JP2022022551A - 核酸検出方法、核酸検出装置及びモジュール - Google Patents

核酸検出方法、核酸検出装置及びモジュール Download PDF

Info

Publication number
JP2022022551A
JP2022022551A JP2020110373A JP2020110373A JP2022022551A JP 2022022551 A JP2022022551 A JP 2022022551A JP 2020110373 A JP2020110373 A JP 2020110373A JP 2020110373 A JP2020110373 A JP 2020110373A JP 2022022551 A JP2022022551 A JP 2022022551A
Authority
JP
Japan
Prior art keywords
nucleic acid
module
modules
unit
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020110373A
Other languages
English (en)
Inventor
翼 世取山
Tasuku Setoriyama
智一 吉田
Tomokazu Yoshida
薫 浅野
Kaoru Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2020110373A priority Critical patent/JP2022022551A/ja
Priority to EP21180568.4A priority patent/EP3929568A1/en
Priority to CN202110691527.3A priority patent/CN113845999A/zh
Priority to US17/358,454 priority patent/US20210402389A1/en
Publication of JP2022022551A publication Critical patent/JP2022022551A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0357Sets of cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)
    • G01N2035/00366Several different temperatures used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/04Batch operation; multisample devices
    • G01N2201/0415Carrusel, sequential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

【課題】多数の試料を待ち時間少なく処理することができるうえ、様々な検査要求に柔軟に対応することができ、なおかつ光学検出器の数を低減することができる核酸検出装置を提供する。【解決手段】核酸検出装置1は、試料を収容する複数のチューブ30を収容可能な複数のモジュール10を設置可能なモジュール設置部11と、各々のモジュール10のチューブ30内の試料を核酸増幅に必要な温度に加温及び冷却する温度調整部50と、モジュール設置部11に設置されたモジュール10毎に、温度調整部50の温度調整によりチューブ30の核酸増幅された試料の増幅核酸を検出可能であり、モジュール設置部11に設置される複数のモジュール10に対して共用される光学検出器12と、光学検出器12が、モジュール設置部11に設置された複数のモジュール10の各々に対しチューブ30内の試料の増幅核酸を検出できるように、光学検出器12とモジュール設置部11を相対的に移動させる移動部13と、を備える。【選択図】図2

Description

本発明は、核酸検出方法、核酸検出装置及びモジュールに関する。
一般的なPCR(polymerase chain reaction)測定装置では、試料を収容する多数のウェル(well)を備えたプレートを、加温・冷却機構を備えた装置にセットし、加温と冷却のサイクルを繰り返すことより増幅した核酸を光学的に検出する(例えば特許文献1参照)。
特許文献1には、図28に示すように多数のウェル400を備えたプレート401(例えば96個のウェルのプレートなど)を用いることで、一度に多数の試料をバッチ処理する装置が開示されている。
特許文献2には、複数の処理モジュールを有し、それぞれの処理モジュールが独立してPCR測定を実施する装置が開示されている。図29に示すように各処理モジュール500には、逆転写反応や核酸増幅反応を含むPCR反応のための加温・冷却機構501に加えて、増幅した核酸を検出するための検出器502とLED503が搭載されている。各処理モジュール500は一度に一つの試料を測定するものである。この装置は16個の処理モジュール500を備えているため、16個の試料について並行してPCR測定が可能となる。
特開2019-216704号公報 米国特許第6942971号明細書
COVID-19の世界的な流行により感染性ウイルスのPCR検査の需要が高まっている。PCR検査の急激な需要の増加により、病院のみならず、空港のように大量の人の移動が発生する場所で大量の試料の検査要求が発生することが想定される。特に空港では多数の試料の検査要求が次々に発生するうえに、搭乗時刻が迫っている搭乗客の試料を、先に到着した搭乗客の試料に割り込んで測定するような検査要求が発生することが想定される。
しかしながら、特許文献1の測定装置は多数の試料をバッチ測定するものであるため、バッチ測定中に到着した試料は、このバッチ測定が終わるまで測定が始められない。
特許文献2の装置は、一つの試料の測定に一つの光学検出器を用いるため測定可能な試料の数に対して必要となる光学検出器の数が多い。各々の光学検出器は高価であるため装置のコストが高いうえに、装置サイズも大型化する。さらに一つ一つの光学検出器について定期的なメンテナンスが必要であるため、ユーザの負担も大きくなる。
本発明はかかる点に鑑みてなされたものであり、様々な検査要求に柔軟に対応することができ、なおかつ光学検出器の数を低減することができる核酸検出方法、核酸検出装置及びモジュールを提供することをその目的とする。
本発明者らは、上述の課題について鋭意検討した結果、上述したような装置では、光学検出器が、一連のPCR工程における核酸増幅の反応サイクルの僅か一時点でのみ使用され、それ以外の時間は使われておらず、したがって稼働率が低いことに着目し、本発明に至った。すなわち、本発明は以下の態様を含む。
図1、図2、図4、図7、及び図27に示すように、本発明の一態様の核酸検出方法は、試料を収容する容器(30)を保持可能な複数のモジュール(10)をモジュール設置部(11)に設置する設置工程と、モジュール設置部(11)に設置された複数のモジュール(10)のそれぞれに対して核酸増幅サイクルを繰り返すように試料を温度調整する温度調整工程と、複数のモジュール(10)に対して共用される光学検出器(12)に対し、モジュール設置部(11)を相対的に移動させ、光学検出器(12)が試料の増幅核酸を検出可能になる位置に複数のモジュール(10)のそれぞれを位置付ける移動工程と、光学検出器(12)により、複数のモジュール(10)に対し、試料の増幅核酸を検出する検出工程と、を有する。
本態様によれば、複数のモジュールに対して並列で増幅核酸の検出が行えるため、一つのモジュールに対する処理が終わったら、モジュール設置部に置かれた他のモジュールに対する検出が継続している間でも、待機している次のモジュールをモジュール設置部に設置して核酸検出を始めることができる。よって、様々な検査要求に対して柔軟に対応することができる。さらに、本態様によれば、光学検出器(12)が複数のモジュールに対して共用されるため、一つの試料の測定に一つの光学検出器を用いる従来技術に比べて、測定できる試料の数に対する光学検出器(12)の数を低減することができ、この結果、装置のコストを低減し、装置サイズも小型化することができる。また、光学検出器(12)が共用であるため、光学検出器(12)の定期的なメンテナンスも低減することができ、ユーザの負担も低減することができる。
図1、図7、図19及び図20に示すように、温度調整工程において、光学検出器(12)により、複数のモジュール(10)のそれぞれに対して核酸増幅サイクル(C)の特定のタイミングで増幅核酸を検出し、当該検出を核酸増幅サイクル(C)の繰り返しに応じて所定回数行い、なおかつ、複数のモジュール(10)のうち所定のモジュール(10)に対する増幅核酸の第1の検出から第2の検出までの間に、複数のモジュール(10)のうち他のモジュール(10)に対する増幅核酸の検出を行うようにしてもよい。
本態様によれば、光学検出器(12)の稼働率が上がり、より少ない光学検出器(12)でより効率的に試料の核酸検出を行うことができる。
図1及び図19に示すように、温度調整工程において、繰り返しの核酸増幅サイクル(C)の起点が複数のモジュール(10)のそれぞれでずれるように温度調整するようにしてもよい。
本態様によれば、各々のモジュール(10)に保持された容器(30)に収容されている試料の核酸検出を核酸増幅サイクルの特定のタイミングで行う場合において、当該各モジュール(10)の核酸検出を共用の光学検出器(12)を用いて効率的に試料の核酸検出を行うことができる。
図3に示すように、温度調整工程は、複数のモジュール(10)のそれぞれに設けられた温度調整部(50)により行うようにしてもよい。
本態様によれば、モジュール(10)毎に個別のタイミングで温度調整を行うことができる。この結果、複数のモジュール(10)のそれぞれに保持された容器(30)に収容されている試料の核酸増幅のタイミングや核酸検出タイミングの自由度が上がり、核酸検出装置(1)における効率的な核酸検出を実現することができる。
図23に示すように、温度調整工程は、モジュール設置部(11)に設けられた温度調整部(50)により行うようにしてもよい。本態様によれば、温度調整部(50)の設置の自由度があがり、温度調整部(50)を設置しやすくなる。
図1に示すように、温度調整工程において、複数のモジュール(10)のそれぞれに対して、異なる設定温度で昇温と降温を実行させてもよい。
本態様によれば、モジュール(10)毎に異なる検査項目に応じた温度調整を行うことができる。この結果、モジュール(10)毎に異なる検査項目における核酸検出を効率的に実現することができる。
図1及び図25に示すように、核酸検出方法は、搬送装置(15)により、モジュール設置部(11)に複数のモジュール(10)のそれぞれを設置し、及び/又は、モジュール設置部(11)に設置された複数のモジュール(10)のそれぞれを取り出す工程をさらに有するようにしてもよい。
本態様によれば、モジュール設置部(11)に対する複数のモジュール(10)のそれぞれの設置、取出しを短時間で正確に行うことができる。
図2及び図18に示すように、モジュール設置部(11)は、複数のモジュール(10)のそれぞれを円の周方向に並べて設置するものであり、移動工程は、光学検出器(12)とモジュール設置部(11)を円の周方向に相対的に移動させるようにしてもよい。
本態様によれば、複数のモジュール(10)に対する核酸検出を共用の光学検出器(12)を用いて好適に行うことができる。また、モジュール設置部(11)が複数のモジュール(10)を円の周方向に並べて配置できるので、モジュール設置部(11)を小型化することができ、また複数のモジュール(10)の設置や取り出しを効率的に行うことができる。
図25、図26及び図27に示すように、モジュール設置部(11)は、複数のモジュール(10)のそれぞれを直線方向に並べて設置するものであり、移動工程は、光学検出器(12)とモジュール設置部(11)を直線方向に相対的に移動させるようにしてもよい。
本態様によれば、複数のモジュール(10)に対する核酸検出を共用の光学検出器(12)を用いて好適に行うことができる。
図8、図9及び図14に示すように、モジュール設置部(11)に複数のモジュール(10)のそれぞれが配置される前に、容器(30)内の試料の逆転写反応が行われているようにしてもよい。
本態様によれば、モジュール設置部(11)において試料の核酸増幅反応及び核酸検出を直ちに行うことができる。また、逆転写反応が既に行われており、モジュール設置部(11)において多数の試料の核酸検出を連続的に行うことができるので、高いスループットを実現することができる。
図1、図2、図4、図7、図25及び図26に示すように、本発明の他の態様に係る核酸検出装置(1)は、試料を収容する容器(30)を保持可能な複数のモジュール(10)と、複数のモジュール(10)を設置可能なモジュール設置部(11)と、モジュール設置部(11)に設置された複数のモジュール(10)に対して共用され、容器(30)に収容された試料の増幅核酸を検出する検出光学検出器(12)と、光学検出器(12)がモジュール設置部(11)に設置された複数のモジュール(10)のそれぞれに対して容器内の試料の増幅核酸を検出できるように、光学検出器(12)とモジュール設置部(11)を相対的に移動させる移動部(13)と、を備え、複数のモジュール(10)およびモジュール設置部(11)の少なくとも一方が、容器に収容された試料の核酸を増幅する温度調節部を備える。
本態様によれば、複数のモジュールに対して並列で増幅核酸の検出が行えるため、一つのモジュールに対する処理が終わったら、モジュール設置部に置かれた他のモジュールに対する検出が継続している間でも、待機している次のモジュールをモジュール設置部に設置して核酸検出を始めることができる。よって、様々な検査要求に対して柔軟に対応することができる。さらに、本態様によれば、光学検出器(12)が複数のモジュールに対して共用されるため、一つの試料の測定に一つの光学検出器を用いる従来技術に比べて、測定できる試料の数に対する光学検出器(12)の数を低減することができ、この結果、装置のコストを低減し、装置サイズも小型化することができる。また、光学検出器(12)が共用であるため、光学検出器(12)の定期的なメンテナンスも低減することができ、ユーザの負担も低減することができる。
図1、図5、図19及び図20に示すように、核酸検出装置(1)は、制御部(14、62)をさらに備え、制御部(14、62)は、複数のモジュール(10)のそれぞれに対して核酸増幅サイクル(C)を繰り返すように試料を温度調整するように温度調整部(50)を制御し、複数のモジュール(10)のそれぞれに対して核酸増幅サイクル(C)の特定のタイミングで増幅核酸を検出し、当該検出を核酸増幅サイクル(C)の繰り返しに応じて所定回数行い、なおかつ、複数のモジュール(10)のうち所定のモジュール(10)に対する増幅核酸の第1の検出から第2の検出までの間に、複数のモジュール(10)のうち他のモジュール(10)に対する増幅核酸の検出を行うように移動部(13)および光学検出器(12)を制御してもよい。
本態様によれば、光学検出器(12)の稼働率が上がり、より少ない光学検出器(12)でより効率的に試料の核酸検出を行うことができる。
図1、図5、図19及び図20に示すように、制御部(14、62)は、繰り返しの核酸増幅サイクル(C)の起点が複数のモジュール(10)のそれぞれでずれるように温度調整するように温度調整部(50)を制御してもよい。
本態様によれば、各々のモジュール(10)の核酸検出を核酸増幅サイクルの特定のタイミングで行う場合において、当該各モジュール(10)の核酸検出を共用の光学検出器(12)を用いて効率的に試料の核酸の検出を行うことができる。
図3に示すように、温度調整部(50)は、モジュール(10)に設けられていてもよい。
本態様によれば、モジュール(10)毎に個別のタイミングで温度調整を行うことができる。この結果、モジュール(10)の試料の核酸増幅のタイミングや核酸検出タイミングの自由度が上がり、核酸検出装置(1)における効率的な核酸検出を実現することができる。
図23に示すように、温度調整部(50)は、モジュール設置部(11)に設けられていてもよい。
本態様によれば、温度調整部(50)の設置の自由度があがり、温度調整部(50)を設置しやすくなる。
図1及び図25に示すように、核酸検出装置(1)は、モジュール設置部(11)に複数のモジュール(10)のそれぞれを設置し、及び/又は、モジュール設置部(11)に設置された複数のモジュール(10)のそれぞれを取り出す搬送装置(15)を、さらに備えていてもよい。
本態様によれば、モジュール設置部(11)に対するモジュール(10)の設置、取出しを短時間で正確に行うことができる。
図8、図9及び図14に示すように、搬送装置(15)は、逆転写反応が行われた試料を収容した容器(30)を保持し複数のモジュール(10)のそれぞれをモジュール設置部(11)に設置してもよい。
本態様によれば、核酸検出装置(1)において試料の核酸増幅及び核酸検出を直ちに行うことができる。また、逆転写反応が既に行われており、モジュール設置部(11)において多数の試料の核酸検出を連続的に行うことができるので、高いスループットを実現することができる。
図2及び図18に示すように、モジュール設置部(11)は、複数のモジュール(10)のそれぞれを円の周方向に並べて設置するものであり、移動部(13)は、光学検出器(12)とモジュール設置部(11)を円の周方向に相対的に移動させるものであってもよい。
本態様によれば、複数のモジュール(10)に対する核酸検出を共用の光学検出器(12)を用いて好適に行うことができる。また、モジュール設置部(11)が複数のモジュール(10)を円の周方向に並べて配置できるので、モジュール設置部(11)を小型化することができ、また複数のモジュール(10)の設置や取り出しを効率的に行うことができる。
図25、図26及び図27に示すように、モジュール設置部(11)は、複数のモジュール(10)のそれぞれを直線方向に並べて設置するものであり、移動部(13)は、光学検出器(12)とモジュール設置部(11)を直線方向に相対的に移動させるものであってもよい。
本態様によれば、複数のモジュール(10)に対する核酸検出を共用の光学検出器(12)を用いて好適に行うことができる。
図3、図4及び図5に示すように、本発明の他の態様のモジュール(10)は、本体(20)と、本体(20)の表面に設けられ、核酸増幅が行われる試料を収容した容器(30)を収容可能な収容部(40)と、本体(20)に設けられ、収容部(40)に収容された容器(30)の試料の温度調整を行う温度調整部(50)と、を備え、温度調整部(50)は、熱源(60)と、モジュール制御部(62)と、温度センサ(61)を有する。
本態様によれば、モジュール(10)単位で所定のタイミングで温度調整を適切に行うことができる。
図3及び図5に示すように、モジュール(10)は、外部と通信するための通信部(51)を、さらに備えていてもよい。
本態様によれば、例えばモジュール(10)と核酸検出装置(1)の装置本体との間で通信を行い、モジュール(10)における温度調整を好適に行うことができる。
本発明によれば、光学検出器の数を抑えつつ、全体の試料に対する測定が終わる前に次の試料の測定を開始できるため、様々な検査要求に柔軟に対応することができる、核酸検出方法、核酸検出装置、及びモジュールを提供することができる。
図1は第1の実施の形態における核酸検出装置の構成の概略を示す説明図である。 図2は筐体を外した核酸検出装置を示す説明図である。 図3はモジュールの斜視図である。 図4は、一連のチューブの斜視図である。 図5は装置制御部のブロック図である。 図6は上方から見た装置本体の構成を示す説明図である。 図7は光学検出器の内部構成を示す説明図である。 図8は装置制御部の主な動作の一例を示すフロー図である。 図9は装置制御部の詳細な動作の一例を示すフロー図である。 図10は装置制御部の詳細な動作の一例を示すフロー図である。 図11は装置制御部の詳細な動作の一例を示すフロー図である。 図12は装置制御部の詳細な動作の一例を示すフロー図である。 図13は装置制御部の詳細な動作の一例を示すフロー図である。 図14はモジュールの主な動作の一例を示すフロー図である。 図15はモジュール設置部にモジュールが設置された状態を示す説明図である。 図16は核酸増幅サイクルの一例を示す説明図である。 図17は核酸増幅サイクルにおける光学検出タイミングを示す説明図である。 図18は8個のモジュールをモジュール設置部に設置した状態を示す説明図である。 図19は複数のモジュールの核酸増幅サイクルを示す説明図である。 図20は複数のモジュールの核酸増幅サイクルにおける光学検出タイミングを示す説明図である。 図21は蛍光強度に基づく核酸増幅曲線と閾値との関係を示す説明図である。 図22は15個のモジュールを設置可能なモジュール設置部を示す説明図である。 図23は温度調整部がモジュール設置部にある場合の装置本体の構成を示す説明図である。 図24(a)は複数のモジュール設置部を高さ方向に重ねて設けた核酸検出装置の構成の概略を示す斜視図であり、図24(b)は、当該核酸検出装置の側面図である。 図25は第2の実施の形態における核酸検出装置の構成の概略を示す説明図である。 図26は上方からみた核酸検出装置を示す説明図である。 図27は筐体を外した核酸検出装置を示す説明図である。 図28は従来技術のプレートを示す。 図29は従来技術の処理モジュールを示す。
以下、図面を参照して本発明の好ましい実施の形態について説明する。
本実施の形態では、PCR検査の試料をモジュール単位で核酸増幅させ、その核酸を検出する核酸検出装置について説明する。本実施形態が好適に適用できる試料の種類は、特に限定されないが、被検者から採取された臨床検体が好ましい。特に感染性ウイルスの検査に用いられる臨床検体が好ましい。感染性ウイルスの一例は、SARS-CoV-2である。臨床検体の好ましい例は、咽頭拭い液、鼻孔拭い液、鼻汁、唾液、喀痰、うがい液などの呼吸系由来の検体である。臨床検体の他の例は、全血、血清、血漿、脳脊髄液(CSF)、胸水、腹水、心嚢液、関節液、尿、便である。
<第1の実施の形態>
図1に示すように核酸検出装置1は、複数のモジュール10と、モジュール設置部11と、光学検出器12と、移動部13と、CPU14及び搬送装置15等を備えている。
<モジュール>
モジュール10は、PCR検査の試料を収容する複数の容器を収容可能なものである。モジュール10は、例えば図2及び図3に示すように、搬送装置15で搬送可能な形状である例えば直方体形状の本体20を有している。図2は、後述の装置本体80の筐体81を取り外した状態の核酸検出装置1の構成を示す説明図である。図3は、モジュール10の斜視図である。
図3に示すように本体20の上面には、例えば複数の容器である一連のチューブ30を収容する凹状の収容部40が設けられている。図4に示すように一連のチューブ30は8個の容器からなる。チューブ30は透光性の素材からなる。本体20は、その上面を覆う蓋41が設けられている。蓋41は、閉めたときに収容部40に収容されたチューブ30を押さえことができる。蓋41には、一連のチューブ30の頭部を露出させるための孔42が形成されている。本体20の上面には、蓋41の開閉を検知するための蓋センサ53が設けられている。蓋センサ53は、蓋41が閉じられたときに蓋41と接触して検知信号を出力するセンサである。また本体20の例えば下面には、放熱を迅速に行うためのヒートシンク43が設けられている。なお、本明細書における「上」、「下」は、図1乃至図3に示すような核酸検出装置1の通常の使用状態の姿勢を基準にする。
例えば図3及び図5に示すようにモジュール10は、収容部40のチューブ30内の試料を加温及び冷却する温度調整部50及び通信部51を備えている。
温度調整部50は、例えば図5に示すように熱源60と、温度センサ61と、モジュール制御部62を備えている。
熱源60は、例えば給電により昇温及び降温するペルチェ素子である。熱源60は、PCR検査の逆転写反応及び核酸増幅反応に必要な温度範囲で昇温及び降温することができる。熱源60は、本体20の内部に設けられている。
温度センサ61は、例えば収容部40の一連のチューブ30内の試料の温度を検出する熱電体である。なお、温度センサ61は、サーミスタや白金抵抗素子であってもよい。
モジュール制御部62は、例えば温度センサ61の検出結果に基づいて熱源60を制御する電子機器である。モジュール制御部62は、プログラマブルロジック回路であり、例えばFPGAである。モジュール制御部62は、所定のプログラムを実行し熱源60を制御して、試料をPCR検査の逆転写反応や核酸増幅反応に必要な温度に温度調整することができる。また、モジュール制御部62は、核酸増幅処理において後述の複数の核酸増幅サイクルCで試料の温度を昇降させることができる。
通信部51は、無線通信素子である。通信部51は、CPU14との間でデータの送受信が可能である。無線通信の方式は特に限定されないが、WIFIのようにネットワーク経由での無線通信でもよいし、Bluetooth(登録商標)のようにネットワークを経由しない無線通信でもよい。モジュール制御部62は、通信部51を介してCPU14と通信することで、CPU14に対して信号を送信し、またはCPU14から信号を受信することができる。
上記モジュール10は、複数用意され、各々のモジュール10において一連のチューブ30を収容しチューブ30内の試料を温度調整することができる。
<装置本体>
図1に示すように核酸検出装置1は、例えばテーブル70を有し、そのテーブル70上に装置本体80を有している。装置本体80は、例えば筐体81で覆われている。モジュール設置部11と、光学検出器12及び移動部13は、装置本体80に設けられている。テーブル70の上には、複数のモジュール10が配置されている。
図2及び図6に示すようにモジュール設置部11は、例えば円盤状の回転テーブル90と、回転テーブル90上に配置された複数、例えば8つのモジュール載置部91を有している。各モジュール載置部91は、回転テーブル90の中央から径方向に放射状に延びている。各モジュール載置部91には、モジュール10の長手方向を径方向に向けた状態で載置することができる。モジュール載置部91は、回転テーブル90の中央を中心とする円の周方向Rに等間隔で配置されている。すなわち、モジュール設置部11は、8個のモジュール載置部91を周方向Rに45度間隔で備えている。なお、モジュール載置部91は、例えばモジュール10を位置決めする溝などの形状を有していてもよい。また、モジュール載置部91は、装置本体からモジュール10に給電するための端子を備えていてもよい。
なお、本実施の形態では、図6に示すようにモジュール設置部11を上方から見て、搬送装置15によりモジュール10が搬入出されるモジュール載置部91の位置を原点位置P1とし、右回りに45度ずつ回転した位置を、P2(原点位置P1から45度回転)、P3(原点位置P1から90度回転)、P4(原点位置P1から135度回転)、P5(原点位置P1から180度回転)、P6(原点位置P1から225度回転)、P7(原点位置P1から270度回転)、P8(原点位置P1から315度回転)とする。
図2及び図6に示すように光学検出器12は、モジュール設置部11の回転テーブル90上に一つ設けられている。光学検出器12は、回転テーブル90の中央から径方向の外方に延びた形状を有し、一つのモジュール載置部91(モジュール載置部91のモジュール10)に対応している。光学検出器12は、モジュール載置部91が下方に位置したときに、モジュール載置部91のモジュール10にある一連のチューブ30の複数の容器に収容された複数の試料の核酸増幅に伴う蛍光を検出することができる。すなわち、光学検出器12は、モジュール単位で複数の試料の核酸増幅に伴う蛍光を検出することができ、8つのモジュール10に対して共用されている。光学検出器12は、特に限定されるものではないが、上方から見てモジュール設置部11の位置P8(図6に示す)に設けられている。
図2に示すように装置本体80は、例えば回転テーブル90の中央に位置する中央柱100と、中央柱100の上部から径方向の外向に向かって延びる支持部101を有している。光学検出器12は、支持部101に支持され、中央柱100に対し固定されている。
図5及び図7に示すように光学検出器12は、光源部110と光検出部111を有している。光学検出器12は、光源部110から一連のチューブ30の試料に光を照射し、その光によって生じた試料の核酸の蛍光を光検出部111で検出することができる。光源部110は、回転テーブル90の径方向に沿って一列に配置された複数の発光素子、例えば、LEDを備える。光検出部111は、光源部110と同様、回転テーブル90の径方向に沿って一列に配置された複数の受光素子、例えば、フォトダイオードを備える。一つの発光素子と一つの受光素子はペアで配置されており、発光素子が照射した光によって生じた蛍光をペアとなる受光素子によって検出する。
移動部13は、図2に示すように装置本体80に設けられている。移動部13は、光学検出器12に対しモジュール設置部11の回転テーブル90を相対的に回転駆動させる。移動部13は、図5に示すように例えば回転テーブル90を回転駆動するモータ120と、エンコーダ121と、モータドライバ122を有している。エンコーダ121は、回転テーブル90の回転角を検出する。モータドライバ122は、モータ120の回転速度や回転回数を制御する。
CPU14は、光学検出器12と、移動部13と、温度調整部50及び搬送装置15等の動作を制御する。CPU14は、表示部130と、入力部131と、通信部134とバスによって接続されている。CPU14は、入力部131から入力された情報に基づいて、所定のプログラムを実行し、通信部134を通じて光学検出器12及び移動部13等と制御信号を通信して、光学検出器12及び移動部13等の動作を制御する。よって、CPU14は、例えば移動部13によりモジュール設置部11を所定の速度で回転させ、光学検出器12の光源部110を所定のタイミングで発光させて、モジュール設置部11の各モジュール10に収容された一連のチューブ30内の複数の容器内の試料の核酸増幅に伴う蛍光を光検出部111によって検出することができる。
図1及び図2に示す搬送装置15は、例えば多関節型の搬送ロボットであり、先端部にモジュール10を保持して搬送する搬送アーム140を備えている。搬送装置15は、例えばテーブル70上にある複数のモジュール10から一つのモジュール10を保持して搬送しモジュール設置部11のモジュール載置部91に載置したり、モジュール載置部91にあるモジュール10を保持してモジュール設置部11から搬出することができる。例えば搬送装置15は、特定の位置(原点位置P1)にあるモジュール載置部91に対しモジュール10を出し入れすることができる。搬送装置15の動作は、例えばCPU14によって制御される。テーブル70上に配置される個々のモジュール10には予め固有のIDが割り当てられており、ユーザは、IDに応じてモジュール10を予め決められたモジュール設置位置に設置する。搬送装置15は、モジュールIDを特定して認識することで、テーブル70上の特定のモジュール設置位置にある特定のモジュール10を保持してモジュール載置部91に載置したり、処理が完了したモジュール10を、そのモジュールのIDに応じて元のモジュール設置位置に戻すことができる。
<核酸検出装置1の動作>
次に、核酸検出装置1の動作について説明する。図8は核酸検出装置1におけるCPU14の主な動作の一例を示すメインルーチンのフロー図であり、図9~図13は、図8に含まれるサブルーチンのフロー図である。図14は核酸検出装置1におけるモジュール10のモジュール制御部62の主な動作の一例を示すフロー図である。
核酸検出装置1は、主に、PCR検査の試料に対し逆転写処理と核酸増幅処理を行い、核酸増幅処理では増幅した核酸を検出する。以下、核酸検出装置1の動作の一例を説明する。
核酸検出装置1が起動し、核酸検出装置1の動作が開始されると、先ず、CPU14が移動部13を制御して、図2に示すモジュール設置部11の回転テーブル90の回転を開始する(図8のS1)。回転テーブル90は、一定速度での等速回転ではなく、原点位置P1を起点に45度ずつ回転し、45度回転する度に一時停止するように制御されている。これにより、回転テーブル90の各モジュール載置部91は、各位置P1~P8で一旦停止するように間欠的に回転する。S1において回転テーブル90の回転が開始されると、それ以降は、所定の周期にしたがって45度ずつ間欠回転が行われる。以下、図8のS2~S7の処理は、回転テーブル90の周期的な回転と並行して実行される。
次に、図8のS2において、CPU14は、逆転写処理を実行する。図9は逆転写処理のサブルーチンを示すフロー図である。CPU14は、図9のS21において、未検査の試料が収容された一連のチューブ30の識別情報(ID)を、入力部131を介して受け付ける。チューブ30の識別情報は、ユーザが入力部131に設けられたキーボードを介して手動で入力するか、またはチューブ30に貼られた機械可読コードを入力部131に設けられたコードリーダによって読み取ることでCPU14に入力される。CPU14は、入力部131を介して、使用するモジュール10の指定を受け付ける(図9のS22)。具体的には、ユーザは、モジュール10に予め割り当てられた固有のIDを入力部131を介して入力することで、CPU14にモジュールIDが入力される。このとき、CPU14が、チューブ30の識別情報とモジュール10の識別情報を関連付けて記憶部に記憶する。CPU14は、図9のS22においてモジュールIDの指定を受け付けると、記憶部内に作成した使用中モジュールリストに、指定されたモジュールIDを登録し、指定されたモジュールIDに対応する特定のモジュール10に対して登録通知を送信する(図9のS23)。
次に図14を参照する。モジュール制御部62は、図14のT1において、CPU14からの登録通知を受け取ったか否かを判定する(図14のT1)。モジュール制御部62がCPU14からの登録通知を受け取ると(T1においてYES)、モジュール制御部62は、蓋41が閉じられたか否かを判定する(図14のT2)。図9のS22においてモジュール10がユーザによって指定され、試料が収容された一連のチューブ30が、指定されたモジュール10の収容部40に収容されて、ユーザによって蓋41が閉じられると、蓋センサ53は蓋が閉じられたことを検知し、T2においてYESとなる。図14のT3において、モジュール制御部62は、通信部51を介して、チューブ30の収容(試料の収容)が完了したことを示す収容完了信号をCPU14に送信する(図14のT3)。
図9に戻って、CPU14は、モジュール10からチューブ30の収容完了信号を受信し(図9のS24)、次に逆転写処理を開始する信号をモジュール10に対し送信する(図9のS25)。
再び図14を参照する。モジュール制御部62は、T4において逆転写処理開始信号をCPU14から受信したか否かを判定する(図14のT4)。モジュール10が逆転写処理の開始信号を受信すると(T4においてYES)、モジュール制御部62は、逆転写処理を開始する(図14のT5)。逆転写処理では、熱源60により試料が一定時間45℃程度に加温される。加温により試料に含まれる逆転写酵素により、試料中の核酸の逆転写反応が進行する。逆転写処理が終了すると、モジュール制御部62は、通信部51により逆転写処理が終了したことを示す信号をCPU14に送信する(図14のT6)。モジュール制御部62は、CPU14に逆転写処理終了信号を送信すると、熱源60を制御して試料を高温状態の95℃に加温し、後述するように、CPU14から核酸増幅サイクル開始信号を受信するまで95℃の高温状態を維持する。この場合、核酸増幅サイクルの開始時の試料の温度が安定する。
図9に戻って、CPU14は、逆転写処理終了信号をモジュール制御部62から受信する(図9のS26)。CPU14は、逆転写処理終了信号を受信したモジュール10のモジュールIDを、記憶部内に作成された待機リストに登録する(図9のS27)。待機リストは、モジュール設置部11への投入を待機しているモジュール10のリストである。S27の処理が終了するとCPU14は図8のメインルーチンに処理を戻し、S3へ処理を進める。
再び図14を参照する。モジュール制御部62は、図14のT7において、CPU14から核酸増幅サイクルの開始信号を受信すると、核酸増幅サイクルを開始する(図14のT8)。具体的には、モジュール制御部62が、図16に示すような95℃への加温と、60℃への冷却からなる核酸増幅サイクルCを所定回数繰り返すように試料の温度を調整する。1回の核酸増幅サイクルCは75秒周期であり、モジュール制御部62は、内部クロックにしたがって、75秒間隔の所定タイミングで加温し、所定タイミングで冷却するよう、熱源60を制御する。この核酸増幅サイクルCの繰り返しは、例えば40回行われる。モジュール制御部62は、このサイクル数をカウントしており、サイクル数が40に達すると(T9においてYES)、処理をT10に進めてサイクル終了信号をCPU14に送信する(T10)。図17に示すように核酸増幅サイクルCの一回の周期H(75秒)は、回転テーブル90の周期(回転テーブル90が1周するのに要する時間:75秒)に合わせられている。つまり、モジュール10が回転テーブル90により中央柱100の周りを75秒で一周する度に、モジュール10においても、75秒で1回の核酸増幅サイクルCが行われる。回転テーブル90上の8つのモジュール載置部91は、回転テーブル90の上で45度ずつずれて配置されており、個々のモジュール載置部91は75秒掛けて1周するため、75/8=9.375秒間隔で、それぞれのモジュール設置部91が、順次原点位置P1に配置される。図13のS61に示すとおり、モジュール10は、原点位置P1にあるときに核酸増幅サイクル開始信号に応答して、核酸増幅サイクルCが開始され、一周して原点位置P1に戻ったときに、各回の核酸増幅サイクルCが終了するように制御される。したがって、各モジュール載置部91に設置されたモジュール10の核酸増幅サイクルCは、9.375秒ずつ位相がずれることになる(図20参照)。
CPU14は、図8のS3において、モジュール投入処理を実行する。モジュール投入処理のサブルーチンについて、図10を参照する。CPU14は、待機リストにモジュールIDが登録されているか否かを判定する(S31)。次に、CPU14は、モジュール設置部11の原点位置P1にある、或いは次にモジュール設置部11の原点位置P1にくるモジュール載置部91にモジュールがあるかないかを確認する(図10のS32)。モジュールがない場合には、CPU14は搬送装置15に対して指令を送信し、搬送装置15がモジュール10を保持し、図15に示すように原点位置P1にあるモジュール載置部91に搬送する(図10のS33)。CPU14は、モジュール載置部91とモジュールIDとを関連付けて記憶する(図10のS34)。S34の処理が終了すると、CPU14は、処理を図8のメインルーチンに戻し、S4に処理を進める。
CPU14は、図8のS4において核酸増幅サイクル開始処理を実行する。核酸増幅サイクル開始処理のサブルーチンについて、図11を参照する。CPU14は、原点位置P1にあるモジュール10が2周目であるか否かを判定する(S41)。S41においてYESの場合、CPU14は、モジュール10に対し、核酸増幅処理の核酸増幅サイクルの開始を指示する信号を送信する(S42)。なお、核酸増幅サイクルの開始タイミングは、特に限定されるものではないが、例えばモジュール10が原点位置P1から次の位置P2に動き出すタイミングに同期させてもよい。CPU14は、S41の処理を終えると図8のメインルーチンに処理を戻す。
再び図14を参照する。モジュール制御部62は、図14のT7において、CPU14から核酸増幅サイクルの開始信号を受信すると、核酸増幅サイクルを開始する(図14のT8)。具体的には、温度調整部50が、図16に示すような95℃への加温と、60℃への冷却からなる核酸増幅サイクルCを所定回数繰り返すように試料の温度を調整する。この核酸増幅サイクルCの繰り返しは、例えば40回行われる。モジュール制御部62は、このサイクル数をカウントしており、サイクル数が40に達すると(T9においてYES)、処理をT10に進めてサイクル終了信号をCPU14に送信する(T10)。図17に示すように核酸増幅サイクルCの周期Hは、回転テーブル90の周期(回転テーブル90が1周するのに要する時間)に合わせられている。つまり、モジュール10が回転テーブル90により中央柱100の周りを一周する度に、モジュール10において1回の核酸増幅サイクルCが行われる。例えばモジュール10が原点位置P1にあるときに、各回の核酸増幅サイクルCが開始され、一周して原点位置P1に戻ったときに、各回の核酸増幅サイクルCが終了する。
図8に戻って、CPU14は、図8のS4の処理が終了すると、処理を図8のS5に進める。CPU14は、図8のS5において、検出処理を実行する。検出処理のサブルーチンについて、図12を参照する。CPU14は、光学検出器12に対して、モジュール10が下方に位置したとき(図15においてモジュール10が位置P8に位置したとき)に、当該モジュール10のチューブ30の試料の増幅核酸の蛍光を検出するよう制御する(図12のS51)。光学検出器12による核酸検出は、図17に示すように核酸増幅サイクルCにおける特定のタイミング、例えば試料が冷却されて60℃程度になるタイミングで行われる。つまり、モジュール10が光学検出器12の下方の位置P8に位置するタイミングと、核酸増幅サイクルCにおける上記特定のタイミングとが合わせられている。CPU14は、光学検出器12から受け取った蛍光強度による検出データを記憶部に格納する(図12のS52)。
例えば図18に示すように最大8個のモジュール10a、10b、10c、10d、10e、10f、10g、10hが順次8個のモジュール載置部91に載置され、各々が並行して増幅核酸処理される。各々のモジュール10a~10hは、原点位置P1でモジュール載置部91に載置されたあと、1周したタイミングで核酸増幅サイクルCが開始される。図19に示すように、各モジュール10a~10hに対する核酸増幅サイクルCの起点はモジュール間でずれている。また、光学検出器12による核酸検出は、回転テーブル90の位置P8において1周毎にモジュール単位で行われるため、図20に示すように例えばあるモジュール10aの第1の検出と第2の検出の間に、他のモジュール10b~10hの検出が行われる。
CPU14は、図12のS52の処理が終了すると、図8のメインルーチンに処理を戻し、S6へ処理を進める。図8のS6において、CPU14は、モジュール取り出し処理を実行する。モジュール取り出し処理のサブルーチンついては、図13を参照する。CPU14は、S61において、原点位置P1に来た、あるいは来るモジュール10がサイクル終了信号を送信したモジュールか否かを判定する(S61)。S61においてYESの場合は、CPU14は、原点位置P1にモジュール10が来たタイミングでモジュール載置部91からモジュール10を取り出す(図13のS62)。その後、次にモジュール待機リストに待機しているモジュールが、空いたモジュール載置部91に搬入される。なお、当然、8個のモジュール載置部91のすべてにモジュール10が載置されていなくてもよい。S62の処理が終了すると、CPU14は、図8のメインルーチンに処理を戻す。
図8のS7において、CPU14は、各モジュールから読み取られた検出データを解析し、蛍光強度に基づく増幅曲線を作成し、蛍光強度が閾値を上回ったときのサイクル数(立ち上がりサイクル数)を取得する。図21は、蛍光強度に基づく増幅曲線と閾値との関係を示した説明図である。図示のとおり、核酸増幅のサイクルを繰り返していくと試料中の核酸増幅に伴い蛍光強度が上がる。蛍光強度の立ち上がりサイクルは、試料に検出対象の標的核酸が含まれている場合は早くなり、標的核酸が含まれていない場合は遅くなる。CPU14は、立ち上がりサイクル数が所定サイクル数より小さい場合、例えば、38サイクル数未満である場合には、試料が陽性である旨のフラグをセットする。立ち上がりサイクル数が38サイクル数以上の場合には、CPU14は、試料が陰性である旨のフラグをセットする。CPU14は、試料毎の検出データと判定結果を、各モジュール10に関連付けられたチューブ30のIDと対応付けて記憶する。図8のS8において、CPU14は、ユーザから終了指示を受け付けたか否かを判定する。終了指示を受け付けたと判定すると、CPU14は、図8のS9に処理を進め、回転テーブル90の回転を停止し(図8のS9)、核酸検出装置1の動作が終了する。
本実施の形態によれば、核酸検出装置1が、複数のモジュール10を設置可能なモジュール設置部11と、温度調整部50と、共用の光学検出器12と、移動部13を備えている。これにより、一連のチューブ30を収容した複数のモジュール10を順次モジュール設置部11に設置し、各々のモジュール10に対して核酸増幅反応のための温度調整を行い、各々のモジュール10に対し共用の光学検出器12により試料の増幅核酸を検出することができる。この結果、多数の試料を待ち時間なく処理することができ、また、様々な検査要求に対して柔軟に対応することができる。さらに、光学検出器12の数を低減することができ、この結果、装置のコストを低減し、装置サイズも小型化することができる。また、光学検出器12が共用であるため、光学検出器12の定期的なメンテナンスも低減することができ、ユーザの負担も低減することができる。
例えばCPU14とモジュール制御部62は、温度調整部50が、各々のモジュール10に対して加温と冷却からなる核酸増幅サイクルCを繰り返すように試料を温度調整し、光学検出器12が、各々のモジュール10に対して核酸増幅サイクルCの特定のタイミングで増幅核酸を検出し、当該検出を核酸増幅サイクルCの繰り返しに応じて所定回数行い、なおかつ、所定のモジュールに対する増幅核酸の第1の検出から第2の検出までの間に、他のモジュールに対する増幅核酸の検出を行うように、光学検出器12、移動部13及び温度調整部50等を制御している。これにより、光学検出器12の稼働率が上がり、より少ない光学検出器12でより効率的に試料の核酸検出を行うことができる。なお、本実施の形態においては、上記制御をCPU14とモジュール制御部62により実現していたが、制御部の構成はこれに限られず、一つの制御部で行ってもよいし、3つ以上の制御部で行ってもよい。
さらに、CPU14及びモジュール制御部62は、繰り返しの核酸増幅サイクルCの起点がモジュール間でずれるように、温度調整部50や移動部13等を制御している。これにより、各々のモジュール10の核酸検出を核酸増幅サイクルCの特定のタイミングで行う場合において、当該各モジュール10の核酸検出を共用の光学検出器12を用いて適切に行うことができる。
温度調整部50は、モジュール10に設けられているので、モジュール毎に個別のタイミングで温度調整を行うことができる。この結果、モジュール10の試料の核酸増幅のタイミングや核酸検出タイミングの自由度が上がり、核酸検出装置1において効率的な核酸検出を実現することができる。また、逆転写処理をモジュール10毎に行うことができるので、モジュール10に試料が収容されれば、その都度モジュール単位で逆転写処理を先に行い、より早いタイミングで核酸増幅処理を待機することができる。この結果、核酸検出装置1において核酸増幅処理を効率的に行うことができる。
核酸検出装置1は、搬送装置15を備えるので、モジュール設置部11に対するモジュール10の設置、取出しを短時間で正確に行うことができる。
モジュール設置部11は、複数のモジュール10を円の周方向Rに並べて設置するものであり、移動部13は、光学検出器12とモジュール設置部11を円の周方向Rに相対的に移動させるものである。これにより、複数のモジュール10に対する核酸検出を共用の光学検出器12を用いて好適に行うことができる。
モジュール10は、10個以下のチューブ30を収容可能に構成されているので、小単位で核酸の検出を行うことができ、試料の核酸検出の待ち時間を低減することができる。
モジュール設置部11に設置されたモジュール10のチューブ30の試料は、逆転写反応が行われたものであるので、核酸検出装置1において核酸増幅及び核酸検出を直ちに行うことができる。また、逆転写反応が既に行われおり、モジュール設置部11において多数の試料の核酸検出を連続的に行うことができるので、高いスループットを実現することができる。
モジュール10は、本体20と、本体20の表面に設けられ、チューブ30を収容可能な収容部40と、収容部40に収容されたチューブ30の試料の温度調整を行う温度調整部50と、を備え、温度調整部50は、熱源60と、モジュール制御部62と、温度センサ61を有している。このため、モジュール単位で温度調整を適切に行うことができる。
モジュール10は、外部と通信するための通信部51をさらに備えるので、例えばモジュール10とCPU14との間で通信を行い、モジュール10における温度調整を好適に行うことができる。
上記実施の形態において、モジュール設置部11のモジュール載置部91の数は、8個に限られない。例えば図22に示すようにモジュール載置部91の数は15個でもよい。かかる場合、搬送装置15が各モジュール載置部91にモジュール10を載置したり、光学検出器12が各モジュール10の核酸検出を行うために、回転テーブル90は24度ずつ断続的に回転してもよい。この場合、光検出器12、移動部13及びモジュール10等の制御は、上記実施の形態と同様であってもよい。
上記実施の形態において、温度調整部50がモジュール10に設けられていたが、装置本体80に設けられていてもよい。例えば図23に示すように温度調整部50は、回転テーブル90の各モジュール載置部91に設けられていてもよい。また、温度調整部50は、回転テーブル90の下部など、装置本体80においてモジュール10の試料を温度調整可能な他の位置に設けられていてもよい。
搬送装置15は、原点位置P1にあるモジュール載置部91に対しモジュール10を搬入出するものであったが、モジュール10の搬入と搬出を異なる位置にあるモジュール載置部91に対して行うようにしてもよい。搬送装置15は、モジュール10を搬入するための搬送部と、モジュール10を搬出するための搬送部で構成されていてもよい。
上記実施の形態において、光学検出器12は、一つであったが、複数のモジュール10に対し共用するものであれば、複数個あってもよい。光学検出器12は、モジュール設置部11においてモジュール10が搬入出される原点位置P1とずれた位置P8に配置されていたが、モジュール10が搬入出される位置と同じ原点位置P1に配置されていてもよい。また、移動部13は、固定された光学検出器12に対し回転テーブル90を移動させるものであったが、モジュール設置部11側の回転テーブル90を固定し、光学検出器12を移動させるようにしてもよい。
上記実施の形態において、モジュール設置部11は、複数のモジュール10を同一平面上に同じ高さで円の周方向に配置する構成であるが、図24に示すように、複数のモジュール設置部11を高さ方向に重ねて設けてもよい。図24の例では、複数のモジュール設置部11が高さ方向に重ねられた階層構造となっており、各階層に光学検出器12が配置されている。したがって、図24の例でも、各階層において一つの光学検出器12を複数のモジュール10で共用することができ、多数の試料に対する核酸増幅を少ない数の光学検出器12で検出することができる。
<第2の実施の形態>
以上の第1の実施の形態では、移動部13が、光学検出器12とモジュール設置部11を回転テーブル90により円の周方向Rに相対的に移動させるものであったが、モジュール設置部11が、複数のモジュール10を直線方向に並べて設置するものであり、移動部13が、光学検出器12とモジュール設置部11を直線方向に相対的に移動させるものであってもよい。以下、この例を第2の実施の形態として説明する。なお、特段言及しない部分の構成は、第1の実施の形態と同様とする。
図25は、第2の実施の形態にかかる核酸検出装置1の斜視図であり、図26は、核酸検出装置1の上面図である。図27は、本体装置の筐体を取り外した状態の核酸検出装置1の構成を示す説明図である。
図25乃至図27に示すようにモジュール設置部11は、複数のモジュール10を直線方向(図のX方向)に並べて配置可能なコンベア150を有している。コンベア150は、モジュール10の長手方向の長さよりも大きな幅を有し、モジュール10の長手方向を幅方向(図のY方向)に向けた状態でモジュール10を載置することができる。コンベア150は、水平の上面を有し、図示しない駆動部によりコンベア150の入口側に搬入されたモジュール10をX方向の前方向(図のX1方向)の出口側に搬送することができる。コンベア150の動作は、CPU14により制御される。
装置本体80は、例えばコンベア150を覆う筐体160と、コンベア150の入口側に設けられた搬入ステージ161と、コンベア150の出口側に設けられた搬出ステージ162を備えている。
図27に示すように光学検出器12は、コンベア150の上方に一つ設けられている。移動部13は、光学検出器12を保持し、コンベア150上をX方向に移動させる駆動機構165を有している。駆動機構165は、例えば光学検出器12を支持する支持部170と、支持部170をX方向にスライドさせるスライドレール171と、支持部170をX方向に駆動するモータ172等を備えていてもよい。駆動機構165の動作は、CPU14により制御される。
搬送装置15は、例えば搬入ステージ161上のモジュール10をコンベア150の入口側に搬入する搬入ロボット15aと、コンベア150の出口側のモジュール10を搬出ステージ162上に搬出する搬出ロボット15bの2台から構成されている。
そして、核酸検出装置1では、例えば図25及び図26に示した搬入ステージ161に置かれた複数のモジュール10に対し、試料が収容された一連のチューブ30が収容され、各々のモジュール10において温度調整部50により逆転写処理が行われる。
次に、搬入ロボット15aによって、複数のモジュール10が順にコンベア150に載置される。このときコンベア150はX1方向に移動する。そして、図27に示すように複数のモジュール10がコンベア150上に載置されると、コンベア150が停止する。
続いて、核酸増幅処理が開始され、各々のモジュール10では、温度調整部50により核酸増幅サイクルCの温度調整が開始される。このとき、図19に示したように各モジュール10の核酸増幅サイクルCの起点は、モジュール間で互いにずらされている。そして、光学検出器12が、コンベア150の一端の例えば出口側端部から他端の入口側端部に向けて(図のX2方向に)移動し、各モジュール10に対し順に発光及び受光し、各モジュール10における試料の増幅核酸を検出する。このとき、図20に示したように光学検出器12は、各々のモジュール10に対して核酸増幅サイクルCの特定のタイミング、例えば試料が冷却されて60℃程度になったときに増幅核酸を検出するように制御される。
光学検出器12は、コンベア150上を入口側端部まで移動すると、出口側端部まで戻り、再度、同様にコンベア150の出口側端部から入口側端部に向けて移動し、各モジュール10の核酸増幅サイクルCの特定のタイミングで、各モジュール10に対し試料の増幅核酸を検出する。この結果、あるモジュール10に対する増幅核酸の第1の検出から第2の検出までの間に、他のモジュール10に対する増幅核酸の検出が行われる。そしてこれが複数回、例えば40回繰り返され、核酸増幅処理が終了する。
核酸増幅処理が終了したモジュール10は、図25及び図26に示す搬出ロボット15bによりコンベア150の出口側から搬出ステージ162に搬出される。コンベア150の出口側に空きができると、コンベア150がX1方向に移動し、コンベア150の入口側にできたスペースに、搬入ステージ161にある次のモジュール10が搬入ロボット15aにより搬入される。
本実施の形態によれば、一連のチューブ30を収容した複数のモジュール10を順次モジュール設置部11に設置し、各々のモジュール10に対して核酸増幅反応のための温度調整を行い、各々のモジュール10に対し共用の光学検出器12により試料の増幅核酸を検出することができる。これにより、多数の試料を待ち時間なく処理することができ、また、様々な検査要求に対して柔軟に対応することができる。さらに、光学検出器12の数を低減することができ、この結果、装置のコストを低減し、装置サイズも小型化することができる。また、光学検出器12が共用であるため、光学検出器12の定期的なメンテナンスも低減することができ、ユーザの負担も低減することができる。
モジュール設置部11は、複数のモジュール10を直線方向Xに並べて設置するものであり、移動部13は、光学検出器12とモジュール設置部11を直線方向Xに相対的に移動させるものである。これにより、複数のモジュール10に対する核酸検出を共用の光学検出器12を用いて好適に行うことができる。
本実施の形態において、温度調整部50がモジュール10に設けられていたが、装置本体80、例えばコンベア150に設けられていてもよい。光学検出器12は、一つであったが、複数のモジュール10に対し共用するものであれば、複数個あってもよい。
以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば上記第1及び第2の実施の形態で記載した核酸検出装置1は、搬送装置15を備えていなくてもよく、ユーザがモジュール10をモジュール設置部11に対し搬入出してもよい。核酸検出装置1は、逆転写処理と核酸増幅処理を行う機能を有するものであってが、逆転写処理を行う機能は備えず、逆転写処理は他の装置で行うようにしてもよい。その他核酸検出装置1の構成は、上記第1及び第2の実施の形態のものに限られない。
上記第1及び第2の実施形態で記載した核酸検出装置1は、複数のモジュール10に対して、同じ設定温度で加温および冷却を実行させているが、各々のモジュール10に対して異なる設定温度で加温および冷却を実行させてもよい。具体的には、上記第1及び第2の実施形態では、試料を95℃に加温したのち60℃に冷却する核酸増幅サイクルを各モジュールにおいて実行する例を説明したが、モジュール毎に加温および冷却の設定温度を変えてもよい。例えば、PCR検査項目、検査試薬の種類によって、核酸をアニーリングする温度は異なることがある。そのため、例えば、一つのPCR検査項目を測定するための第1モジュールに対しては加温95℃と冷却60℃を設定温度とし、他のPCR検査項目を測定するための第2モジュールに対しては加温80℃と冷却50℃を設定温度としてもよい。
上記第1及び第2の実施形態では、逆転写処理において試料を45℃に加温したのち、核酸増幅サイクルが始まるまで試料を95℃の高温状態で維持する例を説明した。この温度制御は逆転写反応を起こすためのものであり、例えば試料中のRNAウイルスの核酸を増幅するために有効である。一方、DNAしか持たないウイルスに対しては逆転写反応ではなく変性(Denature)を起こす必要がある。逆転写処理に代えて試料の編成を起こすためには、試料を最初から高温状態にする必要がある。他の実施形態では、この変性を起こすために、逆転写処理において試料を45℃ではなく95℃に加温してもよい。
本発明は、多数の試料を待ち時間少なく処理することができるうえ、様々な検査要求に柔軟に対応することができ、なおかつ光学検出器の数を低減することができる核酸検出装置、核酸検出方法、及びモジュールを提供する際に有用である。
1 核酸検出装置
10 モジュール
11 モジュール設置部
12 光学検出器
13 移動部
14 装置制御部
15 搬送装置
30 チューブ
50 温度調整部

Claims (21)

  1. 核酸増幅反応を行う試料を収容する容器を保持可能な複数のモジュールをモジュール設置部に設置する設置工程と、
    前記モジュール設置部に設置された前記複数のモジュールのそれぞれに対して核酸増幅サイクルを繰り返すように前記試料を温度調整する温度調整工程と、
    前記複数のモジュールに対して共用される光学検出器に対し、前記モジュール設置部を相対的に移動させ、前記光学検出器が前記試料の増幅核酸を検出可能になる位置に前記複数のモジュールのそれぞれを順次位置付ける移動工程と、
    前記光学検出器により、前記複数のモジュールのそれぞれに対し、前記試料の増幅核酸を順次検出する検出工程と、を有する、核酸検出方法。
  2. 前記検出工程において、前記光学検出器により、前記複数のモジュールのそれぞれに対して核酸増幅サイクルの特定のタイミングで前記増幅核酸を検出し、当該検出を核酸増幅サイクルの繰り返しに応じて所定回数行い、なおかつ、前記複数のモジュールのうち所定のモジュールに対する前記増幅核酸の第1の検出から第2の検出までの間に、前記複数のモジュールのうち他のモジュールに対する前記増幅核酸の検出を行う、請求項1に記載の核酸検出方法。
  3. 前記温度調整工程において、前記繰り返しの核酸増幅サイクルの起点が前記複数のモジュールのそれぞれでずれるように前記試料の温度調整する、請求項2に記載の核酸検出方法。
  4. 前記温度調整工程は、前記複数のモジュールのそれぞれに設けられた温度調整部により行う、請求項1~3のいずれか一項に記載の核酸検出方法。
  5. 前記温度調整工程は、前記モジュール設置部に設けられた温度調整部により行う、請求項1~4のいずれか一項に記載の核酸検出方法。
  6. 前記温度調整工程において、前記複数のモジュールのそれぞれに対して、異なる設定温度で昇温と降温を実行させる、請求項1~5のいずれか一行に記載の核酸検出方法。
  7. 搬送装置により、前記モジュール設置部に前記複数のモジュールのそれぞれを設置し、及び/又は、前記モジュール設置部に設置された前記複数のモジュールのそれぞれを取り出す工程をさらに有する、請求項1~6のいずれか一項に記載の核酸検出方法。
  8. 前記モジュール設置部は、前記複数のモジュールのそれぞれを円の周方向に並べて設置するものであり、
    前記移動工程は、前記光学検出器と前記モジュール設置部を前記円の周方向に相対的に移動させる、請求項1~7のいずれか一項に記載の核酸検出方法。
  9. 前記モジュール設置部は、前記複数のモジュールのそれぞれを直線方向に並べて設置するものであり、
    前記移動工程は、前記光学検出器と前記モジュール設置部を前記直線方向に相対的に移動させる、請求項1~7のいずれか一項に記載の核酸検出方法。
  10. 前記モジュール設置部に前記複数のモジュールのそれぞれが配置される前に、容器内の試料の逆転写反応を行う逆転写反応工程を含む、請求項1~9のいずれか一項に記載の核酸検出方法。
  11. 試料を収容する容器を保持可能な複数のモジュールと、
    前記複数のモジュールを設置可能なモジュール設置部と、
    前記モジュール設置部に設置された前記複数のモジュールに対して共用され、前記容器に収容された前記試料の増幅核酸を検出する光学検出器と、
    前記光学検出器が、前記モジュール設置部に設置された前記複数のモジュールのそれぞれに対し前記容器内の前記試料の増幅核酸を検出できるように、前記光学検出器と前記モジュール設置部を相対的に移動させる移動部と、を備え、
    前記複数のモジュールおよび前記モジュール設置部の少なくとも一方が、前記容器に収容された前記試料の核酸を増幅する温度調整部を備える、核酸検出装置。
  12. 制御部をさらに備え、
    前記制御部は、
    前記複数のモジュールのそれぞれに対して核酸増幅サイクルを繰り返すように前記試料を温度調整するように前記温度調整部を制御し、
    前記複数のモジュールのそれぞれに対して特定のタイミングで前記増幅核酸を検出し、当該検出を核酸増幅サイクルの繰り返しに応じて所定回数行い、なおかつ、前記複数のモジュールのうち所定のモジュールに対する前記増幅核酸の第1の検出から第2の検出までの間に、前記複数のモジュールのうち他のモジュールに対する前記増幅核酸の検出を行うように前記移動部および前記光学検出器を制御する、
    ように構成されている、請求項11に記載の核酸検出装置。
  13. 前記制御部は、
    前記繰り返しの核酸増幅サイクルの起点が前記複数のモジュールのそれぞれでずれるように温度調整するように前記温度調整部を制御する、請求項12に記載の核酸検出装置。
  14. 前記温度調整部は、前記モジュールに設けられている、請求項11~13のいずれか一項に記載の核酸検出装置。
  15. 前記温度調整部は、前記モジュール設置部に設けられている、請求項11~13のいずれか一項に記載の核酸検出装置。
  16. 前記モジュール設置部に前記複数のモジュールのそれぞれを設置し、及び/又は、前記モジュール設置部に設置された前記複数のモジュールのそれぞれを取り出す搬送装置を、さらに備える、請求項11~15のいずれか一項に記載の核酸検出装置。
  17. 前記搬送装置は、逆転写反応が行われた前記試料を収容した前記容器を保持した前記複数のモジュールのそれぞれを前記モジュール設置部に設置するように構成されている、請求項16に記載の核酸検出装置。
  18. 前記モジュール設置部は、前記複数のモジュールのそれぞれを円の周方向に並べて設置するものであり、
    前記移動部は、前記光学検出器と前記モジュール設置部を前記円の周方向に相対的に移動させるものである、請求項11~17のいずれか一項に記載の核酸検出装置。
  19. 前記モジュール設置部は、前記複数のモジュールのそれぞれを直線方向に並べて設置するものであり、
    前記移動部は、前記光学検出器と前記モジュール設置部を前記直線方向に相対的に移動させるものである、請求項11~17のいずれか一項に記載の核酸検出装置。
  20. 本体と、
    本体の表面に設けられ、核酸増幅が行われる試料を収容した容器を収容可能な収容部と、
    前記本体に設けられ、前記収容部に収容された容器の試料の温度調整を行う温度調整部と、を備え、
    前記温度調整部は、熱源と、温度制御部と、温度センサを有する、モジュール。
  21. 外部と通信するための通信部を、さらに備える、請求項20に記載のモジュール。
JP2020110373A 2020-06-26 2020-06-26 核酸検出方法、核酸検出装置及びモジュール Pending JP2022022551A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020110373A JP2022022551A (ja) 2020-06-26 2020-06-26 核酸検出方法、核酸検出装置及びモジュール
EP21180568.4A EP3929568A1 (en) 2020-06-26 2021-06-21 Nucleic acid detection method, nucleic acid detection device and module
CN202110691527.3A CN113845999A (zh) 2020-06-26 2021-06-22 核酸检测方法、核酸检测装置以及模块
US17/358,454 US20210402389A1 (en) 2020-06-26 2021-06-25 Nucleic acid detection method, nucleic acid detection device and module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020110373A JP2022022551A (ja) 2020-06-26 2020-06-26 核酸検出方法、核酸検出装置及びモジュール

Publications (1)

Publication Number Publication Date
JP2022022551A true JP2022022551A (ja) 2022-02-07

Family

ID=76553498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020110373A Pending JP2022022551A (ja) 2020-06-26 2020-06-26 核酸検出方法、核酸検出装置及びモジュール

Country Status (4)

Country Link
US (1) US20210402389A1 (ja)
EP (1) EP3929568A1 (ja)
JP (1) JP2022022551A (ja)
CN (1) CN113845999A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515621B (zh) * 2023-05-06 2023-10-17 南方医科大学南方医院 多温区pcr扩增系统、方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783934B1 (en) 2000-05-01 2004-08-31 Cepheid, Inc. Methods for quantitative analysis of nucleic acid amplification reaction
JP2008541139A (ja) * 2005-05-04 2008-11-20 スリーエム イノベイティブ プロパティズ カンパニー 蛍光検出で使用されるパルス光源用のシステムおよび方法
JP5249988B2 (ja) * 2010-05-07 2013-07-31 株式会社日立ハイテクノロジーズ 核酸増幅装置及びそれを用いた核酸検査装置
JP2019216704A (ja) 2017-11-21 2019-12-26 株式会社リコー デバイス

Also Published As

Publication number Publication date
EP3929568A1 (en) 2021-12-29
CN113845999A (zh) 2021-12-28
US20210402389A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
EP2599856B1 (en) Nucleic acid amplifier and nucleic acid inspection device using same
JP6972069B2 (ja) 自動インキュベーションのためのシステム、方法、および装置
JP6743204B2 (ja) 容器ホルダの保管および供給
JP7408733B2 (ja) 後部アクセス可能トラックシステムを有する自動診断分析装置および関連方法
JP6072913B2 (ja) 核酸増幅検出装置及びそれを用いた核酸検査装置
CN108642159B (zh) 生物芯片检测系统
TWI504742B (zh) 熱循環儀裝置
US9714455B2 (en) Method for detecting nucleic acid amplification in sample and device therefor
US20180267069A1 (en) Sample analyzer
EP2639587B1 (en) Reaction plate assembly, reaction plate and nucleic acid analysis device
US20140170734A1 (en) Nucleic acid test apparatus
JP2013190400A (ja) 自動分析装置
CN112129963B (zh) 自动分析装置及分析方法
EP3929568A1 (en) Nucleic acid detection method, nucleic acid detection device and module
JP7524061B2 (ja) サンプルを分析するためのポータブル装置及び方法
JP6754420B2 (ja) 対流pcr装置
JP2022073304A (ja) 検査装置
JP2021167753A (ja) 検体分析装置及び検体処理方法
JP2018155740A (ja) 自動分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20241001