JP2021526243A - 全反射型太陽コロナグラフセンサ及び熱制御サブシステム - Google Patents
全反射型太陽コロナグラフセンサ及び熱制御サブシステム Download PDFInfo
- Publication number
- JP2021526243A JP2021526243A JP2021516522A JP2021516522A JP2021526243A JP 2021526243 A JP2021526243 A JP 2021526243A JP 2021516522 A JP2021516522 A JP 2021516522A JP 2021516522 A JP2021516522 A JP 2021516522A JP 2021526243 A JP2021526243 A JP 2021526243A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- assembly
- sun
- mirror
- coronagraph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/023—Catoptric systems, e.g. image erecting and reversing system for extending or folding an optical path, e.g. delay lines
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
- G02B17/0657—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which all of the mirrors share a common axis of rotational symmetry
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0647—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
- G02B17/0663—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/02—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
- G02B23/06—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0833—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/108—Beam splitting or combining systems for sampling a portion of a beam or combining a small beam in a larger one, e.g. wherein the area ratio or power ratio of the divided beams significantly differs from unity, without spectral selectivity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/181—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Astronomy & Astrophysics (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Photovoltaic Devices (AREA)
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
Abstract
太陽を含む広視野を連続的に撮像するためのコロナグラフ光学システム及び方法が提供される。コロナグラフ光学システムの例は、被観察シーンからの光線と太陽の直接的な太陽像とを受ける全反射型前部光学系アセンブリと、被観察シーンの画像を生成するように構成されたセンサアセンブリと、前部光学系アセンブリから上記光線を受け、上記光線をセンサアセンブリへと反射するように構成された全反射型中継光学系アセンブリと、前部光学系アセンブリと中継光学系アセンブリとの間に配置され、前部光学系アセンブリの入射開口が太陽に向けて連続的に位置決めされている間、太陽の直接的な太陽像が中継光学系アセンブリを避けて反射され且つ上記光線が中継光学系アセンブリへと反射されるように動的に構成可能である太陽排斥光学コンポーネントとを含む。
Description
従来の望遠鏡光学システムは、システムのコンポーネント上への極端な太陽熱負荷に耐えることができないため、広い視界で長期間にわたって太陽視線に近い(例えば、太陽に近い)物体を検知することは問題のあることである。結果として、それらは、光学系ミスアライメント及び光学表面の歪みに起因する非常に著しい画質劣化を被り、それ故に、それらの意図する目的に適さないものになる。
既存のコロナグラフは、太陽熱負荷が強すぎて、コロナグラフのコンポーネントが、問題となる劣化なしで、効果的に物体を検知することができないので、典型的に一時的期間でのみ、狭い視野及び狭いスペクトル帯域で太陽近くの物体を検知することができるのみである。そのようなコロナグラフは典型的に、太陽の直接的な太陽像を遮る意義を持つシールド又はバッフルを実装している。従って、それらは太陽に非常に近い特定の物体を見ることができないという制約を受ける。
態様及び実施形態は、全反射型の光路と、システムの視野内の太陽の様々な位置に対して調節可能な、動的に制御可能な太陽排斥光学コンポーネント(例えば、マイクロミラーアレイ)とを含み、太陽の近くに位置する物体の連続的な撮像を可能にする、コロナグラフ光学システムに向けられる。
一実施形態によれば、広視野を連続的に撮像するためのコロナグラフ光学システムは、太陽に向けて位置決め可能な入射開口を持ち、前記広視野にわたって光線を受けるように構成された全反射型前部光学系アセンブリであり、当該全反射型前部光学系アセンブリは、前記入射開口を介して前記光線を受けて前記光線を順に反射する複数の前部光学系ミラーを含み、前記光線は、被観察シーンからの第1の光線と、太陽の直接的な太陽像に対応する第2の光線とを含む、全反射型前部光学系アセンブリと、少なくとも1つの感光検出器を含み、前記第1の光線に基く被観察シーンの画像を生成するように構成されたセンサアセンブリと、前記全反射型前部光学系アセンブリから前記第1の光線を受け、前記第1の光線を前記センサアセンブリへと反射するように構成された全反射型中継光学系アセンブリと、前記全反射型前部光学系アセンブリと前記全反射型中継光学系アセンブリとの間に配置された太陽排斥光学コンポーネントであり、前記全反射型前部光学系アセンブリの前記入射開口が太陽に向けて連続的に位置決めされている間、全反射型前部光学系アセンブリによって当該太陽排斥光学コンポーネントへと反射された太陽の前記直接的な太陽像が前記全反射型中継光学系アセンブリを避けて反射され、且つ前記第1の光線が前記全反射型中継光学系アセンブリへと反射されるように、動的に構成可能である太陽排斥光学コンポーネントと、を含む。
一例において、前記広視野は、5度と30度との間である。
一例において、前記全反射型前部光学系アセンブリは反射トリプレットであり、前記複数の前部光学系ミラーは、前記入射開口から前記光線を受けて前記光線を反射する第1ミラーと、前記第1ミラーから反射された前記光線を受けて前記光線を反射する第2ミラーと、前記第2ミラーから反射された前記光線を受けて前記光線を前記太陽排斥光学コンポーネントへと反射する第3ミラーと、で構成される。
他の一例において、前記複数の前部光学系ミラーは、前記入射開口から前記光線を受けて前記光線を反射する第1ミラーと、前記第1ミラーから反射された前記光線を受けて前記光線を反射する第2ミラーと、前記第2ミラーから反射された前記光線を受けて前記光線を反射する第3ミラーと、前記第3ミラーから反射された前記光線を受けて前記光線を前記太陽排斥光学コンポーネントへと反射する第4ミラーと、で構成される。
一例において、前記全反射型中継光学系アセンブリは、5回反射有限共役リレーシステムである。
一例において、前記太陽排斥光学コンポーネントは、動的に制御可能なマイクロミラーアレイを含む。前記動的に制御可能なマイクロミラーアレイは、複数のマイクロミラーを含むことができる、各マイクロミラーが、入射光が第1方向に反射される第1の位置と、前記入射光が第2方向に反射される第2の位置との間で個別に制御可能であり、前記第1方向と前記第2方向との間に所定の角度分離が存在する。一例において、前記太陽排斥コンポーネントは更に、前記動的に制御可能なマイクロミラーアレイと前記センサアセンブリとに結合されたコントローラを含み、該コントローラは、前記全反射型前部光学系アセンブリの前記入射開口が太陽に向けて連続的に位置決めされている間、太陽の前記直接的な太陽像を、前記全反射型中継光学系アセンブリを避けて反射するように、前記センサアセンブリから受け取った情報に基づいて前記複数のマイクロミラーの個々のマイクロミラーを前記第1の位置と前記第2の位置との間で動的に切り換えるように構成される。
一例において、当該コロナグラフ光学システムは更に、前記全反射型前部光学系アセンブリに結合された熱制御サブシステムを含むことができ、該熱制御サブシステムは、前記入射開口が太陽に向けて連続的に位置決めされることができるように熱を伝え去る。一例において、前記熱制御サブシステムは複数の熱伝達シュラウドを含み、各熱伝達シュラウドが、熱を伝達するために、前記複数の前部光学系ミラーのうちの1つに放射結合される。当該コロナグラフ光学システムは更に、前記複数の前部光学系ミラーと少なくとも1つのコールドバイアスヒートパイプとを収容する光学ベンチを有することができ、前記熱制御サブシステムは、各々が前記複数の熱伝達シュラウドのうちの1つと前記光学ベンチとに熱的に結合される複数の熱伝達部材を含み、該複数の熱伝達部材は、前記少なくとも1つのコールドバイアスヒートパイプに熱的に結合される。一例において、前記複数の前部光学系ミラー及び前記光学ベンチは各々、炭化ケイ素、低膨張ガラス、及び低膨張複合材料からなる群から選択された低熱膨張材料からなる。他の一例において、前記熱制御サブシステムは更に、前記全反射型前部光学系アセンブリの温度を制御するために前記複数の前部光学系ミラーの各々に熱的に結合される複数のヒータを含む。前記熱制御サブシステムは、前記太陽排斥光学コンポーネントに結合された熱マネジメントコンポーネントを含み得る。
一例において、前記少なくとも1つの感光検出器は、長波赤外焦点面アレイ及び可視焦点面アレイのうちの少なくとも一方を含む。
他の一実施形態は、太陽を含む被観察シーンを撮像する方法に向けられ、当該方法は、全反射型前部光学系アセンブリの入射開口を太陽に向けて位置決めするアクトと、前記入射開口を介して、前記全反射型前部光学系アセンブリで、前記被観察シーンからの光線及び太陽の直接的な太陽像を受光するアクトと、前記光線及び太陽の前記直接的な太陽像を、前記全反射型前部光学系アセンブリから太陽排斥光学コンポーネントへと反射するアクトと、前記全反射型前部光学系アセンブリの前記入射開口が太陽に向けて連続的に位置決めされている間、前記光線を全反射型中継光学系アセンブリへと反射し、且つ太陽の前記直接的な太陽像を、前記全反射型中継光学系アセンブリを避けて反射するよう、前記太陽排斥光学コンポーネントを動的に制御するアクトと、前記光線を、前記中継光学系アセンブリからセンサアセンブリへと反射するアクトと、前記センサアセンブリで、前記光線から前記被観察シーンの画像を生成するアクトと、を含む。
一例において、前記太陽排斥光学コンポーネントは、複数のマイクロミラーで形成されたマイクロミラーアレイを含み、前記太陽排斥光学コンポーネントを動的に制御することは、前記複数のマイクロミラーの個々のマイクロミラーを、入射光が前記全反射型中継光学系アセンブリに向けて反射される第1の位置と、前記入射光が前記全反射型中継光学系アセンブリを避けて反射される第2の位置との間で、動的に切り換えることを含む。
これら例示的な態様及び実施形態の更なる他の態様、実施形態、及び利点が、以下にて詳細に説明される。ここに開示される実施形態は、ここに開示される原理のうちの少なくとも1つと一貫したやり方で他の実施形態と組み合わされることができ、“実施形態”、“一部の実施形態”、“代替実施形態”、“様々な実施形態”、“一実施形態”、又はこれらに類するものへの言及は、必ずしも相互に排他的なものではなく、記載される特定の特徴、構造、又は特性が、少なくとも1つの実施形態に含まれ得ることを指し示すことを意図したものである。ここにこれらの用語が複数現れることは、必ずしも全てが同じ実施形態に言及しているわけではない。
以下、縮尺通りに描くことは意図していない添付の図面を参照して、少なくとも1つの実施形態の様々な態様を説明する。図面は、様々な態様及び実施形態の例示及び更なる理解を提供するために含められており、本明細書に組み込まれてその一部を構成するが、本発明の限定を規定するものとして意図したものではない。図面において、様々な図に示される同じ又は略同じ構成要素は各々、似通った参照符号によって表される。明瞭さの目的のため、全ての図で全ての構成要素にラベルを付すことはしていない場合がある。
本発明の態様に従ったコロナグラフ光学システムの一例のブロック図である。
本発明の態様に従ったコロナグラフ光学システムの一例の部分レイトレースである。
本発明の態様に従ったコロナグラフ光学システムの他の一例の部分レイトレースである。
本発明の態様に従った太陽排斥光学コンポーネントを含むコロナグラフ光学システムの一部のブロック図である。
本発明の態様に従った太陽排斥光学コンポーネントにおいて使用されることが可能なデジタルマイクロミラーアレイの一例の図である。
本発明の態様に従ったデジタルマイクロミラーアレイの一例の動作を示す部分レイトレースである。
本発明の態様に従ったデジタルマイクロミラーアレイの一例の動作を示す部分レイトレースである。
本発明の態様に従った熱制御システムを含むコロナグラフ光学システムの一例の部分レイトレースである。
本発明の態様に従った熱制御システムを含むコロナグラフ光学システムの他の一例のブロック図である。
本発明の態様に従った熱制御システムの部分の図である。
本発明の態様に従った熱制御システムの部分の他の図である。
本発明の態様に従った熱制御システムの部分の他の図である。
態様及び実施形態は、熱制御サブシステムを含む全反射型太陽コロナグラフに向けられ、太陽に対して0.5度という近さに位置する物体を、オプションで2つのスペクトル帯域(例えば、赤外及び可視)で、連続的に撮像するように構成される。太陽コロナグラフの実施形態は、全反射型中継光路と、可視感光検出器(例えば、焦点面アレイ)及び赤外感光検出器を含み得るセンサアセンブリと、太陽の直接的な太陽像を排斥し、熱負荷をミラーから周辺ラジエータパネルへと放射的に排出する熱制御サブシステムとを含む。以下で更に説明するように、MEMSベースのデジタルマイクロミラーデバイス(DMD)を用いて、太陽像を排斥することができる。DMDを動的に制御することで、太陽が視野内のどこにあっても直接的な太陽像を排斥することができ、それにより、太陽コロナグラフの視野の中心を太陽に合わせる必要をなくすことができる。
理解されるべきことには、ここに説明される方法及び装置の実施形態は、適用において、以下の記載に説明され又は添付図面に図示される構成の詳細及び構成要素の配置に限定されるものではない。これらの方法及び装置は、他の実施形態での実装が可能であり、また、様々なやり方で実施あるいは実行されることが可能である。具体的な実装の例が、単に例示の目的でここに提供されるが、限定することを意図したものではない。
また、ここで使用される言葉遣い及び用語は、記述目的でのものであり、限定するものとして見なされるべきでない。“含む”、“有する”、“持つ”、“含有する”、“伴う”及びこれらの変形のここでの使用は、その後に挙げられる品目及びそれらの均等物並びに更なる品目を含む意味である。“又は”への言及は、“又は”を用いて記載される項目が、記載される項目のうちの、単一の、1つよりも多くの、及び全ての、の何れかを指し示し得るように、包含的なものとして解釈され得る。前方及び後方、左及び右、頂部及び底部、上側及び下側、並びに縦及び横への如何なる言及も、説明の便宜上のものであり、本システム及び本方法やそれらのコンポーネントを何らかの1つの位置的又は空間的な向きに限定するものではない。ここで使用されるとき、用語“実質的に”は、完全又は略完全な範囲又は程度の動作、特性、性質、状態、構造、品目又は結果を表す。例えば、“実質的に”包囲されている物体は、その物体が完全に包囲されているか、あるいは略完全に包囲されているかの何れかを意味する。絶対的な完全性からの逸脱の正確な許容可能な程度は、一部の場合において、具体的な文脈に依存し得る。しかしながら、一般的に言えば、完全に近いことは、あたかも絶対的且つ総合的な完全さが得られるかのように全体として同じ結果を有するようなものである。“実質的に”の用法は、動作、特性、性質、状態、構造、品目又は結果の完全又は略完全な欠如を表す否定的な含意で使用されるときにも等しく当てはまる。ここで使用されるとき、用語“隣接”は、2つの構造又は要素の近接を表す。特に、“隣接”しているとして特定される要素は、接しているか接続されているかの何れかであり得る。そのような要素はまた、必ずしも互いに接触するわけではなく、互いに近いか接近するかであってもよい。近接性の正確な程度は、一部の場合において、具体的な文脈に依存し得る。
図1は、広視野Wを連続的に撮像するように構成され得るコロナグラフ光学システム100の一例を示している。光学システム100は、太陽S(太陽の直接的な像が破線102によって表されている)に向けて位置決めされることができる入射開口112を持つ前部光学系(フォアオプティクス)アセンブリ110を含んでいる。ここで使用されるとき、“広視野”は、少なくとも2−3度、一部のケースでは少なくとも5度、他のケースでは少なくとも10度、そして、20−30度に至ることもあり得る視野を指す。前部光学系アセンブリ110は、視野Wにわたって光線104を受光し、それを方向付ける複数の光学コンポーネント(例えば、ミラー、レンズ、又は両方の組み合わせ)を含むことができる。図1では、太陽Sの像が視野Wのほぼ中心に示されているが、以下にて更に説明するように、これは必ずしもそうである必要はなく、一部の例では、太陽Sの像は、視野W内で中心からずれることになる。光学システム100は更に、光線104をセンサアセンブリ130へと方向付けるように構成され得る中継光学系アセンブリ120を含んでいる。センサアセンブリ130は、視野Wを通して見られるシーンの画像を生成するように構成された少なくとも1つの撮像センサ(例えば、1つ以上のフォトダイオード及び関連回路)を含み得る。中継光学系アセンブリ120は、前部光学系アセンブリ110から光線104を受け、光線104をセンサアセンブリ130上にフォーカシングする1つ以上の光学コンポーネント(例えば、ミラー、レンズ、又は両方の組み合わせ)を含み得る。
特定の実施形態によれば、前部光学系アセンブリ110と中継光学系アセンブリ120との間に、太陽排斥光学コンポーネント140が位置付けられる。太陽排斥光学コンポーネント140は、図1に示すように、光線102によって表される太陽Sの像を、中継光学系アセンブリ120及びセンサアセンブリ130を避けて方向付けるように機能する。特定の例において、太陽排斥光学コンポーネント140は、太陽が前部光学系アセンブリ110の視野Wの中にある間、太陽Sの直接的な太陽像(光線102によって表されている)が太陽排斥光学コンポーネント140に入射するように、実質的に光学システム100の中間像面すなわち前部光学系アセンブリ像の位置に位置付けられる。以下にて更に説明するように、特定の実施形態において、太陽排斥光学コンポーネント140は、直接太陽像光線102を(中継光学系アセンブリ120及びセンサアセンブリ130を避けて)特定の位置へと反射し、且つ他の全ての光線104を中継光学系アセンブリ120に向けて反射するように構成された空間光変調器を含む。一例において、空間光変調器は、制御可能なディジタルミラーデバイス(DMD)である。DMDは、視野W内の太陽Sの直接的な像の様々な位置に対して動的に適応するように制御されることができる。これまた更に後述するように、特定の例において、コロナグラフ光学システム100の温度を制御し、それにより、前部光学系アセンブリ110の入射開口が連続的に開かれ且つ太陽Sに向けて位置決めされることを容易にするために、熱制御システム(図1に示さず)を組み込むことができる
特定の実施形態によれば、図1のコロナグラフ光学システム100(及び後述するコロナグラフ光学システムの例)は、低いF値(すなわち、“高速”な光学系)を持つ全反射型(オールリフレクティブ)望遠鏡コロナグラフとすることができる。光学系のF値(焦点比、F比、Fストップ、又は口径比と呼ばれるときもある)は、入射瞳の直径に対するレンズの焦点距離の比である。これは、集光能力の定量的尺度である無次元数である。全反射型システムは、屈折型又は部分的屈折型のシステム(すなわち、1つ以上のレンズを含むもの)よりも、スペクトル的に制限されないという利点を持ち、これは、それが任意の波長帯域を結像することができることを意味する。また、ここで説明されるコロナグラフ光学システムは、センサアセンブリ130に結像する短波及び長波を反射させながら、広視野(例えば、5度と少なくとも30度との間、又はそれ以上)を連続的に撮像することができる。これは、典型的に一時的期間(例えば、数秒又は数分)でのみ、狭い視野(例えば、約1−2度)及び狭いスペクトル帯域を撮像することができるにすぎない従来のコロナグラフに対する大きな改善及び利点である。ここで更に説明するように、(広視野を)“連続的”に見ることは、開示されるシステムが、システムコンポーネントの有意な劣化を被ることなく、定常状態で何時間も、何週間も、又は更には無期限に、太陽近くの物体を撮像することができることを意味する。この利点は、ここで説明されるコロナグラフ光学システムの例によって達成及び提供される。
特定の実施形態によれば、図1のコロナグラフ光学システム100(及び後述するコロナグラフ光学システムの例)は、低いF値(すなわち、“高速”な光学系)を持つ全反射型(オールリフレクティブ)望遠鏡コロナグラフとすることができる。光学系のF値(焦点比、F比、Fストップ、又は口径比と呼ばれるときもある)は、入射瞳の直径に対するレンズの焦点距離の比である。これは、集光能力の定量的尺度である無次元数である。全反射型システムは、屈折型又は部分的屈折型のシステム(すなわち、1つ以上のレンズを含むもの)よりも、スペクトル的に制限されないという利点を持ち、これは、それが任意の波長帯域を結像することができることを意味する。また、ここで説明されるコロナグラフ光学システムは、センサアセンブリ130に結像する短波及び長波を反射させながら、広視野(例えば、5度と少なくとも30度との間、又はそれ以上)を連続的に撮像することができる。これは、典型的に一時的期間(例えば、数秒又は数分)でのみ、狭い視野(例えば、約1−2度)及び狭いスペクトル帯域を撮像することができるにすぎない従来のコロナグラフに対する大きな改善及び利点である。ここで更に説明するように、(広視野を)“連続的”に見ることは、開示されるシステムが、システムコンポーネントの有意な劣化を被ることなく、定常状態で何時間も、何週間も、又は更には無期限に、太陽近くの物体を撮像することができることを意味する。この利点は、ここで説明されるコロナグラフ光学システムの例によって達成及び提供される。
前部光学系アセンブリ110及び中継光学系アセンブリ120の全反射型の実施形態は、多様な異なる光学形態を持つことができる。特定の例を以下で説明し、図面に示すが、当業者は、この開示の恩恵を所与として、ここに開示される原理及び目的に従って前部光学系アセンブリ110及び中継光学系アセンブリ120の他の例が実装され得ることを理解することになる。
図2を参照するに、コロナグラフ光学システム100の一例の部分レイトレースが示されており、ここでは、前部光学系アセンブリ110が、反射トリプレット光学形態を用いて実装されている。この例において、前部光学系アセンブリ110は、第1ミラー210、第2ミラー220、及び第3ミラー230を含んでいる。入射光線104及び102が、第1ミラー210で受光され、第1ミラー210から第2ミラー220へと反射され、そして、第2ミラー220から第3ミラー230へと反射される。光線104、102は更に、第3ミラー230から太陽排斥光学コンポーネント140へと反射され、太陽排斥光学コンポーネント140は、図2に示すように、前部光学系アセンブリ110と中継光学系アセンブリ120との間の、前部光学系アセンブリ110によって形成される中間像面の位置に置かれ得る。中継光学系アセンブリ120は、光線104をセンサアセンブリ130へと反射する。一例において、図2に示す前部光学系アセンブリ110を形成する反射トリプレットは、10×10度の視野、F/3.0の光学速さ、6.69センチメートル(cm)の実効焦点距離、及び直径で2.23cmの入射開口を持つとし得る。当業者に理解されるように、この開示の恩恵を所与として、上述した例とは異なる光学特性/パラメータを持ち得るものである反射トリプレットの数多くの他の光学設定が、前部光学系アセンブリ110について実装及び使用され得る。
一例において、中継光学系アセンブリ120は、図2に示すように、全反射型の5回反射有限共役リレー系を含む。図示した例では、光線104が、第1ミラー240から第2ミラー250へと反射され、第2ミラーから第3ミラー260へと反射され、次いで第4ミラー270へと反射され、そして第4ミラー270から第5ミラー280へと反射され、そこからセンサアセンブリ130上に反射及びフォーカシングされる。この例では、第1、第3、及び第5の反射は、共通のミラー基体(例えば、第1ミラー240)の異なる領域からとすることができるが、当業者が容易に理解することには、ミラー240は、単一のミラーではなく、代わりに2つ又は3つの個別のミラーとして実装されてもよい。同様に、図示した例では、第2及び第4の反射は、それぞれ第2ミラー250及び第4ミラー270である別々のミラーからであるが、当業者が容易に理解することには、ミラー250及び270は代わりに、両方の反射を受け持つように構成された単一のミラー基体で置き換えられてもよい。中継光学系アセンブリ120として使用されることが可能な5回反射有限共役リレー系の例は、Lacy G.Cookへの米国特許出願公開第2017/0329113号に記載されており、その全体をあらゆる目的のためにここに援用する。他の例において、中継光学系アセンブリ120は、異なる全反射型光学形態を用いて実装されることができ、5回反射系に限定されるものではない。
コロナグラフ光学システム100のセンサアセンブリ130は、例えば長波赤外焦点面アレイ又は可視帯域焦点面アレイなどの異なる種類のセンサを含むことができる。例えば、可視帯域焦点面アレイは、シリコンpin型のものとすることができ、長波赤外焦点面アレイはシリコンマイクロボロメータ型のものとすることができる。特定の例において、センサアセンブリ130は、例えば、異なるスペクトル帯域において同時に撮像する能力を提供するために、複数のセンサを含み得る。そのような例において、センサアセンブリ130は、中継光学系アセンブリ120から反射された光線104の経路内に位置付けられたビームスプリッタ(図示せず)を含み得る。
図3は、コロナグラフ光学システム100の他の一例の部分レイトレースを示しており、ここでは、前部光学系アセンブリ110が、WALRUS折り返し型光学形態を用いて実装されている。この例では、入射光線104及び102が、第1ミラー310で受光され、第1ミラー310から第2ミラー320へと反射され、第2ミラー320から第3ミラー330へと反射され、そして、第3ミラー330から第4ミラー340へと反射される。光線104、102は更に、第4ミラー340から太陽排斥光学コンポーネント140へと反射され、太陽排斥光学コンポーネント140は、上述のように、前部光学系アセンブリ110によって形成される像面の位置に置かれ得る。WALRUS折り返し型前部光学系アセンブリ110の一例が、Lacy G.Cookへの米国特許第5,331,470号に記載されており、その全体をあらゆる目的のためにここに援用する。一例において、図3に示す前部光学系アセンブリ110を形成するWALRUS折り返し型の系は、20×20度の視野、F/3.0の光学速さ、3.34cmの実効焦点距離、及び直径で1.11cmである入射開口を持つとし得る。当業者に理解されるように、この開示の恩恵を所与として、前部光学系アセンブリ110の数多くの他の光学構成を実装することができ、それらは、上述した例とは異なる光学特性/パラメータを持ち得る。図3に示すコロナグラフ光学システム100の例において、中継光学系アセンブリ120は、図2に示して上述したものと同じ全反射型5回反射光学系を用いて実装されている。上述のように、中継光学系アセンブリ120は代わりに、異なる反射光学形態を用いて実装されてもよく、図2及び図3に示した例に限定されるものではない。
上述のように、太陽排斥光学コンポーネント140は、前部光学系アセンブリ110によって形成される像面の位置で、前部光学系アセンブリ110と中継光学系アセンブリ120との間に位置付けられ得る。太陽排斥光学コンポーネント140は、前部光学系アセンブリ110の入射開口112を連続的に太陽Sに向けて位置決めすることができる間、光線104を中継光学系アセンブリ120へと方向付け、且つ光線102によって表されている太陽の像を、中継光学系アセンブリ120を避けて方向付けるように構成可能である。特定の実施形態において、太陽排斥光学コンポーネント140は、動的に制御可能なマイクロミラーアレイ又は他のタイプの空間光変調器を用いて実装されることができる。動的に制御可能なマイクロミラーアレイを用いることは、例えば、入射開口112の中心を太陽に合わせたまま保つ必要がないように、視野W内の太陽Sの様々な位置に対して動的に調節することができることなどの利点を提供し得る。
図4を参照するに、動的に制御可能なマイクロミラーアレイ410と、マイクロミラーアレイ410を制御するコントローラ420と、を含んだ太陽排斥コンポーネント140の一例のブロック図が示されている。図5は、マイクロミラーアレイ410の一例を示すブロック図である。マイクロミラーアレイ410は、各々がコントローラ420によって個別に制御可能であるとし得る複数のマイクロミラー412を含んでいる。図5に示す例では、複数のマイクロミラー412は、M×Nの矩形グリッドパターン(M及びNは整数である)に配置されているが、他の例において、マイクロミラー412は、異なるパターン(例えば、切り取られた矩形、円、六角形など、又は他の規則的又は不規則なパターン)に配列されることができる。特定の実施形態によれば、コントローラ420からの制御信号に応答して、各個々のマイクロミラー412は、入射光を第1の方向(又はマイクロミラー412上への光の入射角に対して第1の角度)に反射する第1の位置と、入射光を第2の方向(又はマイクロミラー412上への光の入射角に対して第2の角度)に反射する第2の位置との間で、傾けられ、回転され、又はその他でシフトされることができる。従って、異なるマイクロミラー412、及び故に、マイクロミラーアレイ410の異なる領域が、入射光を異なる角度又は異なる方向に反射するようにされることができるので、マイクロミラーアレイ410を用いて、上述のように、光線104(被観察シーンを表す)を中継光学系アセンブリ120の方に向けながら、光線102(太陽の像を表す)を異なる方向に向けることができる。これの説明図を図6Aに示す。
具体的には、図6Aに示すように、第1の位置(線142によって表されている)にあるようにコントローラ420によって制御されているマイクロミラー412は、光線104を第1の方向へと反射し、一方、第2の位置(線144によって表されている)にあるようにコントローラ420によって制御されているマイクロミラー412は、光線102を異なる方向へと反射する。一例において、マイクロミラー412は、第1及び第2の位置において、(マイクロミラーの表面が入射光の中心光軸に対して垂直である“フラット”位置に対して)それぞれ+又は−(又はその逆)に指定角度数だけ傾けられる。例えば、マイクロミラーは、第1の位置で+17度、そして、第2の位置で−17度、又はこれらの逆、に傾けられ得る。この例では、光線104が+34度だけ逸らされるのに対して、光線102は−34度だけ逸らされ、光線104の方向と光線102の方向との間に68度の角度分離をもたらす。特定の例において、コントローラ420は、各個々のマイクロミラーに電圧を印加することによってマイクロミラー412の傾きを制御することで、マイクロミラーが第1の位置にあるのか、それとも第2の位置にあるのかを決定することができる。
一例において、太陽排斥光学コンポーネントは、テキサスインスツルメンツ社から部品番号DLP660TEで入手可能なデジタルマイクロミラーデバイス(DMD)を含むことができる。DLP660TE DMDは、明るくて手頃な価格のフル4K超高精細(UHD)ディスプレイソリューションを可能にする、デジタル制御式のマイクロ光電気機械システム(micro-opto-electromechanical system;MOEMS)空間光変調器(spatial light modulator;SLM)である。適切な光学系に結合されるとき、DLP660TE DMDは、真の4K UHD解像度(スクリーン上で8.3Mピクセル)を表示し、正確で詳細な画像を多様な表面に届けることができる。DLP660TE DMDは、DLPC4422ディスプレイコントローラ及びDLPA100電源及びモータドライバ(やはりテキサスインスツルメンツ社から入手可能)と共に、DLP(登録商標) 4K UHDチップセットを有し、特定の例において、これを太陽排斥光学コンポーネント140として使用することができる。DLP(登録商標) 4K UHDチップセットは、スクリーン上に4K UHD 3840×2160ピクセルを表示する、対角線で0.66インチのマイクロミラーアレイを含んでいる。DLP660TE DMDは、5.4ミクロンのマイクロミラーピッチ、及び背面照明で±17°のマイクロミラー傾斜(フラット面に対して)を有する。DLP(登録商標) 4K UHDチップセットは更に、2xLVDS入力データバスと、専用のDLPC4422ディスプレイコントローラ及び信頼性ある動作のためのDLPA100電力マネジメント集積回路及びモータドライバを含んでいる。
特定の例によれば、太陽の像を表す光線102は、図6Bに示すように、太陽排斥光学コンポーネント140によって、例えばヒートシンクなどの熱マネジメントコンポーネント150に向けられることができる。他の例において、光線102は、コロナグラフ光学システム100のコンポーネントが光線102によって損傷されないように、単に、コロナグラフ光学システム100から遠ざかるよう自由空間内に向けられることができる。
再び図4を参照するに、特定の例において、コントローラ420は、センサアセンブリ130からフィードバック信号を受信してもよく、センサアセンブリの視野W内の太陽の変化する位置に適応するようにマイクロミラーアレイ410のマイクロミラー412を動的に制御することができる。例えば、センサアセンブリ130が、太陽の少なくとも一部を含む視野Wを通して見るシーンの画像を生成する場合、センサアセンブリ130は、光線102の少なくとも一部が、太陽排斥光学コンポーネント140によって“排斥”される(すなわち、逸らして反射される)代わりに、中継光学系アセンブリ120を介してセンサアセンブリに到達していることを指し示すフィードバック信号を生成し得る。従って、コントローラ420は、視野W内の太陽の位置に適応し、シーンの所望の画像もキャプチャしながら光線102をより良好に排斥するために、フィードバック信号に基づいて、マイクロミラーアレイ410のマイクロミラー412のうちの特定のものを、第1の位置にあることから第2の位置にあることへと切り換わるように制御することができ、及びオプションで、マイクロミラー412のうちの特定の他のものを、第2の位置にあることから第1の位置にあることへと切り換えることができる。他の例では、センサアセンブリ130からフィードバック信号を受信するのではなく、コントローラ420は、センサアセンブリ130によって生成されたシーンの画像を受信し、該画像を分析して、光線102の排斥を改善するためにマイクロミラー412のうちのいずれかのものの位置を変更すべきか決定してもよい。斯くして、コロナグラフ光学システム100は、太陽が視野Wの中心にあることを維持するように当該システムが構成されることを必要とすることなく、視野W内の太陽の動きに合わせて動的に調節することができる。
特定の実施形態によれば、(様々なミラー及びセンサアセンブリ130の許容できない劣化なしに)コロナグラフ光学システム100が広視野Wをセンサアセンブリ130に連続的に反射することができるように、コロナグラフ光学システム100の温度を制御するために、コロナグラフ光学システム100に熱制御システムを組み込むことができる。この熱制御システムの一例を、図7に部分的に示す。例えば、前部光学系アセンブリ110のミラー(図7に示す例では310、320、330、340)の各々が、それぞれ、付随する熱伝達シュラウド512、514、516、518を有することができ、それらが協働して、ミラー310、320、330、340から熱を放射手段によって除去する又は取り出すように動作し得る。以下にて更に説明するように、各シュラウド512、514、516、518は、それぞれのミラー310、320、330、340に放射結合されることができる。各シュラウド512、514、516、518はまた、コロナグラフ光学システム100が広視野Wをセンサアセンブリ130に連続的に反射することができるようにミラーから熱を伝え去るために、少なくとも1つのコールドラジエータ(図7には示さず)に熱的(例えば、直接的/物理的)に結合されることができる。
特定の例において、コロナグラフ光学システム100は、中継光学系アセンブリ120から反射された光線104の経路内に位置付けることが可能なビームスプリッタ170を介して光線104を受けるように構成された補助センサ160(例えば、撮像センサ)を含み得る。ビームスプリッタ170は、好適な基板材料と、前面の(すなわち、中継光学系アセンブリから入射光線104を受ける)好適な多層誘電体ビームスプリッタコーティングと、裏面の好適な多層誘電体反射防止コーティングとを含んだ、従来からのビームスプリッタとし得る。補助センサ160は、センサアセンブリ130の(1つ以上の)センサと同様とし得る。特定の例において、補助センサ160は、マイクロミラーアレイ410を制御するためにフィードバック信号をコントローラ420に供給するために使用され得る。センサアセンブリ130及び補助センサ160の双方が、中継光学系アセンブリ120から反射された光線104を同時に受光し得る。
図8は、コロナグラフ光学システム100の他の一例を概略的に示している。上述のように、コロナグラフ光学システム100は、太陽S(太陽Sの熱負荷及び直接的な像が、上述の光線102に対応する破線で表されている)に向けて位置決め可能な入射開口112を持つ前部光学系アセンブリ110を含む。図8に示す例において、前部光学系アセンブリ110は、光線104及び102(図示の明瞭さのため1つ又は2つの光線のみを図示している)を反射する複数のミラー310、320、330、及び340を含んでいる。前部光学系アセンブリ110は、前部光学系アセンブリ110、中継光学系アセンブリ120、及び太陽排斥光学コンポーネント140を収容して支持する光学ベンチ520内に位置付けられることができる。上述のように、太陽排斥光学コンポーネント140は、光線104を中継光学系アセンブリ120へと向け、中継光学系アセンブリ120が光線104をセンサアセンブリ130へと反射する。一例において、中継光学系アセンブリ130も光学ベンチ520内に収容されて支持される。
一例において、コロナグラフ光学システム100はまた、コロナグラフ光学システム100のコンポーネント(例えば、前部光学系アセンブリ110、中継光学系アセンブリ120、結像コンポーネント、センサ、電子デバイス、熱制御システムコンポーネント、光学ベンチ520など)を支持するシステム光学ベンチ530を含む。システム光学ベンチ530は、広視野Wの通り抜けを可能にするサイズにされることが可能な実際の開口532を有し得る。
一例において、強固な背部材540(すなわち、機械的な構造)をシステム光学ベンチ530に固定することができ、それが光学ベンチ520を構造的に支持する。斯くして、断熱性の運動学的フレクシャ550が光学ベンチ520を強固な背部材540に固定し得る。強固な背部材540は、光学ベンチ520の周囲を包み込みことができ、また、断熱性の運動学的フレクシャ550によって構造的に結合されることができる。
上述のように、コロナグラフ光学システム100が、コロナグラフ光学システム100のいずれかの又は全てのミラーの劣化を被ることなく広視野Wをセンサアセンブリ130へと連続的に反射することができるよう、コロナグラフ光学システム100の温度を制御するために、コロナグラフ光学システム100に熱制御システム(又はサブシステム)を組み込むことができる。例えば、図7を参照して上述したように、前部光学系アセンブリ110のミラー310、320、330、及び340の各々が、それぞれのミラーに放射結合される熱伝達シュラウド512、514、516、518を有し得る(例えば、図3A及び3B)。各シュラウド512、514、516、518は、シュラウドとそれぞれのミラーとの間の熱結合を強化するために黒色に塗装されたアルミニウム(例えば、6061T1)、又は熱の迅速な伝達に好適な任意の材料からなり得る。上述のように、太陽排斥光学コンポーネント140は、熱マネジメントコンポーネント150を含むことができ、熱マネジメントコンポーネント150は、特定の例において、同様の熱伝達シュラウド152を含むことができる。
特定の例によれば、各シュラウド512、514、516、518、152はまた、図8に例示するように、それぞれ、各シュラウド512、514、516、518、152からコールドバイアスヒートパイプ572又は574へと伝導的に熱を伝え去る例えばフレキシブル金属ストラップなどのフレキシブル熱伝達部材562、564、566、568、154を有することができる。更に後述するように、コールドバイアスヒートパイプ572及び574はどちらも、ミラー310、320、330、340(及び光学ベンチ520)からの熱を引き抜くコールドラジエータ576に結合されることができる。コールドラジエータ576は、輸送ヒートパイプ572及び574、フレキシブル熱伝達部材562、564、566、568、及び154、並びにシュラウド512、514、516、518、及び152に、太陽S及び周囲環境から吸収されたエネルギーを放出/除去するためのコールドシンクを提供することができ、それにより、例えば、気体又は流体が、コールドラジエータ576で冷却され、次いで、ループにてヒートパイプ572及び574中を通らされて熱を取り除く。
図9A及び9Bを参照するに、一例において、ミラー600(例えば、ミラー310、320、330、340又はミラー210、220、230のいずれか)は、ミラー600の背面602及び側面604(4つ全ての側面)の周りに置かれたシュラウド510によって空間的に取り囲まれ得る。図9Bは、ミラー600及びシュラウド510の断面図を示している。図示のように、ミラー600は傾向として、ミラー600の反射面606を露出されたままにしながら、シュラウド510(図9B)に対して“浮遊”する。一例において、ミラー600は、反射ミラーを光学ベンチ又は他の構造体に取り付ける典型的な手法にて(例えば、ベンチ520とミラー310、320、330、340との間に運動学的チタンフレクシャマウントを用いて)、光学ベンチにフレキシブルに取り付けられ得る。シュラウド510は、ミラー600に隣接する光学ベンチ520に同様に(又は異なるように)機械的に取り付けられ得るが、シュラウド510をベンチ520から熱的に分離するような手法で取り付けられる。これは、熱絶縁とコンプライアンスとの双方を提供するよう、チタン(又は類似の)断熱体の使用によって達成され得る。斯くして、支配的な熱経路は、光学ベンチ520へではなく、伝導性の熱伝達部材(例えば、562、564、566、568)へ、次いでコールドバイアスヒートパイプ572又は574へ、そして最終的にコールドラジエータ576へである。
一例において、熱伝達部材560がシュラウド510をコールドバイアスヒートパイプ570(例えば、図8のヒートパイプ572又は574)に熱的に結合することができる。一態様において、シュラウド510の底面にマウント部材582(例えば、金属バルクヘッド)が取り付けられ得る。熱伝達部材560の一端がマウント部材582に結合され、熱伝達部材560の他端がパイプマウント584に(又は光学ベンチ520に取り付けられた金属マウントに)結合され得る。マウント部材582及びパイプマウント584はどちらも、例えば銅、アルミニウム、及び他の数多くの伝導材料などの、熱を熱伝導する材料(例えば、金属)からなり得る。パイプマウント584は、留め具によって共に締め付けられてパイプ570の周りに固定される2つの部品とし得るが、他の物理的、熱的結合も可能である。一例において、熱伝達部材560は、例えば多くの金属及び金属合金などの熱を容易に伝える材料からなるフレキシブルヒートストラップを有し得る。フレキシブルヒートストラップの形態の熱伝達部材560は、シュラウド510と熱伝達パイプ570との間における(コンプライアンス)可撓性を提供し、シュラウド510は、シュラウド510、熱伝達部材560、及びヒートパイプ570の間の異なる熱膨張係数(CTE)に対処すべく熱伝達パイプ570に対して動く(例えば、膨張する)ことができる。
図9Bを参照するに、一例において、ミラー600上に生成された太陽熱負荷によってミラー600に与えられた熱をミラー600から引き抜くために、ミラー600の上側の表面領域606の全体が熱を(ミラー中で下方に)伝導し、次いでシュラウド510に連続的に放射する。ミラー600とシュラウド510との間でのこの“放射”結合は、例えば非金属ミラー(例えば、炭化ケイ素、低膨張ガラス)を使用するときに特に重要である。何故なら、そのような非金属ミラーに熱伝導体(例えば、金属熱伝達部材560)を直に結合することは、CTEにおける大きな差のために望ましくないからである。すなわち、ミラー600(例えば、炭化ケイ素、低膨張ガラスからなるもの)が非常に低いCTEを有し得るとともに、熱伝達部材560(例えば、アルミニウム、鋼からなるもの)が遥かに高いCTEを有し得ることとなるので、そのようなミラーには、不所望の熱を引き抜く目的で(例えばミラー600への締め付け応力を最小化又は回避するなどの他の理由を含め)コンポーネント(例えば、シュラウド510)を放射結合することが有利である。さらに、ミラー600とシュラウド510との間の放射結合は、従来の伝導性の手段(例えば複数のストラップなど)よりも、放射経路がミラー背面602全体にわたって均等に作用可能であり、複数のストラップ(それらはもっと局在化されたものであり、それ故に、それらの動作において、もっと不均一である)で達成されることができるものよりも均一な熱流及び温度を提供するという点で優れている。
図8に戻るに、各シュラウド512、514、516、518、152は、それぞれのミラー310、320、330、340及び太陽排斥光学コンポーネント140の各々から熱を伝え去るように、熱伝達部材562、564、566、568、154とヒートパイプ572、574とを介してコールドラジエータ576に熱的に(例えば、物理的に)結合又は連結されることができ、それにより、システム100は、連続的に、広視野Wをセンサアセンブリ130へと反射することができる。なお、図8は、図示の明瞭さの目的で、熱伝達部材562、564、566、568、154が光学ベンチ520を通って延在することを概略的に示しているが、パイプ572及び574の一部が、光学ベンチ520の内側でそれぞれのシュラウド512、514、516、518、152に隣接してもよい。様々な他の構成も、ミラー310、320、330、340から及び太陽排斥光学コンポーネント140から熱を引き抜くという同じ結果を達成することができる。例えば、フレキシブル熱伝達部材562、564、566、568、154は、それぞれ、シュラウド512、514、516、518、152と光学ベンチ520との間に直に結合されることができ、その場合、光学ベンチ520から熱を引き抜くために、光学ベンチ520にコールドバイアスパイプ572及び574を熱的に結合(例えば、ストラップで固定)することができる。
さらに、図9Cに示すように、特定の例において、システム光学ベンチ530は、フレキシブル熱伝達部材560を介してヒートパイプ570に熱的に結合されることができる。このような構成は光学的な劣化問題を生じさせ得るが、システム光学ベンチ530をこのようにヒートパイプ570に熱的に結合させることが可能である。従って、光学ベンチ530によって吸収された熱(例えば、入射開口112の近くでシステム光学ベンチ530によって吸収された太陽熱など)は、ヒートパイプ570によってコールドバイアスラジエータ576に伝達されることができる。
従って、特定の例によれば、次に、太陽負荷が入射開口112に入とき、太陽負荷の一部は、システム光学ベンチ530及び/又は光学ベンチ520によって吸収され得る(例えば、これらのコンポーネントは、一部の太陽負荷を吸収するように黒色に塗られ得る)。一部の例において、システム光学ベンチ530及び/又は光学ベンチ520は、例えば−0.8×10−6/Kと1.0×10−6/Kとの間のCTEを持つ低膨張複合材料(例えば、炭素繊維)などの、低熱膨張材料からなる。一部の例において、前部光学系アセンブリ110のミラーも、例えば炭化ケイ素(約2.4E−6/KのCTEを持つ)、超低膨張ガラス(約5℃−35℃で約10−8/KのCTEを持つ)などの、低熱膨張材料からなり得る。なお、“超低膨張ガラス”又は“ULEガラス(登録商標)”は、コーニング社が所有する商標の下で販売されている。従って、システム光学ベンチ530及び/又は光学ベンチ520が一部の太陽負荷を吸収することができ、そして、残りの太陽負荷は、最後/残りの太陽負荷が太陽排斥光学コンポーネント140に通されるまで、前部光学系アセンブリ110のミラーの各々の周りで徐々に吸収されることができ、太陽排斥光学コンポーネント140で、太陽負荷は、損傷され得るシステムコンポーネントが存在しない方向に反射されることができ、あるいは熱マネジメントコンポーネント150によって吸収されることができる。故に、中継光学系アセンブリ120又はセンサアセンブリ130に伝えられる太陽負荷は実質的にない(又は無視できる負荷である)。中継光学系アセンブリ120に伝えられる太陽負荷は実質的にないので、一例において、中継光学系アセンブリ120のミラーは、例えば、アルミニウム又はベリリウム(すなわち、前部光学系アセンブリ110のミラーよりも高いCTEを持つ)からなることができる。
一例において、第1ミラー310の位置で、光学ベンチ520に入った太陽負荷から約2−5ワットのパワーがミラー310によって吸収され、次いで、この吸収された太陽負荷は、シュラウド512に放射的に伝達され、そして最終的に、(上述したように)ヒートパイプ572及び/又は574によってコールドラジエータ576に(伝導的に)伝達され得る。この熱伝達プロセスが各ミラー320、330、及び340で続けられ、それ故に、太陽排斥光学コンポーネント140へと反射される前に、各ミラーにおいて太陽負荷のうちの少なくとも一部(例えば、約5%)が次第に除去される。従って、光線104及び直接的な太陽像102が第4ミラー340(すなわち、前部光学系アセンブリ110の最後のミラー)で受けられた後に、ある量の太陽負荷が残っている(例えば、元の太陽負荷のうち最大で約80%が残り得る)。第4ミラー340によって反射された残存太陽負荷は、太陽排斥光学コンポーネント140によって実質的に(又は完全に)除去され得る。
図8に戻るに、特定の実施形態によれば、ヒータ592、594、596、598、及び156をそれぞれのシュラウド512、514、516、518、及び152に結合してシンク温度を提供することができ、それにより、光学コンポーネントが例えば20℃などの特定の所望温度に制御される。故に、各ヒータ592、594、596、598、及び156は、それぞれの光学コンポーネントに付随して該付随したコンポーネントの動作温度を指し示すフィードバック温度センサを有し得る。一部の例において、ミラー310、320、330、及び340は、(劣化を回避し、例えば許容可能な波面誤差を持つ健常な望遠鏡を提供するために)約20℃で動作することになる。その場合、それぞれのシュラウド512、514、516、518は約5−10℃で動作することができ、そして、それぞれのヒートパイプ572、574は例えば0℃で動作することができる。しかしながら、例えばコールドラジエータ576を介して各ミラー310、320、330、340から熱を除去することは、これら(1つ以上の)ミラーが“冷たすぎ”で(すなわち、20℃をかなり下回って)動作することをもたらすことがあり、それが画像品質などに影響を及ぼすことがある。故に、ヒータ592、594、596、598は、各ミラー310、320、330、340に所定量の熱を供給して、理想的な動作温度(例えば、20℃)で又はその近くで動作させるように(例えば、コンピュータシステムによって)制御され得る。同様に、上述の熱除去コンポーネントとヒータ156との組み合わせは、太陽排斥光学コンポーネント140についての所望の又は最適な動作温度を確実にすることができる。前部光学系アセンブリ110内のミラーの温度を個別に制御することが有利であり得る。何故なら、例えば第1ミラー310は第4ミラー340よりも多くの太陽負荷を受けるので、各々の特定のミラー310、320、330、340における動作温度をそれぞれのヒータ592、594、596、598で制御することは、歪まされていない像をセンサアセンブリ130に反射する助けとなり得るからである。ヒータ592、594、596、598はまた、例えば日食が存在し、前部光学系アセンブリ110のミラーがあまりに“冷たすぎ”で動作し得る場合にも有利であることができ、これらヒータは、健常で安定した温度レベル(例えば、20℃)でのミラー及び結像系の動作を支援するために、必要とされる状況でミラーを加熱するように動作可能であるとし得る。概して、“健常な望遠鏡”は、システムの光学コンポーネントの劣化を許容可能な小さい量にして、光線及び太陽像を反射することができ、その結果、検出器/センサが、典型的な処理及び分析のために許容可能な画像を効果的に受けて送ることができるような望遠鏡を指すとし得る。“健常な望遠鏡”の画質は、ハードウェアにて実装される理想的な望遠鏡設計の画質に非常に近く、その意図した目的に対して首尾良く動作することができる。
熱制御システムの実施形態は、(上述のように)各ミラーにおける温度を制御して、波面誤差を最小化する各ミラーにおける定常状態を提供し得る。例えば、各ミラーは、(例えば、シュラウド及びヒータに起因して)例えば2ワットのパワーを(均一に且つ定常的に)吸収することができ、それがミラー上の勾配誤差を最小化し、ひいては、表面形状誤差を最小化するとともに、光学システムにおける波面誤差を最小化する。
少なくとも1つの実施形態の幾つかの態様を上述したが、理解されるべきことには、当業者には様々な改変、変更、及び改良が容易に浮かぶであろう。そのような改変、変更、及び改良は、この開示の一部であることが意図され、また、本発明の範囲内であることが意図される。従って、以上の説明及び図面は単に例によるものであり、本発明の範囲は、添付の請求項及びそれらに均等なものを適正に解釈したものから決定されるべきである。
Claims (17)
- 広視野を連続的に撮像するためのコロナグラフ光学システムであって、
太陽に向けて位置決め可能な入射開口を持ち、前記広視野にわたって光線を受けるように構成された全反射型前部光学系アセンブリであり、当該全反射型前部光学系アセンブリは、前記入射開口を介して前記光線を受けて前記光線を順に反射する複数の前部光学系ミラーを含み、前記光線は、被観察シーンからの第1の光線と、太陽の直接的な太陽像に対応する第2の光線とを含む、全反射型前部光学系アセンブリと、
少なくとも1つの感光検出器を含み、前記第1の光線に基く被観察シーンの画像を生成するように構成されたセンサアセンブリと、
前記全反射型前部光学系アセンブリから前記第1の光線を受け、前記第1の光線を前記センサアセンブリへと反射するように構成された全反射型中継光学系アセンブリと、
前記全反射型前部光学系アセンブリと前記全反射型中継光学系アセンブリとの間に配置された太陽排斥光学コンポーネントであり、前記全反射型前部光学系アセンブリの前記入射開口が太陽に向けて連続的に位置決めされている間、全反射型前部光学系アセンブリによって当該太陽排斥光学コンポーネントへと反射された太陽の前記直接的な太陽像が前記全反射型中継光学系アセンブリを避けて反射され、且つ前記第1の光線が前記全反射型中継光学系アセンブリへと反射されるように、動的に構成可能である太陽排斥光学コンポーネントと、
を有するコロナグラフ光学システム。 - 前記広視野は、5度と30度との間である、請求項1に記載のコロナグラフ光学システム。
- 前記全反射型前部光学系アセンブリは反射トリプレットであり、前記複数の前部光学系ミラーは、
前記入射開口から前記光線を受けて前記光線を反射する第1ミラーと、
前記第1ミラーから反射された前記光線を受けて前記光線を反射する第2ミラーと、
前記第2ミラーから反射された前記光線を受けて前記光線を前記太陽排斥光学コンポーネントへと反射する第3ミラーと、
で構成される、請求項1に記載のコロナグラフ光学システム。 - 前記複数の前部光学系ミラーは、
前記入射開口から前記光線を受けて前記光線を反射する第1ミラーと、
前記第1ミラーから反射された前記光線を受けて前記光線を反射する第2ミラーと、
前記第2ミラーから反射された前記光線を受けて前記光線を反射する第3ミラーと、
前記第3ミラーから反射された前記光線を受けて前記光線を前記太陽排斥光学コンポーネントへと反射する第4ミラーと、
で構成される、請求項1に記載のコロナグラフ光学システム。 - 前記全反射型中継光学系アセンブリは、5回反射有限共役リレーシステムである、請求項1に記載のコロナグラフ光学システム。
- 前記太陽排斥光学コンポーネントは、動的に制御可能なマイクロミラーアレイを含む、請求項1に記載のコロナグラフ光学システム。
- 前記動的に制御可能なマイクロミラーアレイは、複数のマイクロミラーを含み、各マイクロミラーが、入射光が第1方向に反射される第1の位置と、前記入射光が第2方向に反射される第2の位置との間で個別に制御可能であり、前記第1方向と前記第2方向との間に所定の角度分離が存在する、請求項6に記載のコロナグラフ光学システム。
- 前記太陽排斥光学コンポーネントは更に、前記動的に制御可能なマイクロミラーアレイと前記センサアセンブリとに結合されたコントローラを含み、該コントローラは、前記全反射型前部光学系アセンブリの前記入射開口が太陽に向けて連続的に位置決めされている間、太陽の前記直接的な太陽像を、前記全反射型中継光学系アセンブリを避けて反射するように、前記センサアセンブリから受け取った情報に基づいて前記複数のマイクロミラーの個々のマイクロミラーを前記第1の位置と前記第2の位置との間で動的に切り換えるように構成される、請求項7に記載のコロナグラフ光学システム。
- 当該コロナグラフ光学システムは更に、前記全反射型前部光学系アセンブリに結合された熱制御サブシステムを有し、該熱制御サブシステムは、前記入射開口が太陽に向けて連続的に位置決めされることができるように熱を伝え去る、請求項1に記載のコロナグラフ光学システム。
- 前記熱制御サブシステムは複数の熱伝達シュラウドを含み、各熱伝達シュラウドが、熱を伝達するために、前記複数の前部光学系ミラーのうちの1つに放射結合される、請求項9に記載のコロナグラフ光学システム。
- 当該コロナグラフ光学システムは更に、前記複数の前部光学系ミラーと少なくとも1つのコールドバイアスヒートパイプとを収容する光学ベンチを有し、前記熱制御サブシステムは、各々が前記複数の熱伝達シュラウドのうちの1つと前記光学ベンチとに熱的に結合される複数の熱伝達部材を含み、該複数の熱伝達部材は、前記少なくとも1つのコールドバイアスヒートパイプに熱的に結合される、請求項10に記載のコロナグラフ光学システム。
- 前記複数の前部光学系ミラー及び前記光学ベンチは各々、炭化ケイ素、低膨張ガラス、及び低膨張複合材料からなる群から選択された低熱膨張材料からなる、請求項11に記載のコロナグラフ光学システム。
- 前記熱制御サブシステムは更に、前記全反射型前部光学系アセンブリの温度を制御するために前記複数の前部光学系ミラーの各々に熱的に結合される複数のヒータを含む、請求項10に記載のコロナグラフ光学システム。
- 前記熱制御サブシステムは、前記太陽排斥光学コンポーネントに結合された熱マネジメントコンポーネントを含む、請求項9に記載のコロナグラフ光学システム。
- 前記少なくとも1つの感光検出器は、長波赤外焦点面アレイ及び可視焦点面アレイのうちの少なくとも一方を含む、請求項1に記載のコロナグラフ光学システム。
- 太陽を含む被観察シーンを撮像する方法であって、
全反射型前部光学系アセンブリの入射開口を太陽に向けて位置決めし、
前記入射開口を介して、前記全反射型前部光学系アセンブリで、前記被観察シーンからの光線及び太陽の直接的な太陽像を受光し、
前記光線及び太陽の前記直接的な太陽像を、前記全反射型前部光学系アセンブリから太陽排斥光学コンポーネントへと反射し、
前記全反射型前部光学系アセンブリの前記入射開口が太陽に向けて連続的に位置決めされている間、前記光線を全反射型中継光学系アセンブリへと反射し、且つ太陽の前記直接的な太陽像を、前記全反射型中継光学系アセンブリを避けて反射するよう、前記太陽排斥光学コンポーネントを動的に制御し、
前記光線を、前記全反射型中継光学系アセンブリからセンサアセンブリへと反射し、
前記センサアセンブリで、前記光線から前記被観察シーンの画像を生成する、
ことを有する方法。 - 前記太陽排斥光学コンポーネントは、複数のマイクロミラーで形成されたマイクロミラーアレイを含み、前記太陽排斥光学コンポーネントを動的に制御することは、前記複数のマイクロミラーの個々のマイクロミラーを、入射光が前記全反射型中継光学系アセンブリに向けて反射される第1の位置と、前記入射光が前記全反射型中継光学系アセンブリを避けて反射される第2の位置との間で、動的に切り換えることを含む、請求項16に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/002,387 | 2018-06-07 | ||
US16/002,387 US10845582B2 (en) | 2018-06-07 | 2018-06-07 | All-reflective solar coronagraph sensor and thermal control subsystem |
PCT/US2019/025971 WO2019236184A1 (en) | 2018-06-07 | 2019-04-05 | All-reflective solar coronagraph sensor and thermal control subsystem |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021526243A true JP2021526243A (ja) | 2021-09-30 |
Family
ID=66484126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021516522A Pending JP2021526243A (ja) | 2018-06-07 | 2019-04-05 | 全反射型太陽コロナグラフセンサ及び熱制御サブシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10845582B2 (ja) |
EP (1) | EP3803489A1 (ja) |
JP (1) | JP2021526243A (ja) |
IL (1) | IL278945A (ja) |
WO (1) | WO2019236184A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114815201B (zh) * | 2022-04-11 | 2023-05-12 | 北京理工大学 | 一种离轴反射式区域变分辨率成像光学系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209328A (ja) * | 2002-01-17 | 2003-07-25 | Nec Toshiba Space System Kk | プリント基板放熱構造とカードタイプ構造体 |
US20120257275A1 (en) * | 2011-04-08 | 2012-10-11 | Raytheon Company | Thermal wake control |
US20170329113A1 (en) * | 2016-05-12 | 2017-11-16 | Raytheon Company | Compact five-reflection optical system as a unity magnification finite conjugate relay |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748015A (en) | 1971-06-21 | 1973-07-24 | Perkin Elmer Corp | Unit power imaging catoptric anastigmat |
US3752559A (en) * | 1971-10-29 | 1973-08-14 | J Fletcher | Ritchey-chretien telescope |
US4240707A (en) | 1978-12-07 | 1980-12-23 | Itek Corporation | All-reflective three element objective |
DE3804534C2 (de) | 1988-02-13 | 1993-11-11 | Zeiss Carl Fa | Spiegelsystem mit einem sammelnden Primärspiegel |
US5078502A (en) | 1990-08-06 | 1992-01-07 | Hughes Aircraft Company | Compact afocal reimaging and image derotation device |
US5404869A (en) * | 1992-04-16 | 1995-04-11 | Tir Technologies, Inc. | Faceted totally internally reflecting lens with individually curved faces on facets |
US5331470A (en) | 1992-12-11 | 1994-07-19 | Hughes Aircraft Company | Fast folded wide angle large reflective unobscured system |
US5608526A (en) | 1995-01-19 | 1997-03-04 | Tencor Instruments | Focused beam spectroscopic ellipsometry method and system |
US6178047B1 (en) | 1999-06-01 | 2001-01-23 | Raytheon Company | Two-path all-reflective de-rotation optical system |
US7130051B2 (en) * | 2003-02-12 | 2006-10-31 | American Museum Of Natural History | Telescope accessory |
FR2867283B1 (fr) * | 2004-03-05 | 2006-05-19 | Centre Nat Etd Spatiales | Procede d'occultation stellaire, dispositif et ensemble de mise en oeuvre du procede |
US7236289B2 (en) * | 2004-05-27 | 2007-06-26 | Angstrom, Inc. | Fast optical shutter using micromirror motion |
US8280104B2 (en) | 2006-05-10 | 2012-10-02 | Southwest Research Institute | Dual acquisition miniature all-sky coronagraph |
US7715099B2 (en) | 2006-12-12 | 2010-05-11 | Northrop Grumman Space & Mission Systems Corporation | Optical birefringence coronagraph |
US7777943B2 (en) | 2007-03-01 | 2010-08-17 | American Museum Of Natural History | Astrometry and photometry with coronagraphs |
US7722198B2 (en) * | 2007-05-30 | 2010-05-25 | Corning Incorporated | Reflective occulting mask and method for manufacturing the reflective occulting mask |
WO2008149310A2 (en) * | 2007-06-05 | 2008-12-11 | Udayan Kanade | A programmable light source |
US7786418B2 (en) * | 2008-11-21 | 2010-08-31 | Raytheon Company | Multimode seeker system with RF transparent stray light baffles |
WO2010078105A1 (en) * | 2008-12-30 | 2010-07-08 | 3M Innovative Properties Company | Broadband reflectors, concentrated solar power systems, and methods of using the same |
US8659823B2 (en) | 2011-04-22 | 2014-02-25 | Coherent, Inc. | Unit-magnification catadioptric and catoptric projection optical systems |
US8714760B2 (en) * | 2012-06-13 | 2014-05-06 | Raytheon Company | All reflective real pupil telecentric imager |
US9396294B1 (en) * | 2013-08-27 | 2016-07-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of modeling and simulation of shaped external occulters |
JP6344933B2 (ja) | 2014-03-03 | 2018-06-20 | 株式会社ミツトヨ | 光電式エンコーダ |
US10462380B2 (en) * | 2016-06-13 | 2019-10-29 | Aptiv Technologies Limited | Camera system with light-shield |
US10527830B2 (en) * | 2016-08-12 | 2020-01-07 | Kla-Tencor Corporation | Off-axis reflective afocal optical relay |
US10345562B2 (en) | 2017-02-07 | 2019-07-09 | Raytheon Company | All-reflective solar coronagraph sensor and thermal control subsystem |
-
2018
- 2018-06-07 US US16/002,387 patent/US10845582B2/en active Active
-
2019
- 2019-04-05 JP JP2021516522A patent/JP2021526243A/ja active Pending
- 2019-04-05 WO PCT/US2019/025971 patent/WO2019236184A1/en unknown
- 2019-04-05 EP EP19723530.2A patent/EP3803489A1/en not_active Withdrawn
-
2020
- 2020-11-24 IL IL278945A patent/IL278945A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209328A (ja) * | 2002-01-17 | 2003-07-25 | Nec Toshiba Space System Kk | プリント基板放熱構造とカードタイプ構造体 |
US20120257275A1 (en) * | 2011-04-08 | 2012-10-11 | Raytheon Company | Thermal wake control |
US20170329113A1 (en) * | 2016-05-12 | 2017-11-16 | Raytheon Company | Compact five-reflection optical system as a unity magnification finite conjugate relay |
Non-Patent Citations (1)
Title |
---|
ZAMKOTSIAN, F.: "Optical MEMS in space instruments for Earth observation and astronomy", PROCEEDINGS OF SPIE, vol. 8616, 861618, JPN7021005621, 13 March 2013 (2013-03-13), pages 1 - 14, ISSN: 0004673811 * |
Also Published As
Publication number | Publication date |
---|---|
EP3803489A1 (en) | 2021-04-14 |
IL278945A (en) | 2021-01-31 |
US10845582B2 (en) | 2020-11-24 |
WO2019236184A1 (en) | 2019-12-12 |
US20190377169A1 (en) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102102762B1 (ko) | 전반사 태양 코로나그래프 센서 및 열 제어 서브시스템 | |
Smith et al. | The Zwicky transient facility observing system | |
Dekany et al. | The Zwicky Transient Facility Camera | |
JP2001284567A (ja) | オプト・エレクトロニク撮像装置用焦点面および検出器、製造方法およびオプト・エレクトロニク撮像装置 | |
JP2016517028A (ja) | 特にマイクロリソグラフィー投影露光装置内のミラーの熱作動用装置 | |
Boyer | Adaptive optics program at TMT | |
JP2014534643A5 (ja) | ||
Jovanovic et al. | Enhanced high-dispersion coronagraphy with KPIC phase II: design, assembly and status of sub-modules | |
JP2021505947A (ja) | 共用主鏡を用いた同時多重倍率反射望遠鏡 | |
JP2021526243A (ja) | 全反射型太陽コロナグラフセンサ及び熱制御サブシステム | |
US7332720B2 (en) | Cold shield for cryogenic camera | |
CN102338922B (zh) | 一种全铝低温全反射镜头 | |
Chan et al. | Preserving accurate figures in coating and bonding mirrors for lightweight x-ray telescopes | |
Schmidt et al. | Latest achievements of the MCAO testbed for the GREGOR Solar Telescope | |
CN112513739A (zh) | 用于确定微光刻光学系统的光学元件的加热状态的方法和装置 | |
JP2019128593A (ja) | オフ状態で最小化された熱負荷を有するdmdベースのイメージャ | |
Schmidt et al. | On the upgrade path to GLAO and MCAO on the Daniel K. Inouye Solar Telescope | |
Harbeck et al. | The WIYN one degree imager: project update 2010 | |
Zhao et al. | Optical design and stray light analysis of the space infrared optical system | |
Millour et al. | Building a GRAVITY+ adaptive optics test bench | |
Byrnes et al. | Conceptual design of the NFIRAOS Science Calibration Unit | |
CN104865709A (zh) | 一种用于光学超分辨成像的可编程相位型光瞳滤波器 | |
Bizenberger et al. | LINC-NIRVANA: Cryogenic optics for diffraction limited beam combination | |
Oakes et al. | Techniques and results for the calibration of the MST prototype for the Cherenkov telescope array | |
Viotto et al. | SHARK-NIR system design analysis overview |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220104 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220726 |