JP2021533994A - Method for improving film formation efficiency of filler in water treatment reactor - Google Patents

Method for improving film formation efficiency of filler in water treatment reactor Download PDF

Info

Publication number
JP2021533994A
JP2021533994A JP2021531161A JP2021531161A JP2021533994A JP 2021533994 A JP2021533994 A JP 2021533994A JP 2021531161 A JP2021531161 A JP 2021531161A JP 2021531161 A JP2021531161 A JP 2021531161A JP 2021533994 A JP2021533994 A JP 2021533994A
Authority
JP
Japan
Prior art keywords
reactor
filler
film formation
improving
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021531161A
Other languages
Japanese (ja)
Inventor
林 叶
浩浩 孫
徐祥 張
洪強 任
開龍 黄
仁 任
Original Assignee
南京江島環境科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京江島環境科技研究院有限公司 filed Critical 南京江島環境科技研究院有限公司
Publication of JP2021533994A publication Critical patent/JP2021533994A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1263Sequencing batch reactors [SBR]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本発明は、以下の実施工程を用いる水処理反応器における充填剤の膜形成効率向上方法を開示し、逐次バッチ式で運転する反応器の内に活性汚泥を播種し、水理学的滞留時間が4hであり、1サイクルあたり、給水5min、曝気108〜111min、静置沈降2〜5min、出水2minからなり、ここで、給水の有機負荷が6〜12g/(L・d)であり、空気流速が1.6〜2.4cm/sであり、反応器が2〜4日目まで運転した際に、反応器の内に成膜微生物を多く含む好気性粒子汚泥が形成され、この際に反応器に充填剤を投入し、反応器の内に充填剤が入って2〜5日後に膜形成が完了する。本発明の膜形成方法は、他の膜形成方法と比較して、コストの高い特殊な微生物及び基質の投与を必要とせず、膜形成コストが低い。ランニングコストを低減すると共に、充填剤の膜形成時間を2〜5日間に短縮し、生物膜法の膜形成効率を大きく向上させる。【選択図】図3The present invention discloses a method for improving the film formation efficiency of a filler in a water treatment reactor using the following implementation steps, seeds activated sludge in a reactor operated in a sequential batch system, and has a hydraulic residence time. It is 4 hours and consists of water supply 5 min, aeration 108 to 111 min, static sedimentation 2 to 5 min, and water discharge 2 min per cycle, where the organic load of the water supply is 6 to 12 g / (L · d) and the air flow velocity. Is 1.6 to 2.4 cm / s, and when the reactor is operated from the 2nd to the 4th day, aerobic particle sludge containing a large amount of film-forming microorganisms is formed in the reactor, and the reaction occurs at this time. The filler is put into the reactor, and the film formation is completed 2 to 5 days after the filler is put in the reactor. Compared with other film forming methods, the film forming method of the present invention does not require administration of expensive special microorganisms and substrates, and the film forming cost is low. The running cost is reduced, the film forming time of the filler is shortened to 2 to 5 days, and the film forming efficiency of the biological film method is greatly improved. [Selection diagram] Fig. 3

Description

本発明は、水処理反応器における充填剤の膜形成効率向上方法に係り、汚水処理の技術分野に係る。 The present invention relates to a method for improving the film formation efficiency of a filler in a water treatment reactor, and relates to a technical field of sewage treatment.

汚水生物処理技術は、活性汚泥法と生物膜法に大別される。生物膜法は、活性汚泥法に比べて、微生物多様性が高い、生物量が豊富であり、汚泥生産量が少ない、衝撃に強い、管理が容易であり、ランニングコストが低い等の多くの利点を有する。このような利点から、汚水処理分野において生物膜法が広く用いられている。生物膜は、充填剤の表面に微生物が付着し成長して形成される。生物膜がある程度の厚さまで成長すると、酸素ガスによる物質移動が制限され、生物膜の外層が好気状態、内層が嫌気状態となる。生物膜微生物は、外側から内側に向かって順に好気性微生物、通性微生物及び嫌気性微生物からなるので、生物膜系は、一般に、高い微生物多様性を有する。汚水が生物膜表面を流れると、汚水中の汚染物質が生物膜表層に吸着されて内層に移行し、物質移動中に各種の汚染物質が除去される。生物膜がある程度の厚さまで成長すると、酸素や栄養素が内層に伝わらず、内層の生物膜が劣化して剥離する。その後、充填剤表面は、新しい生物膜の成長を継続し、系を長期間安定に動作させる。 Sewage biological treatment technology is roughly divided into activated sludge method and biological membrane method. Compared to the activated sludge method, the biomembrane method has many advantages such as high microbial diversity, abundant biomass, low sludge production, impact resistance, easy management, and low running cost. Has. Due to these advantages, the biological membrane method is widely used in the field of sewage treatment. The biofilm is formed by the adhesion of microorganisms to the surface of the filler and growth. When the biofilm grows to a certain thickness, mass transfer by oxygen gas is restricted, and the outer layer of the biofilm becomes aerobic and the inner layer becomes anaerobic. Biofilm systems generally have high microbial diversity, as biofilm microorganisms consist of aerobic microorganisms, euphoric microorganisms and anaerobic microorganisms in order from the outside to the inside. When sewage flows on the surface of the biological membrane, pollutants in the sewage are adsorbed on the surface layer of the biological membrane and migrate to the inner layer, and various pollutants are removed during mass transfer. When the biofilm grows to a certain thickness, oxygen and nutrients are not transmitted to the inner layer, and the biofilm in the inner layer deteriorates and peels off. The filler surface then continues to grow new biofilms, allowing the system to operate stably for extended periods of time.

生物膜技術は、近年急速に発展しているが、多くの要素によって制限されており、膜形成効率の低さが重要な制限要素の一つとなっている。従来の膜形成方法は、汚水処理場曝気池の活性汚泥を接種汚泥として用い、これを一旦蒸らし、生物膜反応器内の活性汚泥と廃水の混合物を排気し、処理すべき廃水を投入して膜形成を行っている。従来の膜形成方法では、膜形成の開始周期は、少なくとも15〜30日、さらにそれ以上必要であり、これは、系のランニングコストを著しく増加させる。近年、研究者は、膜形成効率を向上させるために、幾つかの新しい膜形成方法を提案している。特許「懸濁充填剤の生物膜形成性能を改善する方法」(出願番号200710105788.2)は、磁性粉または強磁性微粒子を添加することにより、充填剤と微生物との間の吸着能を強化し、膜形成を促進する。機能性微生物を投与する方法により膜形成効率を向上させることも数多く検討されている。これらの方法は、いずれも、ある程度膜形成効率を向上させることができるが、コスト、安全性、操作の煩雑さなどの要素の制約から、現実には大規模な普及が難しい。従って、生物膜汚水処理プロセスにおいては、迅速、簡易で効率の良い膜形成方法を検討することが重要な意味を持つ。 Although biomembrane technology has been rapidly developing in recent years, it is limited by many factors, and low membrane formation efficiency is one of the important limiting factors. In the conventional film forming method, activated sludge from the aeration pond of the sewage treatment plant is used as infusion sludge, which is once steamed, the mixture of activated sludge and wastewater in the biological membrane reactor is exhausted, and the wastewater to be treated is charged. Film formation is performed. In the conventional film formation method, the start cycle of film formation requires at least 15 to 30 days, and even more, which significantly increases the running cost of the system. In recent years, researchers have proposed several new film-forming methods to improve film-forming efficiency. The patent "Method for Improving Biofilm Formation Performance of Suspension Fillers" (Application No. 200710105788.2) enhances the adsorption capacity between the filler and microorganisms by adding magnetic powder or ferromagnetic fine particles. , Promotes film formation. Many studies have been conducted to improve the film formation efficiency by a method of administering a functional microorganism. All of these methods can improve the film formation efficiency to some extent, but in reality, it is difficult to spread them on a large scale due to restrictions on factors such as cost, safety, and complicated operation. Therefore, in the biofilm sewage treatment process, it is important to study a rapid, simple and efficient membrane forming method.

本発明は、馴化条件を最適化することにより、付着力の強い微生物群集を得ることができ、同時に微生物膜の急速な成長を促進できる条件を協調させることにより、反応器内における充填剤の膜形成効率を大幅に向上させることができる、水処理反応器における充填剤の膜形成効率向上方法を提供する。 The present invention can obtain a microbial community with strong adhesive force by optimizing the acclimation conditions, and at the same time, by coordinating the conditions that can promote the rapid growth of the microbial membrane, the membrane of the filler in the reactor. Provided is a method for improving the film forming efficiency of a filler in a water treatment reactor, which can significantly improve the forming efficiency.

上記の技術課題を解決するために、本発明は、以下の技術手段を採用する。
以下の実施工程を用いる水処理反応器における充填剤の膜形成効率向上方法であって、逐次バッチ式で運転する反応器の内に活性汚泥を播種し、水理学的滞留時間が4hであり、1サイクルあたり、給水5min、曝気108〜111min、静置沈降2〜5min、出水2minからなり、ここで、給水の有機負荷が6〜12g/(L・d)であり、空気流速が1.6〜2.4cm/sであり、反応器が2〜4日目まで運転した際に、反応器の内に成膜微生物を多く含む好気性粒子汚泥が形成され、この際に反応器に充填剤を投入し、反応器内に充填剤が入って2〜5日後に膜形成が完了する。
In order to solve the above technical problems, the present invention employs the following technical means.
It is a method for improving the film formation efficiency of a filler in a water treatment reactor using the following implementation steps, in which activated sludge is sown in a reactor operated in a sequential batch system, and the aeration residence time is 4 hours. Each cycle consists of 5 min of water supply, 108 to 111 min of aeration, 2 to 5 min of static sedimentation, and 2 min of water discharge, where the organic load of water supply is 6 to 12 g / (L · d) and the air flow velocity is 1.6. It is ~ 2.4 cm / s, and when the reactor is operated from the 2nd to the 4th day, aerobic particle sludge containing a large amount of film-forming microorganisms is formed in the reactor, and at this time, a filler is formed in the reactor. The film formation is completed 2 to 5 days after the filler is put into the reactor.

ここで、反応器は、筒状構造をなし、そのアスペクト比が20である。 Here, the reactor has a cylindrical structure and has an aspect ratio of 20.

ここで、接種する活性汚泥は、汚水処理場曝気池の活性汚泥であり、汚泥の濃度が3000〜8000mg/Lである。 Here, the activated sludge to be inoculated is the activated sludge in the aeration pond of the sewage treatment plant, and the sludge concentration is 3000 to 8000 mg / L.

ここで、反応器への給水中の有機炭素源が酢酸ナトリウムであり、酢酸ナトリウムの濃度が1000−2000mg/Lである。 Here, the organic carbon source in the water supply to the reactor is sodium acetate, and the concentration of sodium acetate is 1000-2000 mg / L.

ここで、反応容器への給水は、有機炭素源の他に、NHCl(50mg/L)、KHPO(10mg/L)、CaCl2HO(30mg/L)、MgSO7HO(25mg/L)、FeSO7HO(20mg/L)、HBO(0.05mg/L)、ZnCl(0.05mg/L)、CuCl(0.03mg/L)、MnSOO(0.05mg/L)、(NHMo244HO(0.05mg/L)、AlCl(0.05mg/L)、CoCl6HO(0.05mg/L)及びNiCl(0.05mg/L)をさらに含有する。 Here, the water supply to the reaction vessel, in addition to organic carbon sources, NH 4 Cl (50mg / L ), K 2 HPO 4 (10mg / L), CaCl 2 2H 2 O (30mg / L), MgSO 4 7H 2 O (25mg / L), FeSO 4 7H 2 O (20mg / L), H 3 BO 3 (0.05mg / L), ZnCl 2 (0.05mg / L), CuCl 2 (0.03mg / L) , MnSO 4 H 2 O (0.05mg / L), (NH 4) 6 Mo 7 O 24 4H 2 O (0.05mg / L), AlCl 3 (0.05mg / L), CoCl 2 6H 2 O ( It further contains 0.05 mg / L) and NiCl 2 (0.05 mg / L).

本発明で採用した装置は、円筒状反応器(アスペクト比20)であり、接種汚泥として都市汚水処理場曝気池汚泥を採用し、短い沈降時間(2〜5min)、高い有機負荷(6〜12g/(L・d))、大きい空気流速(1.6〜2.4cm/s)とし、水理学的滞留時間を4時間とする。反応器は、逐次バッチ式で運転し、各サイクルは、給水5min、曝気108〜111min、静置2〜5min、出水2minからなる。1サイクル(給水と排水)当たりの体積交換比は50〜70%である。この条件では生物膜方式での成長に適した微生物を多量に濃縮することができる。反応器の2〜4日目の運転で大量の微小汚泥粒子(好気性汚泥粒子)が見られ、この際に反応器の内に充填剤を投入する。充填剤の反応器への充填率は、50%以下である。充填剤の投入から2〜5日後に膜形成が完了する。本発明の膜形成方法は、特別な種菌や基質を必要とせず、簡便な操作で充填剤の迅速な膜形成が可能であり、生物膜法による汚水処理系の膜形成や開始時間を大幅に短縮することができる。 The apparatus adopted in the present invention is a cylindrical reactor (aspect ratio 20), adopts aeration pond sludge from an urban sewage treatment plant as infusion sludge, has a short settling time (2 to 5 min), and has a high organic load (6 to 12 g). / (L · d)), a large air flow velocity (1.6 to 2.4 cm / s), and a hydraulic residence time of 4 hours. The reactors are operated sequentially in batch mode, and each cycle consists of 5 min of water supply, 108 to 111 min of aeration, 2 to 5 min of standing still, and 2 min of water discharge. The volume exchange ratio per cycle (water supply and drainage) is 50 to 70%. Under these conditions, a large amount of microorganisms suitable for growth by the biofilm method can be concentrated. A large amount of fine sludge particles (aerobic sludge particles) are observed in the operation of the reactor on the 2nd to 4th days, and at this time, the filler is charged into the reactor. The filling rate of the filler into the reactor is 50% or less. Membrane formation is completed 2 to 5 days after the filler is added. The membrane forming method of the present invention does not require a special inoculum or substrate, enables rapid membrane formation of the filler with a simple operation, and significantly reduces the membrane formation and start time of the sewage treatment system by the biological membrane method. Can be shortened.

本発明は、従来技術と比較して以下の有利な効果を有する。
本発明の膜形成方法は、他の膜形成方法と比較して、コストの高い特殊な微生物及び基質の投与を必要とせず、膜形成コストが低い。本発明は、好気性汚泥粒子を利用して充填剤表面に膜形成を実現し、ランニングコストを低減すると共に、充填剤の膜形成時間を2〜5日間に短縮し、生物膜法の膜形成効率を大きく向上させる。同時に充填剤上に形成された微生物膜が剥離しにくい。本発明の膜形成方法に用いる装置は、構造が簡単でランニングコストが低く、膜形成効率が高い。
The present invention has the following advantageous effects as compared with the prior art.
Compared with other film forming methods, the film forming method of the present invention does not require administration of expensive special microorganisms and substrates, and the film forming cost is low. The present invention realizes film formation on the filler surface by utilizing aerobic sludge particles, reduces running costs, shortens the film formation time of the filler to 2 to 5 days, and forms a film by the biological film method. Greatly improve efficiency. At the same time, the microbial membrane formed on the filler is difficult to peel off. The apparatus used in the film forming method of the present invention has a simple structure, a low running cost, and a high film forming efficiency.

従来の方法を用いて15日間膜形成した充填剤を示す図である。It is a figure which shows the filler which formed the film for 15 days using the conventional method. 本発明の実施例1の膜形成方法を用いて、2日目に膜形成した充填剤を示す図である。It is a figure which shows the filler which formed the film on the 2nd day using the film formation method of Example 1 of this invention. 本発明の膜形成方法に用いる実験装置の構成を示す図である。It is a figure which shows the structure of the experimental apparatus used for the film formation method of this invention.

以下、図面及び具体的な実施例を参照しながら本発明の技術手段を更に説明する。 Hereinafter, the technical means of the present invention will be further described with reference to the drawings and specific examples.

実施例1
反応器は、円筒状構造を採用し、反応エリアは、直径5cm、高さ100cmであり、反応エリアの体積を2Lとする。逐次バッチ式の反応器の水理学的滞留時間は、4時間であり、1サイクル当たりの体積交換比が50%である。1サイクルは、給水5min、曝気111min、静置沈降2min、出水2minからなる。有機負荷は、6g/(L・d)であり、空気流速は、2.4cm/s(反応器内の空気流速を曝気で制御した)である。反応器の接種汚泥は、都市汚水処理場曝気池から採取し、反応器の初期汚泥濃度は、6000mg/Lである。有機炭素源として酢酸ナトリウムを用い、COD濃度は1000mg/Lである。反応器を室温で運転し、pHを6.5〜8.5に維持する。図2に示すように、反応器が運転した2日目に充填剤を投入し、充填剤の充填率が20%であり、充填剤が反応器に投入されてから2日目に、生物膜の厚さが2mmに達する。
Example 1
The reactor adopts a cylindrical structure, the reaction area has a diameter of 5 cm and a height of 100 cm, and the volume of the reaction area is 2 L. The hydraulic residence time of the sequential batch reactor is 4 hours and the volume exchange ratio per cycle is 50%. One cycle consists of water supply 5 min, aeration 111 min, static sedimentation 2 min, and water discharge 2 min. The organic load is 6 g / (L · d) and the air flow rate is 2.4 cm / s (the air flow rate in the reactor is controlled by aeration). The inoculated sludge of the reactor is collected from the aeration pond of the urban sewage treatment plant, and the initial sludge concentration of the reactor is 6000 mg / L. Sodium acetate is used as the organic carbon source, and the COD concentration is 1000 mg / L. The reactor is operated at room temperature to maintain the pH at 6.5-8.5. As shown in FIG. 2, the filler was charged on the second day when the reactor was operated, the filling factor of the filler was 20%, and the biofilm was charged on the second day after the filler was charged into the reactor. The thickness reaches 2 mm.

実施例2
反応器は、円筒状構造を採用し、反応エリアは、直径5cm、高さ100cmであり、反応エリアの体積を2Lとする。逐次バッチ式の反応器の水理学的滞留時間は、4時間であり、1サイクル当たりの体積交換比が50%である。1サイクルは、給水5min、曝気111min、静置沈降2min、出水2minからなる。有機負荷は、12g/(L・d)であり、空気流速は、2.4cm/sである。反応器の接種汚泥は、都市汚水処理場曝気池から採取し、反応器の初期汚泥濃度は、6000mg/Lである。有機炭素源として酢酸ナトリウムを用い、COD濃度は2000mg/Lである。反応器を室温で運転し、pHを6.5〜8.5に維持する。反応器が運転した2日目に充填剤を投入し、充填剤の充填率が20%であり、充填剤が反応器に投入されてから2日目に、生物膜の厚さが2mmに達する。実施例1と比較すると、生物膜の厚さは、有機負荷が12g/(L・d)の場合とあまり差がないことが分かるので、有機負荷が6g/(L・d)であっても、本方法による高速の膜形成を実現することができる。
Example 2
The reactor adopts a cylindrical structure, the reaction area has a diameter of 5 cm and a height of 100 cm, and the volume of the reaction area is 2 L. The hydraulic residence time of the sequential batch reactor is 4 hours and the volume exchange ratio per cycle is 50%. One cycle consists of water supply 5 min, aeration 111 min, static sedimentation 2 min, and water discharge 2 min. The organic load is 12 g / (L · d) and the air flow velocity is 2.4 cm / s. The inoculated sludge of the reactor is collected from the aeration pond of the urban sewage treatment plant, and the initial sludge concentration of the reactor is 6000 mg / L. Sodium acetate is used as the organic carbon source, and the COD concentration is 2000 mg / L. The reactor is operated at room temperature to maintain the pH at 6.5-8.5. The filler is charged on the second day when the reactor is operated, the filling rate of the filler is 20%, and the thickness of the biofilm reaches 2 mm on the second day after the filler is charged into the reactor. .. As compared with Example 1, it can be seen that the thickness of the biofilm is not so different from the case where the organic load is 12 g / (L · d), so that even if the organic load is 6 g / (L · d). , High-speed film formation can be realized by this method.

比較例1
本実験は、従来の方法を用いて膜形成をし、流動床生物膜反応器(MBBR)を、膜形成充填剤を用いて運転する。まず活性汚泥中に充填剤を投入して48h蒸らし、MBBR反応器内の活性汚泥と廃水の混合物を排気し、処理すべき廃水を投入する。MBBR反応器の水理学的滞留時間は、6hである。有機炭素源として酢酸ナトリウムを用い、COD濃度が300mg/Lである。活性汚泥に充填剤を入れ48h蒸らした後、生物膜の付着はほとんどなく、15日間の運転で生物膜が出現するが、図1に示すように、生物膜の厚さが1mm未満であり、その膜形成効率が本発明の膜形成方法よりも大幅に低下することが分かる。
Comparative Example 1
In this experiment, a membrane is formed using a conventional method, and a fluidized bed biofilm reactor (MBBR) is operated using a membrane-forming filler. First, the filler is put into the activated sludge and steamed for 48 hours, the mixture of the activated sludge and the wastewater in the MBBR reactor is exhausted, and the wastewater to be treated is put into it. The hydraulic residence time of the MBBR reactor is 6 hours. Sodium acetate is used as an organic carbon source, and the COD concentration is 300 mg / L. After the filler was added to the activated sludge and steamed for 48 hours, there was almost no adhesion of the biofilm, and the biofilm appeared after 15 days of operation, but as shown in FIG. 1, the thickness of the biofilm was less than 1 mm. It can be seen that the film forming efficiency is significantly lower than that of the film forming method of the present invention.

本発明の膜形成方法は、微生物馴化の際に、大きいアスペクト、短時間の沈降時間、高有機負荷、大空気流速を採用する。この条件は、成膜微生物を多量に含有する好気性粒子汚泥の形成に適する。好気性粒子汚泥は、成膜微生物を反応器に大量に凝縮し、好気性粒子汚泥の形成初期に充填剤を加えると、充填剤表面に生物膜を迅速に形成することができる。同時にこの条件で馴化した微生物群集は、強い付着力を有し、充填剤(本発明で使用する充填剤は、質量部でポリプロピレン50〜60部、エポキシ樹脂20〜30部及び澱粉5〜10部を混合してなり、該充填剤は、比表面積が大きく、空隙率が高く、微生物の付着に有利である利点を有し、微生物の付着及び成長に適している)表面に付着しやすく、充填剤上の成膜が剥離しにくい。また、高い有機負荷によって、充填剤の表面に付着した微生物を迅速に成長させ、生物膜の迅速な形成に有利であり、更に充填剤の成膜効率を向上させる。 The film forming method of the present invention employs a large aspect, a short settling time, a high organic load, and a large air flow velocity during microbial acclimation. This condition is suitable for the formation of aerobic particle sludge containing a large amount of film-forming microorganisms. In aerobic particle sludge, a large amount of film-forming microorganisms are condensed in a reactor, and when a filler is added at the initial stage of formation of aerobic particle sludge, a biological film can be rapidly formed on the surface of the filler. At the same time, the microbial community acclimatized under these conditions has a strong adhesive force and is a filler (the filler used in the present invention is 50 to 60 parts by mass of polypropylene, 20 to 30 parts of epoxy resin and 5 to 10 parts of starch. The filler has the advantages of having a large specific surface area, a high void ratio, and an advantage in the adhesion of microorganisms, and is suitable for the adhesion and growth of microorganisms. The film on the agent is difficult to peel off. Further, due to the high organic load, the microorganisms adhering to the surface of the filler are rapidly grown, which is advantageous for the rapid formation of the biofilm, and further improves the film formation efficiency of the filler.

図3は、本発明の膜形成方法に用いる実験装置を示す。給水槽に、微生物を成長させる炭素源として酢酸ナトリウムを一定濃度で含む給水を収容し、この給水を蠕動ポンプにより反応器内に供給し、曝気ポンプにより反応器内の空気流速を制御して、高有機負荷(6〜12g/(L・d))の給水を調製する。この給水が反応器内に接種した活性汚泥と作用して、成膜微生物粒子を多く含む好気性粒子汚泥を形成し、この好気性粒子汚泥の形成直後に、反応槽内に充填剤を投入し、この充填剤の投入後、速やかに充填剤表面に生物膜を形成する。反応器排水は、廃液槽内に入るように電磁弁によって制御される。 FIG. 3 shows an experimental device used in the film forming method of the present invention. The water tank contains water containing sodium acetate at a constant concentration as a carbon source for growing microorganisms, this water is supplied into the reactor by a perturbation pump, and the air flow velocity in the reactor is controlled by an aeration pump. Prepare a water supply with a high organic load (6-12 g / (L · d)). This water supply acts with the activated sludge inoculated into the reactor to form aerobic particle sludge containing a large amount of film-forming microbial particles, and immediately after the formation of this aerobic particle sludge, a filler is charged into the reaction tank. , A biofilm is formed on the surface of the filler immediately after the filler is added. Reactor drainage is controlled by a solenoid valve to enter the wastewater tank.

(付記)
(付記1)
以下の実施工程を用いる水処理反応器における充填剤の膜形成効率向上方法であって、
逐次バッチ式で運転する反応器の内に活性汚泥を播種し、水理学的滞留時間が4hであり、1サイクルあたり、給水5min、曝気108〜111min、静置沈降2〜5min、出水2minからなり、ここで、給水の有機負荷が6〜12g/(L・d)であり、空気流速が1.6〜2.4cm/sであり、
前記反応器が2〜4日目まで運転した際に、前記反応器の内に成膜微生物を多く含む好気性粒子汚泥が形成され、この際に前記反応器に充填剤を投入し、
前記反応器の内に前記充填剤が入って2〜5日後に膜形成が完了することを特徴とする、
水処理反応器における充填剤の膜形成効率向上方法。
(Additional note)
(Appendix 1)
A method for improving the film formation efficiency of a filler in a water treatment reactor using the following implementation steps.
Activated sludge is sown in a reactor that operates in a sequential batch system, and the hydraulic residence time is 4 hours. Here, the organic load of the water supply is 6 to 12 g / (L · d), the air flow velocity is 1.6 to 2.4 cm / s, and the air flow velocity is 1.6 to 2.4 cm / s.
When the reactor was operated for 2 to 4 days, aerobic particle sludge containing a large amount of film-forming microorganisms was formed in the reactor, and at this time, a filler was added to the reactor.
It is characterized in that the film formation is completed 2 to 5 days after the filler is placed in the reactor.
A method for improving the film formation efficiency of a filler in a water treatment reactor.

(付記2)
前記反応器は、筒状構造をなし、そのアスペクト比が20であることを特徴とする、
付記1に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 2)
The reactor has a tubular structure and has an aspect ratio of 20.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 1.

(付記3)
前記反応器の内に接種する活性汚泥は、汚水処理場曝気池の活性汚泥であり、汚泥の濃度が3000〜8000mg/Lであることを特徴とする、
付記1に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 3)
The activated sludge to be inoculated into the reactor is the activated sludge in the aeration pond of the sewage treatment plant, and the sludge concentration is 3000 to 8000 mg / L.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 1.

(付記4)
1サイクル当たりの体積交換比が50〜70%であることを特徴とする、
付記1に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 4)
The volume exchange ratio per cycle is 50 to 70%.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 1.

(付記5)
前記反応器の内の温度が15〜30℃であり、pHが6.5〜8.5であることを特徴とする、
付記1に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 5)
The temperature inside the reactor is 15 to 30 ° C., and the pH is 6.5 to 8.5.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 1.

(付記6)
前記反応容器への給水は、有機炭素源の他に、50mg/LNHCl、10mg/LKHPO、30mg/LCaCl2HO、25mg/LMgSO7HO、20mg/LFeSO7HO、0.05mg/LHBO、0.05mg/LZnCl、0.03mg/LCuCl、0.05mg/LMnSOO、0.05mg/L(NHMo244HO、0.05mg/LAlCl、0.05mg/LCoCl6HO及び0.05mg/LNiClをさらに含有することを特徴とする、
付記1に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 6)
Supply of water to the reaction vessel, in addition to organic carbon sources, 50mg / LNH 4 Cl, 10mg / LK 2 HPO 4, 30mg / LCaCl 2 2H 2 O, 25mg / LMgSO 4 7H 2 O, 20mg / LFeSO 4 7H 2 O, 0.05mg / LH 3 BO 3 , 0.05mg / LZnCl 2, 0.03mg / LCuCl 2, 0.05mg / LMnSO 4 H 2 O, 0.05mg / L (NH 4) 6 Mo 7 O 24 4H 2 O, 0.05mg / LAlCl 3, further characterized in that it contains 0.05mg / LCoCl 2 6H 2 O and 0.05mg / LNiCl 2,
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 1.

(付記7)
前記反応器への前記充填剤の充填率が50%以下であることを特徴とする、
付記1に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 7)
The reactor is characterized in that the filling rate of the filler is 50% or less.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 1.

(付記8)
前記反応器への給水中の前記有機炭素源が酢酸ナトリウムであり、酢酸ナトリウムの濃度が1000−2000mg/Lであることを特徴とする、
付記6に記載の水処理反応器における充填剤の膜形成効率向上方法。
(Appendix 8)
The organic carbon source in the water supplied to the reactor is sodium acetate, and the concentration of sodium acetate is 1000-2000 mg / L.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to Appendix 6.

Claims (8)

以下の実施工程を用いる水処理反応器における充填剤の膜形成効率向上方法であって、
逐次バッチ式で運転する反応器の内に活性汚泥を播種し、水理学的滞留時間が4hであり、1サイクルあたり、給水5min、曝気108〜111min、静置沈降2〜5min、出水2minからなり、ここで、給水の有機負荷が6〜12g/(L・d)であり、空気流速が1.6〜2.4cm/sであり、
前記反応器が2〜4日目まで運転した際に、前記反応器の内に成膜微生物を多く含む好気性粒子汚泥が形成され、この際に前記反応器に充填剤を投入し、
前記反応器の内に前記充填剤が入って2〜5日後に膜形成が完了することを特徴とする、
水処理反応器における充填剤の膜形成効率向上方法。
A method for improving the film formation efficiency of a filler in a water treatment reactor using the following implementation steps.
Activated sludge is sown in a reactor that operates in a sequential batch system, and the hydraulic residence time is 4 hours. Here, the organic load of the water supply is 6 to 12 g / (L · d), the air flow velocity is 1.6 to 2.4 cm / s, and the air flow velocity is 1.6 to 2.4 cm / s.
When the reactor was operated for 2 to 4 days, aerobic particle sludge containing a large amount of film-forming microorganisms was formed in the reactor, and at this time, a filler was added to the reactor.
It is characterized in that the film formation is completed 2 to 5 days after the filler is placed in the reactor.
A method for improving the film formation efficiency of a filler in a water treatment reactor.
前記反応器は、筒状構造をなし、そのアスペクト比が20であることを特徴とする、
請求項1に記載の水処理反応器における充填剤の膜形成効率向上方法。
The reactor has a tubular structure and has an aspect ratio of 20.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 1.
前記反応器の内に接種する活性汚泥は、汚水処理場曝気池の活性汚泥であり、汚泥の濃度が3000〜8000mg/Lであることを特徴とする、
請求項1に記載の水処理反応器における充填剤の膜形成効率向上方法。
The activated sludge to be inoculated into the reactor is the activated sludge in the aeration pond of the sewage treatment plant, and the sludge concentration is 3000 to 8000 mg / L.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 1.
1サイクル当たりの体積交換比が50〜70%であることを特徴とする、
請求項1に記載の水処理反応器における充填剤の膜形成効率向上方法。
The volume exchange ratio per cycle is 50 to 70%.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 1.
前記反応器の内の温度が15〜30℃であり、pHが6.5〜8.5であることを特徴とする、
請求項1に記載の水処理反応器における充填剤の膜形成効率向上方法。
The temperature inside the reactor is 15 to 30 ° C., and the pH is 6.5 to 8.5.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 1.
前記反応容器への給水は、有機炭素源の他に、50mg/LNHCl、10mg/LKHPO、30mg/LCaCl2HO、25mg/LMgSO7HO、20mg/LFeSO7HO、0.05mg/LHBO、0.05mg/LZnCl、0.03mg/LCuCl、0.05mg/LMnSOO、0.05mg/L(NHMo244HO、0.05mg/LAlCl、0.05mg/LCoCl6HO及び0.05mg/LNiClをさらに含有することを特徴とする、
請求項1に記載の水処理反応器における充填剤の膜形成効率向上方法。
Supply of water to the reaction vessel, in addition to organic carbon sources, 50mg / LNH 4 Cl, 10mg / LK 2 HPO 4, 30mg / LCaCl 2 2H 2 O, 25mg / LMgSO 4 7H 2 O, 20mg / LFeSO 4 7H 2 O, 0.05mg / LH 3 BO 3 , 0.05mg / LZnCl 2, 0.03mg / LCuCl 2, 0.05mg / LMnSO 4 H 2 O, 0.05mg / L (NH 4) 6 Mo 7 O 24 4H 2 O, 0.05mg / LAlCl 3, further characterized in that it contains 0.05mg / LCoCl 2 6H 2 O and 0.05mg / LNiCl 2,
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 1.
前記反応器への前記充填剤の充填率が50%以下であることを特徴とする、
請求項1に記載の水処理反応器における充填剤の膜形成効率向上方法。
The reactor is characterized in that the filling rate of the filler is 50% or less.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 1.
前記反応器への給水中の前記有機炭素源が酢酸ナトリウムであり、酢酸ナトリウムの濃度が1000−2000mg/Lであることを特徴とする、
請求項6に記載の水処理反応器における充填剤の膜形成効率向上方法。
The organic carbon source in the water supplied to the reactor is sodium acetate, and the concentration of sodium acetate is 1000-2000 mg / L.
The method for improving the film formation efficiency of a filler in the water treatment reactor according to claim 6.
JP2021531161A 2018-08-09 2019-07-12 Method for improving film formation efficiency of filler in water treatment reactor Pending JP2021533994A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810907066.7A CN108892235B (en) 2018-08-09 2018-08-09 Method for improving filler film forming efficiency in water treatment reactor
CN201810907066.7 2018-08-09
PCT/CN2019/095695 WO2020029743A1 (en) 2018-08-09 2019-07-12 Method for improving film formation efficiency of packing material in water treatment reactor

Publications (1)

Publication Number Publication Date
JP2021533994A true JP2021533994A (en) 2021-12-09

Family

ID=64353687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021531161A Pending JP2021533994A (en) 2018-08-09 2019-07-12 Method for improving film formation efficiency of filler in water treatment reactor

Country Status (3)

Country Link
JP (1) JP2021533994A (en)
CN (1) CN108892235B (en)
WO (1) WO2020029743A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892235B (en) * 2018-08-09 2021-07-20 南京江岛环境科技研究院有限公司 Method for improving filler film forming efficiency in water treatment reactor
CN112520858B (en) * 2019-09-17 2022-06-28 中国科学院过程工程研究所 Method for improving biofilm formation efficiency and application
CN111439830A (en) * 2020-05-20 2020-07-24 内蒙古圣清科技有限公司 MBBR suspended biological filler and preparation method thereof
CN112939206A (en) * 2021-01-28 2021-06-11 南开大学 Gas stripping double circulation-continuous flow granular sludge reactor and method for treating sewage by using same
CN112939210A (en) * 2021-02-06 2021-06-11 重庆大学 Integrated sewage treatment device and method utilizing carbon capture and aerobic granular sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309377A (en) * 1995-05-23 1996-11-26 Nkk Corp Microbe treatment process for waste water containing hard-to-decompose cod component
JP2015077534A (en) * 2013-10-15 2015-04-23 栗田工業株式会社 Anaerobic treatment method and device
CN108892235A (en) * 2018-08-09 2018-11-27 南京江岛环境科技研究院有限公司 A method of for improving biofilm efficiency in water processing reactor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019547A1 (en) * 1991-05-01 1992-11-12 Level Valley Dairy Company Wastewater treatment system
JP2001179282A (en) * 1999-12-22 2001-07-03 Mitsubishi Heavy Ind Ltd Immersion membrane treatment apparatus
JP4927270B2 (en) * 2001-08-07 2012-05-09 旭有機材工業株式会社 Organic wastewater treatment method
CN100478287C (en) * 2007-03-09 2009-04-15 山西大学 Film coating method of filling material in biological contact oxidation pond
CN101913710B (en) * 2010-08-04 2011-10-05 中国海洋大学 Suspended packing microbial quick film forming method
CN102010058B (en) * 2010-09-29 2012-12-05 北京师范大学 Aerobic granular sludge culture method suitable to low-concentration domestic sewage
CN103043792B (en) * 2013-01-19 2014-05-21 东北电力大学 Method and device for cultivating anaerobic granular sludge
CN104817168A (en) * 2015-04-13 2015-08-05 广东石油化工学院 Biofilm culturing method of MBBR technology fillers
AU2016277038A1 (en) * 2015-06-09 2017-12-07 EssDe GmbH Method for biological cleaning of wastewater
CN104944573B (en) * 2015-06-24 2017-09-01 北京工业大学 A kind of method that degradable 2 CP activated sludge is tamed by co-substrate of glucose
CN105948225B (en) * 2016-05-05 2018-07-20 四川大学 Flexible biological ball and its cultural method for wastewater treatment
JP6654981B2 (en) * 2016-07-26 2020-02-26 水ing株式会社 Anaerobic treatment of organic wastewater
CN107176700B (en) * 2017-07-25 2021-02-05 哈尔滨工业大学 Method for treating domestic sewage by using aerobic denitrifying bacteria pre-domesticated filler reactor
CN107364955B (en) * 2017-07-31 2021-04-30 江苏中车环保设备有限公司 Film forming method of filler for treating domestic sewage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309377A (en) * 1995-05-23 1996-11-26 Nkk Corp Microbe treatment process for waste water containing hard-to-decompose cod component
JP2015077534A (en) * 2013-10-15 2015-04-23 栗田工業株式会社 Anaerobic treatment method and device
CN108892235A (en) * 2018-08-09 2018-11-27 南京江岛环境科技研究院有限公司 A method of for improving biofilm efficiency in water processing reactor

Also Published As

Publication number Publication date
CN108892235A (en) 2018-11-27
CN108892235B (en) 2021-07-20
WO2020029743A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP2021533994A (en) Method for improving film formation efficiency of filler in water treatment reactor
CN106542655B (en) Rapid biofilm formation method for efficient denitrification microbial agent
de Kreuk et al. Selection of slow growing organisms as a means for improving aerobic granular sludge stability
CN101205526B (en) Method for rapidly culturing anaerobic ammonium oxidation bacteria by up-flow type anaerobic sludge bed reactor
CN101538087A (en) CMABR (carbon tube membrane-aerated biofilm reactor) for running single-stage autotrophic biological nitrogen removal process
CN102092846B (en) Continuous culture method for aerobic particle sludge with synchronous denitrification and carbon removal function
CN112142199A (en) Device and method for improving integrated partial denitrification-anaerobic ammonia oxidation coupling denitrification performance
Jin et al. Performance of a nitrifying airlift reactor using granular sludge
CN109052639A (en) A kind of cultural method of high performance synchronous denitrification and desulfurization anaerobic sludge
CN106635923A (en) Method for preparing high-density salt-tolerant denitrifying bacterium agent applicable to wastewater treatment
CN101265458A (en) Method for preparing strong film-forming bacterium and reinforcing sewage denitrogenation
CN107055760A (en) A kind of method that efficient nitrosation is realized based on ammonia nitrogen waste water
CN110563154A (en) microbial starting method for biological aerated filter
CN106957109B (en) Horizontal flow biomembrane reaction device with functions of slowly releasing alkalinity and carbon source
CN110282749A (en) A kind of simulated wastewater and method of fast culture autotrophic denitrification Thiobacillus sludge
CN112875851B (en) Method for promoting aerobic sludge granulation to treat organic wastewater by using carbon nanotubes
CN104229979A (en) MBR denitrification integrated device and application thereof
CN111675320B (en) Method for operating Anammox process at low temperature
JP2002001389A (en) Production process of biological membrane and continuous treatment equipment for inorganic ammonate containing wastewater, using the same membrane
CN102432097B (en) Method for quickly starting anaerobic ammonium oxidation in upflow packed bed reactor
CN102259977A (en) Denitrification method of wastewater containing ammonia nitrogen
CN115520961A (en) Diatomite reinforcement-based high ammonia nitrogen wastewater nitrosation treatment method
CN213895337U (en) Device for improving denitrification-anaerobic ammonia oxidation coupling denitrification performance
CN114349181B (en) Non-energy-consumption oxygenation constructed wetland system, operation method and application
CN108083431B (en) Biological nitrogen removal reactor of sewage based on two-stage reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221108