectively. This is a welded structure 28 having the structure provided.

このような溶接施工の構成により、上述したように、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7b,77b,8b,88bを上下両側に備えた上下T型溶接継手12,14又は角型溶接継手及びこれを用いた溶接構造物28が得られ、また、立板3の溶け幅w部分の溶接断面積Aが確保(A>B1)されているので、上板及び下板の板厚材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。さらに、この溶接構造物28は、原子力機器又は火力機器に組み込まれ、上下T型溶接継手12,14の溶接金属部7b,77b,8b,88b,15又は該上下T型溶接継手12,14と並んでいる角型溶接継手の溶接部16、断面Bを含む溶接構造物28が高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されるため、原子力機器又は火力機器の稼動によって蒸気媒体環境下若しくは腐食環境下で長期間適用されても、耐食性及び溶接強度が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   With such a construction of welding construction, as described above, upper and lower T-shaped welding provided with weld metal parts 7b, 77b, 8b and 88b of good quality without welding defects such as insufficient melting, undercut and porosity. Since the joints 12 and 14 or the rectangular welded joint and the welded structure 28 using the same are obtained, and the weld cross-sectional area A of the melting width w portion of the upright plate 3 is secured (A> B1), A weld strength (for example, tensile strength) equal to or greater than the plate thickness material strength of the plate and the lower plate can be obtained. In addition, since the amount of deformation is significantly reduced as compared with the conventional multi-pass welding, it is possible to reduce the work for removing distortion, and it is possible to improve productivity and reduce costs. Further, the welded structure 28 is incorporated in nuclear equipment or thermal power equipment, and the weld metal portions 7b, 77b, 8b, 88b, 15 of the upper and lower T-type welded joints 12, 14 or the upper and lower T-type welded joints 12, 14 and Since the welded structure 28 including the welded portion 16 and the cross-section B of the side-by-side square welded joints is deployed in an environmental state in contact with the high-temperature steam medium or corrosive medium, the steam medium environment is activated by the operation of nuclear equipment or thermal equipment. Even if it is applied for a long time under a corrosive environment, corrosion resistance and weld strength are high, so that an event such as corrosion cracking can be prevented, which contributes to a longer life.

以上述べたように、本発明の上下T型継手の溶接方法及びその上下T型溶接継手12,14並びにこれを用いた溶接構造物28によれば、溶け不足やアンダーカット及びポロシティ等の溶接欠陥のない品質良好な溶接金属部7b,77b,8b,88bを有する上下T型溶接継手12,14及びこれを用いた溶接構造物28が得られ、また、立板3の溶け幅w部分の溶接断面積Aが確保(A>B1)されているので、上板及び下板の材料強度と同等以上の溶接強度(例えば引張強度)を得ることができる。また、従来の多パス溶接やフラックス塗布方式の溶接施工と比べて作業工数が大幅に削減でき、同時に、多パス溶接で生じていた大きな変形と比べて変形量が大幅に減少するので歪取り作業が削減でき、生産性向上及びコスト低減が可能となる。さらに、原子力機器又は火力機器の稼動によって蒸気媒体環境下若しくは腐食環境下で長期間適用されても、耐食性及び溶接強度が高いので腐食割れ等の事象を防止でき、長寿命化に寄与することができる。   As described above, according to the welding method of the upper and lower T-shaped joints of the present invention, the upper and lower T-shaped welded joints 12 and 14 and the welded structure 28 using the same, welding defects such as insufficient melting, undercut and porosity are provided. There are obtained upper and lower T-type welded joints 12 and 14 having weld metal portions 7b, 77b, 8b and 88b with good quality, and a welded structure 28 using the same. Since the cross-sectional area A is ensured (A> B1), a welding strength (for example, tensile strength) equal to or higher than the material strength of the upper plate and the lower plate can be obtained. In addition, the number of work steps can be significantly reduced compared to conventional multi-pass welding and flux application welding, and at the same time, the amount of deformation is greatly reduced compared to the large deformation that has occurred in multi-pass welding, so the work to remove distortion It is possible to improve productivity and reduce costs. Furthermore, even if it is applied for a long period of time in a steam medium environment or a corrosive environment due to the operation of nuclear equipment or thermal equipment, the corrosion resistance and welding strength are high, so it is possible to prevent corrosion cracking and other events and contribute to a longer life. it can.

〔比較例〕
図10は、従来のTIG溶接方法による開先溝付きT型継手の多パス溶接形状を示す比較例の断面図である。また、図11は、従来のTIG溶接方法による他のギャップ付きT型継手の多パス溶接形状を示す他の比較例の断面図である。さらに、図12は、従来のTIG溶接方法による他のギャップ付きT型継手の多パス溶接形状を示すさらに他の比較例の断面図である。
[Comparative Example]
FIG. 10 is a cross-sectional view of a comparative example showing a multi-pass welding shape of a grooved T-shaped joint by a conventional TIG welding method. Moreover, FIG. 11 is sectional drawing of the other comparative example which shows the multipass welding shape of the other T type joint with a gap by the conventional TIG welding method. Furthermore, FIG. 12 is a cross-sectional view of still another comparative example showing a multi-pass welded shape of another G-type joint with a gap by a conventional TIG welding method.

すなわち、従来のTIG溶接方法では、溶け込みが浅いため、図10の(1)に示すように、上板1及び立板3を溶け易くするために、上板1表面部に開先溝20を形成して薄肉化している。そして、図10の(2)に示すように、最初に、開先溝20の薄肉部を溶接して立板3まで溶け込ませて初層溶接部22を形成している。その後に、上板1上部まで複数の積層溶接部23を順次積層する多パス溶接を遂行している。また、比較例に係わる他の方法として、図11の(1)及び(2)に示すように、上板1,2を2枚並列に配置した継ぎ目部分に大きなギャップ21(隙間G)を設け、この継手ギャップ21の底部及び立板3側の空間部を溶接して立板3まで溶け込ませて初層溶接部22を形成した後に、開先上部まで複数の積層溶接部23を順次積層する多パス溶接を遂行している。また、比較例に係わるさらに他の方法として、図12の(1)及び(2)に示すように、上板1,2を2枚並列に配置した継ぎ部に大きな継手ギャップ21を設け、立板3と左右両側の上板1とを各々隅肉溶接24した後に、残り継ぎ部の中央部分を肉盛りする溶接25を遂行している。   That is, in the conventional TIG welding method, since the penetration is shallow, as shown in (1) of FIG. 10, in order to make the upper plate 1 and the standing plate 3 easy to melt, groove grooves 20 are formed on the surface portion of the upper plate 1. Formed and thinned. Then, as shown in FIG. 10 (2), first, the thin-walled portion of the groove 20 is welded and melted up to the standing plate 3 to form the first layer welded portion 22. Thereafter, multi-pass welding is performed in which a plurality of laminated welds 23 are sequentially laminated up to the upper part of the upper plate 1. As another method according to the comparative example, as shown in FIGS. 11 (1) and (2), a large gap 21 (gap G) is provided at the joint portion where the two upper plates 1 and 2 are arranged in parallel. Then, after welding the bottom portion of the joint gap 21 and the space portion on the upright plate 3 side to melt up to the upright plate 3 to form the first layer welded portion 22, a plurality of laminated welded portions 23 are sequentially laminated up to the upper portion of the groove. Performs multi-pass welding. Further, as another method related to the comparative example, as shown in FIGS. 12 (1) and (2), a large joint gap 21 is provided at a joint portion in which two upper plates 1 and 2 are arranged in parallel. After the plate 3 and the left and right upper plates 1 are each fillet welded 24, welding 25 is performed to build up the central portion of the remaining joint.

このため、図10,図11及び図12に示した従来のTIG溶接方法では、工数増加の多パス溶接が必要であり、また、溶接変形も増加する結果に成り易いという問題がある。   For this reason, the conventional TIG welding method shown in FIGS. 10, 11 and 12 has a problem that multi-pass welding with increased man-hours is required, and the welding deformation tends to increase.

図13は、従来のレーザ溶接方法によるT型継手の溶け込み形状を示す比較例の断面図である。すなわち、従来のレーザ溶接方法では、キーホール型の深い溶け込み及び幅の狭い溶接であるため、図13の(2)に示すように、レーザ溶接部26のビード幅及び上板1貫通後の立板3の溶け幅wが狭いので、溶接強度に相関関係のある溶接断面積が小さい。また、レーザ溶接中に金属蒸気及びスパッタが多発し易い。累計の溶接断面積を大きくするためには、例えば、レーザビームを複数箇所に照射して複数のレーザ溶接部26を形成して、各々狭い溶け幅wを複数加えて広げるようにしていた。   FIG. 13 is a cross-sectional view of a comparative example showing a penetration shape of a T-shaped joint by a conventional laser welding method. That is, in the conventional laser welding method, keyhole type deep penetration and narrow width welding are performed. Therefore, as shown in FIG. Since the melting width w of the plate 3 is narrow, the welding cross-sectional area correlated with the welding strength is small. Also, metal vapor and spatter are likely to occur frequently during laser welding. In order to increase the cumulative weld cross-sectional area, for example, a plurality of laser welds 26 are formed by irradiating a plurality of laser beams to a plurality of locations, and a plurality of narrow melting widths w are added to widen each.

1a,2a T型継手の上板
1b,2b T型継手の下板
3 T型継手の立板
4 フラックス入りワイヤ
5 非消耗性電極
6 アーク
7a,77a,8a,88a 溶融金属(溶融プール)
7b,77b,8b,88b 溶接金属部
9a 内側ノズル
9b 不活性ガス
9c シールドガス
10a 外側ノズル
10b 酸化性ガス入り混合ガス
11 溶接トーチ
12,14 溶接後の上下T型溶接継手
13 二重シールド構造の溶接トーチ
15 T型継手の溶接線(溶接部)
16 角型継手の溶接線(溶接部)
17 レーザトーチ
18 レーザビーム
19 焦点位置
20 開先溝
21 継手ギャップ
22 初層溶接部
23 積層溶接部
24,25 隅肉溶接部
26 レーザ溶接部
28 溶接構造物
44 ワイヤ
T1 上下板の板厚
T2 立板の板厚
w 立板の溶け幅
C ビード表面高さ
h 立板の溶け深さ
A 溶け幅w部分の溶接断面積
B1 上下板の板厚断面積
L 焦点ずれ高さ
DESCRIPTION OF SYMBOLS 1a, 2a Top plate 1b of a T type joint, 2b Bottom plate of a T type joint 3 Standing plate 4 of a T type joint 4 Flux-cored wire 5 Non-consumable electrode 6 Arc 7a, 77a, 8a, 88a Molten metal (molten pool)
7b, 77b, 8b, 88b Weld metal portion 9a Inner nozzle 9b Inert gas 9c Shield gas 10a Outer nozzle 10b Mixed gas containing oxidizing gas 11 Welding torch 12, 14 Upper and lower T-type welded joint 13 after welding of double shield structure Welding torch 15 T-joint weld line (welded part)
16 Welding line of square joint (welded part)
17 laser torch 18 laser beam 19 focal position 20 groove groove 21 joint gap 22 first layer welded portion 23 laminated welded portion 24, 25 fillet welded portion 26 laser welded portion 28 welded structure 44 wire T1 upper and lower plate thickness T2 vertical plate Thickness w Standing plate melt width C Bead surface height h Standing plate melting depth A Welding cross section w1 Welding sectional area B1 Thickness sectional area L of upper and lower plates Defocus height

Claims (12)

立板の上下両面に、1枚もしくは突合せ配置された2枚の上板及び下板が配置されたステンレス鋼板からなり、上板及び下板の表面から立板側まで、ワイヤを送給しながら、非消耗電極方式のアーク溶接またはレーザビームの焦点位置を板表面より上側へずらした焦点ぼかしのレーザビーム照射によるレーザ溶接を行う上下T型継手の溶接方法において、
上板または下板の板厚T1の範囲が2<T1≦6mmであり、
立板の板厚T2の範囲が前記板厚T1の2〜5倍(2×T1≦T2≦5×T1)であり、
前記上板又は前記下板の貫通後の立板の溶け幅wが、前記板厚T1より大きく形成され(w>T1)、または前記上板及び下板に形成された板裏面の貫通部分若しくは立板溶け幅部分の溶接断面積Aが、上板または下板の板厚断面積B1より大きく形成され(A>B1)、
前記ワイヤとして、ソリッドワイヤ若しくはストランドワイヤを使用することを特徴とする上下T型継手の溶接方法。
It consists of a stainless steel plate with one or two upper and lower plates placed on the top and bottom surfaces of the standing plate. While feeding the wires from the top and bottom surfaces to the standing plate side In the welding method of the upper and lower T-shaped joints for performing laser welding by non-consumable electrode type arc welding or laser beam irradiation of focal blurring in which the focal position of the laser beam is shifted upward from the plate surface,
The range of the plate thickness T1 of the upper plate or the lower plate is 2 <T1 ≦ 6 mm,
The range of the plate thickness T2 of the standing plate is 2 to 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1),
The upper plate or the melt width w of the upright plate after penetrating the lower plate, the plate thickness T1 than the size rather formed (w> T1), or through portions of the plate rear surface which is formed on the upper and lower plates Or the welding cross-sectional area A of the standing plate melting width part is formed larger than the plate thickness cross-sectional area B1 of the upper plate or the lower plate (A> B1),
A method for welding an upper and lower T-shaped joint, wherein a solid wire or a strand wire is used as the wire .
請求項1に記載された上下T型継手の溶接方法であって、
前記上板及び下板の少なくともいずれかに形成されたビードの表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成することを特徴とする上下T型継手の溶接方法。
A method for welding the upper and lower T-shaped joints according to claim 1,
An upper and lower T-shaped joint characterized in that a surface height C of a bead formed on at least one of the upper plate and the lower plate is formed in a convex shape (1 ≦ C ≦ 3 mm) higher by 1 to 3 mm than the plate surface. Welding method.
請求項1又は2に記載された上下T型継手の溶接方法であって、
前記アーク溶接を、不活性ガスのシールドガスを流出するシールドガス供給手段、又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いたシールドガス下で行うことを特徴とする上下T型継手の溶接方法。
A welding method for upper and lower T-shaped joints according to claim 1 or 2 ,
The arc welding is performed under shield gas using a shield gas supply means for flowing out an inert gas shield gas, or a double shield gas supply means for flowing out an inert gas shield gas and a shield gas containing an oxidizing gas. A method for welding the upper and lower T-shaped joints.
立板の上下両面に、1枚もしくは突合せ配置された2枚の上板及び下板が配置されたステンレス鋼板からなり、上板及び下板の表面から立板側まで、ワイヤを送給しながら、非消耗電極方式のアーク溶接またはレーザビームの焦点位置を板表面より上側へずらした焦点ぼかしのレーザビーム照射によるレーザ溶接を行う上下T型継手の溶接方法において、
上板または下板の板厚T1の範囲が2<T1≦6mmであり、
立板の板厚T2の範囲が前記板厚T1の2〜5倍(2×T1≦T2≦5×T1)であり、
前記上板又は前記下板の貫通後の立板の溶け幅wが、前記板厚T1より大きく形成され(w>T1)、または前記上板及び下板に形成された板裏面の貫通部分若しくは立板溶け幅部分の溶接断面積Aが、上板または下板の板厚断面積B1より大きく形成され(A>B1)、
前記ワイヤとして、溶け込み深さ促進性のフラックス剤を含むフラックス入りワイヤを使用し、
前記フラックス入りワイヤに充填されているフラックス剤は、少なくともTiO 2 ,Cr 2 3 及びSiO 2 からなる酸化物が混合された粉末剤であり、
送給されるフラックス入りワイヤの溶着量が1g/分以上7g/分以下の範囲であり、
前記立板の溶け幅wを前記上板及び下板の板厚T1より大きく(w>T1)形成されていると共に、
前記溶接金属部に含まれる酸素ガスの含有量が100wt.ppm以上200wt.ppm以下の範囲であることを特徴とする上下T型継手の溶接方法。
It consists of a stainless steel plate with one or two upper and lower plates placed on the top and bottom surfaces of the standing plate. While feeding the wires from the top and bottom surfaces to the standing plate side In the welding method of the upper and lower T-shaped joints for performing laser welding by non-consumable electrode type arc welding or laser beam irradiation of focal blurring in which the focal position of the laser beam is shifted upward from the plate surface,
The range of the plate thickness T1 of the upper plate or the lower plate is 2 <T1 ≦ 6 mm,
The range of the plate thickness T2 of the standing plate is 2 to 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1),
The upper plate or the melt width w of the upright plate after penetrating the lower plate, the plate thickness T1 than the size rather formed (w> T1), or through portions of the plate rear surface which is formed on the upper and lower plates Or the welding cross-sectional area A of the standing plate melting width part is formed larger than the plate thickness cross-sectional area B1 of the upper plate or the lower plate (A> B1),
As the wire, using a flux-cored wire containing a flux agent promoting penetration depth,
The flux agent filled in the flux-cored wire is a powder agent in which an oxide composed of at least TiO 2 , Cr 2 O 3 and SiO 2 is mixed,
The welding amount of the flux-cored wire to be fed is in the range of 1 g / min to 7 g / min,
The melting width w of the upright plate is formed larger than the plate thickness T1 of the upper plate and the lower plate (w> T1),
The method for welding upper and lower T-shaped joints, wherein the content of oxygen gas contained in the weld metal part is in the range of 100 wt.ppm to 200 wt.ppm .
請求項1ないしのいずれかに記載の上下T型継手の溶接方法において、
前記立板の上下両面に、ギャップGなしで、もしくはギャップGを前記板厚T1の0.2倍以下(0≦G≦0.2×T1)として上板及び下板を2枚ずつ突合せ配置することを特徴とする上下T型継手の溶接方法。
In the welding method of the upper and lower T-shaped joint according to any one of claims 1 to 4 ,
Two upper and lower plates are butt-arranged on both the upper and lower surfaces of the standing plate without gap G or with gap G equal to or less than 0.2 times the plate thickness T1 (0 ≦ G ≦ 0.2 × T1). A welding method for upper and lower T-shaped joints.
立板の上下両面に上板及び下板を1枚配置又は2枚並列に突合せ配置して上下T型継手の形状を構成する第1工程と、
前記上板の表面から立板側までを前記請求項1の溶接方法により溶接する第2工程と、
前記上板と対向する前記下板の表面から立板側までを前記請求項1の溶接方法により溶接する第3工程と、を有することを特徴とする上下T型継手の溶接方法。
A first step in which one upper plate and two lower plates are arranged on both upper and lower surfaces of the upright plate, or two are arranged in parallel to form the shape of the upper and lower T-shaped joints;
A second step of welding from the surface of the upper plate to the vertical plate side by the welding method of claim 1 ;
And a third step of welding from the surface of the lower plate facing the upper plate to the vertical plate side by the welding method of claim 1 .
立板の上下両面に、1枚もしくは突合せ配置された2枚の上板及び下板が配置されたステンレス鋼板からなり、ワイヤを用いた非消耗電極方式のアーク溶接またはレーザビームの焦点位置を板表面より上側へずらした焦点ぼかしのレーザビーム照射によるレーザ溶接で、上板及び下板の板表面から立板までを溶接された溶接金属部を有する上下T型溶接継手であって、
上板及び下板の板厚T1範囲が2<T1≦6mmであり、
立板の板厚T2範囲が前記板厚T1の2倍以上5倍以下(2×T1≦T2≦5×T1)であり、
前記上板又は前記下板の貫通後の立板の溶け幅wが前記板厚T1より大きく(w>T1)、
または上板及び下板の板裏面の貫通部分若しくは立板側の溶け幅部分の溶接断面積Aが上板及び下板の板厚断面積B1より大きく(A>B1)形成された溶接金属部をT型継手の上下両側に備え
上板及び下板の少なくともいずれか一方は、溶接金属部以外の範囲に予め形成された複数の孔を有する多孔板であることを特徴とする上下T型溶接継手。
The upper and lower surfaces of the vertical plate are made of stainless steel plate with one or two upper and lower plates arranged in abutment, and the focus position of the non-consumable electrode type arc welding or laser beam using a wire Upper and lower T-type welded joints having weld metal parts welded from the surface of the upper plate and the lower plate to the standing plate by laser welding by defocused laser beam irradiation shifted upward from the surface,
The plate thickness T1 range of the upper plate and the lower plate is 2 <T1 ≦ 6 mm,
The plate thickness T2 range of the upright plate is 2 to 5 times the plate thickness T1 (2 × T1 ≦ T2 ≦ 5 × T1),
The melting width w of the standing plate after passing through the upper plate or the lower plate is larger than the plate thickness T1 (w> T1),
Or the weld metal part in which the welding cross-sectional area A of the penetration part of the board back surface of an upper board and a lower board or the melt width part by the side of a standing board is larger than board thickness cross-sectional area B1 of an upper board and a lower board (A> B1) On both upper and lower sides of the T-shaped joint ,
An upper and lower T-type welded joint , wherein at least one of the upper plate and the lower plate is a perforated plate having a plurality of holes formed in advance in a range other than the weld metal portion .
請求項に記載の上下T型溶接継手において、
不活性ガスのシールドガスを流出するシールドガス供給手段、又は不活性ガスのシールドガスと酸化性ガス入りのシールドガスとを流出する二重シールドガス供給手段を用いてアーク溶接またはレーザ溶接されたことを特徴とする上下T型溶接継手。
In the upper and lower T-shaped welded joint according to claim 7 ,
Arc welding or laser welding using a shield gas supply means for flowing out an inert gas shield gas or a double shield gas supply means for flowing out an inert gas shield gas and a shield gas containing an oxidizing gas An upper and lower T-shaped welded joint.
請求項に記載の上下T型溶接継手において、
前記ワイヤは、ソリッドワイヤ又はストランドワイヤ又は溶け込み深さ促進性のフラックス剤を含むフラックス入りワイヤであることを特徴とする上下T型溶接継手。
In the upper and lower T-shaped welded joint according to claim 7 ,
The upper and lower T-shaped welded joint, wherein the wire is a solid wire, a strand wire, or a flux-cored wire containing a flux agent that promotes penetration depth.
請求項に記載の上下T型溶接継手において、
ビード表面高さCを板表面より1〜3mm高い凸形状(1≦C≦3mm)に形成したことを特徴とする上下T型溶接継手。
In the upper and lower T-shaped welded joint according to claim 7 ,
An upper and lower T-shaped welded joint, wherein the bead surface height C is formed in a convex shape (1 ≦ C ≦ 3 mm) which is 1 to 3 mm higher than the plate surface.
請求項に記載の上下T型溶接継手において、
前記溶接金属部がT型継手の上下両側に1パスずつ形成されていることを特徴とする上下T型溶接継手。
In the upper and lower T-shaped welded joint according to claim 7 ,
The upper and lower T-shaped welded joints are characterized in that the weld metal part is formed by one pass on both upper and lower sides of the T-shaped joint.
原子力機器又は火力機器に使用され、高温水蒸気媒体若しくは腐食性媒体と接触する環境状態に配備されている溶接構造物であって、前記溶接構造物は、少なくとも一部に請求項ないし11のいずれかに記載の上下T型溶接継手を有することを特徴とする溶接構造物。 Used in nuclear devices or thermal devices, a welded structure that are deployed in the environmental conditions in contact with the hot steam medium or corrosive media, the welded structure can be of any claims 7 to 11 in at least a part A welded structure comprising the upper and lower T-shaped welded joints according to claim 1.
JP2009010486A 2009-01-21 2009-01-21 Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same Expired - Fee Related JP5164870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010486A JP5164870B2 (en) 2009-01-21 2009-01-21 Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010486A JP5164870B2 (en) 2009-01-21 2009-01-21 Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same

Publications (2)

Publication Number Publication Date
JP2010167425A JP2010167425A (en) 2010-08-05
JP5164870B2 true JP5164870B2 (en) 2013-03-21

Family

ID=42700053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010486A Expired - Fee Related JP5164870B2 (en) 2009-01-21 2009-01-21 Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same

Country Status (1)

Country Link
JP (1) JP5164870B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223057A1 (en) * 2011-03-02 2012-09-06 Lucian Iordache Gas tungsten arc welding using flux coated electrodes
CN103192168B (en) * 2013-04-17 2015-03-04 二重集团(德阳)重型装备股份有限公司 Vertical symmetrical welding method for wide and thick plates
CN103447677B (en) * 2013-09-12 2015-12-02 浙江海洋学院 The anti-deformation method of a kind of factory ship T profile
CN103737160A (en) * 2014-01-29 2014-04-23 蚌埠金威滤清器有限公司 Argon arc welding ring-shaped weld joint positioning cooler
JP6269843B2 (en) * 2014-08-29 2018-01-31 新日鐵住金株式会社 Junction structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281429A (en) * 1995-04-17 1996-10-29 Daido Steel Co Ltd Method for fillet-welding stainless steel and manufacture of stainless steel shapes
JP3941297B2 (en) * 1999-04-20 2007-07-04 Jfeスチール株式会社 Welded structure member and manufacturing method thereof
JP2001219274A (en) * 2000-02-10 2001-08-14 Kobe Steel Ltd Tic welding method
JP4034308B2 (en) * 2004-12-21 2008-01-16 日鐵住金溶接工業株式会社 Copper-plated solid wire for Ar-CO2 mixed gas shielded arc welding
JP2006231359A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Welding method and structure welded by the method
JP2007090386A (en) * 2005-09-29 2007-04-12 Hitachi Ltd Two-sided welding process and welded structure formed thereby
JP2007196266A (en) * 2006-01-27 2007-08-09 Hitachi Ltd Both-side welding method and weld structure thereby
JP2008238265A (en) * 2007-02-28 2008-10-09 Hitachi-Ge Nuclear Energy Ltd Penetration welding method of t-type joint and penetration welding structure of t-type joint

Also Published As

Publication number Publication date
JP2010167425A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
US8546720B2 (en) Hybrid welding apparatus and system and method of welding
JP5873658B2 (en) Hybrid laser arc welding process and apparatus
JP5153368B2 (en) T-type joint penetration welding method and penetration welded structure
JP5294573B2 (en) Laser and arc combined welding apparatus and method
US9278407B2 (en) Dual-wire hybrid welding system and method of welding
US20140027414A1 (en) Hybrid welding system and method of welding
JP5164870B2 (en) Welding method of upper and lower T-shaped joint, upper and lower T-shaped welded joint, and welded structure using the same
JP5812527B2 (en) Hot wire laser welding method and apparatus
US20080206586A1 (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP5318543B2 (en) Laser-arc combined welding method
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP2006281279A (en) Different material joining method using laser welding
JP5088920B2 (en) Manufacturing method for building components
JP5416422B2 (en) Laser-arc combined welding method
JP3529359B2 (en) Flux-cored wire for welding galvanized steel sheet with excellent pit and blow hole resistance
JP4978121B2 (en) Butt joining method of metal plates
JP2006231359A (en) Welding method and structure welded by the method
JP2007090386A (en) Two-sided welding process and welded structure formed thereby
JP5268594B2 (en) Welding method of type I joint, type I welded joint, and welded structure using the same
JP2008200750A (en) One side arc spot welding method
JP2008238265A (en) Penetration welding method of t-type joint and penetration welding structure of t-type joint
JP2007196266A (en) Both-side welding method and weld structure thereby
JP4871747B2 (en) Double-side welding method
JP2020082159A (en) Laser welding method and flux for laser welding
Jokinen Novel ways of using Nd: YAG laser for welding thick section austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees