JP2008231513A - Plasma cvd system - Google Patents

Plasma cvd system Download PDF

Info

Publication number
JP2008231513A
JP2008231513A JP2007073357A JP2007073357A JP2008231513A JP 2008231513 A JP2008231513 A JP 2008231513A JP 2007073357 A JP2007073357 A JP 2007073357A JP 2007073357 A JP2007073357 A JP 2007073357A JP 2008231513 A JP2008231513 A JP 2008231513A
Authority
JP
Japan
Prior art keywords
substrate
anode
electrode
temperature
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007073357A
Other languages
Japanese (ja)
Other versions
JP4558755B2 (en
Inventor
Kazuhito Nishimura
一仁 西村
Hidenori Sasaoka
秀紀 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Kochi Prefecture Sangyo Shinko Center
Original Assignee
Casio Computer Co Ltd
Kochi Prefecture Sangyo Shinko Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Kochi Prefecture Sangyo Shinko Center filed Critical Casio Computer Co Ltd
Priority to JP2007073357A priority Critical patent/JP4558755B2/en
Priority to US12/004,679 priority patent/US20080226838A1/en
Priority to TW096149677A priority patent/TWI359878B/en
Priority to KR1020070136836A priority patent/KR101010389B1/en
Priority to CN2007101857996A priority patent/CN101325836B/en
Publication of JP2008231513A publication Critical patent/JP2008231513A/en
Application granted granted Critical
Publication of JP4558755B2 publication Critical patent/JP4558755B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma CVD system where the phenomenon that temperature conditions are changed due to the state of a substrate as the object for film deposition, so as to generate variation in film deposition is suppressed. <P>SOLUTION: A stage 11 cooled by a cooling member 13 is mounted with an anode 12 composed of graphite. The graphite can transmit a large quantity of heat by the radiation of the heat. The contribution to the temperature of a substrate 1 by contact heat conduction depending on the contact area between the anode 12 and the substrate 1 and the contact area between the anode 12 and the stage 11 is relatively reduced; thus the temperature control of the substrate 1 can be facilitated. In this way, the phenomenon that cooling conditions are changed due to the state of the substrate 1, so as to generate variation in film deposition can be suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラズマCVD装置に関する。   The present invention relates to a plasma CVD apparatus.

特許文献1には、プラズマ処理装置の電極の導電性領域にモリブデン等の電極を適用することが記載されている。
特開2005−63973号公報
Patent Document 1 describes that an electrode such as molybdenum is applied to a conductive region of an electrode of a plasma processing apparatus.
JP 2005-63973 A

前述のように、特許文献1のプラズマ処理装置をプラズマCVD装置として適用すると、成膜対象の基板が、プラズマを生成するための電極の上に直接載置される。しかしながら、基板と電極との間の実際の接触面積は、基板や電極の接触する対向面の表面粗さや、基板の形状、重量、平面度等で大きく影響され、基板の裏面の面積に対して非常に小さな値となる。したがって、熱流の伝搬にばらつきが生じやすくなる。よって、電極上への基板の配置位置が異なるだけでも、基板と電極との間の実際の接触面積が大きく変化してしまい、電極と基板との間の熱伝導の状態が著しく変わるので、特に基板の温度が高温になるようなプラズマCVDの場合、成膜条件がばらついてしまうという不安定要因となっていた。   As described above, when the plasma processing apparatus of Patent Document 1 is applied as a plasma CVD apparatus, a substrate to be deposited is placed directly on an electrode for generating plasma. However, the actual contact area between the substrate and the electrode is greatly influenced by the surface roughness of the facing surface where the substrate and the electrode are in contact, the shape, weight, flatness, etc. of the substrate. Very small value. Therefore, variations in heat flow propagation tend to occur. Therefore, even if the arrangement position of the substrate on the electrode is different, the actual contact area between the substrate and the electrode changes greatly, and the state of heat conduction between the electrode and the substrate changes significantly. In the case of plasma CVD in which the temperature of the substrate becomes high, the film formation conditions vary, which is an unstable factor.

本発明は、成膜時の基板温度のばらつきを抑制することが可能なプラズマCVD装置を提供することを目的とする。   An object of this invention is to provide the plasma CVD apparatus which can suppress the dispersion | variation in the substrate temperature at the time of film-forming.

上記目的を達成するために、本発明の第1の観点に係るプラズマCVD装置は、
処理対象の基板が載置される、表面がグラファイトで形成されている電極と、
前記電極上にプラズマを発生させて前記基板に所定の処理を行うプラズマ発生手段と、
を備えることを特徴とする。
In order to achieve the above object, a plasma CVD apparatus according to the first aspect of the present invention comprises:
An electrode on which a substrate to be treated is placed, a surface formed of graphite,
Plasma generating means for generating a plasma on the electrode and performing a predetermined treatment on the substrate;
It is characterized by providing.

なお、前記電極を支持するステージを備え、
前記ステージを冷却することにより、前記電極を冷却して前記基板温度を下げる冷却手段をさらに備えてもよい。
A stage for supporting the electrode;
A cooling means for cooling the electrode to lower the substrate temperature by cooling the stage may be further provided.

前記冷却手段は、前記基板に成膜が行われているときに該基板の冷却を開始してもよい。
また、前記プラズマ発生手段が行う所定の処理は、炭化水素を反応ガスとしてプラズマ化して前記基板に成膜を行うことであってもよい。
The cooling means may start cooling the substrate when the film is formed on the substrate.
The predetermined process performed by the plasma generating means may be to form a film on the substrate by converting the plasma into a hydrocarbon as a reaction gas.

本発明によれば、成膜時の基板温度のばらつきを抑制することができ、成膜が安定化する。   According to the present invention, variations in substrate temperature during film formation can be suppressed, and film formation is stabilized.

以下、図面に基づき、本発明の実施の形態について詳細に説明する。
図1は、本発明の実施形態に係るプラズマCVD装置の概要を示す構成図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram showing an outline of a plasma CVD apparatus according to an embodiment of the present invention.

この直流プラズマCVD装置は、処理対象の基板1の表面に膜を形成する装置であり、反応槽であるチャンバー10を備えている。チャンバー10は、基板1を外気から遮断する。   This DC plasma CVD apparatus is an apparatus that forms a film on the surface of a substrate 1 to be processed, and includes a chamber 10 that is a reaction tank. The chamber 10 blocks the substrate 1 from the outside air.

チャンバー10内には、円柱状の鋼製のステージ11が配置され、ステージ11の上部の電極載置面11aに、円板状の陽極12が載置されている。陽極12の上側の基板載置面12aに、例えば矩形の基板1が載置される。陽極12は、グラファイトで形成され、その表面の算術平均粗さRaは5μm程度である。
陽極12の外周面は、石英ガラス等の絶縁体で構成されたリング14で囲まれている。ステージ11、陽極12及びリング14は、軸11xを中心にして回転するように設定されている。
A cylindrical steel stage 11 is disposed in the chamber 10, and a disk-shaped anode 12 is placed on the electrode placement surface 11 a on the upper side of the stage 11. For example, the rectangular substrate 1 is placed on the substrate placement surface 12 a on the upper side of the anode 12. The anode 12 is made of graphite, and its surface has an arithmetic average roughness Ra of about 5 μm.
The outer peripheral surface of the anode 12 is surrounded by a ring 14 made of an insulator such as quartz glass. The stage 11, the anode 12 and the ring 14 are set so as to rotate around the axis 11x.

陽極12の下側のステージ11には、閉塞された円柱状の空間11bが設けられ、ステージ11の電極載置面11aの部分が板状になっている。
ステージ11の空間11bには、柱状の冷却部材13が配置されている。冷却部材13は基板1を必要に応じて冷却するために設けられたものであり、銅等の熱伝導率の高い金属で形成されている。冷却部材13は、図示しない移動機構により、矢印の通り上下に移動する構成になっている。
The stage 11 below the anode 12 is provided with a closed columnar space 11b, and the electrode placement surface 11a of the stage 11 is plate-shaped.
A columnar cooling member 13 is disposed in the space 11 b of the stage 11. The cooling member 13 is provided to cool the substrate 1 as necessary, and is formed of a metal having high thermal conductivity such as copper. The cooling member 13 is configured to move up and down as indicated by an arrow by a moving mechanism (not shown).

冷却部材13の上端面は、ステージ11の電極載置面11aとは反対側の面(以下、この面を裏面という)11cに対向する対向面13aであり、外径が大きくなっている。冷却部材13が上方に移動することにより、対向面13aが、ステージ11の裏面11cに近接するように或いは当接するように対向する。   The upper end surface of the cooling member 13 is a facing surface 13a that faces a surface 11c opposite to the electrode mounting surface 11a of the stage 11 (hereinafter, this surface is referred to as a back surface), and has a large outer diameter. As the cooling member 13 moves upward, the facing surface 13a faces the back surface 11c of the stage 11 so as to come close to or come into contact therewith.

冷却部材13の内部には、冷却された水或は塩化カルシウム水溶液等の冷却媒体を流す流路13bが形成されている。流路13bは、冷却部材13の側面から対向面13aの近傍を通り、再び冷却部材13の側面に達している。流路13bは、管路13c,13dを介して冷却機15と接続され、冷却媒体が冷却機15によって冷却されて、流路13bと冷却機15との間を循環して流れる。   Inside the cooling member 13, there is formed a flow path 13b through which a cooling medium such as cooled water or a calcium chloride aqueous solution flows. The flow path 13b passes from the side surface of the cooling member 13 through the vicinity of the facing surface 13a and reaches the side surface of the cooling member 13 again. The flow path 13b is connected to the cooler 15 via the pipelines 13c and 13d, and the cooling medium is cooled by the cooler 15 and flows between the flow path 13b and the cooler 15 in a circulating manner.

冷却部材13の対向面13aの中央には、通気口13eが開口されている。通気口13eは、冷却部材13の下方の側面に貫通している。冷却部材13の下方の側面において、通気口13cは、管路16と接続されている。管路16は、バルブ17及び流量調節器18を介してボンベ19に接続されている。ボンベ19には、冷却ガスとしてのヘリウムガス或は窒素ガス等が封入されている。冷却ガスは、空間11b内に充満されるが、陽極12の基板載置面12a側に充満されることはない。
このように、冷却部材13には、冷却媒体によってステージ11を冷却する機構ばかりでなく、通気口13eから冷却ガスをステージ11に吹き付けてステージ11を冷却する機構を備えている。そのため、陽極12及び基板1を冷却する場合に、対向面13aをステージ11の裏面11cに部分的または全体的に当接する方法や、対向面13aを裏面11cに近づけて冷却ガスをステージ11に吹き付けてステージ11を冷却する方法や、その両方のいずれかを選択することができる。
A vent 13e is opened at the center of the facing surface 13a of the cooling member 13. The ventilation hole 13 e penetrates the lower side surface of the cooling member 13. On the side surface below the cooling member 13, the vent 13 c is connected to the pipe line 16. The pipe line 16 is connected to a cylinder 19 via a valve 17 and a flow rate regulator 18. The cylinder 19 is filled with helium gas or nitrogen gas as a cooling gas. The cooling gas is filled in the space 11b, but is not filled on the substrate placement surface 12a side of the anode 12.
As described above, the cooling member 13 includes not only a mechanism for cooling the stage 11 with the cooling medium, but also a mechanism for cooling the stage 11 by blowing the cooling gas to the stage 11 from the vent 13e. Therefore, when the anode 12 and the substrate 1 are cooled, a method in which the facing surface 13a is partly or entirely brought into contact with the back surface 11c of the stage 11 or a cooling gas is blown onto the stage 11 with the facing surface 13a being brought close to the back surface 11c The method for cooling the stage 11 or both of them can be selected.

陽極12の基板載置面12aに対向するように、陰極20が支持されている。陰極20と陽極12との間には、プラズマを発生させるための電圧を印加する電源21が接続されている。   The cathode 20 is supported so as to face the substrate mounting surface 12a of the anode 12. A power supply 21 for applying a voltage for generating plasma is connected between the cathode 20 and the anode 12.

チャンバー10の陰極20よりも高い位置には、図示しない原料ガス系から供給された原料ガスをチャンバー10内に導入するガス導入管22が設けられている。チャンバー10の底部には、原料ガスを排出するガス排気管23が設けられている。   A gas introduction pipe 22 is provided at a position higher than the cathode 20 of the chamber 10 to introduce a source gas supplied from a source gas system (not shown) into the chamber 10. A gas exhaust pipe 23 for discharging the source gas is provided at the bottom of the chamber 10.

ガス導入管22及びガス排気管23は、チャンバー10に設けられた孔をそれぞれ通過し、各孔とガス導入管22及びガス排気管23との外周との間は、シール材でシールされ、チャンバー10の内の気密性が確保されている。ガス排気管23には、原料ガスをガス排気管23から排出してチャンバー10内の気圧を調整する図示しない排気系が接続されている。   The gas introduction pipe 22 and the gas exhaust pipe 23 pass through holes provided in the chamber 10, respectively, and a gap between each hole and the outer periphery of the gas introduction pipe 22 and the gas exhaust pipe 23 is sealed with a sealing material. Airtightness within 10 is ensured. Connected to the gas exhaust pipe 23 is an exhaust system (not shown) that discharges the source gas from the gas exhaust pipe 23 and adjusts the atmospheric pressure in the chamber 10.

チャンバー10の側面に、チャンバー10の内部を観察するための窓25を形成してもよい。この場合、窓25には、耐熱性ガラスがはめ込まれ、チャンバー10内の気密性が確保される。チャンバー10の外側に、窓25の耐熱ガラスを介して基板1の温度を測定するための分光放射輝度計26が配置される。   A window 25 for observing the inside of the chamber 10 may be formed on the side surface of the chamber 10. In this case, the window 25 is fitted with heat-resistant glass, and airtightness in the chamber 10 is ensured. A spectral radiance meter 26 for measuring the temperature of the substrate 1 through the heat-resistant glass of the window 25 is disposed outside the chamber 10.

この直流プラズマCVD装置を用いて基板1に成膜を行う場合には、最初に、基板1を、陽極12の基板載置面12a上に載置する。基板1の載置が完了すると、次に、チャンバー10内を、排気系を用いて減圧し、続いて、ガス導入管22から原料ガスをチャンバー10内に導入する。原料ガスは、成膜の材料となるメタン等の反応ガスと、成膜の成膜材料とならない水素等のマトリクスガス(キャリアガス)とが所定の比率で混合されたものである。例えばグラファイトやダイヤモンド微粒子等の炭素膜を基板1に成膜する場合、反応ガスは炭素を含有する化合物のガスになる。   When forming a film on the substrate 1 using this DC plasma CVD apparatus, the substrate 1 is first mounted on the substrate mounting surface 12 a of the anode 12. When the placement of the substrate 1 is completed, the inside of the chamber 10 is then depressurized using an exhaust system, and then a source gas is introduced into the chamber 10 from the gas introduction pipe 22. The source gas is a mixture of a reaction gas such as methane that is a film forming material and a matrix gas (carrier gas) such as hydrogen that is not a film forming material at a predetermined ratio. For example, when a carbon film such as graphite or diamond fine particles is formed on the substrate 1, the reaction gas is a compound gas containing carbon.

原料ガスの導入量及び排気量を調節し、チャンバー10内の気圧を、所定値或は所定値からのずれが許容範囲に収まるように設定する。また、ステージ11を例えば10rpmで回転させて基板1及び陽極12を回転させる。この状態で、陽極12と陰極20との間に直流電圧を印加し、プラズマを発生させる。プラズマが発生すると、プラズマにより反応ガスから活性種が生成されて基板1への成膜が開始される。基板1及び陽極12を回転させることにより、基板1の位置による温度ばらつきが小さくなり、基板1上での成膜のばらつきが防止される。   The introduction amount and the exhaust amount of the source gas are adjusted, and the atmospheric pressure in the chamber 10 is set so that a predetermined value or a deviation from the predetermined value is within an allowable range. Further, the stage 11 is rotated at, for example, 10 rpm to rotate the substrate 1 and the anode 12. In this state, a DC voltage is applied between the anode 12 and the cathode 20 to generate plasma. When plasma is generated, active species are generated from the reaction gas by the plasma, and film formation on the substrate 1 is started. By rotating the substrate 1 and the anode 12, temperature variations due to the position of the substrate 1 are reduced, and variations in film formation on the substrate 1 are prevented.

成膜による基板1の温度上昇を抑制して所望の膜質を確保するため、或は、成膜途中で基板1の温度を変化させて膜質を変化させるために、冷却部材12に組込まれた冷却機構を適宜に選択して使用する。即ち、冷却機15で冷却された冷却媒体を冷却部材13の流路13bに流しつつ、対向面13aを裏面11cに当接させてもよいし、対向面13aを裏面11cに近接させて冷却ガスを裏面11cに吹き付けてもよいし、流路13bに冷却媒体を流しつつ、対向面13aの一部を裏面11cに当接させて冷却ガスを裏面11cに吹き付けてもよい。   Cooling incorporated in the cooling member 12 in order to prevent the temperature rise of the substrate 1 due to film formation and to secure a desired film quality, or to change the film quality by changing the temperature of the substrate 1 during film formation. The mechanism is appropriately selected and used. That is, the opposing surface 13a may be brought into contact with the back surface 11c while flowing the cooling medium cooled by the cooler 15 through the flow path 13b of the cooling member 13, or the opposing surface 13a is brought close to the back surface 11c and the cooling gas. May be sprayed on the back surface 11c, or a cooling gas may be sprayed on the back surface 11c by causing a part of the facing surface 13a to contact the back surface 11c while flowing a cooling medium through the flow path 13b.

分光放射輝度計26により、基板1の表面温度が測定できるので、プラズマによる基板1の表面温度に応じて、基板1の冷却タイミングや陽極12及び陰極20間に印加する電圧が制御可能である。   Since the surface temperature of the substrate 1 can be measured by the spectral radiance meter 26, the cooling timing of the substrate 1 and the voltage applied between the anode 12 and the cathode 20 can be controlled according to the surface temperature of the substrate 1 by plasma.

成膜が開始されてから所定時間が経過し、成膜が終了段階になったとき、陽極12と陰極20との間の電圧の印加を停止し、続いて、原料ガスの供給を停止し、パージガスとして窒素ガスをチャンバー10内に供給して常圧に復帰させた後、基板1を取り出す。   When a predetermined time has elapsed since the start of film formation and when the film formation is in an end stage, the application of voltage between the anode 12 and the cathode 20 is stopped, and then the supply of the source gas is stopped, Nitrogen gas is supplied as a purge gas into the chamber 10 to return to normal pressure, and then the substrate 1 is taken out.

次に、この直流プラズマCVD装置の利点を説明する。
基板1に成膜を行うと、基板1、陽極12及び陰極20は、陽極12と陰極20との間に発生するプラズマにさらされることによって加熱される。基板1に与えられたエネルギーの一部は、熱輻射によってもチャンバー10に伝えられるものの、その大部分は、基板1から陽極12及びステージ11、加えてステージ11を介して冷却部材12へと伝えられ、与えられる伝熱量と拡散する伝熱量がつり合うことで、基板1の温度は一定に保たれる。
Next, advantages of this DC plasma CVD apparatus will be described.
When film formation is performed on the substrate 1, the substrate 1, the anode 12, and the cathode 20 are heated by being exposed to plasma generated between the anode 12 and the cathode 20. Although a part of the energy given to the substrate 1 is transmitted to the chamber 10 also by heat radiation, most of the energy is transmitted from the substrate 1 to the anode 12 and the stage 11 and also to the cooling member 12 via the stage 11. Thus, the temperature of the substrate 1 is kept constant by balancing the amount of heat transferred and the amount of heat transferred.

ここで、陽極12をグラファイトで構成した場合(以下、この電極をグラファイト電極という)と、モリブデンで構成した場合(以下、この電極をモリブデン電極という)とで成膜を行い、その比較を行った。   Here, when the anode 12 is made of graphite (hereinafter, this electrode is referred to as a graphite electrode) and when it is made of molybdenum (hereinafter, this electrode is referred to as a molybdenum electrode), a comparison is made. .

成膜条件は、グラファイト電極及びモリブデン電極のいずれの場合も、反応ガスのメタンの流量を50sccm、マトリクスガスの水素の流量を500sccmとした原料ガスをチャンバー10内に導入し、排気スピードを調節することで全体圧力を7999.32Paに維持した。また、陰極20とグラファイト電極及びモリブデン電極との間の電流密度が、0.15A/cm(電流/電極面積)となるように電力を印加し、プラズマを発生させた。
モリブデン電極の表面の算術平均粗さRaは、1.5μmであり、バルクの移動による熱伝導率λは、132W・m−1・K−1であった。陽極12としたグラファイトの表面の算術平均粗さRaは5μmで、バルクの熱伝導率λは、120W・m−1・K−1であった。
As for the film forming conditions, in both the graphite electrode and the molybdenum electrode, a source gas having a flow rate of methane of the reaction gas of 50 sccm and a flow rate of hydrogen of the matrix gas of 500 sccm is introduced into the chamber 10 and the exhaust speed is adjusted. This maintained the overall pressure at 7999.32 Pa. Moreover, power was applied so that the current density between the cathode 20 and the graphite electrode and the molybdenum electrode was 0.15 A / cm 2 (current / electrode area) to generate plasma.
The arithmetic average roughness Ra of the surface of the molybdenum electrode was 1.5 μm, and the thermal conductivity λ due to bulk movement was 132 W · m −1 · K −1 . The arithmetic average roughness Ra of the surface of the graphite serving as the anode 12 was 5 μm, and the bulk thermal conductivity λ was 120 W · m −1 · K −1 .

基板1には、厚さ0.5mmのシリコンを使用し、基板1の温度を変化させるために、成膜開始時刻から約2時間までは、図1の対向面13aとステージ11の裏面11cとの距離xを60mmとした。この間、グラファイト電極を用いたプラズマCVD装置では、基板1上に、曲面をなす花弁状(扇状)の複数の炭素薄片が起立しながら互いにランダムな方向に繋がりあって構成されるカーボンナノウォールが成膜された。各炭素薄片は、格子間隔が0.34nmの数層〜数十層のグラフェンシートであった。それ以降では、距離xを0.5mmに近接させた。そして、ステージ11の下側の空間11bに、冷却ガスとしてのヘリウムガスを、通気口13eを介して500sccmで導入することで基板1の温度を下降させた。この間、グラファイト電極を用いたプラズマCVD装置では、基板1上のカーボンナノウォール上に、粒径がナノメートルオーダー(1μm未満)の複数の微結晶ダイヤモンド微粒子を含む層である微結晶ダイヤモンド膜が堆積され、微結晶ダイヤモンド微粒子の成長とともに、主にカーボンナノウォールの一部が成長し、微結晶ダイヤモンド膜の隙間を貫通し、微結晶ダイヤモンド膜の表面から突き出ている針状の炭素棒が形成された。この炭素棒は、内部まで炭素が形成されており、カーボンナノチューブのように薄い炭素層で内部が空洞になるように形成された筒状構造体ではなく、剛直であり、カーボンナノウォールから成長しているので機械強度が強い。
基板1の温度の計測には分光放射輝度計26を用い、基板1からの赤外輻射強度を分光測定し、灰色体近似を適用して基板1の温度、ならびに放射率を評価した。
The substrate 1 is made of silicon having a thickness of 0.5 mm. In order to change the temperature of the substrate 1, the opposing surface 13 a and the back surface 11 c of the stage 11 in FIG. The distance x was set to 60 mm. In the meantime, in a plasma CVD apparatus using a graphite electrode, a carbon nanowall composed of a plurality of petal-shaped (fan-shaped) carbon flakes that are curved and connected in a random direction is formed on the substrate 1. Was filmed. Each carbon flake was a graphene sheet of several to several tens of layers with a lattice spacing of 0.34 nm. After that, the distance x was brought close to 0.5 mm. Then, the temperature of the substrate 1 was lowered by introducing helium gas as a cooling gas into the space 11b below the stage 11 at 500 sccm through the vent 13e. In the meantime, in a plasma CVD apparatus using a graphite electrode, a microcrystalline diamond film, which is a layer containing a plurality of microcrystalline diamond particles having a particle size of nanometer order (less than 1 μm), is deposited on the carbon nanowall on the substrate 1. As the microcrystalline diamond particles grow, a part of the carbon nanowall grows mainly, forming needle-like carbon rods that penetrate the gaps in the microcrystalline diamond film and protrude from the surface of the microcrystalline diamond film. It was. This carbon rod has carbon formed to the inside, and is not a cylindrical structure formed so as to be hollow with a thin carbon layer like a carbon nanotube, but is rigid and grows from the carbon nanowall. Therefore, mechanical strength is strong.
The spectral radiance meter 26 was used to measure the temperature of the substrate 1, the infrared radiation intensity from the substrate 1 was measured and the gray body approximation was applied to evaluate the temperature and emissivity of the substrate 1.

図2は、陽極12の違いによる基板1の測定温度を示すグラフである。
図2に示すように、どちらの電極においても、成膜開始30分以内に、基板1の温度が最高点に達し、その後、電流密度一定の状態で基板1の温度が下降傾向を示している。このような基板1の温度が下降傾向をもつ理由は、基板1にグラフェンシートの集合体であるカーボンナノウォールが堆積していくことで、基板1の上面の放射率が上昇し、基板1の表面からチャンバー内への輻射による伝熱量が増大していくためである。さらにカーボンナノウォールが基板1上に成膜されることによって基板1の放射率が定値に達してのちは、基板1の温度は安定している。この様な現象は、基板1の温度が900℃を超えるようなCVDによる成膜に際しては、基板1の温度に対して、周辺の放射率が大きく影響を与えることを示している。
FIG. 2 is a graph showing the measured temperature of the substrate 1 due to the difference in the anode 12.
As shown in FIG. 2, in both electrodes, the temperature of the substrate 1 reaches the highest point within 30 minutes from the start of film formation, and thereafter the temperature of the substrate 1 tends to decrease with a constant current density. . The reason why the temperature of the substrate 1 tends to decrease is that carbon nanowalls, which are aggregates of graphene sheets, are deposited on the substrate 1, thereby increasing the emissivity of the upper surface of the substrate 1. This is because the amount of heat transfer due to radiation from the surface into the chamber increases. Furthermore, after the carbon nanowall is deposited on the substrate 1, the temperature of the substrate 1 is stable after the emissivity of the substrate 1 reaches a constant value. Such a phenomenon indicates that the peripheral emissivity greatly affects the temperature of the substrate 1 when the film is formed by CVD such that the temperature of the substrate 1 exceeds 900 ° C.

電極による基板1の温度を比較すると、基板1の温度が大きく変動する初期成膜領域においてはグラファイト電極上の基板1の温度はモリブデン電極上のそれに対して100℃以上低い温度と成った。また、それ以降の温度が安定した状態では、距離xが0.5mmのときも、グラファイト電極の場合の基板1の温度がモリブデン電極の場合の基板1の温度よりも40℃低くなる。   Comparing the temperature of the substrate 1 with the electrodes, in the initial film formation region where the temperature of the substrate 1 greatly fluctuated, the temperature of the substrate 1 on the graphite electrode was lower than that on the molybdenum electrode by 100 ° C. or more. In a state where the temperature thereafter is stable, even when the distance x is 0.5 mm, the temperature of the substrate 1 in the case of the graphite electrode is 40 ° C. lower than the temperature of the substrate 1 in the case of the molybdenum electrode.

図3は、図2の操炉において印加電流を一定にした状態でのプラズマに印加された電力の変化を示すグラフである。
この成膜の際には、陽極12と陰極20との間に流れる電流密度は0.15A/cmと一定となるように制御されており、印加電圧はガスの状態によって自動的に変動する。実際には電極間のガスの密度が低いほど、印加電圧は減少する傾向をもつ。基板1の温度の高いモリブデン電極の場合のほうが、基板1や電極によって周囲のガス温度が高くなり、その分、密度を減少させることになるため、基板1の温度の低いグラファイト電極に対して同じ電流密度を流すための電圧は小さくなる。このため、モリブデン電極の場合に印加される電力のほうがグラファイト電極の場合に比べて常に小さくなるが、その変化量は印加電力に対して1.5%以下である。
FIG. 3 is a graph showing a change in the power applied to the plasma in a state where the applied current is constant in the furnace of FIG.
During this film formation, the current density flowing between the anode 12 and the cathode 20 is controlled to be constant at 0.15 A / cm 2 , and the applied voltage automatically varies depending on the gas state. . In practice, the applied voltage tends to decrease as the gas density between the electrodes decreases. In the case of the molybdenum electrode having a high temperature of the substrate 1, the ambient gas temperature is increased by the substrate 1 and the electrode, and the density is reduced accordingly. The voltage for passing the current density is reduced. For this reason, the power applied in the case of the molybdenum electrode is always smaller than that in the case of the graphite electrode, but the amount of change is 1.5% or less with respect to the applied power.

このような印加電力がほとんど変化しないにもかかわらず、基板1の温度が常にモリブデン電極とグラファイト電極とで100℃の差が生じる原因は、この温度領域においてグラファイト電極のほうが、モリブデン電極より熱を逃がしやすくなっていたためである。モリブデンに対して熱伝導率が小さく、かつ、表面が粗いグラファイト電極のほうが熱を逃がしやすい傾向をもつことは、両者の電極において、接触による熱伝導よりも、熱輻射による熱伝導の寄与が大きくなっているためと説明できる。接触熱抵抗が大きいために電極材料自体の熱伝導率が意味を成さなければ、0.9以上の放射率もつグラファイトに対して、モリブデンは表面による反射のために0.3程度の放射率しか持たないため、グラファイト電極のほうが、基板1の温度が小さくなることを容易に説明できる。   Despite the fact that the applied power hardly changes, the difference in temperature of the substrate 1 between the molybdenum electrode and the graphite electrode is always 100 ° C. The reason why the graphite electrode heats more than the molybdenum electrode in this temperature region. It was because it was easy to escape. The fact that graphite electrodes with a lower thermal conductivity and a rougher surface than molybdenum tend to release heat has a greater contribution to heat conduction by thermal radiation in both electrodes than in heat conduction by contact. It can be explained that it is. If the thermal conductivity of the electrode material itself does not make sense because of the large contact thermal resistance, molybdenum has only an emissivity of about 0.3 due to reflection by the surface, compared to graphite with an emissivity of 0.9 or more. It can be easily explained that the temperature of the substrate 1 is smaller with the graphite electrode.

また、基板1の温度の高いときほどモリブデン電極とグラファイト電極との間の温度差がより大きくなる傾向は、接触による熱伝導が温度差に比例して伝熱量が変化するのに対して、熱輻射では絶対温度の4乗に比例して伝熱量が大きくなるため、基板1の温度が高くなるほど急激に放出される伝熱量が増えて温度が上がりにくくなることと対応している。これらのことからも成膜中の熱伝導においては熱輻射の割合が大きいことが示唆される。   Moreover, the tendency that the temperature difference between the molybdenum electrode and the graphite electrode becomes larger as the temperature of the substrate 1 becomes higher is that the heat transfer due to the contact changes in proportion to the temperature difference, whereas the heat transfer amount increases. With radiation, the amount of heat transfer increases in proportion to the fourth power of the absolute temperature. Therefore, as the temperature of the substrate 1 increases, the amount of heat transfer that is rapidly released increases, making it difficult to increase the temperature. These facts also suggest that the ratio of heat radiation is large in heat conduction during film formation.

ここで、各、伝熱方式による伝熱量の推測を行うために、表面粗さRaの陽極の上に、鏡面研磨された基板を設置したときを考える。表面yを基板の裏面、表面zを陽極の表面とし、基板の裏面yが鏡面とすれば陽極の表面粗さRaに比してほぼ平面とできるので、接触による伝熱は長さがRaの陽極の突起を介して伝わると考えられる。この場合、基板1の温度をT1、陽極温度をT2としたとき、接触によって基板から陽極の間に流れる単位面積当たりの伝熱量Wt1は、
と表すことができる。ただし、λは陽極材料の熱伝導率、rは基板1と陽極12との間の見かけの接触面積に対する基板1と陽極12との間の真実接触面積の比率、Raは表面の算術平均粗さである。より正確な式には基板1と電極12の間の間隔に対して補正項が導入されるが、本件では概算することが目的であるのでこれは省略する。
Here, in order to estimate the amount of heat transfer by each heat transfer method, consider a case where a mirror-polished substrate is placed on the anode having a surface roughness Ra. If the front surface y is the back surface of the substrate, the front surface z is the surface of the anode, and the back surface y of the substrate is a mirror surface, the heat transfer due to the contact is of a length Ra. It is thought that it is transmitted through the projection of the anode. In this case, when the temperature of the substrate 1 is T 1 and the anode temperature is T 2 , the amount of heat transfer W t1 per unit area flowing between the substrate and the anode by contact is:
It can be expressed as. Where λ is the thermal conductivity of the anode material, r is the ratio of the actual contact area between the substrate 1 and the anode 12 to the apparent contact area between the substrate 1 and the anode 12, and Ra is the arithmetic mean roughness of the surface. It is. A more accurate equation introduces a correction term for the distance between the substrate 1 and the electrode 12, but this is omitted in this case because it is intended to be approximate.

上述の固体同士の接触による伝熱のほかに、基板1−陽極12間の隙間の気体を介して伝えられる熱伝導がある。温度の異なる平行二平板間にある静止層を通しての熱伝導と単純化して考えたとき、図2に示すデータを得た際のプラズマCVDで一般に行われる0.1気圧以下の雰囲気下において、平均自由行路は基板の裏側の表面粗さよりも充分大きいとみなせるので、伝熱は自由分子熱伝導と考えることできる。また、このとき、伝熱量Wg1
と表すことができる。ここでΛ:自由分子熱伝導率、α:適応係数、p:圧力、γ:比熱比、k:ボルツマン定数、m:気体分子の質量である。概算のための簡略化として適応係数を最もおおきい1とし、比熱比、気体分子の質量をプラズマの主要ガスである水素分子の7/5.3.3×10−27Kgとして計算する。
In addition to the above-described heat transfer by contact between solids, there is heat conduction that is transmitted through the gas in the gap between the substrate 1 and the anode 12. When considered simply as heat conduction through a stationary layer between two parallel flat plates of different temperatures, the average is obtained in an atmosphere of 0.1 atm or less, which is generally performed in plasma CVD when obtaining the data shown in FIG. Since the free path can be regarded as sufficiently larger than the surface roughness on the back side of the substrate, heat transfer can be considered as free molecular heat conduction. At this time, the heat transfer amount W g1 is
It can be expressed as. Where Λ: free molecular thermal conductivity, α: adaptation coefficient, p: pressure, γ: specific heat ratio, k: Boltzmann constant, m: mass of gas molecule. As a simplification for rough estimation, the adaptation coefficient is set to 1 which is the largest, and the specific heat ratio and the mass of gas molecules are calculated as 7 / 5.3.3 × 10 −27 Kg of hydrogen molecules as the main gas of plasma.

最後に、輻射による伝熱量を考察する。陽極を無限並行平板と考えたとき、面yから面zに熱輻射によって伝えられる伝熱量Wr1
で表される。ここで、ε1、ε2はそれぞれ面y、面zの放射率、σはステファン・ボルツマン係数(5.67×10-8 Wm-2-4)である。
Finally, the amount of heat transfer by radiation is considered. When the anode is considered as an infinite parallel plate, the heat transfer amount W r1 transmitted from the surface y to the surface z by thermal radiation is
It is represented by Here, ε 1 and ε 2 are the emissivities of the surface y and the surface z, respectively, and σ is a Stefan-Boltzmann coefficient (5.67 × 10 −8 Wm −2 K −4 ).

これらの三つの伝熱のメカニズムについて、基板となるシリコンの放射率を0.6、モリブデンの放射率を0.3、グラファイトの放射率を0.9、基板1と陽極12との間の見かけの接触面積に対する基板1と陽極12との間の真実接触面積の比率を1/1000000、基板温度が920℃で、陽極温度860℃で基板面積□30mmの場合の伝熱量の計算を行うと、モリブデン電極では、基板1との接触熱伝導が約5W、モリブデン電極と基板との間の自由分子による熱伝導が約10W、熱輻射による加熱が約5Wとなるのに対し、グラファイト電極では、基板との接触熱伝導が約1W、グラファイト電極と基板1との間の自由分子による熱伝導が約10W、熱輻射による加熱が約11Wとなる。このように界面に応力が印加されずrが非常に小さな値となるとき、rに依存しない熱輻射、自由分子熱伝導による伝熱の割合が高くなる。   Regarding these three heat transfer mechanisms, the emissivity of silicon serving as a substrate is 0.6, the emissivity of molybdenum is 0.3, the emissivity of graphite is 0.9, and the appearance between the substrate 1 and the anode 12 is When the ratio of the real contact area between the substrate 1 and the anode 12 to the contact area of 1 / 1000,000, the substrate temperature is 920 ° C., the anode temperature is 860 ° C., and the substrate area □ 30 mm is calculated, In the case of a molybdenum electrode, the contact heat conduction with the substrate 1 is about 5 W, the heat conduction by free molecules between the molybdenum electrode and the substrate is about 10 W, and the heating by thermal radiation is about 5 W. Is about 1 W, thermal conduction by free molecules between the graphite electrode and the substrate 1 is about 10 W, and heating by thermal radiation is about 11 W. Thus, when no stress is applied to the interface and r becomes a very small value, the rate of heat transfer by heat radiation and free molecular heat conduction independent of r increases.

このようにrが小さい場合に、プラズマから基板への伝熱が一定の場合を考える。基板と陽極との間の見かけの接触面積に対する基板と陽極との間の真実接触面積の比率rが、配置ずれによりばらついても、rの絶対値が小さいため基板から陽極へ伝わる伝熱量の変化は輻射による伝熱にはほとんど依存せず、rに比例して変化する接触による伝熱量のみを変化させることになる。このとき、輻射による伝熱の寄与が大きいほど、接触による伝熱量の変化の大部は、(T1 4-T2 4)に比例して変化するため温度変化に対して伝熱量変化が大きい、輻射による伝熱量の変化よって補われ、相対的にT1の変化量を小さくすることができる。このように、輻射による熱伝導の寄与の大きいグラファイト電極は、より輻射率の小さい電極に対してrの変化による基板温度のばらつきを抑え、成膜条件を安定させることが可能となる。 Consider a case where the heat transfer from the plasma to the substrate is constant when r is small. Even if the ratio r of the actual contact area between the substrate and the anode with respect to the apparent contact area between the substrate and the anode varies due to misalignment, the absolute value of r is small, so the change in the amount of heat transferred from the substrate to the anode Is almost independent of heat transfer by radiation, and only changes the amount of heat transfer by contact that changes in proportion to r. At this time, the greater the contribution of heat transfer by radiation, the greater the change in heat transfer due to contact changes in proportion to (T 1 4 -T 2 4 ). The amount of change in T 1 can be made relatively small by compensating for the change in the amount of heat transfer due to radiation. As described above, the graphite electrode having a large contribution of heat conduction by radiation can suppress the variation in the substrate temperature due to the change of r with respect to the electrode having a smaller radiation rate, and can stabilize the film forming conditions.

また、陽極12をグラファイト電極とすることにより、不要な堆積物が陽極12に堆積することが防止できることを以下に示す。
図4(a),(b)は、それぞれ成膜後のモリブデン電極、グラファイト電極の状態を示す写真である。
In addition, it will be described below that unnecessary deposits can be prevented from being deposited on the anode 12 by using the anode 12 as a graphite electrode.
4 (a) and 4 (b) are photographs showing the states of the molybdenum electrode and the graphite electrode after film formation, respectively.

陽極12がモリブデン電極の場合、図4(a)に示すように、成膜後に、基板1が載せられていなかった部分には、炭化皮膜が形成されていた。このため、炭化皮膜が形成されたモリブデン電極に新たな基板を配置すると、炭化皮膜が形成されている位置での表面粗さがさらにばらつき、接触熱伝導によって温度制御がさらに困難となった。
これに対し、グラファイト電極では、図4(b)のように、ほとんど堆積物が存在しなかったため、表面粗さのばらつきがなく、より安定した温度制御が可能となった。
モリブデン電極の炭化皮膜とモリブデン電極の裏面間の抵抗は、3MΩ以上であり、陽極と陰極との間の印加電圧自体のばらつきも発生したが、グラファイト電極の表面(基板を載せられた部分とそうでない部分によらず)と裏面間の抵抗は、成膜前の状態と変化がなく、陽極の表面での陰極との間の印加電圧は面内均等にすることができた。
When the anode 12 was a molybdenum electrode, as shown in FIG. 4A, a carbonized film was formed on the portion where the substrate 1 was not placed after film formation. For this reason, when a new substrate is disposed on the molybdenum electrode on which the carbonized film is formed, the surface roughness at the position where the carbonized film is formed further varies, and temperature control becomes more difficult due to contact heat conduction.
On the other hand, in the graphite electrode, as shown in FIG. 4B, almost no deposit was present, so there was no variation in surface roughness, and more stable temperature control was possible.
The resistance between the carbonized film of the molybdenum electrode and the back surface of the molybdenum electrode is 3 MΩ or more, and the applied voltage itself varies between the anode and the cathode. The resistance between the back surface and the back surface was not changed from the state before film formation, and the applied voltage between the cathode and the cathode on the surface of the anode could be made uniform in the surface.

このように、陽極12をグラファイト電極とすることにより、陽極12に絶縁物となる炭化被膜がほとんど堆積しないので、実質的な陽極12の形状が成膜過程で変化せず、これにより、プラズマ形状も変化することを防止でき、成膜の安定化も期待できる。   Thus, since the anode 12 is made of a graphite electrode, a carbonized film serving as an insulator is hardly deposited on the anode 12, so that the substantial shape of the anode 12 does not change during the film formation process. Can be prevented, and stabilization of film formation can be expected.

なお、本発明は、上記実施形態に限定されず、種々の変形が可能である。
図5に示すように、熱輻射を増大するために、陽極12の熱輻射面を広くするように基板載置面12aに基板1が収納できる凹部を形成してもよい。
この場合、陽極12での温度が均等になるように陽極12の厚さを等しくするため、陽極12の裏側が陽極12の凹部の深さにあうように突出した凸部となっていることが好ましく、陽極12の凸部に合わせてステージ11の電極載置面11aに凹部が形成され、ステージ11での温度が均等になるようにステージ11の厚さを等しくするため、ステージ11の裏側が、電極載置面11aに凹部の深さにあうように突出した凸部となっていることが好ましい。そして、ステージ11の裏側に嵌合するように対向面13aに凹部が形成されることが好ましい。
In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible.
As shown in FIG. 5, in order to increase heat radiation, a recess that can accommodate the substrate 1 may be formed on the substrate mounting surface 12 a so as to widen the heat radiation surface of the anode 12.
In this case, in order to equalize the thickness of the anode 12 so that the temperature at the anode 12 is equal, the back side of the anode 12 may be a protruding portion that protrudes to the depth of the recessed portion of the anode 12. Preferably, a concave portion is formed on the electrode placement surface 11a of the stage 11 so as to match the convex portion of the anode 12, and the thickness of the stage 11 is made equal so that the temperature at the stage 11 is uniform. It is preferable that the electrode mounting surface 11a is a protruding portion that protrudes so as to meet the depth of the recessed portion. And it is preferable that a recessed part is formed in the opposing surface 13a so that it may fit in the back side of the stage 11. FIG.

また図6に示すように、基板1の裏面が平滑でなくても、基板1の裏面の形状に合わせて基板1が嵌合できるように凹部を形成してもよい。
この場合、陽極12での温度が均等になるように陽極12の厚さを等しくするため、陽極12の裏側が陽極12の凹部の深さにあうように突出した凸部となっていることが好ましく、陽極12の凸部に合わせてステージ11の電極載置面11aに凹部が形成され、ステージ11での温度が均等になるようにステージ11の厚さを等しくするため、ステージ11の裏側が、電極載置面11aに凹部の深さにあうように突出した凸部となっていることが好ましい。そして、ステージ11の裏側に嵌合するように対向面13aに凹部が形成されることが好ましい。
Moreover, as shown in FIG. 6, even if the back surface of the substrate 1 is not smooth, a recess may be formed so that the substrate 1 can be fitted in accordance with the shape of the back surface of the substrate 1.
In this case, in order to equalize the thickness of the anode 12 so that the temperature at the anode 12 is equal, the back side of the anode 12 may be a protruding portion that protrudes to the depth of the recessed portion of the anode 12. Preferably, a concave portion is formed on the electrode placement surface 11a of the stage 11 so as to match the convex portion of the anode 12, and the thickness of the stage 11 is made equal so that the temperature at the stage 11 is uniform. It is preferable that the electrode mounting surface 11a is a protruding portion that protrudes so as to meet the depth of the recessed portion. And it is preferable that a recessed part is formed in the opposing surface 13a so that it may fit in the back side of the stage 11. FIG.

また例えば、電源21が直流電圧を陽極12と陰極20との間に印加する構成でなくても、高周波を印加するプラズマCVD装置でもよい。この場合も、基板1を冷却する電極にグラファイトを用いることにより、基板を熱の輻射で冷却することができ、成膜を安定化できる。   Further, for example, the power source 21 may be a plasma CVD apparatus that applies a high frequency, instead of a configuration in which a DC voltage is applied between the anode 12 and the cathode 20. Also in this case, by using graphite as an electrode for cooling the substrate 1, the substrate can be cooled by heat radiation, and the film formation can be stabilized.

本発明の実施形態に係るプラズマCVD装置の概要を示す構成図である。It is a lineblock diagram showing an outline of a plasma CVD apparatus concerning an embodiment of the present invention. 成膜時のグラファイト電極とモリブデン電極の温度の差を説明する図である。It is a figure explaining the temperature difference of the graphite electrode and molybdenum electrode at the time of film-forming. プラズマに印加された電力の変化を示すグラフである。It is a graph which shows the change of the electric power applied to plasma. 成膜後の陽極の状態を示す図である。It is a figure which shows the state of the anode after film-forming. 本発明の実施形態に係るプラズマCVD装置の概要を示す構成図である。It is a lineblock diagram showing an outline of a plasma CVD apparatus concerning an embodiment of the present invention. 本発明の実施形態に係るプラズマCVD装置の概要を示す構成図である。It is a lineblock diagram showing an outline of a plasma CVD apparatus concerning an embodiment of the present invention.

符号の説明Explanation of symbols

1・・・基板、10・・・チャンバー、11・・・ステージ、11a・・・電極載置面、11b・・・空間、11c・・・裏面、12・・・陽極、12a・・・基板載置面、13・・・冷却部材、13a・・・対向面、13b・・・流路、13e・・・通気口、15・・・冷却機、19・・・ボンベ、20・・・陰極、21・・・電源、22・・・ガス導入管、23・・・ガス排気管   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 10 ... Chamber, 11 ... Stage, 11a ... Electrode mounting surface, 11b ... Space, 11c ... Back surface, 12 ... Anode, 12a ... Substrate Mounting surface, 13 ... Cooling member, 13a ... Opposing surface, 13b ... Channel, 13e ... Vent, 15 ... Cooling machine, 19 ... Cylinder, 20 ... Cathode , 21 ... power source, 22 ... gas introduction pipe, 23 ... gas exhaust pipe

Claims (4)

処理対象の基板が載置される、表面がグラファイトで形成されている電極と、
前記電極上にプラズマを発生させて前記基板に所定の処理を行うプラズマ発生手段と、
を備えることを特徴とするプラズマCVD装置。
An electrode on which a substrate to be treated is placed, a surface formed of graphite,
Plasma generating means for generating a plasma on the electrode and performing a predetermined treatment on the substrate;
A plasma CVD apparatus comprising:
前記電極を支持するステージを備え、
前記ステージを冷却することにより、前記電極を冷却して前記基板温度を下げる冷却手段をさらに備えることを特徴とする請求項1に記載のプラズマCVD装置。
A stage for supporting the electrode;
The plasma CVD apparatus according to claim 1, further comprising a cooling unit that cools the stage to cool the electrode to lower the substrate temperature.
前記冷却手段は、前記基板に成膜が行われているときに該基板の冷却を開始することを特徴とする請求項2に記載のプラズマCVD装置。   The plasma CVD apparatus according to claim 2, wherein the cooling unit starts cooling the substrate when film formation is performed on the substrate. 前記プラズマ発生手段が行う前記所定の処理は、炭化水素を反応ガスとしてプラズマ化して前記基板に成膜を行うことであることを特徴とする請求項1に記載のプラズマCVD装置。   2. The plasma CVD apparatus according to claim 1, wherein the predetermined process performed by the plasma generating unit is to form a film on the substrate by converting the plasma into a hydrocarbon as a reaction gas.
JP2007073357A 2007-03-12 2007-03-20 Plasma CVD equipment Expired - Fee Related JP4558755B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007073357A JP4558755B2 (en) 2007-03-20 2007-03-20 Plasma CVD equipment
US12/004,679 US20080226838A1 (en) 2007-03-12 2007-12-21 Plasma CVD apparatus and film deposition method
TW096149677A TWI359878B (en) 2007-03-12 2007-12-24 Plasma cvd apparatus and film deposition method
KR1020070136836A KR101010389B1 (en) 2007-03-12 2007-12-24 Plasma cvd apparatus and film deposition method
CN2007101857996A CN101325836B (en) 2007-03-12 2007-12-25 Plasma cvd apparatus and film deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073357A JP4558755B2 (en) 2007-03-20 2007-03-20 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JP2008231513A true JP2008231513A (en) 2008-10-02
JP4558755B2 JP4558755B2 (en) 2010-10-06

Family

ID=39904671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073357A Expired - Fee Related JP4558755B2 (en) 2007-03-12 2007-03-20 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP4558755B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037340A (en) * 2012-08-20 2014-02-27 Ulvac Japan Ltd Graphene film production device and method for producing graphene film
KR20160019793A (en) * 2014-08-12 2016-02-22 주식회사 제우스 Liquid processing apparatus for substrate and liquid processing method
WO2017221631A1 (en) * 2016-06-23 2017-12-28 株式会社アルバック Holding device
CN107881485A (en) * 2017-11-01 2018-04-06 深圳市华星光电半导体显示技术有限公司 The method for packing of plasma enhanced chemical vapor deposition equipment and oled panel
JP2020021952A (en) * 2017-07-07 2020-02-06 東京エレクトロン株式会社 Mounting table structure
WO2021024844A1 (en) * 2019-08-05 2021-02-11 日本発條株式会社 Stage and method for controlling temperature of substrate
JP2021534578A (en) * 2018-09-11 2021-12-09 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Chamber cooling equipment and semiconductor processing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105478U (en) * 1982-01-12 1983-07-18 株式会社日立国際電気 Susceptor electrode for plasma vapor phase growth
JPH08337497A (en) * 1995-06-09 1996-12-24 Iwatani Internatl Corp Vapor phase synthesis of diamond thin film
JPH0945620A (en) * 1995-07-26 1997-02-14 Hitachi Chem Co Ltd Plasma cvd system carbon electrode
JPH11307513A (en) * 1998-04-20 1999-11-05 Sony Corp Plasma treating apparatus for insulator substrate
JP2004193307A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Thin film manufacturing device
JP2005089865A (en) * 1993-07-20 2005-04-07 Semiconductor Energy Lab Co Ltd Film deposition method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105478U (en) * 1982-01-12 1983-07-18 株式会社日立国際電気 Susceptor electrode for plasma vapor phase growth
JP2005089865A (en) * 1993-07-20 2005-04-07 Semiconductor Energy Lab Co Ltd Film deposition method
JPH08337497A (en) * 1995-06-09 1996-12-24 Iwatani Internatl Corp Vapor phase synthesis of diamond thin film
JPH0945620A (en) * 1995-07-26 1997-02-14 Hitachi Chem Co Ltd Plasma cvd system carbon electrode
JPH11307513A (en) * 1998-04-20 1999-11-05 Sony Corp Plasma treating apparatus for insulator substrate
JP2004193307A (en) * 2002-12-11 2004-07-08 Matsushita Electric Ind Co Ltd Thin film manufacturing device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037340A (en) * 2012-08-20 2014-02-27 Ulvac Japan Ltd Graphene film production device and method for producing graphene film
KR20160019793A (en) * 2014-08-12 2016-02-22 주식회사 제우스 Liquid processing apparatus for substrate and liquid processing method
KR101870728B1 (en) * 2014-08-12 2018-07-23 주식회사 제우스 Liquid processing apparatus for substrate and liquid processing method
CN109314078B (en) * 2016-06-23 2023-02-24 株式会社爱发科 Holding device
WO2017221631A1 (en) * 2016-06-23 2017-12-28 株式会社アルバック Holding device
CN109314078A (en) * 2016-06-23 2019-02-05 株式会社爱发科 Holding meanss
US10763153B2 (en) 2016-06-23 2020-09-01 Ulvac, Inc. Holding apparatus
JP2020021952A (en) * 2017-07-07 2020-02-06 東京エレクトロン株式会社 Mounting table structure
CN107881485A (en) * 2017-11-01 2018-04-06 深圳市华星光电半导体显示技术有限公司 The method for packing of plasma enhanced chemical vapor deposition equipment and oled panel
JP2021534578A (en) * 2018-09-11 2021-12-09 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Chamber cooling equipment and semiconductor processing equipment
JP7062132B2 (en) 2018-09-11 2022-05-02 北京北方華創微電子装備有限公司 Chamber cooling equipment and semiconductor processing equipment
JP2021027161A (en) * 2019-08-05 2021-02-22 日本発條株式会社 Stage, deposition device or film processing device including the same, and substrate temperature control method
TWI772851B (en) * 2019-08-05 2022-08-01 日商日本發條股份有限公司 Temperature control method of stage and substrate
WO2021024844A1 (en) * 2019-08-05 2021-02-11 日本発條株式会社 Stage and method for controlling temperature of substrate

Also Published As

Publication number Publication date
JP4558755B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4558755B2 (en) Plasma CVD equipment
US20080226838A1 (en) Plasma CVD apparatus and film deposition method
US8307782B2 (en) Deposition apparatus and deposition method
JP4533925B2 (en) Film forming apparatus and film forming method
Fauzi et al. A critical review of the effects of fluid dynamics on graphene growth in atmospheric pressure chemical vapor deposition
KR101010389B1 (en) Plasma cvd apparatus and film deposition method
US6942892B1 (en) Hot element CVD apparatus and a method for removing a deposited film
WO2001071784A1 (en) Method of manufacturing semiconductor and manufacturing apparatus
US8034411B2 (en) Method of preventing abnormal large grains from being included into thin nano-crystalline diamond film
JP2011021253A (en) Film deposition system
JP2016190767A (en) Carbon nanotube assembly and production method for the same
JP2006306704A (en) Method of forming carbon film and carbon film
Kovach et al. Study of plasma induced nanostructure formation and surface morphology changes on tungsten and stainless steel at atmospheric pressure
Martin et al. High rate hot-wire chemical vapor deposition of silicon thin films using a stable TaC covered graphite filament
Varga et al. HFCVD growth of various carbon nanostructures on SWCNT paper controlled by surface treatment
TW594853B (en) The manufacturing method of diamond film and diamond film
CN101325836A (en) Plasma cvd apparatus and film deposition method
Li et al. Control of abnormal grain inclusions in the nanocrystalline diamond film deposited by hot filament CVD
JP5527821B2 (en) Corrosion resistant material
Skoblin et al. A Hybrid‐Type CVD System for Graphene Growth
TWI705156B (en) Heating component
JP3822059B2 (en) Method of warping deformation of silicon substrate
Hou et al. Microscopic investigation of Cu-induced crystallization of amorphous carbon at low temperatures
Smovzh et al. STABILITY OF GRAPHENE FILMS ON COPPER, SILICON, AND GLASS SUBSTRATES IN CONTACT WITH BOILING WATER
JP2008010579A (en) Semiconductor device manufacturing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees