JP2021534578A - Chamber cooling equipment and semiconductor processing equipment - Google Patents

Chamber cooling equipment and semiconductor processing equipment Download PDF

Info

Publication number
JP2021534578A
JP2021534578A JP2021507006A JP2021507006A JP2021534578A JP 2021534578 A JP2021534578 A JP 2021534578A JP 2021507006 A JP2021507006 A JP 2021507006A JP 2021507006 A JP2021507006 A JP 2021507006A JP 2021534578 A JP2021534578 A JP 2021534578A
Authority
JP
Japan
Prior art keywords
cooling
chamber
pipes
pipe
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021507006A
Other languages
Japanese (ja)
Other versions
JP7062132B2 (en
Inventor
福▲順▼ 袁
皓 ▲劉▼
建▲強▼ 高
▲東▼▲華▼ ▲趙▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Beijing Naura Microelectronics Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821482745.6U external-priority patent/CN208767255U/en
Priority claimed from CN201811056758.1A external-priority patent/CN110890262A/en
Application filed by Beijing Naura Microelectronics Equipment Co Ltd filed Critical Beijing Naura Microelectronics Equipment Co Ltd
Publication of JP2021534578A publication Critical patent/JP2021534578A/en
Application granted granted Critical
Publication of JP7062132B2 publication Critical patent/JP7062132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

チャンバー冷却装置及び半導体加工設備を提供し、該装置は、冷却槽(5)、複数の冷却管(2)、及び複数の給水管(7)を含み、前記冷却槽(5)は、冷却液体を収容しており、チャンバーの底部を冷却することに用いられ、前記複数の冷却管(2)は、冷却槽(5)内に設けられ、且つ複数の冷却管(2)の管壁のいずれにも吐出口(21)が設けられ、吐出口(21)を介して冷却液体を噴出して回転水流を形成し、それにより冷却槽(5)内の冷却液体を駆動させて回転乱流を形成させることに用いられ、前記複数の給水管(7)は、複数の冷却管(2)に1対1で対応して接続され、且つ各給水管(7)に開閉弁(71)及び流量調整弁(72)が設けられている。チャンバー冷却装置は、構造をさらにコンパクト化し、冷却液体の流速損失を低減させることができるだけでなく、複数の冷却管(7)内の流量を独立して制御することができ、それによって、操作性及び水流均一性を向上させることができる。A chamber cooling device and semiconductor processing equipment are provided, the device including a cooling tank (5), a plurality of cooling pipes (2), and a plurality of water supply pipes (7), wherein the cooling tank (5) is a cooling liquid. Is used to cool the bottom of the chamber, the plurality of cooling pipes (2) are provided in the cooling tank (5), and any of the tube walls of the plurality of cooling pipes (2). Also provided with a discharge port (21), the cooling liquid is ejected through the discharge port (21) to form a rotating water flow, thereby driving the cooling liquid in the cooling tank (5) to generate a rotating turbulent flow. Used for forming, the plurality of water supply pipes (7) are connected to a plurality of cooling pipes (2) in a one-to-one correspondence, and each water supply pipe (7) has an on-off valve (71) and a flow rate. A regulating valve (72) is provided. The chamber cooling device can not only further make the structure more compact and reduce the flow rate loss of the cooling liquid, but also can independently control the flow rate in the plurality of cooling pipes (7), thereby operability. And water flow uniformity can be improved.

Description

本発明は半導体製造の分野に関し、具体的には、チャンバー冷却装置及び半導体加工設備に関する。 The present invention relates to the field of semiconductor manufacturing, and specifically to a chamber cooling device and semiconductor processing equipment.

化学気相成長(Chemical Vapor Deposition、以下、CVDと略称)技術は、純度が高く、性能に優れた固体材料を生成するための化学技術であり、典型的なCVDプロセスはウエハを1種又は複数種の異なる前駆体にさらし、所定のプロセス温度で、ウエハの表面に化学反応及び/又は化学分解が発生し、それによってウエハに薄膜を生成することである。 Chemical Vapor Deposition (hereinafter abbreviated as CVD) technology is a chemical technology for producing solid materials with high purity and excellent performance, and a typical CVD process is one or more wafers. Exposure to different species of precursors, at a given process temperature, causes a chemical reaction and / or chemical decomposition on the surface of the wafer, thereby forming a thin film on the wafer.

いずれのCVD技術においても、温度制御、特にCVD反応チャンバーの温度制御は非常に重要な技術の一つである。プロセスを行う段階では、反応チャンバーの内部温度が比較的高く、1100℃に達することができ、プロセス終了段階及びウエハ取り出し段階でも、反応チャンバーの内部温度が350℃と高く、従って、反応チャンバーを常に冷却する必要がある。 In any of the CVD techniques, temperature control, especially the temperature control of the CVD reaction chamber, is one of the very important techniques. At the stage of performing the process, the internal temperature of the reaction chamber is relatively high and can reach 1100 ° C., and even at the process termination stage and the wafer removal stage, the internal temperature of the reaction chamber is as high as 350 ° C. Therefore, the reaction chamber is always kept. Needs to be cooled.

従来のチャンバー冷却装置は冷却液分配装置を利用して冷却液を2つの給水管に分配し、さらに2つの給水管を経由して冷却液を複数の排水管に同時に輸送し、複数の排水管はチャンバーに向けて冷却液を均一に噴出することに用いられる。しかし、実際の応用では、該チャンバー冷却装置には、不可避的に以下の問題が存在する。 The conventional chamber cooling device uses a coolant distribution device to distribute the coolant to two water supply pipes, and further transports the coolant to multiple drainage pipes at the same time via the two water supply pipes, and multiple drainage pipes. Is used to evenly eject the coolant towards the chamber. However, in actual application, the chamber cooling device inevitably has the following problems.

1、冷却液分配装置、給水管及び排水管は構造が複雑で、占有空間が大きい。 1. The structure of the coolant distribution device, water supply pipe and drainage pipe is complicated, and the occupied space is large.

2、冷却液が冷却液分配装置、給水管及び排水管を順に経由して噴出され、流動経路が比較的長く、流速損失が比較的大きい。 2. The coolant is ejected through the coolant distributor, the water supply pipe and the drain pipe in this order, the flow path is relatively long, and the flow velocity loss is relatively large.

3、複数の排水管内の流量は冷却液分配装置によって制御され、独立制御が不能であり、従って、操作性が比較的悪く、且つ均一な水流を取得することを確保できない。 3. The flow rate in the plurality of drainage pipes is controlled by the coolant distribution device and cannot be independently controlled. Therefore, the operability is relatively poor and it cannot be ensured that a uniform water flow is obtained.

本発明は、従来技術に存在する技術的問題の一つを少なくとも解決することを目的とし、チャンバー冷却装置及び半導体加工設備を提供し、それは構造をよりコンパクトにし、冷却液体の流速損失を低減させることができ、さらに複数の冷却管内の流量を独立して制御することができ、それによって操作性及び水流均一性を向上させることができる。 The present invention aims to solve at least one of the technical problems existing in the prior art and provides a chamber cooling device and a semiconductor processing facility, which makes the structure more compact and reduces the flow rate loss of the cooling liquid. It is possible to control the flow rate in a plurality of cooling pipes independently, thereby improving operability and water flow uniformity.

本発明の目的を実現するために、チャンバー冷却装置を提供し、冷却槽、複数の冷却管、及び複数の給水管を含み、
前記冷却槽は、冷却液体を収容しており、チャンバーの底部を冷却することに用いられ、
前記複数の冷却管は、前記冷却槽内に設けられ、且つ複数の前記冷却管の管壁のいずれにも吐出口が設けられ、吐出口を介して冷却液体を噴出して回転水流を形成し、それにより前記冷却槽内の冷却液体を駆動して回転乱流を形成させることに用いられ、
前記複数の給水管は、複数の前記冷却管に1対1で対応して接続され、且つ、各前記給水管に開閉弁及び流量調整弁が設けられている。
To achieve the object of the present invention, a chamber cooling device is provided, which includes a cooling tank, a plurality of cooling pipes, and a plurality of water supply pipes.
The cooling tank contains the cooling liquid and is used to cool the bottom of the chamber.
The plurality of cooling pipes are provided in the cooling tank, and discharge ports are provided on any of the tube walls of the plurality of cooling pipes, and the cooling liquid is ejected through the discharge ports to form a rotating water flow. It is used to drive the cooling liquid in the cooling tank to form a rotary turbulence.
The plurality of water supply pipes are connected to the plurality of cooling pipes on a one-to-one basis, and each of the water supply pipes is provided with an on-off valve and a flow rate adjusting valve.

選択肢として、各前記冷却管の吐出口は1つであり、前記吐出口の噴射方向はその円周の接線方向であり、又は、
各前記冷却管の吐出口は複数であり、且つ前記冷却管の軸方向に沿って同心の異なる円周に間隔をあけて分布し、且つ、各前記吐出口の噴射方向はその円周の接線方向である。
As an option, each cooling pipe has one discharge port, and the injection direction of the discharge port is tangential to its circumference, or
Each of the cooling pipes has a plurality of discharge ports, and is distributed at intervals along different concentric circumferences along the axial direction of the cooling pipes, and the injection direction of each of the discharge ports is tangent to the circumference. The direction.

選択肢として、各前記円周の円心は前記冷却槽の中心であり、且つすべての前記吐出口は前記冷却槽の中心領域に位置する。 As an option, the center of each circumference is the center of the cooling tank, and all the outlets are located in the central region of the cooling tank.

選択肢として、各前記吐出口の噴射方向は水平面に対して斜め上向きに設けられる。 As an option, the injection direction of each discharge port is provided diagonally upward with respect to the horizontal plane.

選択肢として、各前記吐出口の噴射方向と前記水平面との間の夾角の値の範囲は40°〜60°である。 As an option, the range of the angle value between the injection direction of each discharge port and the horizontal plane is 40 ° to 60 °.

選択肢として、複数の前記冷却管は少なくとも1本の湾曲管を含み、又は、複数の前記冷却管は少なくとも1本のストレート管を含む。 As an option, the plurality of said cooling tubes comprises at least one curved tube, or the plurality of said said cooling tubes comprises at least one straight tube.

選択肢として、前記湾曲管はストレート管部及び湾曲管部を含み、そのうち、前記湾曲管部は前記冷却槽の中心に近接し、且つ前記吐出口は前記湾曲管部の管壁に設けられる。 As an option, the curved pipe includes a straight pipe portion and a curved pipe portion, of which the curved pipe portion is close to the center of the cooling tank and the discharge port is provided on the pipe wall of the curved pipe portion.

選択肢として、前記ストレート管の軸線は前記冷却槽の中心を円心とする円周のいずれかの径方向に沿って設けられ、又は前記冷却槽の中心を円心とする円周のいずれかの径方向と交差して設けられる。 As an option, the axis of the straight pipe is provided along any radial direction of the circumference centered on the cooling tank, or the circumference centered on the cooling tank. It is provided so as to intersect the radial direction.

選択肢として、前記給水管の一端は前記冷却管に接続され、前記給水管の他端は前記冷却槽の底部を貫通し、且つ冷却液体源に接続される。 As an option, one end of the water supply pipe is connected to the cooling pipe, and the other end of the water supply pipe penetrates the bottom of the cooling tank and is connected to the cooling liquid source.

選択肢として、前記チャンバー冷却装置はさらにセパレータを含み、
前記セパレータは、前記冷却槽内に設けられ、且つ前記冷却管の上方に位置し、且つ、前記セパレータの中心領域に貫通孔が設けられ、少なくとも前記冷却管の吐出口を露出することに用いられる。
As an option, the chamber cooling device further includes a separator.
The separator is provided in the cooling tank, is located above the cooling pipe, and has a through hole in the central region of the separator, and is used to expose at least the discharge port of the cooling pipe. ..

選択肢として、前記チャンバー冷却装置はさらに2つの側板を含み、
前記2つの側板は、前記冷却槽内に対向設けられ、且つ前記セパレータの両側に位置し、且つ、前記側板の上部が前記セパレータよりも高く、且つ2つの前記側板の上部にそれぞれストッパーが設けられ、前記側板の内側に位置する冷却液体の最高水位を限定することに用いられる。
As an option, the chamber cooling device also includes two side plates.
The two side plates are provided so as to face each other in the cooling tank and are located on both sides of the separator, the upper portion of the side plates is higher than the separator, and stoppers are provided on the upper portions of the two side plates. , Used to limit the maximum water level of the cooling liquid located inside the side plate.

選択肢として、各前記側板の内側において、且つ前記セパレータの上方に噴射管が設けられ、2つの前記側板の前記噴射管はそれぞれ2つの前記側板の互いに離れた両端に近接し、且つ、各前記噴射管は対向側の前記側板方向に向けて冷却液体を噴出し、それにより前記冷却槽内の冷却液体の回転動力を増加させる。 As an option, an injection tube is provided inside each of the side plates and above the separator so that the injection tubes of the two side plates are close to each other at both ends of the two side plates and each of the injections. The pipe ejects the cooling liquid toward the side plate on the opposite side, thereby increasing the rotational power of the cooling liquid in the cooling tank.

選択肢として、前記チャンバー冷却装置はさらに底板、及び取り付け板を含み、
前記底板は、前記冷却槽内に設けられ、且つ前記底板内にその厚さに沿って貫通する中心貫通溝が設けられ、
前記取り付け板は、前記底板に積層され、且つ、各前記冷却管が前記取り付け板に固定され、各前記給水管が前記取り付け板を貫通し、且つそれに対応する前記冷却管に接続される。
As an option, the chamber cooling device further includes a bottom plate, and a mounting plate.
The bottom plate is provided in the cooling tank, and a central through groove is provided in the bottom plate so as to penetrate along the thickness thereof.
The mounting plate is laminated on the bottom plate, each of the cooling pipes is fixed to the mounting plate, and each of the water supply pipes penetrates the mounting plate and is connected to the corresponding cooling pipe.

本発明はさらに半導体加工設備を提供し、反応チャンバー、及び前記反応チャンバーの底部に設けられるチャンバー冷却装置を含み、前記チャンバー冷却装置は上記チャンバー冷却装置を使用する。 The present invention further provides semiconductor processing equipment, including a reaction chamber and a chamber cooling device provided at the bottom of the reaction chamber, the chamber cooling device using the chamber cooling device.

本発明は以下の有益な効果を有する。 The present invention has the following beneficial effects.

本発明が提供するチャンバー冷却装置によれば、それは冷却槽内に複数の冷却管が設けられており、且つ複数の冷却管の管壁のいうれにも吐出口が設けられ、吐出口を介して冷却液体を噴出して回転水流を形成し、それにより冷却槽内の冷却液体を駆動して回転乱流を形成させることに用いられ、それによって熱交換効率を向上させ、冷却効果を強化することができる。それとともに、複数の給水管が複数の冷却管に1対1で対応して接続され、且つ、各給水管に開閉弁及び流量調整弁が設けられることによって、各冷却管の導通/遮断及び流量の大きさの独立制御を実現でき、それによって操作性及び水流均一性を向上させることができ、さらに回転乱流の効果的な形成を確保できる。また、本発明が提供するチャンバー冷却装置は従来技術に比べて、冷却液分配装置を省略し、それによって構造をさらにコンパクト化することができるとともに、給水管が冷却管に直接接続されることで、冷却液体の流動経路を短縮させ、それによって冷却液体の流速損失を低減させることができる。 According to the chamber cooling device provided by the present invention, it is provided with a plurality of cooling pipes in the cooling tank, and a discharge port is provided on any of the tube walls of the plurality of cooling pipes through the discharge port. It is used to eject the cooling liquid to form a rotating water flow, thereby driving the cooling liquid in the cooling tank to form a rotating turbulent flow, thereby improving the heat exchange efficiency and enhancing the cooling effect. be able to. At the same time, a plurality of water supply pipes are connected to the plurality of cooling pipes in a one-to-one correspondence, and each water supply pipe is provided with an on-off valve and a flow rate adjusting valve, whereby the conduction / cutoff and the flow rate of each cooling pipe are provided. It is possible to realize independent control of the size of the water flow, thereby improving the operability and the uniformity of the water flow, and further ensuring the effective formation of the rotational turbulence. Further, the chamber cooling device provided by the present invention omits the coolant distribution device as compared with the prior art, whereby the structure can be further made more compact, and the water supply pipe is directly connected to the cooling pipe. , The flow path of the cooling liquid can be shortened, thereby reducing the flow velocity loss of the cooling liquid.

本発明が提供する半導体加工設備によれば、それは本発明が提供する上記チャンバー冷却装置を使用することによって、構造をさらにコンパクト化し、冷却液体の流速損失を低減させることができるだけでなく、さらに複数の冷却管内の流量を独立して制御することができ、それによって操作性及び水流均一性を向上させることができる。 According to the semiconductor processing equipment provided by the present invention, by using the chamber cooling device provided by the present invention, not only can the structure be further made compact and the flow rate loss of the cooling liquid can be reduced, but also more than one. The flow rate in the cooling pipe can be controlled independently, thereby improving operability and water flow uniformity.

図1は本発明の実施例が提供するセパレータを取り外したチャンバー冷却装置の上面図である。FIG. 1 is a top view of the chamber cooling device from which the separator provided in the embodiment of the present invention has been removed. 図2は本発明の実施例が提供するチャンバー冷却装置の部分構造図である。FIG. 2 is a partial structural view of the chamber cooling device provided by the embodiment of the present invention. 図3は本発明の実施例が提供するチャンバー冷却装置の上面図である。FIG. 3 is a top view of the chamber cooling device provided by the embodiment of the present invention. 図4は本発明の実施例が使用する冷却管の上面図である。FIG. 4 is a top view of the cooling pipe used in the embodiment of the present invention. 図5は本発明の実施例が使用する冷却管の径方向断面図である。FIG. 5 is a radial cross-sectional view of the cooling pipe used in the embodiment of the present invention. 図6は本発明の実施例が使用する給水管の構造図である。FIG. 6 is a structural diagram of a water supply pipe used in an embodiment of the present invention.

当業者が本発明の技術案をよりよく理解するようにするために、以下、図面を参照しながら本発明が提供するチャンバー冷却装置及び半導体加工設備を詳細に説明する。 In order for those skilled in the art to better understand the technical proposal of the present invention, the chamber cooling device and the semiconductor processing equipment provided by the present invention will be described in detail below with reference to the drawings.

図1〜図6を併せて参照すると、本発明の実施例が提供するチャンバー冷却装置において、それは冷却槽5、複数の冷却管2及び複数の給水管7を含み、そのうち、冷却槽5は冷却液体(例えば、冷却液又は冷却水)を収容している。チャンバー(図示せず)の底部を冷却槽5の冷却液体中に浸漬させることによって、チャンバーの冷却を実現する。 With reference to FIGS. 1 to 6, in the chamber cooling apparatus provided by the embodiment of the present invention, it includes a cooling tank 5, a plurality of cooling pipes 2 and a plurality of water supply pipes 7, of which the cooling tank 5 is cooled. Contains a liquid (eg, coolant or cooling water). Cooling of the chamber is realized by immersing the bottom of the chamber (not shown) in the cooling liquid of the cooling tank 5.

複数の冷却管2は冷却槽5内に設けられ、且つ複数の冷却管2の管壁のいずれにも吐出口21が設けられており、吐出口21を介して冷却液体を噴出して回転水流を形成し、冷却槽5内の冷却液体を駆動して回転乱流を形成させることに用いられる。いわゆる回転乱流とは、流体の1種の流動状態であり、具体的には、冷却液体の流速が一定の程度に増加すると、層流を破壊させるとともに、急速に自転する水流が略螺旋状渦巻きを形成する状態である。該回転乱流は層流に比べて、熱交換効果がさらに十分であり、それによって熱交換効率を向上させ、冷却効果を強化することができる。 The plurality of cooling pipes 2 are provided in the cooling tank 5, and the discharge ports 21 are provided on each of the pipe walls of the plurality of cooling pipes 2, and the cooling liquid is ejected through the discharge ports 21 to discharge the rotating water flow. Is used to drive the cooling liquid in the cooling tank 5 to form a rotary turbulent flow. The so-called rotational turbulence is a kind of fluid state, and specifically, when the flow velocity of the cooling liquid increases to a certain degree, the laminar flow is destroyed and the rapidly rotating water flow is substantially spiral. It is a state that forms a spiral. The rotary turbulence has a more sufficient heat exchange effect than the laminar flow, whereby the heat exchange efficiency can be improved and the cooling effect can be enhanced.

本実施例では、各冷却管2の吐出口21は複数であり、且つ冷却管2の軸方向に沿って同心の異なる円周に間隔をあけて分布しており、且つ、各吐出口21の噴射方向はその円周の接線方向(図1に示される矢印方向)である。選択肢として、各冷却管2上の各吐出口21は残りの冷却管2上の各吐出口21に1対1で対応して同一円周に位置する。各冷却管2に複数の吐出口21が設けられることによって、各冷却管2が噴出する冷却液体の流速をそのまま維持する条件下で、液体の流量を増大し、それによって上記回転乱流を形成することに有利である。選択肢として、吐出口21の数は5つである。 In this embodiment, each of the cooling pipes 2 has a plurality of discharge ports 21 and is distributed at intervals along the axial direction of the cooling pipes 2 with different concentric circumferences. The injection direction is the tangential direction of the circumference (the direction of the arrow shown in FIG. 1). As an option, each discharge port 21 on each cooling pipe 2 is located on the same circumference with a one-to-one correspondence with each discharge port 21 on the remaining cooling pipe 2. By providing a plurality of discharge ports 21 in each cooling pipe 2, the flow rate of the liquid is increased under the condition that the flow rate of the cooling liquid ejected by each cooling pipe 2 is maintained as it is, thereby forming the above-mentioned rotational turbulence. It is advantageous to do. As an option, the number of discharge ports 21 is five.

なお、本実施例では、各吐出口21の噴射方向はその円周の接線方向であり、しかし、本発明はこれに限定されず、実際の応用では、吐出口21の噴射方向は円周の接線方向からある程度ずれてもよく、最終的に冷却槽5内の冷却液体を駆動して回転乱流を形成させる効果を達成できればよい。 In the present embodiment, the injection direction of each discharge port 21 is the tangential direction of the circumference thereof, but the present invention is not limited to this, and in actual application, the injection direction of the discharge port 21 is the circumference. It may deviate to some extent from the tangential direction, and it is sufficient if the effect of finally driving the cooling liquid in the cooling tank 5 to form a rotational turbulence can be achieved.

選択肢として、吐出口21は冷却管2の管壁の厚さ方向に沿って該管壁を貫通している貫通孔であってもよく、該貫通孔の軸方向は上記吐出口21の噴射方向である。このように、冷却管2の構造を簡素化でき、冷却管2の設計が容易になる。 As an option, the discharge port 21 may be a through hole penetrating the pipe wall along the thickness direction of the pipe wall of the cooling pipe 2, and the axial direction of the through hole is the injection direction of the discharge port 21. Is. In this way, the structure of the cooling pipe 2 can be simplified, and the design of the cooling pipe 2 becomes easy.

選択肢として、各円周の円心は冷却槽5の中心であり、且つすべての吐出口21は冷却槽5の中心領域に位置し、具体的には、各冷却管2は第1端が冷却槽5の中心に近接し、第2端が冷却槽5のエッジに近接するが、吐出口21は冷却管2の管壁に設けられ、且つ冷却管2の第1端に近接する。このように、冷却槽5内の水流均一性の向に有利であるだけでなく、すべての吐出口21が冷却槽5の中心領域に位置することで、形成される回転乱流を冷却槽5の中心領域に位置させることができ、それによって冷却槽5内の水流均一性をさらに向上させる。 As an option, the center of each circumference is the center of the cooling tank 5, and all the discharge ports 21 are located in the central region of the cooling tank 5. Specifically, the first end of each cooling pipe 2 is cooled. Although it is close to the center of the tank 5 and the second end is close to the edge of the cooling tank 5, the discharge port 21 is provided on the pipe wall of the cooling pipe 2 and is close to the first end of the cooling pipe 2. As described above, not only is it advantageous for the direction of water flow uniformity in the cooling tank 5, but also the rotational turbulence formed by all the discharge ports 21 being located in the central region of the cooling tank 5 is generated in the cooling tank 5. It can be located in the central region of the cooling tank 5 to further improve the water flow uniformity in the cooling tank 5.

なお、本実施例では、各冷却管2上の吐出口21は複数であり、しかし、本発明はこれに限定されず、実際の応用では、各冷却管2上の吐出口21は1つであってもよく、且つ、吐出口21の噴射方向はその円周の接線方向であり、又は円周の接線方向からある程度ずれてもよい。 In addition, in this embodiment, there are a plurality of discharge ports 21 on each cooling pipe 2, but the present invention is not limited to this, and in actual application, there is only one discharge port 21 on each cooling pipe 2. It may be present, and the injection direction of the discharge port 21 may be the tangential direction of the circumference, or may deviate to some extent from the tangential direction of the circumference.

本実施例では、図2に示すように、複数の給水管7は複数の冷却管2に1対1で対応して接続され、且つ、図6に示すように、各給水管7に開閉弁71及び流量調整弁72が設けられている。開閉弁71はそれが位置する給水管7を導通又は遮断することに用いられ、流量調整弁72はそれが位置する給水管7内の冷却液体の流量の大きさを調整することに用いられる。それによって、各冷却管2の導通/遮断及び流量の大きさの独立制御を実現することができ、それによって操作性及び水流均一性を向上させることができ、さらに回転乱流の効果的な形成を確保することができる。 In this embodiment, as shown in FIG. 2, the plurality of water supply pipes 7 are connected to the plurality of cooling pipes 2 in a one-to-one correspondence, and as shown in FIG. 6, an on-off valve is connected to each water supply pipe 7. 71 and a flow rate adjusting valve 72 are provided. The on-off valve 71 is used to conduct or shut off the water supply pipe 7 in which it is located, and the flow rate adjusting valve 72 is used to adjust the flow rate of the cooling liquid in the water supply pipe 7 in which it is located. Thereby, the conduction / cutoff of each cooling pipe 2 and the independent control of the size of the flow rate can be realized, thereby improving the operability and the uniformity of the water flow, and further effectively forming the rotational turbulence. Can be secured.

また、本実施例が提供するチャンバー冷却装置は従来技術に比べて、各冷却管2が給水管7から独立して引き出され、冷却液分配装置を省略することによって、構造をさらにコンパクト化することができるとともに、給水管7が冷却管2に直接接続されることで、冷却液体の流動経路を短縮させ、それによって冷却液体の流速損失を低減させることができる。 Further, in the chamber cooling device provided by the present embodiment, as compared with the prior art, each cooling pipe 2 is pulled out independently from the water supply pipe 7, and the structure is further made compact by omitting the coolant distribution device. By directly connecting the water supply pipe 7 to the cooling pipe 2, the flow path of the cooling liquid can be shortened, thereby reducing the flow velocity loss of the cooling liquid.

本実施例では、図5に示すように、各冷却管2の軸線は水平に設けられ、吐出口21の噴射方向は冷却管2の軸線に対して斜め上向きに設けられる。このように、回転乱流に「中空」状態が発生すること、即ち、冷却槽5の中心に冷却液体がないことを回避できる。勿論、実際の応用では、各冷却管2の軸線は水平面に対して上向きに傾斜してもよく、このとき、吐出口21の噴射方向が水平面に対して斜め上向きに設けられるだけで、同様の効果を達成できる。ここで、水平面とは液面に平行する平面である。 In this embodiment, as shown in FIG. 5, the axis of each cooling pipe 2 is provided horizontally, and the injection direction of the discharge port 21 is provided diagonally upward with respect to the axis of the cooling pipe 2. In this way, it is possible to avoid the occurrence of a "hollow" state in the rotational turbulence, that is, the absence of cooling liquid in the center of the cooling tank 5. Of course, in an actual application, the axis of each cooling pipe 2 may be inclined upward with respect to the horizontal plane, and at this time, the injection direction of the discharge port 21 is provided diagonally upward with respect to the horizontal plane. The effect can be achieved. Here, the horizontal plane is a plane parallel to the liquid surface.

選択肢として、各吐出口21の噴射方向と水平面との間の夾角cの値の範囲は40°〜60°であり、好ましくは50°である。該夾角範囲内であれば、回転乱流に「中空」状態が発生することを効果的に回避できる。 As an option, the range of the value of the angle c between the injection direction of each discharge port 21 and the horizontal plane is 40 ° to 60 °, preferably 50 °. Within the radius range, it is possible to effectively avoid the occurrence of a "hollow" state in the rotational turbulence.

実際の応用では、冷却管2の径方向断面の形状は円形、三角形、矩形、六角形又はほかの任意の形状を含み、好ましくは円形である。吐出口21は冷却管2の管壁を貫通する貫通孔であってもよく、該貫通孔の径方向断面の形状は円形、三角形、矩形、六角形又はほかの任意の形状を含む。 In practical applications, the shape of the radial cross section of the cooling tube 2 includes circles, triangles, rectangles, hexagons or any other shape, preferably circular. The discharge port 21 may be a through hole penetrating the tube wall of the cooling pipe 2, and the shape of the radial cross section of the through hole includes a circular shape, a triangular shape, a rectangular shape, a hexagonal shape, or any other shape.

本実施例では、複数の冷却管2のうち、2本は湾曲管であり、残りの冷却管2はストレート管である。湾曲管とストレート管が混在して設けられることによって、冷却槽5の周方向により多数の冷却管2を配置することに有利である。勿論、実際の応用では、具体的なニーズに応じてストレート管及び湾曲管それぞれの数を選択してもよく、即ち、複数の冷却管2は少なくとも1本の湾曲管を含んでもよく、又は複数の冷却管2は少なくとも1本のストレート管を含んでもよい。 In this embodiment, of the plurality of cooling pipes 2, two are curved pipes and the remaining cooling pipes 2 are straight pipes. By providing a mixture of curved pipes and straight pipes, it is advantageous to arrange a large number of cooling pipes 2 in the circumferential direction of the cooling tank 5. Of course, in practical applications, the number of straight tubes and curved tubes may be selected according to specific needs, that is, the plurality of cooling tubes 2 may include at least one curved tube, or may be plural. Cooling pipe 2 may include at least one straight pipe.

さらに、選択肢として、図4に示すように、湾曲管はストレート管部2a及び湾曲管部2bを含み、そのうち、湾曲管部2bは冷却槽5の中心に近接し、且つ吐出口21は湾曲管部2bの管壁に設けられる。冷却槽5の中心に近接する部分を湾曲管部2bとして設置し、冷却槽5の中心から離れた部分をストレート管部2aとして設置することによって、冷却槽5の周方向により多数の冷却管2を配置することに有利であるとともに、吐出口21の配列設計に有利である。 Further, as an option, as shown in FIG. 4, the curved pipe includes a straight pipe portion 2a and a curved pipe portion 2b, of which the curved pipe portion 2b is close to the center of the cooling tank 5 and the discharge port 21 is a curved pipe. It is provided on the pipe wall of the portion 2b. By installing a portion close to the center of the cooling tank 5 as a curved pipe portion 2b and installing a portion away from the center of the cooling tank 5 as a straight pipe portion 2a, a large number of cooling pipes 2 are installed in the circumferential direction of the cooling tank 5. It is advantageous to arrange the discharge ports 21 and to design the arrangement of the discharge ports 21.

選択肢として、冷却管2の数は10個である。勿論、実際の応用では、ほかの任意の数であってもよい。 As an option, the number of cooling pipes 2 is 10. Of course, in actual applications, it may be any other number.

選択肢として、図1に示すように、ストレート管において、その軸線は冷却槽5の中心を円心とする円周のいずれかの径方向に沿って設けられてもよく、又は該径方向と交差してもよい。換言すれば、ストレート管の吐出口21から離れた一端(即ち、冷却槽5のエッジに近接する一端)と冷却槽5の中心とを結ぶ線と冷却管2の軸線との間の夾角aは0°であってもよく、又は鋭角を呈してもよく、このように、回転乱流の形成に有利である。 As an option, as shown in FIG. 1, in a straight pipe, its axis may be provided along any radial direction of the circumference centered on the center of the cooling tank 5, or intersect with the radial direction. You may. In other words, the acute angle a between the line connecting one end away from the discharge port 21 of the straight pipe (that is, one end close to the edge of the cooling tank 5) and the center of the cooling tank 5 and the axis of the cooling pipe 2 is. It may be 0 ° or may exhibit an acute angle, which is advantageous for the formation of rotational turbulence.

本実施例では、図2に示すように、各給水管7は垂直に設けられ、且つ、給水管7の上端が冷却管2に接続され、給水管7の下端が冷却槽5の底部を貫通し、且つ冷却液体源(図示せず)に接続される。それによって、冷却管を独立に引き出すことを実現し、冷却液分配装置を省略し、構造をさらにコンパクト化することができるとともに、冷却液体の流動経路を短縮させ、それによって流速損失を低減させることができる。勿論、実際の応用では、給水管7は具体的なニーズに応じて垂直方向に対して傾斜して設けられてもよい。 In this embodiment, as shown in FIG. 2, each water supply pipe 7 is provided vertically, the upper end of the water supply pipe 7 is connected to the cooling pipe 2, and the lower end of the water supply pipe 7 penetrates the bottom of the cooling tank 5. And connected to a cooling liquid source (not shown). Thereby, the cooling pipe can be pulled out independently, the coolant distribution device can be omitted, the structure can be further made compact, and the flow path of the cooling liquid can be shortened, thereby reducing the flow velocity loss. Can be done. Of course, in actual application, the water supply pipe 7 may be provided so as to be inclined with respect to the vertical direction according to specific needs.

本実施例では、図3に示すように、チャンバー冷却装置はさらにセパレータ3を含み、それは冷却槽5内に設けられ、且つ冷却管2の上方に位置し、且つ、セパレータ3の中心領域に貫通孔31が設けられており、少なくとも冷却管2の吐出口21を露出することに用いられ、それによって冷却槽5の中心領域を開放状態を呈するようにし、冷却液体は該貫通孔31を介して溢れることができ、さらに対応するチャンバーの主要高温領域に十分な水流があることを確保し、それによって該領域を十分に冷却することを確保する。 In this embodiment, as shown in FIG. 3, the chamber cooling device further includes a separator 3, which is provided in the cooling tank 5 and is located above the cooling pipe 2 and penetrates the central region of the separator 3. The hole 31 is provided and is used to expose at least the discharge port 21 of the cooling pipe 2 so that the central region of the cooling tank 5 is in an open state, and the cooling liquid is passed through the through hole 31. It can overflow and also ensures that there is sufficient water flow in the main hot region of the corresponding chamber, thereby ensuring that the region is sufficiently cooled.

本実施例では、図2に示すように、チャンバー冷却装置はさらに2つの側板9を含み(図2にそのうちの一方の側板9のみが示される)、2つの側板9は冷却槽5内に対向設けられ、且つセパレータ3の両側に位置する(図2にセパレータ3が示されていない)、且つ、側板9の上部がセパレータ3よりも高く、且つ2つの側板9の上部にそれぞれストッパー4が設けられ、側板9の内側に位置する冷却液体の最高水位を限定することに用いられる。 In this embodiment, as shown in FIG. 2, the chamber cooling device further includes two side plates 9 (only one side plate 9 is shown in FIG. 2), and the two side plates 9 face each other in the cooling tank 5. Provided and located on both sides of the separator 3 (separator 3 is not shown in FIG. 2), the upper portion of the side plate 9 is higher than the separator 3, and stoppers 4 are provided on the upper portions of the two side plates 9, respectively. It is used to limit the maximum water level of the cooling liquid located inside the side plate 9.

具体的には、冷却槽5の収容空間は2つの側板9によって中心領域及び該中心領域の両側に位置するエッジ領域51に仕切られ、すべての冷却管2が上記中心領域内に設けられる。冷却管2が冷却液体を噴出する過程で、冷却槽5の中心領域内に位置する水位が徐々に上昇し、水位がストッパー4を超えると、中心領域内の冷却液体が溢れ、且つ両側のエッジ領域51中に流れ込む。 Specifically, the accommodation space of the cooling tank 5 is divided into a central region and edge regions 51 located on both sides of the central region by two side plates 9, and all the cooling pipes 2 are provided in the central region. In the process of ejecting the cooling liquid by the cooling pipe 2, the water level located in the central region of the cooling tank 5 gradually rises, and when the water level exceeds the stopper 4, the cooling liquid in the central region overflows and the edges on both sides. It flows into the region 51.

本実施例では、図3に示すように、各側板9の内側において、且つセパレータ3の上方に2つの噴射管6が設けられ、2つの側板9の噴射管6はそれぞれ2つの側板9の互いに離れた両端に近接し、例えば、図3内の上側の側板9の噴射管6は該側板9の右端に近接するが、下側の側板9の噴射管6は該側板9の左端に近接し、このように、異なる側板9上の噴射管6は冷却槽5の1つの対角に近接でき、且つ、各噴射管6は対向側の側板9に向けて冷却液体を噴出するようにし、これは特定の円周の接線方向に向けて冷却液体を噴出することに相当し、同様に回転水流を形成でき、該水流方向を、冷却管2が冷却液体を噴出して形成される回転水流の方向と略同じにするだけで、さらに冷却槽5内の冷却液体の回転動力を増加させることができる。選択肢として、噴射管6は単独に1本の給水管によって冷却液体を供給され、且つ噴射管6の導通/遮断及び流量の大きさを単独に調整できる。 In this embodiment, as shown in FIG. 3, two injection pipes 6 are provided inside each side plate 9 and above the separator 3, and the injection pipes 6 of the two side plates 9 are each of the two side plates 9. Close to both ends apart, for example, the injection pipe 6 of the upper side plate 9 in FIG. 3 is close to the right end of the side plate 9, while the injection pipe 6 of the lower side plate 9 is close to the left end of the side plate 9. As described above, the injection pipes 6 on different side plates 9 can be brought close to one diagonal of the cooling tank 5, and each injection pipe 6 ejects the cooling liquid toward the side plates 9 on the opposite side. Is equivalent to ejecting the cooling liquid in the tangential direction of a specific circumference, and similarly, a rotating water flow can be formed, and the rotating water flow formed by the cooling pipe 2 ejecting the cooling liquid in the water flow direction. The rotational power of the cooling liquid in the cooling tank 5 can be further increased only by making the direction substantially the same. As an option, the injection pipe 6 is independently supplied with the cooling liquid by one water supply pipe, and the conduction / cutoff and the magnitude of the flow rate of the injection pipe 6 can be adjusted independently.

選択肢として、各側板9の内側に設けられる噴射管6の数は1つ又は複数であってもよく、且つ複数の噴射管6は水平方向に沿って間隔をあけて設けられる。 As an option, the number of injection pipes 6 provided inside each side plate 9 may be one or more, and the plurality of injection pipes 6 are provided at intervals along the horizontal direction.

本実施例では、図1及び図2に示すように、チャンバー冷却装置はさらに底板1及び取り付け板8を含み、そのうち、底板1は冷却槽5内に設けられ、且つ該底板1内にその厚さに沿って貫通する中心貫通溝11が設けられ、取り付け板8は底板1に積層され、且つ、各冷却管2が取り付け板8に固定され、各給水管7は取り付け板8を貫通し、且つそれに対応する冷却管2に接続される。底板1及び取り付け板8によって、冷却管2の取り付け及び固定が実現される。 In this embodiment, as shown in FIGS. 1 and 2, the chamber cooling device further includes a bottom plate 1 and a mounting plate 8, of which the bottom plate 1 is provided in the cooling tank 5 and its thickness in the bottom plate 1. A central through groove 11 penetrating along the ridge is provided, the mounting plate 8 is laminated on the bottom plate 1, each cooling pipe 2 is fixed to the mounting plate 8, and each water supply pipe 7 penetrates the mounting plate 8. And it is connected to the corresponding cooling pipe 2. The bottom plate 1 and the mounting plate 8 realize the mounting and fixing of the cooling pipe 2.

別の技術案として、本発明の実施例はさらに半導体加工設備を提供し、それは反応チャンバー、及び該反応チャンバーの底部に設けられるチャンバー冷却装置を含み、該チャンバー冷却装置は本発明の実施例が提供する上記チャンバー冷却装置を使用する。 As another technical proposal, an embodiment of the present invention further provides semiconductor processing equipment, which includes a reaction chamber and a chamber cooling device provided at the bottom of the reaction chamber, wherein the chamber cooling device is the embodiment of the present invention. The above chamber cooling device provided is used.

本発明の実施例が提供する半導体加工設備によれば、それは本発明の実施例が提供する上記チャンバー冷却装置を使用することによって、構造をさらにコンパクト化し、冷却液体の流速損失を低減させることができるだけでなく、複数の冷却管内の流量を独立して制御することができ、それによって操作性及び水流均一性を向上させることができる。 According to the semiconductor processing equipment provided by the embodiment of the present invention, it is possible to further make the structure more compact and reduce the flow rate loss of the cooling liquid by using the chamber cooling device provided by the embodiment of the present invention. Not only that, the flow rate in the plurality of cooling pipes can be controlled independently, thereby improving the operability and the water flow uniformity.

理解できるように、以上の実施形態は単に本発明の原理を説明するために使用される例示的な実施形態であるが、本発明はこれに限定されない。当業者であれば、本発明の精神及び趣旨を逸脱しない場合に、様々な変形や改良を行うことができ、これらの変形や改良も本発明の保護範囲に属する。 As can be understood, the above embodiments are merely exemplary embodiments used to illustrate the principles of the invention, but the invention is not limited thereto. A person skilled in the art can make various modifications and improvements without departing from the spirit and purpose of the present invention, and these modifications and improvements also belong to the scope of protection of the present invention.

2 冷却管
2a ストレート管部
2b 湾曲管部
21 吐出口
3 セパレータ
31 貫通孔
5 冷却槽
51 エッジ領域
7 給水管
71 開閉弁
72 流量調整弁
8 取り付け板
9 側板
2 Cooling pipe 2a Straight pipe 2b Curved pipe 21 Discharge port 3 Separator 31 Through hole 5 Cooling tank 51 Edge area 7 Water supply pipe 71 On / off valve 72 Flow control valve 8 Mounting plate 9 Side plate

Claims (14)

チャンバー冷却装置であって、冷却槽と、複数の冷却管と、複数の給水管とを含み、
前記冷却槽は、冷却液体を収容しており、チャンバーの底部を冷却することに用いられ、
前記複数の冷却管は、前記冷却槽内に設けられ、且つ複数の前記冷却管の管壁のいずれにも吐出口が設けられ、前記吐出口を介して冷却液体を噴出して回転水流を形成し、それにより前記冷却槽内の冷却液体を駆動して回転乱流を形成させることに用いられ、
前記複数の給水管は、複数の前記冷却管に1対1で対応して接続され、且つ各前記給水管に開閉弁及び流量調整弁が設けられていることを特徴とするチャンバー冷却装置。
A chamber cooling device, including a cooling tank, a plurality of cooling pipes, and a plurality of water supply pipes.
The cooling tank contains the cooling liquid and is used to cool the bottom of the chamber.
The plurality of cooling pipes are provided in the cooling tank, and discharge ports are provided on any of the tube walls of the plurality of cooling pipes, and the cooling liquid is ejected through the discharge ports to form a rotating water flow. It is used to drive the cooling liquid in the cooling tank to form a rotary turbulence.
The chamber cooling device is characterized in that the plurality of water supply pipes are connected to the plurality of cooling pipes in a one-to-one correspondence, and each of the water supply pipes is provided with an on-off valve and a flow rate adjusting valve.
各前記冷却管の吐出口は1つであり、前記吐出口の噴射方向はその円周の接線方向であり、或いは、
各前記冷却管の吐出口は複数であり、且つ前記冷却管の軸方向に沿って同心の異なる円周に間隔をあけて分布し、且つ各前記吐出口の噴射方向はその円周の接線方向であることを特徴とする請求項1に記載のチャンバー冷却装置。
Each of the cooling pipes has one discharge port, and the injection direction of the discharge port is tangential to the circumference thereof, or
Each of the cooling pipes has a plurality of discharge ports, and is distributed at intervals along the axial direction of the cooling pipes with different concentric circumferences, and the injection direction of each of the discharge ports is the tangential direction of the circumference. The chamber cooling device according to claim 1, wherein the chamber cooling device is characterized by the above.
各前記円周の円心は前記冷却槽の中心であり、且つすべての前記吐出口は前記冷却槽の中心領域に位置することを特徴とする請求項2に記載のチャンバー冷却装置。 The chamber cooling device according to claim 2, wherein the center of each circumference is the center of the cooling tank, and all the discharge ports are located in the central region of the cooling tank. 各前記吐出口の噴射方向は水平面に対して斜め上向きに設けられることを特徴とする請求項1に記載のチャンバー冷却装置。 The chamber cooling device according to claim 1, wherein the injection direction of each discharge port is provided diagonally upward with respect to a horizontal plane. 各前記吐出口の噴射方向と前記水平面との間の夾角の値の範囲は40°〜60°であることを特徴とする請求項4に記載のチャンバー冷却装置。 The chamber cooling device according to claim 4, wherein the range of the value of the angle between the injection direction of each discharge port and the horizontal plane is 40 ° to 60 °. 複数の前記冷却管は少なくとも1本の湾曲管を含み、或いは、複数の前記冷却管は少なくとも1本のストレート管を含むことを特徴とする請求項1に記載のチャンバー冷却装置。 The chamber cooling apparatus according to claim 1, wherein the plurality of cooling pipes include at least one curved pipe, or the plurality of said cooling pipes include at least one straight pipe. 前記湾曲管はストレート管部及び湾曲管部を含み、そのうち、前記湾曲管部は前記冷却槽の中心に近接し、且つ前記吐出口は前記湾曲管部の管壁に設けられることを特徴とする請求項6に記載のチャンバー冷却装置。 The curved pipe includes a straight pipe portion and a curved pipe portion, of which the curved pipe portion is close to the center of the cooling tank and the discharge port is provided on the pipe wall of the curved pipe portion. The chamber cooling device according to claim 6. 前記ストレート管の軸線は前記冷却槽の中心を円心とする円周のいずれかの径方向に沿って設けられ、又は前記冷却槽の中心を円心とする円周のいずれかの径方向と交差して設けられることを特徴とする請求項6に記載のチャンバー冷却装置。 The axis of the straight pipe is provided along any radial direction of the circumference centered on the center of the cooling tank, or with any radial direction of the circumference centered on the center of the cooling tank. The chamber cooling device according to claim 6, wherein the chamber cooling devices are provided so as to intersect with each other. 前記給水管の一端は前記冷却管に接続され、前記給水管の他端は前記冷却槽の底部を貫通し、且つ冷却液体源に接続されることを特徴とする請求項1に記載のチャンバー冷却装置。 The chamber cooling according to claim 1, wherein one end of the water supply pipe is connected to the cooling pipe, and the other end of the water supply pipe penetrates the bottom of the cooling tank and is connected to a cooling liquid source. Device. 前記チャンバー冷却装置はさらにセパレータを含み、
前記セパレータは、前記冷却槽内に設けられ、且つ前記冷却管の上方に位置し、且つ前記セパレータの中心領域に貫通孔が設けられており、少なくとも前記冷却管の吐出口を露出することに用いられることを特徴とする請求項1〜9のいずれか一項に記載のチャンバー冷却装置。
The chamber cooling device further includes a separator.
The separator is provided in the cooling tank, is located above the cooling pipe, and has a through hole in the central region of the separator, and is used to expose at least the discharge port of the cooling pipe. The chamber cooling device according to any one of claims 1 to 9, wherein the chamber cooling device is provided.
前記チャンバー冷却装置はさらに2つの側板を含み、
前記2つの側板は、前記冷却槽内に対向設けられ、且つ前記セパレータの両側に位置し、且つ前記側板の上部が前記セパレータよりも高く、且つ2つの前記側板の上部にそれぞれストッパーが設けられ、前記側板の内側に位置する冷却液体の最高水位を限定することに用いられることを特徴とする請求項10に記載のチャンバー冷却装置。
The chamber cooling device further includes two side plates.
The two side plates are provided opposite to each other in the cooling tank, are located on both sides of the separator, the upper part of the side plates is higher than the separator, and stoppers are provided on the upper portions of the two side plates, respectively. The chamber cooling device according to claim 10, wherein the chamber cooling device is used to limit the maximum water level of the cooling liquid located inside the side plate.
各前記側板の内側において、且つ前記セパレータの上方に噴射管が設けられ、2つの前記側板の前記噴射管はそれぞれ2つの前記側板の互いに離れた両端に近接し、且つ、各前記噴射管は対向側の前記側板に向けて冷却液体を噴出し、それにより前記冷却槽内の冷却液体の回転動力を増加させることを特徴とする請求項11に記載のチャンバー冷却装置。 An injection tube is provided inside each of the side plates and above the separator, the injection tubes of the two side plates are close to each other at both ends of the two side plates apart from each other, and the injection tubes face each other. The chamber cooling device according to claim 11, wherein the cooling liquid is ejected toward the side plate on the side, thereby increasing the rotational power of the cooling liquid in the cooling tank. 前記チャンバー冷却装置はさらに底板、及び取り付け板を含み、
前記底板は、前記冷却槽内に設けられ、且つ前記底板内にその厚さに沿って貫通する中心貫通溝が設けられ、
前記取り付け板は、前記底板に積層され、且つ、各前記冷却管が前記取り付け板に固定され、各前記給水管が前記取り付け板を貫通し、且つそれに対応する前記冷却管に接続されることを特徴とする請求項1に記載のチャンバー冷却装置。
The chamber cooling device further includes a bottom plate and a mounting plate.
The bottom plate is provided in the cooling tank, and a central through groove is provided in the bottom plate so as to penetrate along the thickness thereof.
The mounting plate is laminated on the bottom plate, and each of the cooling pipes is fixed to the mounting plate, and each of the water supply pipes penetrates the mounting plate and is connected to the corresponding cooling pipe. The chamber cooling device according to claim 1.
反応チャンバー、及び前記反応チャンバーの底部に設けられるチャンバー冷却装置を含む半導体加工設備であって、
前記チャンバー冷却装置は請求項1〜13のいずれか一項に記載のチャンバー冷却装置を使用することを特徴とする半導体加工設備。
A semiconductor processing facility including a reaction chamber and a chamber cooling device provided at the bottom of the reaction chamber.
The semiconductor processing equipment, wherein the chamber cooling device uses the chamber cooling device according to any one of claims 1 to 13.
JP2021507006A 2018-09-11 2019-09-03 Chamber cooling equipment and semiconductor processing equipment Active JP7062132B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201821482745.6U CN208767255U (en) 2018-09-11 2018-09-11 Chamber cooling device and semiconductor processing equipment
CN201811056758.1A CN110890262A (en) 2018-09-11 2018-09-11 Chamber cooling device and semiconductor processing equipment
CN201811056758.1 2018-09-11
CN201821482745.6 2018-09-11
PCT/CN2019/104215 WO2020052475A1 (en) 2018-09-11 2019-09-03 Chamber cooling apparatus and semiconductor processing device

Publications (2)

Publication Number Publication Date
JP2021534578A true JP2021534578A (en) 2021-12-09
JP7062132B2 JP7062132B2 (en) 2022-05-02

Family

ID=69777359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021507006A Active JP7062132B2 (en) 2018-09-11 2019-09-03 Chamber cooling equipment and semiconductor processing equipment

Country Status (3)

Country Link
JP (1) JP7062132B2 (en)
TW (1) TWI709203B (en)
WO (1) WO2020052475A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114625230B (en) * 2022-03-25 2023-04-11 深圳市信雅装饰设计工程有限公司 Architectural design figure workstation of central heat dissipation liquid cooling

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945624A (en) * 1995-07-27 1997-02-14 Tokyo Electron Ltd Leaf-type heat treating system
JPH0950965A (en) * 1995-08-04 1997-02-18 Tokyo Electron Ltd Sheet-type thermal treatment apparatus
JPH09505798A (en) * 1994-09-30 1997-06-10 エルピーエ ソシエテ ペル アチオニ Epitaxial reactor, support and gas flow equipment
JPH09280756A (en) * 1996-02-15 1997-10-31 Komatsu Ltd Multi-temperature control system and reaction processor to which same is applied
JP2008231513A (en) * 2007-03-20 2008-10-02 Kochi Prefecture Sangyo Shinko Center Plasma cvd system
JP2008270348A (en) * 2007-04-17 2008-11-06 Seiko Epson Corp Dry etching apparatus and processing method of processing work
JP2010141207A (en) * 2008-12-12 2010-06-24 Tokyo Electron Ltd Film-forming device, film-forming method, and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356476A (en) * 1992-06-15 1994-10-18 Materials Research Corporation Semiconductor wafer processing method and apparatus with heat and gas flow control
TW508263B (en) * 2000-10-10 2002-11-01 Kanken Techno Co Ltd A tower with exhausting apparatus and an electric heater used in such a tower
US8470141B1 (en) * 2005-04-29 2013-06-25 Angstrom Sciences, Inc. High power cathode
TWI508178B (en) * 2008-07-16 2015-11-11 Tera Semicon Corp Batch type heat treatment apparatus
CN203002790U (en) * 2012-11-28 2013-06-19 江苏永钢集团有限公司 Turbulence water cooling device
CN203741383U (en) * 2013-12-19 2014-07-30 北京七星华创电子股份有限公司 Cooling water control system
CN103935024B (en) * 2014-04-14 2015-12-09 浙江大学 The mould water cooling plant of I.S.S variable cycle runner
CN103972014B (en) * 2014-05-22 2016-05-18 中国地质大学(北京) Plasma reaction chamber electrode gap adjusting device and plasma reaction chamber
CN107326341B (en) * 2017-07-14 2019-10-25 君泰创新(北京)科技有限公司 The even device of air of LPCVD process cavity
CN208767255U (en) * 2018-09-11 2019-04-19 北京北方华创微电子装备有限公司 Chamber cooling device and semiconductor processing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09505798A (en) * 1994-09-30 1997-06-10 エルピーエ ソシエテ ペル アチオニ Epitaxial reactor, support and gas flow equipment
JPH0945624A (en) * 1995-07-27 1997-02-14 Tokyo Electron Ltd Leaf-type heat treating system
JPH0950965A (en) * 1995-08-04 1997-02-18 Tokyo Electron Ltd Sheet-type thermal treatment apparatus
JPH09280756A (en) * 1996-02-15 1997-10-31 Komatsu Ltd Multi-temperature control system and reaction processor to which same is applied
JP2008231513A (en) * 2007-03-20 2008-10-02 Kochi Prefecture Sangyo Shinko Center Plasma cvd system
JP2008270348A (en) * 2007-04-17 2008-11-06 Seiko Epson Corp Dry etching apparatus and processing method of processing work
JP2010141207A (en) * 2008-12-12 2010-06-24 Tokyo Electron Ltd Film-forming device, film-forming method, and storage medium

Also Published As

Publication number Publication date
WO2020052475A1 (en) 2020-03-19
TW202011544A (en) 2020-03-16
JP7062132B2 (en) 2022-05-02
TWI709203B (en) 2020-11-01

Similar Documents

Publication Publication Date Title
US11515179B2 (en) Semiconductor processing chamber multistage mixing apparatus
CN108962714B (en) Semiconductor processing chamber for improved precursor flow
US9855575B2 (en) Gas injector and cover plate assembly for semiconductor equipment
KR102451499B1 (en) Showerhead design
JP5413305B2 (en) Epitaxial growth equipment
JP7062132B2 (en) Chamber cooling equipment and semiconductor processing equipment
JP2019009424A (en) Multi-zone semiconductor substrate supports
US20200321193A1 (en) Gas showerhead, manufacturing method, and plasma apparatus including the gas showerhead
US11680316B2 (en) Deposition apparatus
KR102267923B1 (en) Deposition apparatus
TW201720948A (en) Substrate processing apparatus
WO2020019183A1 (en) Heat dissipation structure for controller, and controller
CN208767255U (en) Chamber cooling device and semiconductor processing equipment
WO2019011317A1 (en) Flow equalization plate, and gas equalization device for process chamber
US10262843B2 (en) Cooling water jet pack for high power rotary cathodes
TW201625811A (en) Reaction gas delivery device and chemical vapor deposition or epitaxial layer growth reactor
CN110890262A (en) Chamber cooling device and semiconductor processing equipment
TWI814291B (en) Uniform in situ cleaning and deposition
TW202318593A (en) Heated lid for a process chamber
TWI817102B (en) Faceplate with localized flow control
KR20230043056A (en) System and apparatus for gas distribution
US20220170151A1 (en) Actively cooled foreline trap to reduce throttle valve drift
CN219280033U (en) Water-cooling cavity and equipment provided with same
TWI768838B (en) Semiconductor processing system component
JP5302834B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220419

R150 Certificate of patent or registration of utility model

Ref document number: 7062132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150