JP2021506859A - Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアジン - Google Patents

Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアジン Download PDF

Info

Publication number
JP2021506859A
JP2021506859A JP2020533677A JP2020533677A JP2021506859A JP 2021506859 A JP2021506859 A JP 2021506859A JP 2020533677 A JP2020533677 A JP 2020533677A JP 2020533677 A JP2020533677 A JP 2020533677A JP 2021506859 A JP2021506859 A JP 2021506859A
Authority
JP
Japan
Prior art keywords
lpa
alkyl
fibrosis
alkoxy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020533677A
Other languages
English (en)
Other versions
JP7299892B2 (ja
Inventor
ヤン・シ
イン・ワン
ピーター・タイ・ワー・チェン
ジュン・リ
スティーブン・ジェイ・ウォーカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Publication of JP2021506859A publication Critical patent/JP2021506859A/ja
Application granted granted Critical
Publication of JP7299892B2 publication Critical patent/JP7299892B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本発明は、式(I):[式中、全ての変数は、本明細書で定義される通りである]の化合物、またはその立体異性体、互変異性体、もしくは医薬的に許容される塩、もしくは溶媒和物を提供する。これらの化合物は選択的LPA受容体阻害剤である。

Description

関連出願の相互参照
本願は、米国仮特許出願第62/607,392号(2017年12月19日出願)の優先権の利益を主張し、これらの内容は、引用によってその全体が本明細書に援用される。
本発明は新規な置換ピラゾール化合物、それらを含む組成物、および例えば、1つ以上のリゾホスファチジン酸(LPA)受容体に関連する障害の治療のための、それらを用いた方法に関する。
リゾリン脂質は、膜由来の生理活性脂質メディエーターであり、このうち医療上最も重要なものの1つはリゾホスファチジン酸(LPA)である。LPAは単一の分子実体ではなく、様々な長さおよび飽和度の脂肪酸と内因性構造バリアントとの集合体である(Fujiwara et al., J Biol. Chem., 2005, 280, 35038−35050)。LPAの構造骨格は、ホスファチジルコリン(PC)またはホスファチジン酸(PA)などの、グリセロールに基づくリン脂質に由来する。
LPAは、7回膜貫通ドメインGタンパク質共役(GPCR)受容体と同じクラスに結合することによって、様々な細胞内シグナル伝達経路を調節する生理活性脂質(シグナル伝達脂質)である(Chun, J., Hla, T., Spiegel, S., Moolenaar, W., Editors, Lysophospholipid Receptors: Signaling and Biochemistry, 2013, Wiley; ISBN: 978−0−470−56905−4 & Zhao, Y. et al, Biochim. Biophys. Acta (BBA)−Mol. Cell Biol. Of Lipids, 2013, 1831, 86−92)。現在既知のLPA受容体は、LPA、LPA、LPA、LPA、LPA、およびLPAと表記される(Choi, J. W., Annu. Rev. Pharmacol. Toxicol., 2010, 50, 157−186; Kihara, Y., et al, Br. J. Pharmacol., 2014, 171, 3575−3594)。
LPAは真核および原核細胞の両方において、リン脂質生合成の前駆体として長い間既知であったが、LPAは活性化細胞、特に血小板によって素早く生産および放出され、特定の細胞表面受容体に作用することによって標的細胞に影響を及ぼすシグナル伝達分子として、最近になって明らかになってきた(例えば、Moolenaar et al., BioEssays, 2004, 26, 870−881, and van Leewen et al., Biochem. Soc. Trans., 2003, 31, 1209−1212を参照されたい)。小胞体内でさらに複雑なリン脂質に合成および加工されることに加えて、LPAは細胞活性化に従い、既存のリン脂質の加水分解を通して生成することができる:例えば、sn−2位は一般的に脱アシル化によって脂肪酸残基が無く、sn−1ヒドロキシルのみがエステル化されて脂肪酸になる。さらに、多くの腫瘍型がオートタキシンを増加させるため、LPAの生成において重要な酵素であるオートタキシン(lysoPLD/NPP2)は癌遺伝子の産物でありうる(Brindley, D., J. Cell Biochem. 2004, 92, 900−12)。高感度および特異的LC/MSおよびLC/MS/MS法を用いた定量などの、ヒト血漿および血清、並びにヒト気管支肺胞洗浄液(BALF)におけるLPAの濃度が報告されている(Baker et al. Anal. Biochem., 2001, 292, 287−295; Onorato et al., J. Lipid Res., 2014, 55, 1784−1796)。
LPAは細胞増殖の誘導、細胞移動および神経突起退縮の刺激、ギャップ結合の近接、並びに粘菌の走化性までに及ぶ、広い範囲の生物学的応答に影響する(Goetzl, et al., Scientific World J., 2002, 2, 324−338; Chun, J., Hla, T., Spieゲル, S., Moolenaar, W., Editors, Lysophospholipid Receptors: Signaling and Biochemistry, 2013, Wiley; ISBN: 978−0−470−56905−4)。細胞内システムをLPA反応性について試験するほどに、LPAの生物学に関する知識体系はさらに拡大し続ける。例えば、細胞の成長および増殖の刺激に加えて、LPAは、損傷の修復および再生に重要な事象である、細胞内圧力および細胞表面フィブロネクチン結合を促進することが今では知られている(Moolenaar et al., BioEssays, 2004, 26, 870−881)。近年、抗アポトーシス活性もまたLPAによるものであるとされ、PPARγがLPAの受容体/標的であることが近年報告されている(Simon et al., J. Biol. Chem., 2005, 280, 14656−14662)。
線維症は、細胞外マトリックス(ECM)の過剰な蓄積および不十分な再吸収をもたらす、制御不能な組織治癒プロセスの結果であり、最終的に末端器官不全をもたらす(Rockey, D. C., et al., New Engl. J. Med., 2015, 372, 1138−1149)。LPA受容体が特発性肺線維症(IPF)患者において過剰発現していることが報告されている。LPA受容体ノックアウトマウスは、ブレオマイシン誘導性肺線維症から保護された(Tager et al., Nature Med., 2008, 14, 45−54)。LPAアンタゴニスト、BMS−986020は、IPF患者における26週間の臨床試験で、FVC率(努力肺活量)の低下を有意に減少させることが示された(Palmer et al., Chest, 2018, 154, 1061−1069)。LPA経路阻害剤(例えば、LPAアンタゴニスト)は、ラットモデルにおいて、肝細胞癌の治療における、化学防御抗線維化薬であることが示された(Nakagawa et al., Cancer Cell, 2016, 30, 879−890)。
このように、LPA受容体に拮抗することは、肺線維症、肝線維症、腎線維症、動脈性線維症および全身性硬化症などの線維症、並びに線維症に起因する疾患(肺線維症−特発性肺線維症[IPF]、肝線維症−非アルコール性脂肪性肝炎[NASH]、腎線維症−糖尿病性腎症、全身性硬化症−強皮症など)の治療に有用でありうる。
本発明は、1つ以上のリゾホスファチジン酸(LPA)受容体、特にLPA受容体に対するアンタゴニストとして有用な、新規な置換ピラゾール化合物、その立体異性体、互変異性体、および薬学的に許容可能な塩、または溶媒和物などを提供する。
本発明はまた、本発明の化合物を製造するための方法および中間体を提供する。
本発明はまた、薬学的に許容可能な担体、および少なくとも1つの本発明の化合物、またはその立体異性体、互変異性体、薬学的に許容可能な塩、または溶媒和物を含む医薬組成物を提供する。
本発明の化合物は、LPAが役割を果たす病状の治療に用いられうる。
本発明の化合物は治療に用いられうる。
本発明の化合物は、LPA受容体が関わる疾患などの、LPAの生理学的活性の阻害が有用であるか、疾患の原因または病理に関連するか、あるいは、疾患の少なくとも1つの症状に関連する、疾患の治療のための医薬の製造に用いられうる。
別の局面において、本発明は臓器(肝臓、腎臓、肺、心臓など、並びに皮膚)の線維症、肝臓疾患(急性肝炎、慢性肝炎、肝線維症、肝硬変、門脈圧亢進症、再生不全、非アルコール性脂肪性肝炎(NASH)、肝機能低下、肝臓血流障害など)、細胞増殖性疾患[癌(固形腫瘍、固形腫瘍転移、血管線維症、骨髄腫、多発性骨髄腫、カポジ肉腫、白血病、慢性リンパ性白血病(CLL)など)および癌細胞の浸潤性転移など]、炎症性疾患(乾癬、腎症、肺炎など)、消化管疾患(過敏性腸症候群(IBS)、炎症性腸疾患(IBD)、膵臓分泌機能異常など)、腎臓疾患、尿路関連疾患(良性前立腺過形成または神経因性膀胱疾患に関連する症状、脊髄腫瘍、椎間板ヘルニア、脊柱管狭窄症、糖尿病に由来する症状、下部尿路症状(下部尿路閉塞など)、下部尿路の炎症性疾患、排尿障害、頻尿など)、膵臓疾患、異常血管形成関連疾患(動脈性閉塞など)、強皮症、脳関連疾患(脳梗塞、脳出血など)、神経障害性疼痛、末梢ニューロパチーなど、眼疾患(加齢黄斑変性症(AMD)、糖尿病網膜症、増殖性硝子体網膜症(PVR)、瘢痕性類天疱瘡、緑内障濾過手術傷痕など)を治療する方法を対象にする。
別の局面において、本発明は少なくとも1つのLPA受容体のLPAによる活性化が、疾患、障害または病状の症状または進行に寄与する、疾患、障害、または病状を治療する方法を対象にする。これらの疾患、障害、または病状は、遺伝性、医源性、免疫学的、感染性、代謝性、腫瘍学的、外科性、および/または外傷性要因のうち1つ以上から生じうる。
別の局面において本発明は、前記の本発明の化合物を、治療が必要な患者に投与することを特徴とする、腎線維症、肺線維症、肝線維症、動脈性線維症および全身性硬化症を治療する方法を対象とする。
ある局面において、本発明はLPA受容体のアンタゴニスト、特にLPAのアンタゴニストを含む、本明細書に記載の方法、化合物、医薬組成物、および医薬を提供する。
本発明の化合物は単体で、本発明の他の化合物との組み合わせで、または1つ以上、好ましくは1から2個の他の薬剤との組み合わせで用いることができる。
本発明のこれらの、および他の特徴は、以下の開示のように、拡大された形式で記載する。
I. 発明の化合物
1の態様において、本発明は、とりわけ、式(I):
Figure 2021506859
[式中
、X、X、およびXは、各々独立して、CRまたはNである;ただし、X、X、X、またはXのうち2つ以上はNでなく;
はNまたはNR5bであり;
およびQの一方はCR5aであって、他方はNまたはNR5bであり;
破線の円は芳香環を形成する任意の結合を表し;
Lは共有結合または0〜4個のRで置換されるC1−4アルキレンであり;
ZはNRまたはOであり;
Y環はフェニルまたはアジン部分であり;ここで「アジン」なる語は6員の芳香族ヘテロ環をいい、ここで環構成部材はCHおよび1〜4個の窒素より選択され;1の実施態様において、該アジン部分は、ピリジン、ジアジン(例えば、ピリミジン、ピラジン、およびピリダジン)、トリアジン、およびテトラジンより選択される環部分であり;
は(−CHであり;
aは0または1の整数であり;
は、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、またはハロアルコキシであり;
nは0、1、または2の整数であり;
は、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、=S、−NR、=NH、=N−OH、=NR、=N−OR、−NO、−S(O)、−S(O)NHR、−S(O)NR、−S(O)OR、−OS(O)、−OS(O)OR、−P(O)(OR)(OR)、−C(O)R、−C(NR)R、−C(O)OR、−C(O)NR、−C(NR)NR、−OC(O)R、−NRC(O)R、−OC(O)OR、−NRC(O)OR、−OC(O)NR、−NRC(O)NR、−NRC(NR)R、−NRC(NR)NR、C1−6アルキル、C1−6重水素化アルキル(完全にまたは部分的に重水素化される)、C1−6ヘテロアルキル、6〜10員のアリール、アリールアルキル、5〜10員のヘテロアリール、ヘテロアリールアルキル、3〜8員のカルボシクリル、カルボシクリルアルキル、4〜8員のヘテロシクリル、またはヘテロシクリルアルキルであり;ここで該アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、ヘテロシクリル、およびRは、それら自体で、またはもう一つ別の基の一部として、各々独立して、0〜5個のRで置換され;
は、C1−6アルキル、C1−6重水素化アルキル(完全にまたは部分的に重水素化される)、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、カルボシクリルアルキル、ヘテロシクリル、およびヘテロシクリルアルキルからなる群より選択され;
は、各々独立して、水素またはRであり;
は、各々独立して、Rであるか;あるいはまた、2個のRが、それらの結合する窒素原子と一緒になって、4〜7員のヘテロシクリルを形成し;
は、各々独立して、R、アルコキシ、ハロアルコキシ、アルキルアミノ、シクロアルキルアミノ、ヘテロシクリルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、シクロアルコキシ、ヘテロシクリルオキシ、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アリールアミノ、アラルキルアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシ、アルキルチオ、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、=S、−NR、=NH、=N−OH、=NR、=N−OR、−NO、−S(O)、−S(O)NHR、−S(O)NR、−S(O)OR、−OS(O)、−OS(O)OR、−P(O)(OR)(OR)、−C(O)R、−C(NR)R、−C(O)OR、−C(O)NR、−C(NR)NR、−OC(O)R、−NRC(O)R、−OC(O)OR、−NRC(O)OR、−NRC(O)NR、−NRC(NR)R、および−NRC(NR)NRからなる群より独立して選択されるか;あるいはまた、1または2個のRが、アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル上で、Rが結合する原子と一緒になって、環または架橋部分を形成し;
は、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、またはハロアルコキシであるか;またはRおよびRが、それらの結合する原子と一緒になって、単環または二環式環部分を形成し;
mは0、1、または2の整数であり;
5aおよびRは、各々独立して、水素、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
5bは、水素、C1−6アルキル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
は、ハロ、オキソ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
は水素またはC1−4アルキルであり;
は、−CN、−C(O)OR10、−C(O)NR11a11b
Figure 2021506859
からなる群より選択され;
は、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、またはハロアルコキシアルキルであり;
10は水素またはC1−10アルキルであり;および
11aおよびR11bは、各々独立して、水素、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシである]
で示される化合物、あるいはその立体異性体、互変異性体、または医薬的に許容される塩もしくは溶媒和物を提供する。
式(I)の1の実施態様において、XはCRであり、ここでRは水素またはC1−4アルキル(例えば、メチルまたはエチル)である。
式(I)の上記した実施態様のいずれか1つにおいて、R5bは水素またはC1−6アルキルである。もう一つ別の実施態様において、R5aは水素である。
式(I)の上記した実施態様のいずれか1つにおいて、Lは共有結合またはメチレンである。
式(I)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
であり;および
、Y、Y、およびYは、各々独立して、NまたはCHである:ただし、Y、Y、Y、およびYの少なくとも一つはCHである。1の実施態様において、Y、Y、Y、およびYのうち2つはCHである。もう一つ別の実施態様において、Y、Y、Y、およびYのうち3つはCHである。もう一つ別の実施態様において、Y、Y、Y、およびYのすべてがCHである。
式(I)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
である。
式(I)の上記した実施態様のいずれか1つにおいて、
は、ハロ、シアノ、ヒドロキシル、アミノ、−OR、−SR、−NR、C1−6アルキル、C1−6ヘテロアルキル、6〜10員のアリール、アリールアルキル、5〜10員のヘテロアリール、ヘテロアリールアルキル、3〜8員のカルボシクリル、カルボシクリルアルキル、4〜8員のヘテロシクリル、またはヘテロシクリルアルキルであり;ここで該アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、ヘテロシクリル、およびRは、それら自体で、またはもう一つ別の基の一部として、各々独立して、0〜5個のRで置換され;
は、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、カルボシクリルアルキル、ヘテロシクリル、およびヘテロシクリルアルキルからなる群より選択され;
は、各々独立して、水素またはRであり;
は、各々独立して、Rであるか;あるいはまた、2個のRが、それらの結合する窒素原子と一緒になって、4〜7員のヘテロシクリルを形成し;および
は、各々独立して、R、アルコキシ、ハロアルコキシ、アルキルアミノ、シクロアルキルアミノ、ヘテロシクリルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、シクロアルコキシ、ヘテロシクリルオキシ、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アリールアミノ、アラルキルアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシ、アルキルチオ、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、および−NRからなる群より選択されるか;あるいはまた、1または2個のRが、アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル上で、Rが結合する原子と一緒になって、環または架橋部分を形成する。
式(I)の上記した実施態様のいずれか1つにおいて、該化合物は、式(IIa)または(IIb):
Figure 2021506859
[式中
、Y、およびYは、各々独立して、NまたはCHであり;
7aは、水素、ハロ、オキソ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
fは、0、1、2、または3の整数であり;
5aおよびR5bは、独立して、水素またはC1−4アルキルであり;および
、R、n、R、R、m、X、X、X、X、およびZは上記にて定義されるとおりである]
で示される。
式(IIa)または(IIb)の1の実施態様において、XはCRであり、ここでRは水素またはC1−4アルキルである。
式(IIa)または(IIb)の上記した実施態様のいずれか1つにおいて、XはNである。
式(IIa)または(IIb)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
より選択され;
6aは、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;dは0、1、または2の整数である。
式(IIa)または(IIb)の上記した実施態様のいずれか1つにおいて、Lは共有結合またはメチレンであるか、またはfは0または1である。1の実施態様において、R7aは水素である。
式(IIa)または(IIb)の上記した実施態様のいずれか1つにおいて、Rは水素またはメチルである。
式(IIa)または(IIb)の上記した実施態様のいずれか1つにおいて、RはCOHである。1の実施態様において、Rは水素である。
式(IIa)または(IIb)の上記した実施態様のいずれか1つにおいて、該化合物は、式(IIIa)または(IIIb):
Figure 2021506859
[式中
、Y、およびYは、各々独立して、NまたはCHであり;
ZはOまたはNHであり;
2aは、水素、クロロ、フルオロ、またはC1−4アルキルであり;および
、R、R、m、X、X、X、およびXは上記にて定義されるとおりである]
で示される。
式(IIIa)または(IIIb)の1の実施態様において、Y、Y、およびYのうち一つはCHである。式(IIIa)または(IIIb)のもう一つ別の実施態様において、Y、Y、およびYのうち2つはCHである。式(IIIa)または(IIIb)のもう一つ別の実施態様において、Y、Y、およびYはすべてがCHである。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
より選択される。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、RはCOHである。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、XはCRであり;XはNまたはCHであり;XはNであり;XはNまたはCHであり;およびRは水素、ハロ、シアノ、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、またはアルコキシである。1の実施態様において、XはCHである。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
であり;R6aは水素、メチル、またはエチルである。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
であり;およびmは0または1である。
1の実施態様において、RはC1−4アルキル、C1−4アルコキシ、またはハロ(例えば、フルオロ)である。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、
Figure 2021506859
で示される部分は
Figure 2021506859
であり;および
mは0または1である。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、
は、ハロ、シアノ、ヒドロキシル、アミノ、−OR、−SR、−NR、C1−6アルキル、C1−6アルコキシ、C1−6ハロアルキル、C1−6ハロアルコキシ、C1−6ヘテロアルキル、6〜10員のアリール、アリールアルキル、5〜10員のヘテロアリール、ヘテロアリールアルキル、3〜8員のカルボシクリル、カルボシクリルアルキル、4〜8員のヘテロシクリル、またはヘテロシクリルアルキルであり;ここで該アルキル、アルコキシ、ハロアルキル、ハロアルコキシ、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、ヘテロシクリル、およびRは、それら自体で、またはもう一つ別の基の一部として、各々独立して、0〜5個のRで置換され;
は、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、カルボシクリルアルキル、ヘテロシクリル、およびヘテロシクリルアルキルからなる群より選択され;
は、各々独立して、水素またはRであり;
は、各々独立して、Rであるか;あるいはまた、2個のRが、それらの結合する窒素原子と一緒になって、4〜7員のヘテロシクリルを形成し;
は、各々独立して、R、アルコキシ、ハロアルコキシ、アルキルアミノ、シクロアルキルアミノ、ヘテロシクリルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、シクロアルコキシ、ヘテロシクリルオキシ、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アリールアミノ、アラルキルアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシ、アルキルチオ、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、および−NRからなる群より選択されるか;あるいはまた、1または2個のRが、アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル上で、Rが結合する原子と一緒になって、環または架橋部分を形成し;
mは0、1、または2であり;および
は、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、またはハロアルコキシである。
式(IIIa)または(IIIb)の上記した実施態様のいずれか1つにおいて、Rは、C1−6アルキル、C1−6アルコキシ、C1−6ハロアルキル、C1−6ハロアルコキシ、C3−6シクロアルキル、フェニル、ベンジル、(1〜3個のヘテロ原子を含有し、その各々がN、O、およびSより独立して選択される、6員のヘテロアリール)、アルコキシ、アルコキシアルキル、−O−シクロアルキル、−O−フェニル、−O−ベンジル、および−NH−アルキルであり;該アルキル、アルコキシ、ハロアルキル、シクロアルキル、フェニル、ベンジル、およびヘテロアリールの各々は、それ自体で、またはもう一つ別の基の一部として、0〜3個のRで独立して置換され;およびRは、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、またはC1−6アルコキシである。
本発明の1の実施態様において、該化合物は明細書に記載されるいずれか1の実施例より選択される化合物であるか、あるいはその立体異性体、互変異性体または医薬的に許容される塩もしくは溶媒和物である。
本発明のもう一つ別の実施態様において、該化合物は明細書に記載される実施例1〜43より選択される化合物であるか、あるいはその立体異性体、互変異性体または医薬的に許容される塩もしくは溶媒和物である。
本発明のもう一つ別の実施態様において、該化合物は明細書に記載される実施例1〜20より選択される化合物であるか、あるいはその立体異性体、互変異性体または医薬的に許容される塩もしくは溶媒和物である。
ある実施態様において、本発明の化合物は、LPA機能性アンタゴニストアッセイを用いて、5000nMのhLPA IC50値を有し;別の実施態様において、本発明の化合物は、1000nMのhLPA IC50値を有し;別の実施態様において、本発明の化合物は、500nMのhLPA IC50値を有し;別の実施態様において、本発明の化合物は、200nMのhLPA IC50値を有し;別の実施態様において、本発明の化合物は、100nMのhLPA IC50値を有し;別の実施態様において、本発明の化合物は、50nMのhLPA IC50値を有する。
II.本発明の他の実施態様
いくつかの実施態様において、式(I)の化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、少なくとも1つのLPA受容体のアンタゴニストである。いくつかの実施態様において、式(I)の化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、LPAのアンタゴニストである。いくつかの実施態様において、式(I)の化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、LPAのアンタゴニストである。いくつかの実施態様において、式(I)の化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、LPAのアンタゴニストである。
いくつかの実施態様において、式(I)の化合物の活性代謝物、互変異性体、薬学的に許容可能な塩、もしくは溶媒和物から選択される化合物が、本明細書において提示される。
別の実施態様において、本発明は、本発明の化合物、またはその立体異性体、互変異性体、薬学的に許容可能な塩、もしくは溶媒和物のうち少なくとも1つを含む組成物を提供する。
別の実施態様において、本発明は、薬学的に許容可能な担体、および治療上の有効量の少なくとも1つの本発明の化合物、またはその立体異性体、互変異性体、薬学的に許容可能な塩、もしくは溶媒和物を含む、医薬組成物を提供する。
別の実施態様において、本発明は、本発明の化合物の製造方法を提供する。
別の実施態様において、本発明は、本発明の化合物の製造のための中間体を提供する。
別の実施態様において、本発明は、さらなる治療剤をさらに含む、医薬組成物を提供する。
別の実施態様において、本発明は、治療上の有効量の少なくとも1つの本発明の化合物、またはその立体異性体、互変異性体、薬学的に許容可能な塩、もしくは溶媒和物を、治療が必要な患者に投与することを含む、LPA受容体介在性線維症に関連する病状の治療のための方法を提供する。本明細書で用いられる用語「患者」は、全ての哺乳動物種を含む。
別の実施態様において、本発明は、治療上の有効量の本発明の化合物、またはその立体異性体、互変異性体、もしくは薬学的に許容可能な塩、もしくは溶媒和物を、患者に投与することを含む、必要な患者における、リゾホスファチジン酸受容体1(LPA)の調節不全に関連する疾患、障害、または病状の治療方法を提供する。当該方法のある実施態様において、疾患、障害、または病状は、病理学的線維症、移植片拒絶、癌、骨粗鬆症、または炎症性疾患に関連する。当該方法のある実施態様において、病理学的線維症は、肺、肝臓、腎臓、心臓、真皮、眼、または膵線維症である。当該方法のある実施態様において、疾患、障害、または病状は、特発性肺線維症(IPF)、非アルコール性脂肪性肝炎(NASH)、非アルコール性脂肪性肝疾患(NAFLD)、慢性腎疾患、糖尿病性腎疾患、および全身性硬化症である。当該方法のある実施態様において、癌は、膀胱、血液、骨、脳、乳房、中枢神経系、頸、結腸、子宮内膜、食道、胆嚢、生殖器、泌尿生殖器、頭部、腎臓、喉頭、肝臓、肺、筋肉組織、頸部、口腔または鼻粘膜、卵巣、膵臓、前立腺、皮膚、脾臓、小腸、大腸、胃、精巣、または甲状腺のものである。
別の実施態様において、本発明は、治療上の有効量の本発明の化合物、またはその立体異性体、互変異性体、もしくは薬学的に許容可能な塩、もしくは溶媒和物を、必要な哺乳動物に投与することを特徴とする、哺乳動物における線維症の治療方法を提供する。当該方法のある実施態様において、線維症は、特発性肺線維症(IPF)、非アルコール性脂肪性肝炎(NASH)、慢性腎疾患、糖尿病性腎疾患、および全身性硬化症である。
別の実施態様において、本発明は、治療上の有効量の本発明の化合物、またはその立体異性体、互変異性体、もしくは薬学的に許容可能な塩、もしくは溶媒和物を、必要な哺乳動物に投与することを特徴とする、哺乳動物における肺線維症(特発性肺線維症)、喘息、慢性閉塞性肺疾患(COPD)、腎線維症、急性腎傷害、慢性腎疾患、肝線維症(非アルコール性脂肪性肝炎)、皮膚線維症、腸線維症、乳癌、膵臓癌、卵巣癌、前立腺癌、神経膠芽腫、骨癌、結腸癌、腸癌、頭頸部癌、黒色腫、多発性骨髄腫、慢性リンパ性白血病、癌性疼痛、腫瘍転移、移植臓器拒絶、強皮症、眼線維症、加齢黄斑変性症(AMD)、糖尿病性網膜症、コラーゲン性血管疾患、アテローム性動脈硬化症、レイノー現象、または神経障害性疼痛の治療方法を提供する。
本明細書で用いられる「治療する」または「治療」は、哺乳動物、特にヒトにおける疾患状態の治療を含み、(a)疾患状態を抑制する、すなわち進行を停止させること;および/または(b)疾患状態を軽減する、すなわち疾患状態の退縮を生じさせることが挙げられる。本明細書で用いられる「治療する」または「治療」はまた、治療上有効量の少なくとも1つの本発明の化合物、またはその立体異性体、互変異性体、薬学的に許容可能な塩、もしくは溶媒和物を患者に投与することによって、リスクを軽減および/または最小化する、および/または疾患状態の再発のリスクを軽減するための、疾患状態の予防的治療を含む。患者は、一般的な集団と比較して、臨床的疾患状態を患うリスクが上昇することが知られている因子に基づいて、そのような予防的治療のために選択されうる。予防的治療のために、臨床的疾患状態の病状は存在していても、未だ存在していなくてもよい。予防的治療は、(a)一次予防および(b)二次予防に分けることができる。一次予防は、臨床的疾患状態が未だ存在していない患者において、疾患状態のリスクを減少または最小化するための治療として定義され、一方で二次予防は、同じまたは同様の臨床的疾患状態の再発または二次発生のリスクを最小化または減少させるものとして定義される。
本発明は、その精神または本質的な特性から逸脱することなく、他の特定の形態で実施されうる。本発明は、本明細書に記載される、本発明の好ましい局面の全ての組み合わせを含む。本発明のありとあらゆる実施態様は、さらなる実施態様を説明するために、他の任意の実施態様と組み合わせてもよいことが理解される。実施態様の個々のそれぞれの要素は、それ自体で独立の実施態様であることもまた理解されるべきである。さらに、実施態様の任意の要素は、さらなる実施態様を説明するために、任意の実施態様からのありとあらゆる他の要素と組み合わせられることが意図される。
III.化学
明細書および付属の特許請求の範囲にわたって、示される化学式または名前は、異性体が存在する場合、その全ての立体異性体および光学異性体およびラセミ体を含むものとする。特に言及されない限り、全てのキラル(エナンチオマーおよびジアステレオマー)およびラセミ体は、本発明の範囲内である。C=C二重結合、C=N二重結合、環系などの多くの幾何異性体もまた、化合物中に存在することができ、そのような全ての安定な異性体が本発明において考慮される。本発明の化合物のシスおよびトランス(またはE−およびZ−)幾何異性体が記載され、異性体の混合物として、または分離された異性体として、単離されうる。本化合物は、光学活性体またはラセミ体に単離することができる。光学活性体はラセミ体の分割によって、または光学活性出発物質からの合成によって、製造されうる。本発明の化合物、およびその中で合成される中間体を製造するために用いられる全ての方法は、本発明の一部であると考えられる。エナンチオマーまたはジアステレオマー生成物が合成される場合、それらは従来の方法、例えば、クロマトグラフィーまたは分別結晶によって、分離されうる。方法の条件に応じて、本発明の最終生成物は、遊離形態(中性)または塩形態のいずれかで得られる。それらの最終生成物の遊離形態および塩のいずれも、本発明の範囲内である。必要であれば、化合物のある形態は、他の形態に変換されうる。遊離塩基または酸は塩に変換されてもよく;塩は遊離化合物または他の塩に変換されてもよく;本発明の異性体化合物の混合物は、個々の異性体に分離されてもよい。本発明の化合物、その遊離形態および塩は、水素原子が分子の他の部位に移動し、それによって分子の原子間の化学結合が再配置される、多くの互変異性体で存在しうる。全ての互変異性体は、それら存在する限り、本発明に含まれることが理解されるべきである。
用語「立体異性体」は、空間上の原子の配置が異なる同一の組成の異性体をいう。エナンチオマーおよびジアステレオマーは、立体異性体の例である。用語「エナンチオマー」は、互いに鏡像であり、重ね合わせることができない分子種の対のうちの1つをいう。用語「ジアステレオマー」は、鏡像でない立体異性体をいう。用語「ラセミ体」または「ラセミ混合物」は、等モル量の2つのエナンチオマー種から構成される組成物をいい、当該組成物は光学活性を欠く。
記号「R」および「S」は、キラル炭素原子周囲の置換基の配置を表す。異性体の記述子「R」および「S」は、核分子に対する原子配置を表すために、本明細書において記述されるように用いられ、文献(IUPAC Recommendations 1996, Pure and Applied Chemistry, 68:2193−2222 (1996))において定義されるように用いられることを意図する。
用語「キラル」は、その鏡像において重ね合わせることができない、分子の構造特性をいう。用語「ホモキラル」は、エナンチオマー的に純粋な状態をいう。用語「光学活性」は、ホモキラル分子またはキラル分子の非ラセミ混合物が偏光面を回転させる程度をいう。
本明細書で用いられる用語「アルキル」または「アルキレン」は、特定の数の炭素原子を有する、分岐鎖および直鎖の両方の飽和脂肪族炭化水素基を含むことが意図される。「アルキル」は一価飽和脂肪族基(エチルなど)を表すが、「アルキレン」は二価飽和脂肪族基(エチレンなど)を表す。例えば、「C−C10アルキル」または「C1−10アルキル」は、C、C、C、C、C、C、C、C、C、およびC10アルキル基を含むことが意図される。「C−C10アルキレン」または「C1−10アルキレン」は、C、C、C、C、C、C、C、C、C、およびC10アルキレン基を含むことが意図される。さらに、例えば、「C−Cアルキル」または「C1−6アルキル」は、1〜6個の炭素原子を有するアルキルを表し;「C−Cアルキレン」または「C1−6アルキレン」は、1〜6個の炭素原子を有するアルキレンを表し;「C−Cアルキル」または「C1−4アルキル」は、1〜4個の炭素原子を有するアルキルを表し;「C−Cアルキレン」または「C1−4アルキレン」は、1〜4個の炭素原子を有するアルキレンを表す。アルキル基は、置換されていなくてもよく、少なくとも1つの水素が他の化学基で置換されていてもよい。アルキル基の例としては、限定されないが、メチル(Me)、エチル(Et)、プロピル(例えば、n−プロピルおよびイソプロピル)、ブチル(例えば、n−ブチル、イソブチル、t−ブチル)、およびペンチル(例えば、n−ペンチル、イソペンチル、ネオペンチル)が挙げられる。「Cアルキル」または「Cアルキレン」が用いられる場合、直接結合を表すことが意図される。さらに、用語「アルキル」は、それ自体で、またはアルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、およびハロアルコキシなどのように、他の基の一部として、1〜4個の炭素原子、または1〜6個の炭素原子、または1〜10個の炭素原子を有するアルキルでありうる。
「ヘテロアルキル」は、1つ以上の炭素原子が、O、N、またはSなどのヘテロ原子で置き換えられたアルキル基をいう。例えば、親分子基に結合したアルキル基の炭素原子が、ヘテロ原子(例えば、O、N、またはS)で置き換えられている場合、生じるヘテロアルキル基はそれぞれ、アルコキシ基(例えば、−OCHなど)、アルキルアミノ(例えば、−NHCH、−N(CHなど)、またはチオアルキル基(例えば、−SCH)である。親分子に結合していないアルキル基の非末端炭素原子が、ヘテロ原子(例えば、O、N、またはS)で置き換えられている場合、生じるヘテロアルキル基はそれぞれ、アルキルエーテル(例えば、−CHCH−O−CHなど)、アルキルアミノアルキル(例えば、−CHNHCH、−CHN(CHなど)、またはチオアルキルエーテル(例えば,−CH−S−CH)である。アルキル基の末端の炭素原子がヘテロ原子(例えば、O、N、またはS)で置き換えられている場合、得られたヘテロアルキル基はそれぞれ、ヒドロキシアルキル基(例えば、−CHCH−OH)、アミノアルキル基(例えば、−CHNH)、またはアルキルチオール基(例えば、−CHCH−SH)である。ヘテロアルキル基は、例えば、1〜20個の炭素原子、1〜10個の炭素原子、または1〜6個の炭素原子を有しうる。C−Cヘテロアルキル基は、1〜6個の炭素原子を有するヘテロアルキル基を意味する。
「アルケニル」または「アルケニレン」は、特定の数の炭素原子、および1つ以上、好ましくは1〜2個の、鎖の任意の安定な部位に生じうる炭素−炭素二重結合を有する、直鎖または分岐鎖のいずれかの配置の炭化水素鎖を含むことが意図される。例えば、「C−Cアルケニル」または「C2−6アルケニル」(またはアルケニレン)は、C、C、C、C、およびCアルケニル基を含むことが意図される。アルケニルの例としては、限定されないが、エテニル、1−プロペニル、2−プロペニル、2−ブテニル、3−ブテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、5−ヘキセニル、2−メチル−2−プロペニル、および4−メチル−3−ペンテニルが挙げられる。
「アルキニル」または「アルキニレン」は、1つ以上、好ましくは1〜3個の、鎖の任意の安定な部位に生じうる炭素−炭素三重結合を有する、直鎖または分岐鎖配置のいずれかの炭化水素鎖を含むことが意図される。例えば、「C−Cアルキニル」または「C2−6アルキニル」(またはアルキニレン)は、エチニル、プロピニル、ブチニル、ペンチニル、およびヘキシニルなどの、C、C、C、C、およびCアルキニル基を含むことが意図される。
本明細書で用いられる「アリールアルキル」(別名、アラルキル)、「ヘテロアリールアルキル」、「カルボシクリルアルキル」、または「ヘテロシクリルアルキル」は、水素原子の1つが炭素原子、一般に末端またはsp炭素原子に結合した、非環式アルキル基をいい、それぞれ、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル基で置換されている。典型的なアリールアルキル基としては、限定されないが、ベンジル、2−フェニルエタン−1−イル、ナフチルメチル、2−ナフチルエタン−1−イル、ナフトベンジル、2−ナフトフェニルエタン−1−イルなどが挙げられる。アリールアルキル、ヘテロアリールアルキル、カルボシクリルアルキル、またはヘテロシクリルアルキル基は、4〜20個の炭素原子、および0〜5個のヘテロ原子を含んでもよく、例えば、アルキル基は1〜6個の炭素原子を含みうる。
本明細書で用いられる用語「ベンジル」は、水素原子の1つがフェニル基で置き換えられたメチル基をいい、ここで、前記フェニル基は適宜、1〜5個の基、好ましくは1〜3個の基、OH、OCH、Cl、F、Br、I、CN、NO、NH、N(CH)H、N(CH、CF、OCF、C(=O)CH、SCH、S(=O)CH、S(=O)CH、CH、CHCH、COH、およびCOCHで置換されていてもよい。「ベンジル」はまた、式「Bn」で表すことができる。
用語「アルコキシ」または「アルキルオキシ」は、−O−アルキル基をいう。「C−Cアルコキシ」または「C1−6アルコキシ」(またはアルキルオキシ)は、C、C、C、C、C、およびCアルコキシ基を含むことが意図される。アルコキシ基の例としては、限定はされないが、メトキシ、エトキシ、プロポキシ(例えば、n−プロポキシ、およびイソプロポキシ)、およびt−ブトキシが挙げられる。同様に、「アルキルチオ」または「チオアルコキシ」は、硫黄架橋を介して結合した、所定の数の炭素原子を有する、前記で定義されたアルキル基;例えば、メチル−S−およびエチル−S−を表す。
本明細書で用いられる用語「アルカノイル」または「アルキルカルボニル」は、単体で、または他の基の一部として、カルボニル基に結合したアルキルをいう。例えば、アルキルカルボニルは、アルキル−C(O)−によって表されうる。「C−Cアルキルカルボニル」(またはアルキルカルボニル)は、C、C、C、C、C、およびCアルキル−C(O)−基を含むことが意図される。
本明細書で用いられる用語「アルキルスルホニル」または「スルホンアミド」は、単体で、または他の基の一部として、スルホニル基に結合したアルキルまたはアミドをいう。例えば、アルキルスルホニルは、−S(O)R’によって表されうるが、スルホンアミドは、−S(O)NRによって表されうる。R’はC−Cアルキルであり;RおよびRは、以下で「アミノ」について定義されるものと同じである。
本明細書で用いられる用語「カルバメート」は、単体で、または他の基の一部として、アミド基に結合した酸素をいう。例えば、カルバメートはN(R)−C(O)−O−によって表され、RおよびRは、以下で「アミノ」について定義されるものと同じである。
本明細書で用いられる用語「アミド」は、単体で、または他の基の一部として、カルボニル基に結合したアミノをいう。例えば、アミドはN(R)−C(O)−によって表され、RおよびRは、以下で「アミノ」について定義されるものと同じである。
用語「アミノ」は、−NRc1c2として定義され、ここで、Rc1およびRc2は独立して、HまたはC1−6アルキルであるか;あるいは、Rc1およびRc2は、それらが結合する原子と一緒になって、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、C1−6アルキル、アルコキシ、およびアミノアルキルから選択される、1つ以上の基で適宜置換されていてもよい、3から8員のヘテロ環式環を形成する。Rc1またはRc2(またはそれらの両方)がC1−6アルキルである場合、アミノ基はまた、アルキルアミノと称されうる。アルキルアミノ基の例としては、限定されないが、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノなどが挙げられる。ある実施態様において、アミノは−NHである。
用語「アミノアルキル」は、水素原子の1つがアミノ基で置き換えられているアルキル基をいう。例えば、アミノアルキルは、N(Rc1c2)−アルキレン−によって表されうる。「C−C」または「C1−6」アミノアルキル」(またはアミノアルキル)は、C、C、C、C、C、およびCアミノアルキル基を含むことが意図される。
本明細書で用いられる用語「ハロゲン」または「ハロ」は、単体で、または他の基の一部として、塩素、臭素、フッ素、およびヨウ素をいい、塩素またはフッ素が好ましい。
「ハロアルキル」は、1つ以上のハロゲンで置換された、特定の数の炭素原子を有する、分岐鎖および直鎖の両方の飽和脂肪族炭化水素基を含むことが意図される。「C−Cハロアルキル」または「C1−6ハロアルキル」(またはハロアルキル)は、C、C、C、C、C、およびCハロアルキル基を含むことが意図される。ハロアルキルの例としては、限定されないが、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリクロロメチル、ペンタフルオロエチル、ペンタクロロエチル、2,2,2−トリフルオロエチル、ヘプタフルオロプロピル、およびヘプタクロロプロピルが挙げられる。ハロアルキルの例としてはまた、1つ以上のフッ素原子で置換された、特定の数の炭素原子を有する、分岐鎖および直鎖の両方の飽和脂肪族炭化水素基を含むことが意図される、「フルオロアルキル」が挙げられる。本明細書で用いられる用語「ポリハロアルキル」は、2〜9個、好ましくは2〜5個の、FまたはClなどのハロ置換基、好ましくはFを含む、ポリフルオロアルキルなどの、前記で定義される「アルキル」基、例えば、CFCH、CF、またはCFCFCHをいう。
「ハロアルコキシ」または「ハロアルキルオキシ」は、酸素架橋を介して結合した、所定の数の炭素原子を有する、前記で定義されたハロアルキル基を表す。例えば、「C−Cハロアルコキシ」または「C1−6ハロアルコキシ」は、C、C、C、C、C、およびCハロアルコキシ基を含むことが意図される。ハロアルコキシの例としては、限定されないが、トリフルオロメトキシ、2,2,2−トリフルオロエトキシ、およびペンタフルオロトキシ(pentafluorothoxy)が挙げられる。同様に、「ハロアルキルチオ」または「チオハロアルコキシ」は、硫黄架橋を介して結合した、所定の数の炭素原子を有する、前記で定義されたハロアルキル基;例えば、トリフルオロメチル−S−、およびペンタフルオロエチル−S−を表す。本明細書で用いられる用語「ポリハロアルキルオキシ」は、2〜9個、好ましくは2〜5個の、FまたはCl、好ましくはFなどのハロ置換基を含む、ポリフルオロアルコキシなどの、前記で定義された「アルコキシ」または「アルキルオキシ」基、例えば、CFCHO、CFO、またはCFCFCHOをいう。
「ヒドロキシアルキル」は、1つ以上のヒドロキシル(OH)で置換された、特定の数の炭素原子を有する、分岐鎖および直鎖の両方の飽和脂肪族炭化水素基を含むことが意図される。「C−Cヒドロキシアルキル」(またはヒドロキシアルキル)は、C、C、C、C、C、およびCヒドロキシアルキル基を含むことが意図される。
用語「シクロアルキル」は、モノ、ビ、またはポリ環系などの、環化アルキル基をいう。「C−Cシクロアルキル」または「C3−8シクロアルキル」は、単環式、二環式、および多環式環などの、C、C、C、C、C、およびCシクロアルキル基を含むことが意図される。シクロアルキル基の例としては、限定されないが、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、およびノルボロニルが挙げられる。1−メチルシクロプロピルおよび2−メチルシクロプロピルなどの分岐鎖シクロアルキル基、並びにスピロおよび架橋シクロアルキル基は、「シクロアルキル」の定義に含まれる。
用語「シクロへテロアルキル」は、モノ、ビ、またはポリ環系などの、環化ヘテロアルキル基をいう。「C−Cシクロヘテロアルキル」または「C3−7シクロヘテロアルキル」は、C、C、C、C、およびCシクロヘテロアルキル基を含むことが意図される。シクロヘテロアルキル基の例としては、限定されないが、オキセタニル、テトラヒドロフラニル、テトラヒドロピラニル、アゼチジニル、ピロリジニル、ピペリジニル、モルホリニル、およびピペラジニルが挙げられる。ピペリジニルメチル、ピペラジニルメチル、モルホリニルメチル、ピリジニルメチル、ピリジジルメチル(pyridizylmethyl)、ピリミジルメチル、およびピラジニルメチルなどの、分岐鎖シクロへテロアルキル基は、「シクロへテロアルキル」の定義内に含まれる。
本明細書で用いられる「炭素環」、「カルボシクリル」、または「炭素環式基」は、任意の安定な3、4、5、6、7、または8員の単環式または二環式または7、8、9、10、11、12、または13員の二環式または三環式炭化水素環を意味することが意図され、これらのいずれかは、飽和、部分的に不飽和、不飽和、または芳香族でありうる。そのような炭素環の例としては、限定はされないが、シクロプロピル、シクロブチル、シクロブテニル、シクロペンチル、シクロペンテニル、シクロヘキシル、シクロヘプテニル、シクロヘプチル、シクロヘプテニル、アダマンチル、シクロオクチル、シクロオクテニル、シクロオクタジエニル、[3.3.0]ビシクロオクタン、[4.3.0]ビシクロノナン、[4.4.0]ビシクロデカン(デカリン)、[2.2.2]ビシクロオクタン、フルオレニル、フェニル、ナフチル、インダニル、アダマンチル、アントラセニル、およびテトラヒドロナフチル(テトラリン)が挙げられる。前記で示されるように、架橋環はまた、炭素環の定義に含まれる(例えば、[2.2.2]ビシクロオクタン)。好ましい炭素環は、特に言及されない限り、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、フェニル、およびインダニルである。用語「カルボシクリル」が用いられる場合、「アリール」を含むことが意図される。架橋環は、1つ以上の炭素原子が、2つの非隣接炭素原子を結合する場合に生じる。好ましい架橋は、1または2個の炭素原子である。架橋は、常に単環式環を三環式環に変換することに注意されたい。環が架橋である場合、環について列挙される置換基はまた、架橋上に存在しうる。
さらに、「シクロアルキル」および「シクロアルケニル」などの、本明細書において単体で、または他の基の一部として用いられる用語「カルボシクリル」は、飽和または部分的に不飽和(1または2個の二重結合を含む)な、環状炭化水素基を含み、これは、単環式アルキル、二環式アルキル、および三環式アルキルなどの1〜3個の環を含み、環を形成する合計3〜20個の炭素、好ましくは、環を形成し、アリールについて記載された1または2個の芳香環と縮合してもよい、3〜10個の炭素、または3〜6個の炭素を含み、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロデシル、およびシクロドデシル、シクロヘキセニル、
Figure 2021506859
が挙げられ、これらの基のいずれも、適宜、ハロゲン、アルキル、アルコキシ、ヒドロキシ、アリール、アリールオキシ、アリールアルキル、シクロアルキル、アルキルアミド、アルカノイルアミノ、オキソ、アシル、アリールカルボニルアミノ、ニトロ、シアノ、チオール、および/またはアルキルチオ、および/または任意のアルキル置換基などの1〜4個の置換基で置換されていてもよい。
本明細書で用いられる用語「二環式カルボシクリル」または「二環式炭素環基」は、2つの縮合環を含み、炭素原子から成る安定な9または10員炭素環式環系を意味することが意図される。2つの縮合環のうち、1つの環は第二の環に縮合したベンゾ環であり;第二の環は飽和、部分的に不飽和、または不飽和である、5または6員炭素環である。二環式炭素環式基は、安定な構造を生じる任意の炭素原子において、そのペンダント基に結合しうる。本明細書で記載される二環式炭素環式基は、得られる化合物が安定であれば、任意の炭素において置換されうる。二環式炭素環式基の例としては、これらに限定はされないが、ナフチル、1,2−ジヒドロナフチル、1,2,3,4−テトラヒドロナフチル、およびインダニルが挙げられる。
本明細書において単体で、または他の基の一部として用いられる用語「アリール」は、単環式または多環式(二環式および三環式など)芳香族炭化水素、例えば、フェニル、ナフチル、アントラセニル、およびフェナントレニルなどをいう。アリール基は周知であり、例えば、Lewis, R.J., ed., Hawley's Condensed Chemical Dictionary, 13th Edition, John Wiley & Sons, Inc., New York (1997)において記載される。ある実施態様において、用語「アリール」は、環部分中に、6〜10個の炭素を含む単環式および二環式芳香族基(フェニル、または1−ナフチルおよび2−ナフチルなどのナフチルなど)を表す。例えば、「CまたはC10アリール」または「C6−10アリール」は、フェニルおよびナフチルをいう。特に言及されない限り、「アリール」、「CまたはC10アリール」、「C6−10アリール」、または「芳香族基」は、非置換であってもよく、−OH、−OCH、−Cl、−F、−Br、−I、−CN、−NO、−NH、−N(CH)H、−N(CH、−CF、−OCF、−C(O)CH、−SCH、−S(O)CH、−S(O)CH、−CH、−CHCH、−COH、および−COCHから選択される、1〜5個の基、好ましくは1〜3個の基で置換されていてもよい。
本明細書で用いられる用語「ベンジル」は、メチル基上の水素原子の1つがフェニル基で置き換えられているものをいい、ここで、前記フェニル基は適宜、OH、OCH、Cl、F、Br、I、CN、NO、NH、N(CH)H、N(CH、CF、 OCF、 C(=O)CH、SCH、S(=O)CH、S(=O)CH、CH、CHCH、COH、およびCOCHの1から5個の基、好ましくは1から3個の基で置換されていてもよい。
本明細書で用いられる用語「ヘテロ環」、「ヘテロシクリル」、または「ヘテロ環基
」は、飽和、または部分的に不飽和であり、炭素原子と、N、OおよびSから独立して選択される1、2、3または4個のヘテロ原子とを含む、安定な3、4、5、6、または7員単環式、または5、6、7、8、9、10、11、12、13、または14員多環式(二環式および三環式など)ヘテロ環式環;および前記で定義されるヘテロ環式環のいずれかが炭素環、またはアリール(例えば、ベンゼン)環に縮合されている任意の多環式基などを意味することが意図される。すなわち、用語「ヘテロ環」、「ヘテロシクリル」、または「ヘテロ環基」としては、ヘテロシクロアルキルおよびヘテロシクロアルケニルなどの、非芳香族炭素環系を含む。窒素および硫黄ヘテロ原子は、適宜酸化されていてもよい(すなわち、N→OおよびS(O)、ここで、pは0、1または2である)。窒素原子は、置換されていても、置換されていなくてもよい(すなわち、NまたはNR、ここで、RはH、または定義されている場合は、他の置換基である)。ヘテロ環式環は、安定な構造を生じる任意のヘテロ原子または炭素原子におけるペンダント基に結合しうる。本明細書に記載されるヘテロ環式環は、得られる化合物が安定である場合、炭素または窒素原子上で置換されうる。ヘテロ環中の窒素は適宜4級化されていてもよい。ヘテロ環中のSおよびO原子の総数が1を超える場合、これらのヘテロ原子は互いに隣接していないのが好ましい。ヘテロ環中のSおよびO原子の総数が1を超えないのが好ましい。ヘテロシクリルの例としては、限定されないが、アゼチジニル、ピペラジニル、ピペリジニル、ピペリドニル、ピペロニル、ピラニル、モルホリニル、テトラヒドロフラニル、テトラヒドロイソキノリニル、テトラヒドロキノリニル、モルホリニル、ジヒドロフロ[2,3−b]テトラヒドロフランが挙げられる。
本明細書で用いられる用語「二環式ヘテロ環」または「二環式ヘテロ環式基」は、2つの縮合環を含み、炭素原子と、N、OおよびSから独立して選択される1、2、3、または4個のヘテロ原子とから成る、安定な9または10員ヘテロ環式環系を意味することが意図される。2つの縮合環のうち、1つの環は5員ヘテロアリール環、6員ヘテロアリール環、またはベンゾ環などの、5または6員単環式芳香環であり、それぞれが第二の環に縮合する。第二の環は、飽和、部分的に不飽和、または不飽和である5または6員単環式であり、5員ヘテロ環、6員ヘテロ環または炭素環を含む(但し、第二の環が炭素環である場合、第一の環はベンゾでない)。
二環式ヘテロ環式基は、安定な構造を生じる任意のヘテロ原子または炭素原子における、そのペンダント基に結合しうる。本明細書において記載される二環式ヘテロ環式基は、得られる化合物が安定である場合、炭素または窒素原子上で置換されうる。ヘテロ環中のSおよびO原子の総数が1を超える場合、これらのヘテロ原子は互いに隣接しないのが好ましい。ヘテロ環中のSおよびO原子の総数が1を超えないのが好ましい。二環式ヘテロ環式基の例は、限定されないが、1,2,3,4−テトラヒドロキノリニル、1,2,3,4−テトラヒドロイソキノリニル、5,6,7,8−テトラヒドロ−キノリニル、2,3−ジヒドロ−ベンゾフラニル、クロマニル、1,2,3,4−テトラヒドロ−キノキサリニル、および1,2,3,4−テトラヒドロ−キナゾリニルである。
架橋環はまた、ヘテロ環の定義に含まれる。1つ以上の原子(すなわち、C、O、N、またはS)が2つの隣接しない炭素または窒素原子を結合する場合、架橋環が生じる。架橋環の例としては、これらに限定はされないが、1つの炭素原子、2つの炭素原子、1つの窒素原子、2つの窒素原子、および炭素−窒素基が挙げられる。架橋は常に、単環式環を三環式環に変換することに注意されたい。環が架橋である場合、環について列挙される置換基は、架橋上にもまた存在しうる。
本明細書で用いられる用語「ヘテロアリール」は、少なくとも1つの、硫黄、酸素、または窒素などのヘテロ原子環員を含む、安定な単環式および多環式(二環式および三環式などの)芳香族炭化水素を意味することが意図される。ヘテロアリール基としては、限定されないが、ピリジル、ピリミジニル、ピラジニル、ピリダジニル、トリアジニル、フリル、キノリル、イソキノリル、チエニル、イミダゾリル、チアゾリル、インドリル、ピロール、オキサゾリル、ベンゾフリル、ベンゾチエニル、ベンズチアゾリル、イソオキサゾリル、ピラゾリル、トリアゾリル、テトラゾリル、インダゾリル、1,2,4−チアジアゾリル、イソチアゾリル、プリニル、カルバゾリル、ベンゾイミダゾリル、インドリニル、ベンゾジオキソラニル、およびベンゾジオキサンが挙げられる。ヘテロアリール基は、置換または非置換である。窒素原子は、置換または非置換である(すなわち、NまたはNR、ここで、RはH、または定義されている場合、他の置換基である)。窒素および硫黄ヘテロ原子は、適宜、酸化されていてもよい(すなわち、N→OおよびS(O)、ここで、pは0、1、または2である)。
ヘテロアリールの例としてはまた、これらに限定はされないが、アクリジニル、アゾシニル、ベンゾイミダゾリル、ベンゾフラニル、ベンゾチオフラニル、ベンゾチオフェニル、ベンゾオキサゾリル、ベンズオキサゾリニル、ベンズチアゾリル、ベンズトリアゾリル、ベンズテトラゾリル、ベンゾイソオキサゾリル、ベンズイソチアゾリル、ベンズイミダゾリニル、カルバゾリル、4aH−カルバゾリル、カルボリニル、クロマニル、クロメニル、シンノリニル、デカヒドロキノリニル、2H,6H−1,5,2−ジチアジニル、フラニル、フラザニル、イミダゾリジニル、イミダゾリニル、イミダゾリル、1H−インダゾリル、イミダゾロピリジニル、インドレニル(indolenyl)、インドリニル、インドリジニル、インドリル、3H−インドリル、イサチノイル(isatinoyl)、イソベンゾフラニル、イソクロマニル、イソインダゾリル、イソインドリニル、イソインドリル、イソキノリニル、イソチアゾリル、イソチアゾロピリジニル、イソオキサゾリル、イソキサゾロピリジニル、メチレンジオキシフェニル、ナフチリジニル、オクタヒドロイソキノリニル、オキサジアゾリル、1,2,3−オキサジアゾリル、1,2,4−オキサジアゾリル、1,2,5−オキサジアゾリル、1,3,4−オキサジアゾリル、オキサゾリジニル、オキサゾリル、オキサゾロピリジニル、オキサゾリジニルピリミジニル(oxazolidinylperimidinyl)、オキシインドリル、ピリミジニル、フェナントリジニル、フェナントロリニル、フェナジニル、フェノチアジニル、フェノキサチアニル、フェノキサジニル、フタラジニル、プテリジニル、プリニル、ピラジニル、ピラゾリジニル、ピラゾリニル、ピラゾロピリジニル、ピラゾリル、ピリダジニル、ピリドオキサゾリル、ピリドイミダゾリル、ピリドチアゾリル、ピリジニル、ピリミジニル、ピロリジニル、ピロリニル、2−ピロールインドニル、2H−ピロリル、ピロリル、キナゾリニル、キノリニル、4H−キノリジニル、キノキサリニル、キヌクリジニル、テトラゾリル、テトラヒドロフラニル、テトラヒドロイソキノリニル、テトラヒドロキノリニル、6H−1,2,5−チアジアジニル、1,2,3−チアジアゾリル、1,2,4−チアジアゾリル、1,2,5−チアジアゾリル、1,3,4−チアジアゾリル、チアンスレニル、チアゾリル、チエニル、チアゾロピリジニル、チエノチアゾリル、チエノオキサゾリル、チエノイミダゾリル、チオフェニル、トリアジニル、1,2,3−トリアゾリル、1,2,4−トリアゾリル、1,2,5−トリアゾリル、1,3,4−トリアゾリル、およびキサンテニルが挙げられる。
5から10員のヘテロアリールの例としては、これらに限定はされないが、ピリジニル、フラニル、チエニル、ピラゾリル、イミダゾリル、イミダゾリジニル、インドリル、テトラゾリル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、オキサゾリジニル、チアジアジニル、チアジアゾリル、チアゾリル、トリアジニル、トリアゾリル、ベンゾイミダゾリル、1H−インダゾリル、ベンゾフラニル、ベンゾチオフラニル、ベンズテトラゾリル、ベンゾトリアゾリル、ベンゾイソオキサゾリル、ベンゾオキサゾリル、オキシインドリル、ベンズオキサゾリニル、ベンズチアゾリル、ベンズイソチアゾリル、イサチノイル(isatinoyl)、イソキノリニル、オクタヒドロイソキノリニル、イソキサゾロピリジニル、キナゾリニル、キノリニル、イソチアゾロピリジニル、チアゾロピリジニル、オキサゾロピリジニル、イミダゾロピリジニル、およびピラゾロピリジニルが挙げられる。5から6員のヘテロアリールの例としては、限定されないが、ピリジニル、フラニル、チエニル、ピロリル、ピラゾリル、ピラジニル、イミダゾリル、イミダゾリジニル、インドリル、テトラゾリル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、オキサゾリジニル、チアジアジニル、チアジアゾリル、チアゾリル、トリアジニル、およびトリアゾリルが挙げられる。いくつかの実施態様において、ヘテロアリールは、ベンズチアゾリル、イミダゾールピリジニル、ピロロピリジニル、キノリニル、およびインドリルから選択される。
特に言及されない限り、「カルボシクリル」または「ヘテロシクリル」は、炭素環式環またはヘテロ環式環(アリール、シクロアルキル、ヘテロアリール、またはシクロヘテロアルキル環など)に縮合した、1〜3個のさらなる環を含み、例えば、
Figure 2021506859
であり、(可能である場合)利用可能な炭素または窒素原子を介して、水素、ハロ、ハロアルキル、アルキル、ハロアルキル、アルコキシ、ハロアルコキシ、アルケニル、トリフルオロメチル、トリフルオロメトキシ、アルキニル、シクロアルキル−アルキル、シクロヘテロアルキル、シクロヘテロアルキルアルキル、アリール、ヘテロアリール、アリールアルキル、アリールオキシ、アリールオキシアルキル、アリールアルコキシ、アルコキシカルボニル、アリールカルボニル、アリールアルケニル、アミノカルボニルアリール、アリールチオ、アリールスルフィニル、アリールアゾ、ヘテロアリールアルキル、ヘテロアリールアルケニル、ヘテロアリールヘテロアリール、ヘテロアリールオキシ、ヒドロキシ、ニトロ、シアノ、チオール、アルキルチオ、アリールチオ、ヘテロアリールチオ、アリールチオアルキル、アルコキシアリールチオ、アルキルカルボニル、アリールカルボニル、アルキルアミノカルボニル、アリールアミノカルボニル、アルコキシカルボニル、アミノカルボニル、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルキルカルボニルアミノ、アリールカルボニルアミノ、アリールスルフィニル、アリールスルフィニルアルキル、アリールスルホニルアミノ、およびアリールスルホンアミノカルボニル、および/または本明細書に記載される任意のアルキル置換基から選択される、1、2、または3個の基で、適宜置換されていてもよい
用語アルキル、アルケニル、アルキニル、シクロアルキル、カルボシクリル、ヘテロシクリル、アリール、およびヘテロアリールのいずれかが、他の基の一部として用いられる場合、炭素原子および環員の数は、それ自体の用語において定義されたものと同じである。例えば、アルコキシ、ハロアルコキシ、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アルキルチオなどは、それぞれ独立して、用語「アルキル」について定義されたものと同じ炭素原子の数、1〜4個の炭素原子、1〜6個の炭素原子、1〜10個の炭素原子などを含む。同様に、シクロアルコキシ、ヘテロシクリルオキシ、シクロアルキルアミノ、ヘテロシクリルアミノ、アラルキルアミノ、アリールアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシなどは、それぞれ独立して、用語「シクロアルキル」、「ヘテロシクリル」、「アリール」、および「ヘテロアリール」について定義されたものと同じ環員の数、3から6員、4から7員、6から10員、5から10員、5または6員などを含む。
当技術分野において用いられる慣例に従って、本明細書における構造式において用いられる、
Figure 2021506859
などの、太線を指す結合は、コアまたは骨格構造に対する当該部位または置換基の結合点である結合を表す。
当技術分野において用いられる慣例に従って、
Figure 2021506859
などの、構造式の波線または波状の結合は、X’、Y’、およびZ’が結合する炭素原子の不斉中心を表すために用いられ、単一の図において、両方のエナンチオマーを表すことが意図される。すなわち、そのような破線結合を有する構造式は、
Figure 2021506859
などの、個々のエナンチオマーのそれぞれ、並びにそれらのラセミ混合物を表す。破線または波状結合が二重結合(C=CまたはC=Nなど)部位に結合している場合、それはシスまたはトランス(または、EおよびZ)幾何異性体、またはそれらの混合物を含む。
炭素環式またはヘテロ環式基が、特定の結合点を示すことなく、異なる環原子を介して、指定される基質に結合する、またはその他の方法で付加しうる場合、炭素原子、または、例えば三価の窒素原子を介するかに関わらず、全ての可能な点が意図されることが本明細書において理解される。例えば、用語「ピリジル」は、2−、3−または4−ピリジルを意味し、用語「チエニル」は、2−または3−チエニルなどを意味する。
置換基への結合が、環中の2つの原子を接続する結合を横切って示されている場合、そのような置換基は、環上の任意の原子に結合しうる。置換基が、所定の式の化合物の残りに、そのような置換基が結合している原子を示さずに、列挙されている場合、そのような置換基は、そのような置換基中の任意の原子を介して結合されうる。置換基および/または変数の組み合わせは、そのような組み合わせが安定な化合物を生じる場合にのみ許容される。
本発明の化合物の置換基、および他の基は、許容可能な安定な医薬組成物に製剤化することができる、薬学的に有用な化合物を生じるのに十分に安定な化合物を提供するために、選択されるべきであることを、当業者は理解するであろう。そのような安定性を有する本発明の化合物は、本発明の範囲内に属すると考えられる。
用語「対イオン」は、塩化物、臭化物、水酸化物、酢酸塩、および硫酸塩などの、負に帯電した種を表すために用いられる。用語「金属イオン」は、ナトリウム、カリウム、またはリチウムなどのアルカリ金属イオン、並びに、マグネシウム、およびカルシウム、並びに亜鉛、およびアルミニウムなどのアルカリ土類金属をいう。
本明細書で言及される用語「置換された」は、(炭素原子またはヘテロ原子に結合した)少なくとも1つの水素原子が、水素でない基で置き換えられているが、但し、通常の価数は維持され、置換によって安定な化合物を生じることを意味する。置換基がオキソ(すなわち=O)である場合、原子上の2つの水素が置換されている。オキソ置換基は芳香族基上に存在しない。環系(例えば、炭素環またはヘテロ環)がカルボニル基または二重結合で置換されていると言及されている場合、カルボニル基または二重結合は環の一部(すなわち内部)であることが意図される。本明細書で用いられる環二重結合は、2つの隣接する環原子の間に形成される二重結合である(例えば、C=C、C=N、またはN=N)。アルキル、シクロアルキル、ヘテロアルキル、シクロヘテロアルキル、アルキレン、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、およびヘテロシクリルについて言及される用語「置換された」は、それぞれ、炭素またはヘテロ原子のいずれかに結合した、1つ以上の水素原子が、それぞれ独立して、1つ以上の非水素置換基で置き換えられた、アルキル、シクロアルキル、ヘテロアルキル、シクロヘテロアルキル、アルキレン、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、およびヘテロシクリルを意味する。
本発明の化合物上に窒素原子(例えば、アミン)が存在する場合、それらは酸化剤(例えば、mCPBAおよび/または過酸化水素)による処理によってN−オキシドに変換され、本発明の他の化合物が得られうる。そのため、示されるおよび請求される窒素原子は、示される窒素およびそのN−オキシド(N→O)誘導体の両方を含むと考えられる。
化合物の任意の構成要素または式において、1つより多い任意の変数が生じる場合、その定義はそれぞれの場合において、他のそれぞれの場合におけるその定義とは独立である。そのため、例えば、基が0、1、2、または3個のR基で置換されていることが示されている場合、前記基は、0個のR基で置換されている場合、非置換であり、あるいは、最大3個のR基で置換され、それぞれの場合において、Rは独立してRの定義から選択される。
また、置換基および/または変数の組み合わせは、そのような組み合わせが安定な化合物を生じる場合にのみ、許容可能である。
本明細書で用いられる用語「互変異性体」は、共に平衡で存在し、分子内の原子または基の移動によって、容易に入れ替わる、2つ以上の化合物の異性体のそれぞれをいう。例えば、1,2,3−トリアゾールは、上記で定義された2つの互変異性体形態で存在することを、当業者は容易に理解するであろう:
Figure 2021506859
そのため、本開示は、構造がそれらの1つのみを表す場合であっても、全ての可能な互変異性体を含むことを意図する。
語句「薬学的に許容可能な」は、健全な医学的判断の範囲内で、過剰な毒性、刺激、アレルギー性応答、および/または他の問題または合併症がなく、合理的な利益/リスク比に釣り合った、ヒトおよび動物の組織に接触させて用いるのに適切な、これらの化合物、物質、組成物、および/または剤形を指すために、本明細書で用いられる。
本発明の化合物は、塩として存在することができ、これもまた本発明の範囲内である。薬学的に許容可能な塩が好ましい。本明細書で用いられる「薬学的に許容可能な塩」は、親化合物が、その酸または塩基塩を製造することによって改変された、本開示の化合物の誘導体をいう。本発明の薬学的に許容可能な塩は、塩基性または酸性基を含む親化合物から、従来の化学的方法によって合成することができる。一般に、そのような塩は、水または有機溶媒中で、または2つの混合物中(一般に、エーテル、酢酸エチル、エタノール、イソプロパノール、または アセトニトリルなどの非水性溶媒が好ましい)で、それらの化合物の遊離酸または塩基の形態を化学量論量の適切な塩基または酸と反応させることによって、製造することができる。適切な塩の一覧は、Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Company, Easton, PA (1990)において見つけることができ、本開示は引用によって本明細書に援用される。
本開示の化合物は、例えば、少なくとも1つの塩基性中心を有する場合、酸付加塩を形成することができる。これらは、例えば、鉱酸などの強無機酸、例えば、硫酸、リン酸、またはハロゲン化水素酸によって、1〜4個の炭素原子のアルカンカルボン酸、例えば、置換されていない、または、例えばクロロ酢酸のようにハロゲンによって置換された酢酸など;飽和または不飽和ジカルボン酸、例えば、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、フタル酸、またはテレフタル酸など;ヒドロキシカルボン酸、例えば、アスコルビン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、またはクエン酸など;アミノ酸(例えば、アスパラギン酸、またはグルタミン酸、またはリシン、またはアルギニン)、または安息香酸などの有機カルボン酸によって、または置換されていない、あるいは、例えばハロゲンによって置換された、(C−C)アルキルもしくはアリールスルホン酸、例えば、メチル−またはp−トルエンスルホン酸などの、有機スルホン酸によって、形成される。対応する酸付加塩はまた、必要な場合、さらに塩基性中心を有して形成することができる。少なくとも1つの酸基(例えば、COOH)を有する本発明の化合物はまた、塩基によって塩を形成することができる。塩基による適切な塩は、例えば、ナトリウム、カリウムまたはマグネシウム塩などの、アルカリ金属、またはアルカリ土類金属塩などの金属塩、または、モルホリン、チオモルホリン、ピペリジン、ピロリジン、モノ、ジまたはトリ低級アルキルアミン、例えば、エチル、tert−ブチル、ジエチル、ジイソプロピル、トリエチル、トリブチル、またはジメチル−プロピルアミン、またはモノ、ジまたはトリヒドロキシ低級アルキルアミン、例えば、モノ、ジ、またはトリエタノールアミンなどの、アンモニアまたは有機アミンによる塩である。対応する内部塩が、さらに形成されうる。医薬用途に不適切であるが、例えば、式(I)の遊離化合物、またはその薬学的に許容可能な塩の単離または精製のために、用いることができる塩もまた、含まれる。
塩基性基を含む、式(I)の化合物の好ましい塩としては、モノヒドロクロライド、水素サルフェート、メタンスルホネート、ホスフェート、ニトレート、またはアセテートが挙げられる。
酸性基を含む、式(I)の化合物の好ましい塩としては、ナトリウム、カリウム、およびマグネシウム塩、および薬学的に許容可能な有機アミンが挙げられる。
さらに、式(I)の化合物は、プロドラッグの形態を有しうる。インビボで変換されて、生理活性薬剤(すなわち、式Iの化合物)を生じる任意の化合物は、本発明の範囲および精神の範囲内のプロドラッグである。プロドラッグの様々な形態は、当技術分野において周知である。そのようなプロドラッグ誘導体の例としては、以下を参照されたい:
a) Bundgaard, H., ed., Design of Prodrugs, Elsevier (1985), and Widder, K. et al., eds., Methods in Enzymology, 112:309−396, Academic Press (1985);
b) Bundgaard, H., Chapter 5, ‘‘Design and Application of Prodrugs’’, A Textbook of Drug Design and Development, pp. 113−191, Krosgaard−Larsen, P. et al., eds., Harwood Academic Publishers (1991);
c) Bundgaard, H., Adv. Drug Deliv. Rev., 8:1−38 (1992);
d) Bundgaard, H. et al., J. Pharm. Sci., 77:285 (1988); および
e) Kakeya, N. et al., Chem. Pharm. Bull., 32:692 (1984).
本発明の化合物は、体内で加水分解されて、本発明の化合物そのものを生じることによって、プロドラッグとして機能する、生理学的に加水分解可能なエステル、すなわち「プロドラッグエステル」を形成することができる、カルボキシ基を含む。本発明の化合物の生理学的に加水分解可能なエステルの例としては、C−Cアルキル、C−Cアルキルベンジル、4−メトキシベンジル、インダニル、フタリル、メトキシメチル、C1−6アルカノイルオキシ−C1−6アルキル(例えば、アセトキシメチル、ピバロイルオキシメチル、またはプロピオニルオキシメチル)、C−Cアルコキシカルボニルオキシ−C−Cアルキル(例えば、メトキシカルボニル−オキシメチル、またはエトキシカルボニルオキシメチル、グリシルオキシメチル、フェニルグリシルオキシメチル、(5−メチル−2−オキソ−1,3−ジオキソレン−4−イル)−メチル)、および例えば、ペニシリンおよびセファロスポリンの分野において用いられる、他の周知の生理学的に加水分解可能なエステルが挙げられる。そのようなエステルは、当技術分野において既知の従来の技術によって合成されうる。「プロドラッグエステル」は、当業者に既知の方法を用いて、本発明の化合物のカルボン酸基を、アルキルまたはアリールアルコール、ハライド、またはスルホネートのいずれかと反応させることによって、生成することができる。そのようなエステルは、当技術分野において既知の、従来の技術によって合成されうる。
プロドラッグの製造は当技術分野において周知であり、例えば、King, F.D., ed., Medicinal Chemistry: Principles and Practice, The Royal Society of Chemistry, Cambridge, UK (1994); Testa, B. et al., Hydrolysis in Drug and Prodrug Metabolism. Chemistry, Biochemistry and Enzymology, VCHA and Wiley−VCH, Zurich, Switzerland (2003); Wermuth, C.G., ed., The Practice of Medicinal Chemistry, Academic Press, San Diego, CA (1999)において記述される。
本発明は、本化合物において生じる全ての原子の同位体を含むことが意図される。同位体としては、同じ原子数を有するが、異なる質量数を有する原子が挙げられる。一般的な例として、限定されないが、水素の同位体として、重水素およびトリチウムが挙げられる。重水素は1つのプロトンおよび1つの中性子を核中に有し、通常の水素の2倍の重量を有する。重水素は「H」または「D」などの記号によって表すことができる。本明細書においてそれ自体で、または化合物もしくは基を修飾するために用いられる用語「重水素化」は、炭素に結合した1つ以上の水素原子を、重水素原子によって置換することをいう。炭素の同位体としては、13Cおよび14Cが挙げられる。
同位体標識した本発明の化合物は一般に、当業者によって既知の従来の技術によって、または本明細書に記載されるものと類似の方法によって、そうでない場合に用いられる非標識試薬の代わりに適切な同位体標識した試薬を用いて、製造することができる。そのような化合物は、例えば、潜在的な医薬化合物の、標的タンパク質または受容体への結合能力の決定において、または本発明の化合物の、インビボまたはインビトロでの生物学的な受容体への結合をイメージングするための標準物質および試薬として、様々な潜在的な用途を有する。
「安定な化合物」および「安定な構造」は、反応混合物からの利用可能な程度の純度への単離、および有効な治療剤への製剤化に耐える、十分に頑強な化合物を指すことを意図する。本発明の化合物は、N−ハロ、S(O)H、またはS(O)H基を含まないことが好ましい。
用語「溶媒和物」は、本発明の化合物と、1つ以上の有機または無機のいずれかの溶媒分子との物理的な会合を意味する。この物理的な会合としては、水素結合が挙げられる。いくつかの例において、例えば、1つ以上の溶媒分子が結晶固体の結晶格子中に組み込まれている場合、溶媒和物は単離することができる。溶媒和物中の溶媒分子は、規則的な配置および/または不規則な配置で存在しうる。溶媒和物は、化学量論量または非化学量論量のいずれかの溶媒分子を含みうる。「溶媒和物」は、溶液相および単離可能な溶媒和物の両方を含む。溶媒和物の例としては、これらに限定はされないが、水和物、エタノラート、メタノラート、およびイソプロパノラートが挙げられる。溶媒化の方法は一般に、当技術分野において既知である。
略語
本明細書で用いられる略語は、以下のように定義される:「1×」は1回、「2×」は2回、「3×」は3回、「℃」はセルシウス度、「eq」は当量、「g」はグラム、「mg」はミリグラム、「L」はリットル、「mL」はミリリットル、「μL」はマイクロリットル、「N」は通常、「M」はモラー、「mmol」はミリモル、「min」は分、「h」は時間、「rt」は室温、「RT」は保持時間、「RBF」は丸底フラスコ、「atm」は雰囲気、「psi」はポンド毎平方インチ、「conc.」は濃度、「RCM」は閉環メタセシス、「sat」または「sat’d」は飽和、「SFC」は超臨界流体クロマトグラフィー、「MW」は分子量、「mp」は融点、「ee」は鏡像体過剰率、「MS」または「Mass Spec」はマススペクトロメトリー、「ESI」はエレクトロスプレーイオン化質量分析、「HR」は高分解能、「HRMS」は高分解能マススペクトロメトリー、「LCMS」は液体クロマトグラフィーマススペクトロメトリー、「HPLC」は高速液体クロマトグラフィー、「RP HPLC」は逆相HPLC、「TLC」または「tlc」は薄層クロマトグラフィー、「NMR」は核磁気共鳴分光法、「nOe」は核オーバーハウザー効果分光法、「H」はプロトン、「δ」はデルタ、「s」はシングレット、「d」はダブレット、「t」はトリプレット、「q」はカルテット、「m」はマルチプレット、「br」はブロード、「Hz」はヘルツ、並びに「α」、「β」、「γ」、「R」、「S」、「E」、および「Z」は、当業者に知られた立体化学的記号である。
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
IV.生物学
リゾリン脂質は、膜由来生理活性脂質メディエーターである。リゾリン脂質としては、これらに限定はされないが、リゾホスファチジン酸(1−アシル−2−ヒドロキシ−sn−グリセロ−3−ホスフェート;LPA)、スフィンゴシン 1−ホスフェート(S1P)、リゾホスファチジルコリン(LPC)、およびスフィンゴシルホスホリルコリン(SPC)が挙げられる。リゾリン脂質は、細胞増殖、分化、生存、遊走、接着、侵襲、および形態形成などの、基本的な細胞の機能に影響する。これらの機能は、神経形成、血管形成、創傷治癒、免疫、および発癌などの、多くの生物学的プロセスに影響を与える。
LPAは、自己分泌および傍分泌の様式で、特定のGタンパク質共役型受容体(GPCR)のセットを介して作用する。LPAがその同族のGPCR(LPA、LPA、LPA、LPA、LPA、LPA)に結合することによって、細胞内シグナル伝達経路を活性化し、様々な生物学的応答が生じる。
LPAなどのリゾリン脂質は、主な対応するリン脂質(例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、およびスフィンゴミエリン)と比較して、定量的に少数の脂質の種類である。LPAは生物学的なエフェクター分子としての役割を有し、これらに限定されないが、血圧、血小板活性化、および平滑筋収縮への影響などの様々な生理学的機能、並びに細胞成長、細胞円形化、神経突起退縮、およびアクチンストレスファイバー形成、および細胞遊走などの広い範囲での細胞効果を有する。LPAの効果は、主に受容体に介在される。
LPAによるLPA受容体(LPA、LPA、LPA、LPA、LPA、LPA)の活性化は、さまざまな下流のシグナル伝達カスケードを介在する。これらとしては、限定はされないが、分裂促進因子活性化タンパク質キナーゼ(MAPK)活性化、アデニル酸シクラーゼ(AC)阻害/活性化、ホスホリパーゼC(PLC)活性化/Ca2+動員、アラキドン酸放出、Akt/PKB活性化、並びに低分子量GTPアーゼ、Rho、ROCK、Rac、およびRasの活性化が挙げられる。LPA受容体活性化によって影響される他の経路は、これらに限定はされないが、環状アデノシン一リン酸(cAMP)、細胞分裂周期42/GTP結合タンパク質(Cdc42)、癌原遺伝子セリン/スレオニン タンパク質キナーゼRaf(c−RAF)、癌原遺伝子チロシン タンパク質キナーゼSrc(c−src)、細胞外シグナル調節キナーゼ(ERK)、限局性接着キナーゼ(FAK)、グアニンヌクレオチド交換因子(GEF)、グリコーゲン合成酵素キナーゼ3b(GSK3b)、c−jun アミノ末端キナーゼ(JNK)、MEK、ミオシン軽鎖II(MLC II)、核因子kB(NF−kB)、N−メチル−D−アスパラギン酸(NMDA)受容体活性化、ホスファチジルイノシトール 3−キナーゼ(PI3K)、タンパク質キナーゼ A(PKA)、タンパク質キナーゼ C(PKC)、ras関連C3ボツリヌストキシン基質1(RAC1)が挙げられる。実際の経路および実現された終点は、受容体の使用、細胞型、受容体またはシグナル伝達タンパク質の発現量、およびLPA濃度などの様々な変数に依存する。ほとんど全ての哺乳動物細胞、組織、および臓器は、いくつかのLPA受容体サブタイプを共発現しており、これはLPA受容体シグナルが協同的な様式であることを示す。LPA、LPA、およびLPAは、高いアミノ酸配列の類似性が共通する。
LPAは活性化血小板、活性化脂肪細胞、神経細胞、および他の細胞型から生産される。モノアシルグリセロールキナーゼ、ホスホリパーゼA、分泌型ホスホリパーゼA、およびオートタキシンなどのリゾホスホリパーゼD(lysoPLD)に関連する多くの酵素経路によって、血清LPAが生産される。いくつかの酵素はLPAの分解に関わる:リゾホスホリパーゼ、脂質ホスフェートホスファターゼ、およびエンドフィリンなどのLPAアシルトランスフェラーゼ。ヒト血清におけるLPA濃度は、1〜5μMであると推定される。血清LPAはアルブミン、低比重リポタンパク質、または他のタンパク質に結合し、これが迅速な分解からLPAを保護する可能性がある。1−パルミトイル(16:0)、1−パルミトレオイル(16:1)、1−ステアロイル(18:0)、1−オレオイル(18:1)、1−リノレオイル(18:2)、および1−アラキドニル(20:4)LPAなどの、異なるアシル鎖の長さおよび飽和度を有するLPA分子種が自然発生する。定量的に少数のアルキルLPAは、アシルLPAと同様の生物学的活性を有し、異なるLPA種はさまざまな効率でLPA受容体サブタイプを活性化する。
LPA受容体
LPA(以前はVZG−1/EDG−2/mrec1.3と呼ばれていた)は、3種類のGタンパク質、Gi/o、G、およびG12/13と共役する。これらのGタンパク質の活性化を通して、LPAはLPAを介して、これらに限定はされないが、細胞増殖、血清応答配列(SRE)活性化、分裂促進因子活性化タンパク質キナーゼ(MAPK)活性化、アデニル酸シクラーゼ(AC)阻害、ホスホリパーゼC(PLC)活性化、Ca2+動員、Akt活性化、およびRho活性化などの様々な細胞性応答を誘導する。
LPAの幅広い発現が成体マウスにおいて観測され、精巣、脳、心臓、肺、小腸、胃、脾臓、胸腺、および骨格筋において明確に存在する。同様に、ヒトの組織はまたLPAを発現し、脳、心臓、肺、胎盤、結腸、小腸、前立腺、精巣、卵巣、膵臓、脾臓、腎臓、骨格筋、および胸腺において存在する。
LPA(EDG−4)はまた、3種類のGタンパク質、Gi/o、G、およびG12/13と共役し、LPA誘導性細胞シグナル伝達を介在する。LPAの発現は、成体マウスの精巣、腎臓、肺、胸腺、脾臓、および胃において、並びにヒトの精巣、膵臓、前立腺、胸腺、脾臓、および末梢血白血球において観測される。LPAの発現は、様々な癌細胞株において上方制御されており、3’非転写領域において変異を有する、いくつかのヒトLPA転写バリアントが観測された。マウスにおけるLPAの標的欠失は、明らかな表現型異常性を示していないが、マウス胎児線維芽細胞(MEF)の初代培養において、通常のLPAシグナル伝達(例えば、PLC活性化、Ca2+動員、およびストレスファイバー形成)の有意な消失が示された。lpa1(−/−) lpa2(−/−)二重欠損マウスの生成によって、二重欠損MEFにおいて、細胞増殖、AC阻害、PLC活性化、Ca2+動員、JNKおよびAkt活性化、およびストレスファイバー形成などの、多くのLPA誘導性応答が存在しないか、または大きく減少していることが明らかになった。これらの全ての応答は、AC阻害を除いて(LPA(−/−)MEFにおいて、AC阻害はほとんど消失している)、LPA(−/−)またはLPA(−/−) MEFのいずれかにおいて部分的に影響するのみである。LPAは、少なくともいくつかの細胞型において、通常のLPA介在シグナル伝達応答に寄与する(Choi et al, Biochemica et Biophysica Acta 2008, 1781, p531−539)。
LPA(EDG−7)は、Gi/oおよびGと共役するが、G12/13とは共役しない能力において、LPAおよびLPAと異なり、飽和アシル鎖を有するLPA種に対する応答が少ない。LPAは、PLC活性化、Ca2+動員、AC阻害/活性化、およびMAPK活性化などの多面的なLPA誘導性シグナル伝達を介在することができる。神経芽腫細胞におけるLPAの過剰発現は神経突起伸長につながり、一方でLPAまたはLPAの過剰発現は、LPAによって刺激された場合に神経突起退縮および細胞円形化につながる。LPAの発現は、成体マウスの精巣、腎臓、肺、小腸、心臓、胸腺、および脳において観察される。ヒトにおいては、心臓、膵臓、前立腺、精巣、肺、卵巣、および脳(前頭皮質、海馬、および扁桃体)に存在する。
LPA(p2y/GPR23)は、LPA、LPA、およびLPAと比較して多様な配列であり、血小板活性化因子(PAF)受容体に近い類似性を有する。LPAは、LPA誘導性のCa2+動員およびcAMP蓄積、およびAC活性化のためのGタンパク質Gsへの機能的カップリング、並びに他のGタンパク質へのカップリングを介在する。LPA遺伝子は卵巣、膵臓、胸腺、腎臓および骨格筋に発現する。
LPA(GPR92)はGPCRのプリンクラスター(purinocluster)の一員であり、LPAに構造的に最も近い関連がある。LPAはヒトの心臓、胎盤、脾臓、脳、肺および腸において発現する。LPAはまた、消化管のCD8+リンパ球コンパートメントにおいて、非常に高い発現を示す。
LPA(p2y5)はGPCRのプリンクラスターの一員であり、LPAに構造的に最も近い関連がある。LPAはG12/13−Rhoシグナル伝達経路に共役したLPA受容体であり、ヒトの毛包の内毛根鞘において発現される。
生物学的活性の説明
創傷治癒
通常の創傷治癒は、傷害を修復するのと同時に、細胞性の可溶性因子、およびマトリクス成分が機能する、非常に組織的な一連の事象によって生じる。治癒応答は、4つの幅広い、重複するフェーズ−止血、炎症、増殖、およびリモデリングにおいて起こると説明することができる。多くの増殖因子およびサイトカインが創傷部位に放出され、創傷治癒プロセスを開始し、持続させる。
創傷が生じると、損傷した血管が血小板を活性化する。活性化された血小板は、生理活性メディエーターの放出によって細胞増殖、細胞遊走、血液凝固、および血管形成を誘導することによって、その後の修復プロセスにおいて重要な役割を有する。LPAは活性化血小板から放出される、そのようなメディエーターの1つであり;これが、内皮細胞、平滑筋細胞、線維芽細胞、およびケラチン生成細胞などの周辺細胞への分裂促進/遊走の影響と共に、血小板凝集を誘導する。
マウスにおける皮膚損傷へのLPAの局所的塗布は、二次的炎症を発症することなく、細胞増殖/遊走を増加させることによって、修復プロセス(創傷閉鎖および新たな上皮の厚さの増加)を促進する。
真皮特徴的な細胞外マトリクス(ECM)の分泌および形成によって線維芽細胞が増殖し、真皮の修復を開始すると、増殖因子およびサイトカインによる真皮線維芽細胞の活性化によって、創傷の端からフィブリン凝血によって形成された仮のマトリクスへ、その後の遊走が生じる。創傷中の線維芽細胞の数の上昇、およびECMの継続的な沈殿によって、新たに形成された肉芽組織に対して小さな牽引性の力が働き、マトリクスの剛直性が向上する。機械的な応力の上昇は、トランスフォーミング増殖因子β(TGFβ)と共に、α−平滑筋アクチン(α−SMA)発現、およびその後の線維芽細胞の筋線維芽細胞への形質転換を誘導する。筋線維芽細胞は、筋繊維芽細胞の収縮を通して、およびECM成分の生産によって、肉芽組織のリモデリングを促進する。
LPAは、増殖、遊走、分化、および収縮などの創傷治癒における線維芽細胞の多くの重要な機能を制御する。開放創を埋めるために、線維芽細胞増殖は創傷治癒に必要である。対照的に、線維症は、ECMおよび炎症性サイトカインを活発に合成する筋繊維芽細胞の、著しい増殖および蓄積によって特徴づけられる。LPAは、上皮および内皮細胞(EC)、マクロファージ、ケラチン生成細胞、および線維芽細胞などの、創傷治癒において重要な細胞型の増殖の、上昇または抑制のいずれかを可能にする。LPA受容体欠損マウスから単離した線維芽細胞の、LPA刺激性の増殖が減少したことが観察されたことから、LPA誘導性増殖におけるLPAの役割が提示された(Mills et al, Nat Rev. Cancer 2003; 3: 582−591)。LPAは線維芽細胞接着、遊走、分化および収縮に不可欠な細胞骨格の変化を誘導する。
線維症
組織損傷は、複雑な一連の宿主創傷治癒応答を開始し;うまくいけば、これらの応答は通常の組織構造および機能を回復する。そうでなければ、これらの応答は組織線維症および機能喪失を導きうる。
臓器および組織の大半について、線維症の発達は多くの事象および因子に関連する。線維症の発達に関連する分子としては、タンパク質またはペプチド(線維化促進性のサイトカイン、ケモカイン、メタロプロテイナーゼなど)およびリン脂質が挙げられる。線維症の発達に関連するリン脂質としては、血小板活性化因子(PAF)、ホスファチジルコリン、スフィンゴシン−1 ホスフェート(S1P)およびリゾホスファチジン酸(LPA)が挙げられる。
多くの筋ジストロフィーは、筋肉組織の進行性の衰弱および萎縮によって、および広範囲の線維症によって特徴付けられる。培養した筋芽細胞のLPA処理が、結合組織増殖因子(CTGF)の有意な発現を誘導することが示されている。CTCFは次いで、コラーゲン、フィブロネクチンおよびインテグリンの発現を誘導し、これらの筋芽細胞の脱分化を誘導する。様々な細胞型をLPAで処理することによって、再現可能な、高い程度のCTGFの誘導が誘発される(J.P. Pradere, et al., LPA1 receptor activation promotes renal interstitial fibrosis, J. Am. Soc. Nephrol. 18 (2007) 3110-3118; N. Wiedmaier, et al., Int J Med Microbiol; 298(3−4):231−43, 2008)。CTGFは、TGFβと共に下流のシグナル伝達を行う、線維化促進性のサイトカインである。
歯肉線維腫症の発達に関連する、歯肉上皮細胞によるCTGFの発現は、LPA処理によって悪化することが分かった(A. Kantarci, et al., J. Pathol. 210 (2006) 59-66)。
LPAは肺線維症の進行に関連する。インビトロにおいて、LPAは星細胞および肝細胞増殖を誘導する。これらの活性化細胞は、肝臓におけるECMの蓄積の原因となる主な細胞型である。さらにLPA血漿量は、齧歯類のCCl誘導性肝線維症、またはヒトのC型肝炎ウイルス誘導性肝線維症において上昇する(N. Watanabe, et al., Plasma lysophosphatidic acid level and serum autotaxin activity are increased in liver injury in rats in relation to its severity, Life Sci. 81 (2007) 1009-1015; N.Watanabe, et al., J. Clin. Gastroenterol. 41 (2007) 616-623)。
ブレオマイシンを注射したウサギおよび齧歯類において、気管支肺胞洗浄液中のリン脂質濃度の上昇が報告されている(K. Kuroda, et al., Phospholipid concentration in lung lavage fluid as biomarker for pulmonary fibrosis, Inhal. Toxicol. 18 (2006) 389-393; K. Yasuda, et al., Lung 172 (1994) 91-102)。
LPAは心臓疾患および心筋リモデリングに関連する。患者において、血清LPA量は心筋梗塞の後に上昇し、LPAはラットの心線維芽細胞増殖およびコラーゲン生産を刺激する(Chen et al. FEBS Lett. 2006 Aug 21;580(19):4737−45)。
肺線維症
肺において、傷害に対する異常な創傷治癒応答は、線維性肺疾患の発症に起因する。特発性肺線維症(IPF)などの線維性肺疾患は、高い罹病率および死亡率に関連する。
LPAは肺線維症において、線維芽細胞の動員に重要なメディエーターである。LPAおよびLPAは、肺線維症において重要な病原性の役割を示す。線維芽細胞の化学誘引物質活性は、肺線維症を有する患者の肺において重要な役割を示す。LPA受容体刺激の線維化促進性効果は、いずれも線維化促進性の事象である、LPA受容体介在性の血管漏出および線維芽細胞動員の増加によって説明される。LPA−LPA経路は、IPFにおける線維芽細胞遊走および血液漏出を介在する役割を有する。最終的な結果は、この線維化状態を特徴付ける、異常な治癒プロセスである。
LPA受容体は、IPFを有する患者から得られる線維芽細胞において、最も高く発現しているLPA受容体である。さらに、IPF患者から得られるBALは、2つのLPA−LPA受容体アンタゴニストであるKi16425によって阻害される、ヒト胎児肺線維芽細胞の走化性を誘導した。実験的なブレオマイシン誘導性肺傷害マウスモデルにおいて、LPA量が非曝露対照と比較して、気管支肺胞洗浄サンプルにおいて、LPA量が高いことが示された。LPAノックアウトマウスは、ブレオマイシン誘発の後、線維芽細胞の蓄積および血管漏出が減少し、線維症から保護される。IPFを有するヒト対象において、健康な対照と比較して、気管支肺胞洗浄サンプルにおいて高いLPA量が観測された。これらのサンプルにおける線維芽細胞の化学走性活性の上昇は、Ki16425によって阻害され、線維芽細胞の遊走はLPA−LPA受容体経路によって介在されることが示された(Tager et al. Nature Medicine, 2008, 14, 45−54)。
LPA−LPA経路は、肺線維症における線維芽細胞動員および血管漏出に重要である。
αvβ6インテグリンによる潜在的なTGF−βの活性化は、肺傷害および線維症の発達に重要な役割を有する(Munger et al. Cell, vol. 96, 319−328, 1999)。LPAはヒトの肺上皮性細胞における、αvβ6介在性TGF−β活性化を誘導する(Xu et al. Am. J. Pathology, 2009, 174, 1264−1279)。LPA誘導性αvβ6介在性TGF−β活性化は、LPA受容体によって介在される。正常なヒト肺組織と比較して、IPF患者からの肺線維症領域における上皮性細胞および間葉性細胞において、LPA受容体の発現が上昇する。LPA−LPA経路は、肺線維症におけるTGF−β経路の活性化に寄与する。いくつかの実施態様において、LPAを阻害する化合物は、肺線維症の治療において有効性を示す。いくつかの実施態様において、LPAおよびLPAの両方を阻害する化合物は、LPAまたはLPAのみを阻害する化合物と比較して、肺線維症の治療において改善された有効性を示す。
腎線維症
LPAおよびLPAは、腎線維症の原因に関連する。LPAは糸球体メサンギウム細胞の増殖および収縮の両方に影響し、そのため、増殖性糸球体腎炎に関わる(C.N. Inoue, et al., Clin. Sci. (Colch.) 1999, 96, 431−436)。腎線維症の動物モデル[片側尿管結紮(UUO)]において、腎臓LPA受容体は基本条件下で、LPA>LPA=LPA>>LPAの発現順で発現されることが分かった。このモデルは、腎炎、線維芽細胞活性化、および尿細管間質における細胞外マトリクスの蓄積などの、腎線維症の発達の加速した様式を模倣するものである。UUOは有意にLPA受容体発現を誘導した。これは、腎臓の外植片から調整された培地において、腎臓LPA生産(3.3倍上昇)と同等であった。対側の腎臓は、LPA放出およびLPA受容体発現において、有意な変化を示さなかった。これは、線維症におけるLPAの機能の必要条件が満たされたことを示す:リガンド(LPA)の生産、およびその受容体(LPA受容体)の1つの誘導(J.P. Pradere et al., Biochimica et Biophysica Acta, 2008, 1781, 582−587)。
LPA受容体がノックアウトされたマウス(LPA(−/−))において、腎線維症の発達が著しく減少した。LPA受容体アンタゴニストKi16425で処理されたUUOマウスは、LPA(−/−)マウスの特性によく類似していた。
LPAは単球/マクロファージの腹腔内における蓄積に関わることができ、LPAはヒト線維芽細胞の初代培養において、線維化促進性サイトカインCTGFの発現を誘導することができる(J.S. Koh,et al., J. Clin. Invest., 1998, 102, 716-727)。
マウスの上皮性肝臓細胞株MCTのLPA処理により、線維化促進性サイトカインCTGFの発現の急速な上昇が誘導された。CTGFは、UUO誘導性の尿細管間質性線維症(TIF)において重要な役割を有し、TGFβの線維化促進性活性に関わる。この誘導は、LPA受容体アンタゴニストKi16425との併用療法によって、ほとんど完全に抑制された。ある局面において、腎臓におけるLPAの線維化促進性活性は、CTGFの誘導に関わる腎臓細胞における、LPAの直接的な機能に起因する。
肝線維症
LPAは、肝臓の疾患および線維症に関わる。血漿LPA量および血清オートタキシン(LPA生産に重要な酵素)は、線維症の上昇に関連して、肝炎患者および肝臓傷害の動物モデルにおいて上昇する。LPAはまた、肝臓細胞の機能を制御する。LPAおよびLPA受容体は、マウスの肝臓星細胞によって発現され、LPAは肝臓の筋繊維芽細胞の遊走を刺激する。
眼線維症
LPAは眼における創傷治癒に関する。LPAおよびLPA受容体は、正常なウサギ角膜上皮細胞、角膜質実細胞、および内皮細胞において検出可能であり、LPAおよびLPA発現は、傷害の後、角膜上皮細胞において上昇する。
LPAおよびそのホモログが水性の体液およびウサギの目の涙液中に存在し、これらの量は、ウサギの角膜傷害モデルにおいて上昇する。
LPAはウサギの角膜内皮および上皮細胞中で、アクチンストレスファイバーの形成を誘導し、角膜線維芽細胞の収縮を促進する。LPAはまた、ヒト網膜色素上皮細胞の増殖を刺激する。
心線維症
LPAは心筋梗塞および心線維症に関連する。心筋梗塞(MI)の後、患者において血清LPA量が上昇し、ラット心線維芽細胞によって、LPAの増殖およびコラーゲン生成(線維症)が刺激される。LPAおよびLPA3受容体の両方が、ヒト心臓組織において高発現している。
線維症の治療
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物は、哺乳動物における線維症の治療または予防に用いられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物は、哺乳動物における臓器または組織の線維症の治療に用いられる。ある局面は、哺乳動物において線維症の症状を予防するための方法であって、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物を、1つ以上の線維症の病状の発症のリスクのある哺乳動物に投与することを特徴とする方法である。ある局面において、哺乳動物は、臓器または組織の線維症のリスクを増加させることが知られている、1つ以上の環境条件に晒されている。ある局面において、哺乳動物は、肺、肝臓、または腎線維症のリスクを増加させることが知られている、1つ以上の環境条件に晒されている。ある局面において、哺乳動物は、臓器または組織の線維症の発症の遺伝性素因を有する。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物は、傷害後の瘢痕化を防ぐまたは最小限にするために、哺乳動物に投与される。ある局面において、傷害は手術を含む。
本明細書で用いられる用語「線維症」または「線維化傷害」は、細胞および/もしくはフィブロネクチンおよび/もしくはコラーゲンの異常な蓄積、並びに/または線維芽細胞組の動員の増加に関連する病状をいい、これらに限定はされないが、心臓、腎臓、肝臓、関節、肺、胸膜組織、胸膜組織、皮膚、角膜、網膜、筋骨格および消化管などの個々の臓器または組織の線維症が挙げられる。
線維症に関連する疾患、傷害、または病状の例としては、これらに限定はされないが、リウマチ性関節炎、強皮症、狼瘡、特発性間質性肺炎、放射線誘発線維症、慢性閉塞性肺疾患(COPD)、強皮症、慢性喘息、珪肺症、アスベスト誘発肺または胸膜線維症、急性肺傷害および急性呼吸窮迫症(細菌性肺炎誘発性、外傷誘発性、ウイルス肺炎誘発性、人工呼吸器誘発性、非肺敗血症誘発性、および吸引誘発性など)などの、例えば、突発性肺線維症、全身性炎症疾患の二次的な肺線維症などの、線維症に関連する肺疾患;狼瘡および強皮症、糖尿病、糸球体腎炎、巣状分節性糸球体硬化症、IgA腎症、高血圧、同種移植およびアルポートなどの、例えば、全身性炎症疾患の二次的な糸球体腎炎などの、傷害/線維症(腎線維症)に関連する慢性腎症;例えば強皮症、および放射線誘発腸繊維症などの、腸線維症;例えば、硬変、アルコール誘発肝線維症、非アルコール性脂肪性肝炎(NASH)、胆管損傷、原発性胆汁性肝硬変、感染またはウイルス誘発肝線維症(例えば、慢性HCV感染)、および自己免疫性肝炎などの肝線維症;例えば、放射線誘発性、頭頸部線維症;例えば、LASIK(レーザー補助インサイチュ角膜曲率形成術)、角膜移植、および線維柱帯切除術などの角膜瘢痕;例えば、熱傷誘発または外科性肥厚性瘢痕およびケロイド;並びに、他の線維性疾患、例えば、サルコイドーシス、強皮症、脊髄傷害/線維症、骨髄線維症、血管性再狭窄、アテローム性動脈硬化症、動脈硬化症、ウェゲナー肉芽腫症、混合性結合組織病、およびペイロニー病が挙げられる。
ある局面において、以下の限定されない疾患、障害、または病状の例のうちの1つを患っている哺乳動物は、式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物による治療から利益を得るだろう:アテローム性動脈硬化症、血栓症、心臓疾患、血管炎、瘢痕組織形成、再狭窄、静脈炎、COPD(慢性閉塞性肺疾患)、肺血圧症、肺線維症、肺炎、腸癒着、膀胱線維症および膀胱炎、鼻腔の線維症、副鼻腔炎、好中球によって介在される炎症、および線維芽細胞によって介在される線維症。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物は、臓器もしくは組織の線維症を有する、または臓器もしくは組織の線維症を発症する素因を有する哺乳動物に、線維症の治療に用いられる1つ以上の他の薬剤と共に、投与される。ある局面において、1つ以上の薬剤としては、コルチコステロイドが挙げられる。ある局面において、1つ以上の薬剤としては、免疫抑制剤が挙げられる。ある局面において、1つ以上の薬剤としては、B細胞アンタゴニストが挙げられる。ある局面において、1つ以上の薬剤としては、ウテログロビンが挙げられる。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩は、哺乳動物における皮膚疾患の治療に用いられる。本明細書で用いられる用語「皮膚疾患」は、皮膚の障害をいう。そのような皮膚疾患としては、これらに限定はされないが、アトピー性皮膚炎、水疱症、膠原病、乾癬、強皮症、乾癬病変、皮膚炎、接触性皮膚炎、湿疹、蕁麻疹、酒さ、創傷治癒、瘢痕、肥厚性瘢痕、ケロイド、川崎病、酒さ、シェーグレン・ラルソン症候群、蕁麻疹などの、皮膚の増殖性または炎症性障害が挙げられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩または溶媒和物は、全身性硬化症の治療に用いられる。
疼痛
組織傷害の後にLPAが放出されるため、LPAは神経障害性疼痛の開始に重要な役割を有する。LPAは、LPAまたはLPAとは異なり、後根神経節(DRG)および後根ニューロンのいずれにおいても発現される。LPAおよびLPA欠損マウスについて、アンチセンスオリゴデオキシヌクレオチド(AS−ODN)を用いることによって、LPA誘発性機械的アロディニアおよび痛覚過敏が、LPA依存性の様式で介在されることが分かった。LPAおよび下流のRho−ROCKの活性化は、神経障害性疼痛のシグナル伝達の開始において役割を有する。ボツリヌス菌C3細胞外酵素(BoTXC3、Rho阻害剤)またはY−27632(ROCK阻害剤)による前処理によって、神経損傷マウスにおけるアロディニアおよび痛覚過敏が完全に消失された。LPAはまた、BoTXC3によって予防される後根の脱髄を誘発した。傷害による後痕の脱髄は、LPA欠損マウスまたはAS−ODN注射野生型マウスにおいては観察されなかった。LPAシグナル伝達は、LPAおよびRho依存性の様式で、タンパク質キナーゼCγ(PKCγ)および電位開口型カルシウムチャネル α2δ1サブユニット(Caα2δ1)などの、重要な神経障害性疼痛マーカーを誘発するように思われる(M. Inoue, et al., Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling, Nat. Med. 10 (2004) 712-718)。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における疼痛の治療において用いられる。ある局面において、疼痛は急性疼痛または慢性疼痛である。別の局面において、疼痛は神経障害性疼痛である。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、線維筋痛症の治療に用いられる。ある局面において、線維筋痛症は、(自発)収縮筋における線維性瘢痕組織の形成から生じる。線維症は組織に結合し、血流を阻害することで、疼痛が生じる。

リゾリン脂質受容体シグナル伝達は、癌の病因において役割を有する。リゾホスファチジン酸(LPA)およびそのGタンパク質共役受容体(GPCR)LPA、LPA、および/またはLPAは、いくつかの種類の癌の進行において役割を有する。癌の開始、進行、および転移は、細胞増殖および成長、生存、および抗アポトーシス、細胞遊走、外来細胞の規定の細胞層および/または臓器への浸透、並びに血管形成の促進などの、いくつかの並行する、逐次的なプロセスに関係する。生理学的および病態生理学的条件における、LPAシグナル伝達によるこれらのプロセスのそれぞれの制御は、特にLPA受容体またはATX/lysoPLDの量において、癌の治療のためのLPAシグナル伝達経路の調節の潜在的な治療上の有用性を明確に示す。オートタキシン(ATX)は、血管形成、並びに細胞成長、遊走、生存、および分化の促進などの無数の生物学的活性を、LPAの生産によって刺激する、ヒトメラノーマ細胞の条件培地から最初に単離された全転移性酵素である(Mol Cancer Ther 2008;7(10):3352-62)。
LPAは、そのGPCRを介してシグナルを送ることで、下流の多数のエフェクター経路の活性化が起こる。そのような下流のエフェクター経路は、癌において役割を有する。LPAおよびそのGPCRは、主な発癌性シグナル伝達経路を介して癌に関連する。
LPAは細胞の運動性および侵襲性を上昇させることによって、腫瘍形成に寄与する。LPAは卵巣癌の開始または進行に関連している。LPAは卵巣癌患者の腹水中に、有意な濃度(2〜80μM)で存在する。卵巣癌細胞は、正常な卵巣表面上皮細胞である、上皮性卵巣癌の前駆体と比較すると、増加した量のLPAを恒常的に生産する。対照と比較して、上昇したLPA量はまた、初期段階の卵巣癌を有する患者からの血漿においても検出される。LPA受容体(LPAおよびLPA)はまた、正常な卵巣表面上皮細胞と比較して、卵巣癌細胞においても過剰発現している。LPAは、卵巣癌細胞においてCox−2 mRNAの転写活性化、および転写後の増強を介して、Cox−2の発現を刺激する。Cox−2によって生産されるプロスタグランジンはヒトの多くの癌に関連し、Cox−2活性の薬理学的阻害は、結腸癌の進行を軽減し、家族性腺腫様ポリープ症を有する患者における腫瘍の大きさおよび数を減少させる。LPAはまた、前立腺癌、乳癌、黒色腫、頭頸部癌、腸癌(大腸癌)、甲状腺癌および他の癌の、開始または進行に関連している(Gardell et al, Trends in Molecular Medicine, vol. 12, no. 2, p 65−75, 2006; Ishii et al, Annu. Rev. Biochem, 73, 321−354, 2004; Mills et al., Nat. Rev. Cancer, 3, 582−591, 2003; Murph et al., Biochimica et Biophysica Acta, 1781, 547−557, 2008)。
LPAへの細胞性応答は、リゾホスファチジン酸受容体によって介在される。例えば、LPA受容体は、膵臓癌細胞株の遊走および侵襲の両方を介在し:LPAおよびLPA(Ki16425)のアンタゴニスト、およびLPA特異的siRNAは、LPAに対する応答におけるインビトロ遊走、および膵臓癌患者の腹水(腹水症)を効率的に阻害し:さらに、Ki16425は、高い腹膜転移性の膵臓癌細胞株の、LPA誘発性および腹水誘発性侵襲活性を阻害した(Yamada et al, J. Biol. Chem., 279, 6595−6605, 2004)。
大腸癌細胞株は、有意なLPA mRNA発現を示し、細胞遊走および血管新生因子の生産によって、LPAに応答する。LPA受容体の過剰発現は、甲状腺癌の病因において役割を有する。LPAは本来、LPAが前立腺癌細胞の自己分泌増殖を誘導する能力と併せて、前立腺癌細胞からクローン化された。
LPAは多くの種類のがんにおいて、癌の進行の促進性の役割を有する。LPAは前立腺癌細胞株から生産され、その増殖を誘発する。LPAはLPAシグナル伝達を介して、ヒト結腸癌DLD1細胞増殖、遊走、接着、および血管新生因子の分泌を誘発する。他のヒト結腸癌細胞株(HT29およびWiDR)において、LPAは細胞増殖および血管新生因子の分泌を促進する。他の結腸癌細胞株において、LPAおよびLPA受容体活性化によって、細胞の増殖が生じる。LPA代謝、受容体シグナル伝達の特定の阻害、および/または下流のシグナル導入経路の阻害の、遺伝的または薬理学的操作は、癌治療の手法を表している。
LPAおよび他のリン脂質が、卵巣癌細胞株中のインターロイキン−8(IL−8)の発現を刺激することが報告されている。いくつかの実施態様において、卵巣癌におけるIL−8の高い濃度はそれぞれ、化学療法に対する不良な初期応答、および予後不良に相関する。動物モデルにおいて、IL−8および血管内皮細胞増殖因子(VEGF)などの他の増殖因子の発現は、増加した腫瘍形成能、腹水の生成、血管形成、および卵巣癌細胞の侵襲に関連する。いくつかの局面において、IL−8は卵巣癌において、癌の進行、薬物耐性、および予後の重要なモジュレーターである。いくつかの実施態様において、式(I)で示される化合物は、卵巣癌細胞株においてIL−8発現を阻害または減少させる。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、若しくは溶媒和物は、癌の治療に用いられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、悪性および良性の増殖性疾患の治療に用いられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、腫瘍細胞の増殖、癌、胸膜中皮腫(Yamada, Cancer Sci., 2008, 99(8), 1603−1610)、または胸膜性中皮腫の侵襲および転移、癌性疼痛、骨転移(Boucharaba et al, J. Clin. Invest., 2004, 114(12), 1714−1725; Boucharaba et al, Proc. Natl. acad. Sci., 2006, 103(25) 9643−9648)を予防または軽減するために用いられる。ある局面は、哺乳動物の癌を治療する方法であって、哺乳動物に式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物、および第二治療剤を投与することを特徴とする前記方法であって、ここで、第二治療剤は抗癌剤である。
本明細書で用いられる用語「癌」は、制御不可能な方法で増殖し、いくつかの場合には、転移(伝播)する傾向にある、細胞の異常増殖をいう。癌の種類としては、これらに限定はされないが、転移を有する、または有さない疾患の任意のステージの固形腫瘍(膀胱、腸、脳、乳房、子宮内膜、心臓、腎臓、肺、リンパ組織(リンパ腫)、卵巣、膵臓または他の内分泌臓器(甲状腺)、前立腺、皮膚(黒色腫または基底細胞癌)など)、または血液腫瘍(白血病など)が挙げられる。
癌の限定されない例としてはさらに、急性リンパ芽球性白血病、急性骨髄白血病、副腎皮質癌、肛門癌、虫垂癌、星状細胞腫、非定型奇形腫様/ラブドイド腫瘍、基底細胞癌、胆管癌、膀胱癌、骨癌(骨肉腫および悪性線維性組織球腫)、脳幹神経膠腫、脳腫瘍、脳および脊髄腫瘍、乳癌、気管腫瘍、バーキットリンパ腫、頸部癌、慢性リンパ性白血病、慢性骨髄性白血病、結腸癌、大腸癌、頭蓋咽頭腫、皮膚T細胞性リンパ腫、胎児性腫瘍、子宮内膜癌、上衣芽細胞腫、上衣腫、食道癌、ユーイング肉腫ファミリー腫瘍、眼腫瘍、網膜芽細胞腫、胆嚢癌、胃(胃)癌、消化管カルチノイド腫瘍、消化管間質腫瘍(GIST)、消化管間質細胞腫瘍、胚細胞腫瘍、神経膠腫、有毛細胞白血病、頭頸部癌、肝細胞(肝臓)癌、ホジキンリンパ腫、下咽頭癌、眼内黒色腫、膵島細胞腫瘍(膵内分泌部)、カポジ肉腫、腎臓癌、ランゲルハンス細胞組織球症、喉頭癌、白血病、急性リンパ芽球性白血病、急性骨髄白血病、慢性リンパ性白血病、慢性骨髄性白血病、有毛細胞白血病、肝臓癌、非小細胞性肺癌、小細胞肺癌、バーキットリンパ腫、皮膚T細胞性リンパ腫、ホジキンリンパ腫、非ホジキンリンパ腫、リンパ腫、ワルデンストレームマクログロブリン血症、髄芽腫、髄様上皮腫、黒色腫、中皮腫、口腔癌、慢性骨髄性白血病、骨髄性白血病、多発性骨髄腫、鼻咽頭癌、神経芽腫、非ホジキンリンパ腫、非小細胞性肺癌、口腔癌、中咽頭癌、骨肉腫、骨原発悪性線維組織球腫、卵巣癌、上皮性卵巣癌、卵巣胚細胞腫瘍、卵巣低悪性度腫瘍、膵臓癌、乳頭腫、副甲状腺癌、陰茎癌、咽頭癌、中間型松果体実質腫瘍、松果体芽腫およびテント上原始神経外胚葉性腫瘍、下垂体腫瘍、形質細胞腫瘍/多発性骨髄腫、胸膜肺芽腫、原発性中枢神経系リンパ腫、前立腺癌、直腸癌、腎細胞(腎臓)癌、網膜芽細胞腫、横紋筋肉腫、唾液腺癌、肉腫、ユーイング肉腫ファミリー腫瘍、肉腫、カポジ、セザリー症候群、皮膚癌、小細胞肺癌、小腸癌、軟部組織肉腫、扁平上皮癌、胃(胃)癌、テント上原始神経外胚葉性腫瘍、T細胞リンパ腫、精巣腫瘍、咽喉癌、胸腺腫および胸腺癌、甲状腺癌、尿道癌、子宮癌、子宮肉腫、膣癌、外陰癌、ワルデンストレームマクログロブリン血症、ウィルムス腫瘍が挙げられる。
卵巣癌患者からの腹水および乳癌滲出液における、LPAおよびベシクルの上昇した濃度は、早期診断マーカー、予後指標、または治療に対する応答の指標となりうることを示す(Mills et al, Nat. Rev. Cancer., 3, 582−591, 2003; Sutphen et al., Cancer Epidemiol. Biomarkers Prev. 13, 1185−1191, 2004)。LPA濃度は、対応する血漿サンプル中よりも、腹水サンプル中において一貫して高い。
呼吸器およびアレルギー性障害
ある局面において、LPAは呼吸器疾患の病因に寄与する。ある局面において、呼吸器疾患は喘息である。LPAの炎症性効果としては、肥満細胞の脱顆粒、平滑筋細胞の収縮、および樹状細胞からのサイトカインの放出などが挙げられる。気道平滑筋細胞、上皮性細胞、および肺線維芽細胞の全ては、LPAに対する応答を示す。LPAは、ヒト気管支上皮性細胞からのIL−8の分泌を誘発する。IL−8は、喘息、慢性閉塞性肺疾患、肺サルコイドーシスおよび急性呼吸窮迫症候群を有する患者からのBAL液中の上昇した濃度において見出され、IL−8は喘息患者の気道炎症および気道リモデリングを悪化させることが示されている。LPA、LPAおよびLPA受容体は全て、LPA誘発性IL−8生産に寄与することが示されている。LPAによって活性化される多くのGPCRをクローニングする研究によって、肺におけるLPA、LPAおよびLPAについてmRNAの存在の実証が可能になった(J.J.A. Contos, et al., Mol. Pharmacol. 58, 1188−1196, 2000)。
傷害部位において活性化された血小板からのLPAの放出、および線維芽細胞の増殖および収縮を促進する能力は、創傷修復のメディエーターとしてのLPAの特徴である。気道疾患の文脈において、喘息は不適切な気道の「修復」プロセスによって、気道の構造的な「リモデリング」が生じる、炎症性疾患である。喘息において、気道の細胞は、アレルゲン、汚染物質、他の吸引性環境薬剤、細菌およびウイルスなどの様々な発作によって、継続的な傷害に晒されており、喘息の特徴である慢性的な炎症が生じる。
ある局面において、個々の喘息患者において、LPAなどの通常の修復メディエーターの放出が過剰になっているか、あるいは修復メディエーターの機能が不適切に延長されて、不適切な気道のリモデリングが生じる。喘息において観測される、リモデリングされた気道の主な構造的特徴としては、肥厚化した網状板(気道上皮性細胞の直下にある、基底膜様構造)、筋繊維芽細胞の数の増加および活性化、平滑筋層の肥厚化、粘液腺の数の増加および粘液分泌、並びに気管壁全体の結合組織および毛細血管床における変化が挙げられる。ある局面において、LPAは気道の構造的な変化に寄与する。ある局面において、LPAは喘息における急性気道過敏症に関連する。リモデリングされた喘息気道の細胞内腔は、気管壁の肥厚化によって狭くなり、そのため気流が減少する。ある局面において、LPAは長期的な構造的なリモデリング、および喘息気道の急性過敏症に寄与する。ある局面において、LPAは喘息の急性憎悪の主な特徴である過敏反応性に寄与する。
LPAによって介在される細胞性応答に加えて、これらの応答を生じる、いくつかのLPAシグナル伝達経路の成分は、喘息に関連がある。EGF受容体の上方制御はLPAによって誘発され、喘息気道においても見られる(M. Amishima, et al., Am. J. Respir. Crit. Care Med. 157, 1907- 1912, 1998)。慢性炎症は喘息の起因であり、LPAによって活性化される転写因子のいくつかは、炎症に関連することが知られている(Ediger et al., Eur Respir J 21:759−769, 2003)。
ある局面において、LPAによって刺激される線維芽細胞の増殖および収縮、並びに細胞外マトリクスの分泌は、慢性気管支炎において存在する細気管支周囲の線維症、気腫、および間質性肺炎などの他の気道疾患の線維増殖性の特徴に関連する。気腫はまた、肺胞壁の軽度の線維症に関連し、これは肺胞の損傷の修復を試みていることを表すと考えられている特徴である。別の局面において、LPAは線維性間質性肺炎および閉塞性細気管支炎において役割を有し、このときコラーゲンおよび筋繊維芽細胞の両方が上昇する。別の局面において、LPAは慢性閉塞性肺疾患を構成する、様々な症候群のうちのいくつかに関連する。
LPAのインビボでの投与は、気道過敏、痒みの掻破応答、好酸球および好中球の湿潤および活性化、血管性リモデリング、並びに侵害反射応答を誘導する。LPAはまた、マウスおよびラットの肥満細胞からのヒスタミンの放出を誘発する。急性アレルギー反応において、ヒスタミンは平滑筋の収縮、血漿滲出、および粘液の生成などの様々な応答を誘発する。血漿滲出は、その漏出およびその後の気道壁の浮腫が気道過敏症の発達に寄与するため、気道において重要である。血漿滲出は、眼性アレルギー障害における結膜腫脹、およびアレルギー性鼻炎における鼻の閉塞に進展する(Hashimoto et al., J Pharmacol Sci 100, 82 - 87, 2006)。ある局面において、LPAによって誘発された血漿滲出は、1つ以上のLPA受容体を介して肥満細胞から放出されたヒスタミンによって介在される。ある局面において、LPA受容体としては、LPAおよび/またはLPAが挙げられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における様々なアレルギー性障害の治療において用いられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における呼吸器疾患、障害、または病状の治療において用いられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における喘息の治療において用いられる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における慢性喘息の治療において用いられる。
本明細書で用いられる用語「呼吸器疾患」は、鼻、喉、喉頭、耳管、気管、気管支、肺、関連する筋肉(例えば、隔膜および肋間筋)および神経などの呼吸に関連する臓器に発症する疾患をいう。呼吸器関連疾患としては、これらに限定はされないが、喘息、成人呼吸窮迫症候群およびアレルギー性(外因性)喘息、非アレルギー性(内因性)喘息、急性憎悪喘息、慢性喘息、臨床的喘息、夜間喘息、アレルゲン誘導性喘息、アスピリン感受性喘息、運動誘発性喘息、等炭酸ガス性過換気症、小児発症喘息、成人発症喘息、咳喘息、職業性喘息、ステロイド抵抗性喘息、季節性喘息、季節性アレルギー性鼻炎、通年性アレルギー性鼻炎、慢性気管支炎または気腫などの慢性閉塞性肺疾患、肺高血圧、間質性肺線維症および/または気道炎症および嚢胞性線維症、および低酸素症が挙げられる。
本明細書で用いられる用語「喘息」は、あらゆる原因(内因性、外因性、または両方;アレルギー性または非アレルギー性)の気道狭窄に関連する肺のガス流量の変化によって特徴付けられる、肺の任意の障害をいう。用語喘息は、原因を示す1つ以上の形容詞と共に用いられうる。
ある局面において、有効量の少なくとも1つの、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物における慢性閉塞性肺疾患の治療または予防における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において提示される。さらに、慢性閉塞性肺疾患としては、これらに限定はされないが、慢性気管支炎または気腫、肺高血圧、間質性肺線維症および/または気道炎症、および嚢胞性線維症が挙げられる。
神経系
神経系は、LPA発現のための主要な部位である;脳の発達の間、そこで空間的および時間的に制御されている。オリゴデンドロサイト、中枢神経系(CNS)におけるミエリン形成細胞は、哺乳動物においてLPAを発現する。さらに、シュワン細胞、末梢神経系のミエリン形成細胞はまた、LPAを発現し、シュワン細胞の生存および形態の制御に関連する。これらの観測によって、神経形成、細胞の生存、およびミエリン形成において、受容体介在LPAシグナル伝達のために重要な機能が特定される。
末梢神経細胞株をLPAに曝露することによって、それらのプロセスの迅速な退縮が生じ、アクチン細胞骨格のポリマー化によって部分的に介在される、細胞円形化が生じる。ある局面において、血液脳関門が損傷し、血清成分が脳に漏出する場合に、LPAは病理学的条件下で神経変性を引き起こす(Moolenaar, Curr. Opin. Cell Biol. 7:203−10, 1995)。脳皮質からの不死化CNS神経芽細胞株もまた、Rhoの活性化およびアクトミオシン相互作用を介して、LPA曝露に対して退縮応答を示す。ある局面において、LPAは虚血後神経障害に関連する(J. Neurochem. 61, 340, 1993; J. Neurochem., 70:66, 1998)。
ある局面において、哺乳動物の神経障害の治療または予防において用いるための、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物が提示される。本明細書で用いられる用語「神経障害」は、これらに限定はされないが、アルツハイマー病、脳浮腫、脳虚血、脳卒中、多発性硬化症、ニューロパチー、パーキンソン病、鈍的または外科的外傷後に見られるもの(術後認知障害および脊髄または脳幹損傷など)、並びに変性椎間板症および坐骨神経痛などの神経面の障害などの、脳、脊髄、または末梢神経系の構造または機能を変化させる病状をいう。
ある局面において、哺乳動物におけるCNS障害の治療または予防において用いるための、式(I)で記載される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物が提供される。CNS障害としては、これらに限定はされないが、多発性硬化症、パーキンソン病、アルツハイマー病、脳卒中、脳虚血、網膜虚血、術後認知障害、片頭痛、末梢ニューロパチー/神経障害性疼痛、脊髄損傷、脳浮腫および頭部外傷が挙げられる。
心血管障害
リゾリン脂質受容体の標的化欠損の後に観察される心血管表現型は、血管の発達および成熟、動脈硬化巣の形成、および心拍数の維持における、リゾリン脂質のシグナル伝達についての重要な役割を明らかにする(Ishii, I. et al. Annu. Rev. Biochem. 73, 321-354, 2004)。既存の脈管構造からの新たな毛細血管綱の形成である、血管形成は通常、虚血性傷害後の創傷治癒、組織成長、および心筋血管形成において発動する。ペプチド増殖因子(例えば、血管内皮細胞増殖因子(VEGF))およびリゾリン脂質は、協調的な増殖、遊走、接着、分化、並びに血管内皮細胞(VEC)および周辺の血管平滑筋細胞(VSMC)を制御する。ある局面において、血管形成を媒介するプロセスの調節不全によって、アテローム性動脈硬化症、高血圧、腫瘍成長、リウマチ性関節炎、および糖尿病網膜症が生じる(Osborne, N. and Stainier, D.Y. Annu. Rev. Physiol. 65, 23-43, 2003)。
リゾリン脂質受容体によって誘発される下流のシグナル伝達経路としては、Rac依存性ラメリポディア形成(例えばLPA)およびRho依存性ストレスファイバー形成(例えばLPA)が挙げられ、これらは細胞遊走および接着において重要である。血管内皮の機能不全は、血管拡張から血管収縮に平衡をシフトさせ、高血圧および血管リモデリングを生じさせることができ、これらはアテローム性動脈硬化症の危険因子である(Maguire, J.J. et al., Trends Pharmacol. Sci. 26, 448-454, 2005)。
LPAは、アテローム性動脈硬化症の全般的な進行に加えて、その初期段階(内皮のバリア機能障害および単球接着)および後期段階(血小板活性化および動脈内血栓形成)の両方に寄与する。初期段階において、多数の供給源からのLPAが病変に蓄積し、血小板において発現する同族のGPCR(LPAおよびLPA)を活性化する(Siess, W. Biochim. Biophys. Acta 1582, 204-215, 2002; Rother, E. et al. Circulation 108, 741-747, 2003)。これにより、血小板の形態変化および凝集が引き起こされ、動脈内血栓形成、および潜在的な心筋梗塞および脳卒中が生じる。アテローム生成活性に加えて、LPAはまた、分裂促進因子、VSMCに対する細胞遊走促進因子、並びに内皮細胞およびマクロファージのアクティベーターでありうる。ある局面において、心血管疾患を有する哺乳動物は、血栓および新生内膜プラーク形成を予防するLPA受容体アンタゴニストから利益を得る。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における心血管疾患を治療または予防するために用いられる。
本明細書で用いられる用語「心血管疾患」は、これらに限定はされないが、不整脈(心房性または心室性または両方);アテローム性動脈硬化症およびその後遺症;狭心症;心律動異常;心筋虚血;心筋梗塞;心臓または血管性動脈瘤;血管炎、脳卒中;手足、臓器、または組織の末梢閉塞性動脈疾患;脳、心臓または他の臓器もしくは組織の再灌流障害後の虚血;内毒素性、手術、または外傷性ショック;高血圧、心臓弁膜症、心不全、血圧異常;ショック;血管収縮(片頭痛に関連するものなど);血管性異常、炎症、単一の臓器、組織に限定される機能不全などの心臓または血管、またはそれらの両方に影響する疾患をいう。
ある局面において、有効量の少なくとも1つの式(I)で示される化合物、もしくはその薬学的に許容可能な塩、もしくは溶媒和物、または式(I)で示される化合物、もしくはその薬学的に許容可能な塩、もしくは溶媒和物を含む医薬組成物もしくは治療剤を、哺乳動物に少なくとも1回投与することを特徴とする、血管収縮、アテローム性動脈硬化症およびその後遺症心筋虚血、心筋梗塞、大動脈瘤、血管炎および脳卒中を予防または治療するための方法が、本明細書において提供される。
ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、心筋虚血および/または内毒素性ショック後の心臓の再灌流障害を軽減するための方法が、本明細書において提供される。
ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、血管の狭窄を軽減するための方法が、本明細書において提供される。
ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物の血圧の上昇を低下させる、または予防する方法が、本明細書において提供される。
炎症
LPAはT/Bリンパ球およびマクロファージなどの免疫細胞の活性/機能を調節することによって、免疫学的応答を制御することが示されている。活性化T細胞において、LPAは、LPAを介してIL−2生産/細胞増殖を活性化する(Gardell et al, TRENDS in Molecular Medicine Vol.12 No.2 February 2006)。LPA誘発性炎症性応答遺伝子の発現は、LPAおよびLPAによって介在される(Biochem Biophys Res Commun. 363(4):1001−8, 2007)。さらに、LPAは炎症性細胞の走性を制御する(Biochem Biophys Res Commun., 1993, 15;193(2), 497)。免疫細胞のLPA応答における増殖およびサイトカイン分泌活性(J. Imuunol. 1999, 162, 2049)、LPA応答における血小板凝集活性、単球における遊走活性の加速化、線維芽細胞におけるNF−κBの活性化、細胞表面に結合するフィブロネクチン結合の増強などが知られている。このように、LPAは様々な炎症性/免疫性疾患に関連する。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、哺乳動物における炎症の治療または予防のために用いられる。ある局面において、LPAおよび/またはLPAのアンタゴニストは、哺乳動物における炎症性/免疫性障害の治療または予防における用途が見出される。ある局面において、LPAのアンタゴニストは、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物である。
炎症性/免疫性障害の例としては、乾癬、リウマチ性関節炎、血管炎、炎症性腸疾患、皮膚炎、骨関節症、喘息、炎症性筋疾患、アレルギー性鼻炎、膣炎、間質性膀胱炎、強皮症、湿疹、同種または異種移植(臓器、骨髄、幹細胞および他の細胞および組織)片拒絶、移植片対宿主病、エリテマトーデス、炎症性疾患、I型糖尿病、肺線維症、皮膚筋炎、シェーグレン症候群、甲状腺炎(例えば、橋本および自己免疫性甲状腺炎)、重症筋無力症、自己免疫性溶血性貧血、多発性硬化症、嚢胞性線維症、慢性再発肝炎、原発性胆汁性肝硬変、アレルギー性結膜炎およびアトピー性皮膚炎が挙げられる。
他の疾患、障害、または病状
ある局面によれば、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を哺乳動物に投与することによって、臨床的に明らかになった後で、LPA依存性もしくはLPA介在性疾患もしくは病状を治療、予防、回復、停止、または進行を遅くする、またはLPA依存性もしくはLPA介在性疾患もしくは病状に関連する、もしくは関係する症状を治療するための方法である。いくつかの実施態様において、対象は投与時にLPA依存性またはLPA介在性の疾患または病状を既に有しているか、あるいはLPA依存性またはLPA介在性の疾患または病状が進行するリスクがある。
ある局面において、哺乳動物におけるLPAの活性は、治療上有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、(少なくとも1回)投与することによって、直接的または間接的に調節される。そのような調節としては、これらに限定はされないが、LPAの活性を減少および/または阻害することが挙げられる。さらなる局面において、哺乳動物におけるLPAの活性は、治療上の有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、(少なくとも1回)投与することによって、直接的、または間接的に、減少および/または阻害などで調節される。そのような調節としては、これらに限定はされないが、LPA受容体の量および/または活性を減少および/または阻害することが挙げられる。ある局面において、LPA受容体はLPAである。
ある局面において、LPAは膀胱から単離された膀胱平滑筋細胞において収縮機能を有し、前立腺由来上皮性細胞の成長を促進するJ. Urology, 1999, 162, 1779−1784; J. Urology, 2000, 163, 1027−1032)。別の局面において、LPAはインビトロで尿路および前立腺を収縮させ、インビボで尿道内の圧力を上昇させる(WO 02/062389)。
いくつかの局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、好酸球および/または好塩基球および/または樹状細胞および/または好中球および/または単球および/またはT細胞動員の予防または治療のための方法である。
いくつかの局面において、治療上の有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、膀胱炎、例えば間質性膀胱炎などの治療のための方法である。
ある局面によれば、本明細書に記載される方法としては、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を対象に投与すること、および患者が治療に応答するかどうかを決定することによって、患者がLPA依存性またはLPA介在性の疾患または病状を患っているかどうかを診断または決定することが挙げられる。
ある局面において、LPAのアンタゴニストであり、これらに限定はされないが、肺線維症、腎線維症、肝線維症、瘢痕、喘息、鼻炎、慢性閉塞性肺疾患、肺高血圧、間質性肺線維症、関節炎、アレルギー、乾癬、炎症性腸疾患、成人呼吸窮迫症候群、心筋梗塞、動脈瘤、脳卒中、癌、疼痛、増殖性障害および炎症性病状などの1つ以上のLPA依存性またはLPA介在性の病状または疾患を患っている患者を治療するために用いられる、式(I)で示される化合物、その薬学的に許容可能な塩、薬学的に許容可能なプロドラッグ、および薬学的に許容可能な溶媒和物が、本明細書において提供される。いくつかの実施態様において、LPA依存性の病状または疾患としては、絶対的または相対的に過剰なLPAが存在する、および/または観測されるものが挙げられる。
前記の任意の局面において、LPA依存性またはLPA介在性の疾患または病状としては、これらに限定はされないが、臓器線維症、喘息、アレルギー性障害、慢性閉塞性肺疾患、肺高血圧、肺または胸膜線維症、腹膜線維症、関節炎、アレルギー、癌、心血管疾患、急性呼吸窮迫症候群(ult respiratory distress syndrome)、心筋梗塞、動脈瘤、脳卒中、および癌が挙げられる。
ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、レーザー補助インサイチュ角膜曲率形成術(LASIK)または白内障手術などの角膜手術によって引き起こされる角膜感受性の低下、角膜変性によって引き起こされる角膜感受性の低下、およびそれらによって引き起こされるドライアイ症状を改善するために用いられる。
ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物における眼炎症およびアレルギー性結膜炎、春季角結膜炎、および乳頭結膜炎の治療または予防における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において提示される。
ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物における、ドライアイを伴うシェーグレン症候群または炎症性疾患の治療または予防において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において提示される。
ある局面において、LPAおよびLPA受容体(例えばLPA)は、骨関節症の病因に関連する(Kotani et al, Hum. Mol. Genet., 2008, 17, 1790−1797)。ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物における骨関節症の治療または予防における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において提供される。
ある局面において、LPA受容体(例えばLPA、LPA)は、リウマチ性関節炎の病因に寄与する(Zhao et al, Mol. Pharmacol., 2008, 73(2), 587−600)。ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物におけるリウマチ性関節炎の治療または予防における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において提供される。
ある局面において、LPA受容体(例えばLPA)は脂質生成に寄与する(Simon et al, J.Biol. Chem., 2005, vol. 280, no. 15, p.14656)。ある局面において、有効量の少なくとも1つの式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、哺乳動物に少なくとも1回投与することを特徴とする、哺乳動物の脂肪組織形成の促進における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において提供される。
a.インビトロアッセイ
LPA阻害剤としての本発明の化合物の有効性は、以下のLPA機能性アンタゴニストアッセイにおいて決定することができる:
ヒトLPA過剰発現チャイニーズハムスター卵巣細胞を、DMEM/F12培地(Gibco, Cat#11039)中で、ポリ−D−リシンコート384ウェルマイクロプレート(Greiner bio−one, Cat#781946)に一晩播種した(15,000細胞/ウェル)。一晩培養した後、細胞をカルシウムインジケーター色素(AAT Bioquest Inc, Cat# 34601)と共に、30分間37℃で充填した。細胞を次いで、アッセイの前に30分間、室温で平衡化させた。DMSO中に溶解させた試験化合物を、Labcyte Echo アコースティック分注を用いて、384ウェル非結合性表面プレート(Corning, Cat# 3575)に移し、アッセイ緩衝液[カルシウム/マグネシウムを含む1X HBSS(Gibco Cat# 14025−092)、20mM HEPES(Gibco Cat# 15630−080)および0.1%脂肪酸フリーBSA(Sigma Cat# A9205)]で、0.5%DMSOの最終濃度に希釈した。希釈した化合物を、0.08nMから5μMの範囲の最終濃度で、FDSS6000(Hamamatsu)によって細胞に加え、次いで細胞を刺激するために、LPA(Avanti Polar Lipids Cat#857130C)を10nMの最終濃度で加えて、室温で20分間インキュベートした。化合物のIC50値は、LPAのみによって誘導される、50%のカルシウム流量を阻害する、試験化合物の濃度として定義した。IC50値は、4パラメータロジスティック方程式(GraphPad Prism, San Diego CA)にデータを適合させることによって決定した。
b.インビボアッセイ
血漿ヒスタミンの評価によるLPA負荷
LPA負荷の2時間前に、化合物をCD−1メスマウスに経口投与する。次いでマウスに、0.1%BSA/PBS(2μg/μL)中の0.15mLのLPAを、尾静脈(IV)を介して投与する。LPA負荷後ちょうど2分後、マウスを断頭により犠死させ、体幹の血液を回収する。これらのサンプルを合わせて遠心分離し、個々の75μLのサンプルをヒスタミンアッセイ時まで−20℃で凍結させる。
血漿ヒスタミン解析を、標準的なEIA(酵素免疫アッセイ)法によって行った。血漿サンプルを溶解させ、PBS中の0.1%BSAで1:30に希釈した。製造元によって概説される、ヒスタミン解析のためのEIAプロトコルに従った(Histamine EIA, Oxford Biomedical Research, EA#31)。
アッセイにおいて用いられるLPAは、以下のように調製する:LPA(1−オレオイル−2−ヒドロキシ−sn−グリセロ−3−ホスフェート(ナトリウム塩)、857130P、Avanti Polar Lipids)は、0.1%BSA/PBS中に2μg/μLの総濃度に調製する。13mgのLPAを秤量し、6.5mLの0.1%BSAを加え、ボルテックスし、透明な溶液が得られるまで〜1時間マイクロ波処理する。
V.医薬組成物、製剤、および組み合わせ
いくつかの実施態様において、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を含む医薬組成物が提供される。いくつかの実施態様において、医薬組成物はまた、少なくとも1つの薬学的に許容可能な不活性成分を含む。
いくつかの実施態様において、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物、および少なくとも1つの薬学的に許容可能な不活性成分を含む医薬組成物が提供される。ある局面において、医薬組成物は静脈内注射、皮下注射、経口投与、吸入、経鼻投与、局所投与、眼投与または耳投与のために製剤化される。いくつかの実施態様において、医薬組成物は錠剤、丸剤、カプセル、溶液、吸入剤、経鼻スプレー溶液、坐薬、懸濁液、ゲル、コロイド、分散液、懸濁液、溶液、エマルジョン、軟膏、ローション、点眼薬または点耳薬である。
いくつかの実施態様において、医薬組成物はさらに、コルチコステロイド(例えば、デキサメサゾンまたはフルチカゾン)、免疫抑制剤(例えば、タクロリムス&ピメクロリムス)、鎮痛剤、抗癌剤、抗炎症剤、ケモカイン受容体アンタゴニスト、気管支拡張剤、ロイコトリエン受容体アンタゴニスト(例えば、モンテルカストまたはザフィルカスト)、ロイコトリエン形成阻害剤、モノアシルグリセロールキナーゼ阻害剤、ホスホリパーゼA1阻害剤、ホスホリパーゼA2阻害剤、およびリゾホスホリパーゼD(lysoPLD)阻害剤、オートタキシン阻害剤、うっ血除去剤、抗ヒスタミン剤(例えば、ロラタジン(loratidine))、粘液溶解薬、抗コリン薬、鎮咳剤、去痰薬、抗感染剤(例えば、フシジン酸、特にアトピー性皮膚炎の治療のため)、抗真菌(例えば、クロトリアゾール(clotriazole)、特にアトピー性皮膚炎のため)、抗IgE抗体製剤(例えば、オマリズマブ)、β−2アドレナリンアゴニスト(例えば、アルブテロールまたはサルメテロール)、DPアンタゴニストなどの他の受容体において機能する他のPGD2アンタゴニスト、PDE4阻害剤(例えば、シロミラスト)、サイトカイン生産を調節する薬剤、例えば、TACE阻害剤、Th2サイトカインIL−4&IL−5の活性を調節する薬剤(例えば、モノクローナル抗体&可溶性受容体の阻害)、PPARγアゴニスト(例えば、ロシグリタゾンおよびピオグリタゾン)、5−リポキシゲナーゼ阻害剤(例えば、ジロートン)から選択される、1つ以上のさらなる治療活性薬剤を含む。
いくつかの実施態様において、医薬組成物はさらに、ピルフェニドン、ニンテダニブ、サリドマイド、カルルマブ、FG−3019、フレソリムマブ、インターフェロンアルファ、レシチン化スーパーオキシドジスムターゼ、シムツズマブ(simtuzumab)、タンジセルチブ(tanzisertib)、トラロキヌマブ(tralokinumab)、hu3G9、AM−152、IFN−ガンマ−1b、IW−001、PRM−151、PXS−25、ペントキシフィリン/N−アセチル−システイン、ペントキシフィリン/ビタミンE、サルブタモール硫酸塩、[Sar9,Met(O2)11]−物質P、ペントキシフィリン、メルカプタミン酒石酸塩、オベチコール酸、アラミコール(aramchol)、GFT−505、イコサペンタエン酸エチルエステル、メトホルミン、メトレレプチン、ムロモナブ−CD3、オルチプラズ、IMM−124−E、MK−4074、PX−102、RO−5093151から選択される、1つ以上のさらなる抗線維化剤を含む。いくつかの実施態様において、LPA依存性またはLPA介在性の疾患または病状を有するヒトに、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を投与することを特徴とする方法が提供される。いくつかの実施態様において、ヒトは、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物以外の、1つ以上のさらなる治療剤を既に投与されている。いくつかの実施態様において、当該方法はさらに、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物以外の、1つ以上のさらなる治療活性薬剤を投与することを特徴とする。
いくつかの実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物以外の、1つ以上のさらなる治療活性薬剤は、以下から選択される:コルチコステロイド(例えば、デキサメサゾンまたはフルチカゾン)、免疫抑制剤(例えば、タクロリムス&ピメクロリムス)、鎮痛剤、抗癌剤、抗炎症剤、ケモカイン受容体アンタゴニスト、気管支拡張剤、ロイコトリエン受容体アンタゴニスト(例えば、モンテルカストまたはザフィルカスト)、ロイコトリエン形成阻害剤、モノアシルグリセロールキナーゼ阻害剤、ホスホリパーゼA阻害剤、ホスホリパーゼA阻害剤、およびリゾホスホリパーゼD(lysoPLD)阻害剤、オートタキシン阻害剤、うっ血除去剤、抗ヒスタミン剤(例えば、ロラタジン(loratidine))、粘液溶解薬、抗コリン薬、鎮咳剤、去痰薬、抗感染性(例えば、フシジン酸、特にアトピー性皮膚炎の治療のため)、抗真菌(例えば、クロトリアゾール(clotriazole)、特にアトピー性皮膚炎のため)、抗IgE抗体製剤(例えば、オマリズマブ)、β−2アドレナリンアゴニスト(例えば、アルブテロールまたはサルメテロール)、DPアンタゴニストなどの他の受容体に機能する、他のPGD2アンタゴニスト、PDE4阻害剤(例えば、シロミラスト)、サイトカイン生産を調節する薬剤、例えばTACE阻害剤、Th2サイトカインIL−4&IL−5の活性を調節する(例えば、モノクローナル抗体&可溶性受容体を阻害する)薬剤、PPARγアゴニスト(例えば、ロシグリタゾンおよびピオグリタゾン)、5−リポキシゲナーゼ阻害剤(例えば、ジロートン)。
いくつかの実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物以外の、1つ以上のさらなる治療活性薬剤は、ピルフェニドン、ニンテダニブ、サリドマイド、カルルマブ、FG−3019、フレソリムマブ、インターフェロン アルファ、レシチン化スーパーオキシドジスムターゼ、シムツズマブ(simtuzumab)、タンジセルチブ(tanzisertib)、トラロキヌマブ(tralokinumab)、hu3G9、AM−152、IFN−ガンマ−1b、IW−001、PRM−151、PXS−25、ペントキシフィリン/N−アセチル−システイン、ペントキシフィリン/ビタミンE、サルブタモール硫酸塩、[Sar9,Met(O2)11]−物質P、ペントキシフィリン、メルカプタミン酒石酸塩、オベチコール酸、アラミコール(aramchol)、GFT−505、エイコサペンタエン酸エチルエステル、メトホルミン、メトレレプチン、ムロモナブ−CD3、オルチプラズ、IMM−124−E、MK−4074、PX−102、RO−5093151から選択される、他の抗線維化剤である。
いくつかの実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物以外の1つ以上のさらなる治療活性薬剤は、ACE阻害剤、ラミプリル、AIIアンタゴニスト、イルベサルタン、抗不整脈薬、ドロネダロン、PPARαアクティベーター、PPARγアクティベーター、ピオグリタゾン、ロシグリタゾン、プロスタノイド、エンドセリン受容体アンタゴニスト、エラスターゼ阻害剤、カルシウムアンタゴニスト、ベータブロッカー、利尿剤、アルドステロン受容体アンタゴニスト、エプレレノン、レニン阻害剤、rhoキナーゼ阻害剤、可溶性グアニル酸シクラーゼ(sGC)アクティベーター、sGC増感剤、PDE阻害剤、PDE5阻害剤、NOドナー、ジギタリス剤、ACE/NEP阻害剤、スタチン、胆汁酸再取り込み阻害剤、PDGFアンタゴニスト、バソプレシンアンタゴニスト、水利尿薬、NHE1阻害剤、第Xa因子アンタゴニスト、第XIIIa因子アンタゴニスト、抗凝血剤、抗血栓性、血小板阻害剤、線維化促進剤(profibroltics)、トロンビン活性化線溶阻害剤(TAFI)、PAI−1阻害剤、クマリン、ヘパリン、トロンボキサンアンタゴニスト、セロトニンアンタゴニスト、COX阻害剤、アスピリン、治療抗体、GPIIb/IIIaアンタゴニスト、ERアンタゴニスト、SERM、チロシンキナーゼ阻害剤、RAFキナーゼ阻害剤、p38MAPK阻害剤、ピルフェニドン、多標的キナーゼ阻害剤、ニンテダニブ、ソラフェニブから選択される。
いくつかの実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物以外の、1つ以上のさらなる治療活性薬剤は、以下から選択される:Gremlin−1 mAb、PA1−1 mAb、プロメディオール(Promedior)(PRM−151;組み換えヒトペントラキシン−2);FGF21、TGFβアンタゴニスト、αvβ6&αvβパンアンタゴニスト;FAK阻害剤、TG2阻害剤、LOXL2阻害剤、NOX4阻害剤、MGAT2阻害剤、GPR120アゴニスト。
本明細書に記載される医薬製剤は、これらに限定はされないが、経口、非経口(例えば、静脈内、皮下、筋肉内)、鼻腔内、バッカル、局所または経皮投与経路などの、多数の投与経路によって、様々な方法で対象に投与される。本明細書に記載される医薬製剤としては、これらに限定はされないが、分散水溶液、自己乳化型分散剤、固体溶液、リポソーム分散液、エアロゾル、固形剤、散剤、速放性製剤、徐放性製剤、ファーストメルト(fast melt)製剤、錠剤、カプセル、丸剤、遅延放出製剤、持続放出製剤、パルス放出製剤、多粒子製剤、並びに速放性および徐放性製剤の混合が挙げられる。
いくつかの実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、経口投与される。
いくつかの実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、局所投与される。そのような実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、溶液、懸濁液、ローション、ゲル、ペースト、シャンプー、スクラブ、ラブ(rub)、スメア、医療用スティック、医療用バンデージ、バーム、クリームまたは軟膏などの、様々な局所投与可能な組成物に製剤化される。そのような医薬組成物は、可溶化剤、安定化剤、張性増加剤、緩衝液および防腐剤を含みうる。ある局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、皮膚に局所投与される。
別の局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、吸引によって投与される。ある実施態様において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、肺のシステムを直接標的とする吸引によって投与される。
別の局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、鼻腔内投与のために製剤化される。そのような製剤としては、経鼻スプレー、経鼻ミストなどが挙げられる。
別の局面において、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物は、点眼薬として製剤化される。
別の局面において、少なくとも1つのLPA受容体の活性が、疾患もしくは病状の病理および/もしくは症状に関連している、疾患、障害、または病状を治療するための医薬の製造における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用である。この局面のある実施態様において、LPAはLPA、LPA、LPA、LPA、LPAおよびLPAから選択される。ある局面において、LPA受容体はLPAである。ある局面において、疾患または病状は、本明細書において特定される任意の疾患または病状である。
前記の局面のいずれかにおいて、(a)有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物が、哺乳動物に全身投与される;および/または(b)有効量の化合物が哺乳動物に経口投与される;および/または(c)有効量の化合物が哺乳動物に静脈投与される;および/または(d)有効量の化合物が吸入によって投与される;および/または(e)有効量の化合物が経鼻投与によって投与される;および/または(f)有効量の化合物が哺乳動物に注射によって投与される;および/または(g)有効量の化合物が哺乳動物に局所投与される;および/または(h)有効量の化合物が眼投与される;および/または(i)有効量の化合物が哺乳動物に直腸投与される;および/または(j)有効量が哺乳動物に非全身投与または局所投与される、さらなる実施態様である。
前記の局面のいずれかにおいて、(i)化合物が1回投与される;(ii)化合物が1日間に複数回;(iii)継続的;または(iv)連続的に、哺乳動物に投与される、さらなる実施態様などの、有効量の化合物の単回投与を含むさらなる実施態様である。
前記の局面のいずれかにおいて、(i)化合物が単一剤形として、連続的または間欠的に投与される;(ii)複数回投与の間の時間が、それぞれ6時間である;(iii)化合物が8時間ごとに哺乳動物に投与される;(iv)化合物が12時間ごとに哺乳動物に投与される;(v)化合物が24時間ごとに哺乳動物に投与される、さらなる実施態様などの、有効量の化合物の複数回投与を含むさらなる実施態様である。さらなるまたは別の実施態様において、当該方法は、化合物の投与を一時的に中断する、または投与される化合物の用量が一時的に減少される休薬日を含み;休薬日の終わりには、化合物の投与が再開される。ある実施態様において、休薬日の長さは2日から1年の間で変化する。
治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、治療が必要な哺乳動物に投与することを特徴とする、哺乳動物におけるLPAの生理学的活性を阻害する方法がまた提供される。
ある局面において、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を含む、哺乳動物における、LPA依存性またはLPA介在性の疾患または病状を治療するための医薬が提供される。
いくつかの場合において、LPA依存性またはLPA介在性の疾患または病状の治療のための医薬の製造における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において開示される。
いくつかの場合において、LPA依存性またはLPA介在性の疾患または病状の治療または予防における、式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の使用が、本明細書において開示される。
ある局面において、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を投与することを特徴とする、哺乳動物におけるLPA依存性またはLPA介在性の疾患または病状の、治療または予防のための方法である。
ある局面において、LPA依存性またはLPA介在性の疾患または病状としては、これらに限定はされないが、臓器または組織の線維症、瘢痕、肝疾患、皮膚疾患、癌、心血管疾患、呼吸器疾患または病状、炎症性疾患、消化管疾患、腎臓病、尿路関連疾患、下部尿路の炎症性疾患、排尿障害、頻尿、膵臓疾患、動脈閉塞、脳梗塞、脳出血、疼痛、末梢ニューロパチー、および線維筋痛症が挙げられる。
ある局面において、LPA依存性またはLPA介在性の疾患または病状は、呼吸器疾患または病状である。いくつかの実施態様において、呼吸器疾患または病状は、喘息、慢性閉塞性肺疾患(COPD)、肺線維症、肺動脈性肺高血圧症または急性呼吸窮迫症候群である。
いくつかの実施態様において、LPA依存性またはLPA介在性の疾患または病状は、以下から選択される:特発性肺線維症;医原性薬剤誘発性線維症、職業および/または環境誘発性線維症などの異なる病因の他の汎発性実質性肺炎、肉芽腫性疾患(サルコイドーシス、過敏性肺炎)、コラーゲン性血管疾患、肺胞タンパク質症、ランゲルハンス細胞肉芽腫症、リンパ脈管筋腫症、遺伝性疾患(ヘルマンスキー・パドラック症候群、結節性硬化症、神経線維腫症、代謝蓄積症、家族性間質性肺炎);放射線誘発肺線維症;慢性閉塞性肺疾患(COPD);強皮症;ブレオマイシン誘発性肺線維症;慢性喘息;珪肺症;アスベスト誘発性肺線維症;急性呼吸窮迫症候群(ARDS);腎線維症;尿細管間質線維症;糸球体腎炎;巣状分節性糸球体硬化症;IgA腎症;高血圧;アルポート;腸線維症;肝線維症;硬変;アルコール誘発性肝線維症;毒物/薬物誘発性肝線維症;ヘモクロマトーシス;非アルコール性脂肪性肝炎(NASH);胆管損傷;原発性胆汁性肝硬変;感染誘発性肝線維症;ウイルス誘発性肝線維症;および自己免疫性肝炎;角膜瘢痕化;肥厚性瘢痕;デュプイトラン疾患、ケロイド、皮膚線維症;皮膚強皮症;脊髄損傷/線維症;骨髄線維症;血管の再狭窄;アテローム性動脈硬化症;動脈硬化症;ウェゲナー肉芽腫症;ペイロニー病、慢性リンパ性白血病、腫瘍転移、移植臓器拒絶、子宮内膜症、新生児急性呼吸窮迫症候群および神経障害性疼痛。
ある局面において、LPA依存性またはLPA介在性の疾患または病状が、本明細書に記載される。
ある局面において、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、治療が必要な哺乳動物に投与することを特徴とする、哺乳動物における臓器線維症の治療または予防のための方法が提供される。
ある局面において、臓器線維症は肺線維症、腎線維症、または肝線維症を含む。
ある局面において、治療上の有効量の式(I)で示される化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物を、治療が必要な哺乳動物に投与することを特徴とする、哺乳動物における肺機能を向上させる方法が提供される。ある局面において、哺乳動物は肺線維症を有すると診断されている。
ある局面において、本明細書で開示される化合物は、哺乳動物における特発性肺線維症(通常は間質性肺炎)を治療するために用いられる。
いくつかの実施態様において、本明細書で開示される化合物は、哺乳動物における汎発性実質性間質性肺炎:医原性薬物誘発性、職業性/環境性(農夫肺)、肉芽腫性疾患(サルコイドーシス、過敏性肺炎)、コラーゲン性血管疾患(強皮症および他)、肺胞タンパク質症、ランゲルハンス細胞肉芽腫症、リンパ脈管筋腫症、ヘルマンスキー・パドラック症候群、結節性硬化症、神経線維腫症、代謝蓄積症、家族性間質性肺炎を治療するために用いられる。
いくつかの実施態様において、本明細書に開示される化合物は、哺乳動物における慢性的な拒絶に関連する、移植後の線維症:肺移植についての閉塞性細気管支炎を治療するために用いられる。
いくつかの実施態様において、本明細書において開示される化合物は、哺乳動物の皮膚線維症:皮膚強皮症、デュピュイトラン疾患、ケロイドを治療するために用いられる。
ある局面において、本明細書において開示される化合物は、哺乳動物における硬変を伴う、または伴わない肝線維症:毒物/薬物誘発性(ヘモクロマトーシス)、アルコール性肝疾患、ウイルス肝炎(B型肝炎ウイルス、C型肝炎ウイルス、HCV)、非アルコール性肝疾患(NAFLD、NASH)、代謝および自己免疫疾患を治療するために用いられる。
ある局面において、本明細書において開示される化合物は、哺乳動物における腎線維症:尿細管間質線維症、糸球体硬化症を治療するために用いられる。
LPA依存性の疾患または病状の治療に関わる、前記のいずれかの局面において、式(I)で示される構造を有する化合物、またはその薬学的に許容可能な塩、もしくは溶媒和物の投与に加えて、少なくとも1つのさらなる薬剤を投与することを特徴とする、さらなる実施態様である。様々な実施態様において、それぞれの薬剤は、同時など、任意の順番で投与される。
本明細書において開示される任意の実施態様において、哺乳動物はヒトである。
いくつかの実施態様において、本明細書において提供される化合物は、ヒトに投与される。
いくつかの実施態様において、本明細書において提供される化合物は経口投与される。
いくつかの実施態様において、本明細書において提供される化合物は、少なくとも1つのLPA受容体のアンタゴニストとして用いられる。いくつかの実施態様において、本明細書において提供される化合物は、少なくとも1つのLPA受容体の活性を阻害するために、または少なくとも1つのLPA受容体の活性を阻害することから利益が得られる、疾患または病状を治療するために用いられる。ある局面において、LPA受容体はLPAである。
別の実施態様において、本明細書において提供される化合物は、LPA活性阻害のための医薬の製造のために用いられる。
包装材料、包装材料の内部の式(I)で示される化合物またはその薬学的に許容可能な塩もしくは溶媒和物、および当該化合物もしくは組成物、またはその薬学的に許容可能な塩、互変異性体、薬学的に許容可能なN−オキシド、薬学的に活性な代謝物、薬学的に許容可能なプロドラッグ、もしくは薬学的に許容可能な溶媒和物が、少なくとも1つのLPA受容体の活性を阻害するために、または少なくとも1つのLPA受容体の活性の阻害から利益が得られる、疾患もしくは病状の1つ以上の症状の治療、予防、もしくは改善のために用いられることを示すラベルを含む、製品が提供される。
VI.スキームなどの一般的な合成
本発明の化合物は、有機合成の分野における当業者に既知の多くの方法によって合成することができる。本発明の化合物は、有機化学合成の分野において既知の合成方法と共に、以下に記載される方法を用いて、または当業者に理解されるそれらのバリエーションによって、合成することができる。好ましい方法としては、これらに限定はされないが、以下に記載されるものが挙げられる。反応は、用いられる試薬および物質に適切な、および生じる変換に適切な溶媒または溶媒の混合物中で行われる。分子上に存在する官能基は、提案される変換と一致するべきであることが、有機合成の当業者に理解されるであろう。時に、目的の本発明の化合物を得るために、合成ステップの順番を修正する、またはある特定のプロセスを他のものに変えて選択する判断が必要であるであろう。
この分野で、任意の合成経路の計画における他の主な検討事項は、本発明において記載される化合物中に存在する、反応性官能基の保護に用いるための保護基の賢明な選択であることもまた理解されるであろう。熟練した当業者に対して多くの代替物を説明する、権威ある報告は、Greene et al., (Protective Groups in Organic Synthesis, Fourth Edition, Wiley−Interscience (2006))である。
式(I)で示される化合物は、以下のスキームおよび実施例、並びに当業者によって用いられる、関連のある公表文献方法において記述される、例示的な方法によって合成されうる。これらの反応についての例示的な試薬および方法は、以下および実施例において存在する。以下の方法における保護および脱保護は、一般に当技術分野において既知の方法によって、実行されうる(例えば、Wuts, P.G.M., Greene's Protective Groups in Organic Synthesis, 5th Edition, Wiley (2014)を参照されたい)。有機合成および官能基の変換の一般的な方法は、以下において存在する:Trost, B.M. et al., Eds., Comprehensive Organic Synthesis: Selectivity, Strategy & Efficiency in Modern Organic Chemistry, Pergamon Press, New York, NY (1991); Smith, M.B. et al., March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 7th Edition, Wiley, New York, NY (2013); Katritzky, A.R. et al., Eds., Comprehensive Organic Functional Group Transformations II, 2nd Edition, Elsevier Science Inc., Tarrytown, NY (2004); Larock, R.C., Comprehensive Organic Transformations, 2nd Edition, Wiley−VCH, New York, NY (1999)、およびその中にある参考文献。
スキーム1はピラゾール−アジンアリール(ヘテロアリール)シクロヘキシル酸14の合成を記載する。ピラゾール5−カルボン酸1を(クロロホルメートとの最初の反応、つづいてNaBHとの低温還元を介する2工程の操作によるか、またはジボランでの直接還元によって)対応するピラゾール5−メタノールに還元し、次にそれを保護して保護されたヒドロキシピラゾール2を得る。ピラゾール2を位置選択的ハロゲン化に付し、4−ハロピラゾール3を得、次にそれを4−ヒドロキシアリール/ヘテロアリールボロン酸4との鈴木−宮浦カップリング反応に供し、4−ヒドロキシアリール/ヘテロアリールピラゾール5を得る。フェノール/ヒドロキシヘテロアリールピラゾール5を3−ヒドロキシシクロヘキシルエステル6と光延反応条件(Kumara Swamy, K. C.、Chem. Rev., 2009, 109, 2551-2651)下で反応させ、対応するピラゾールシクロアルキルエーテルエステル7を提供する。ヒドロキシメチルピラゾール7を脱保護に付し、シクロヘキシルエステルピラゾールアルコール8を得る。次にピラゾールアルコール8をPBr(またはCBr/PhPなどの他のマイルドな臭素化剤)と反応させ、対応するブロミド9を得る。ピラゾールブロミド9をNaN(または他のアジド均等試薬)で置換し、ピラゾールアジド10を得、それを還元(例えば、PhP/水でのシュタウディンガー還元)に付し、ピラゾールアミン11を得る。次にピラゾールアミン11をハロ−ピリジン/ピリミジン12と適切な塩基の存在下で反応(芳香族求核置換)させるか、または遷移金属(例えば、Pd)触媒のアミノ化を介して反応させ、ピラゾールアミノ−アジン13を得る。ピラゾールアミノ−アジンシクロヘキシルエステル13を脱保護に付し、所望のピラゾールアミノ−アジンシクロヘキシル酸14を得る。
スキーム1
Figure 2021506859
スキーム2はアミノ−アリール/ヘテロアリールピラゾール−アリールオキシシクロヘキシル酸14に至る別の合成経路を記載する。アミノ−アジン15のブロミド10との塩基(例、NaH等)の存在下、または遷移金属触媒条件(例、Pd−リガンド介在性)の下で反応させ、アミノ−アジンメチルピラゾール−アリールオキシシクロヘキシルエステル13を得る。その後でシクロヘキシルエステル13をエステル脱保護に付し、所望のアミノ−アジンピラゾール−アリール/ヘテロアリール−オキシシクロヘキシル酸14を得る。
スキーム2
Figure 2021506859
スキーム3はピラゾール−トリアジンアリールオキシシクロヘキシル19および21酸に至る合成経路を記載する。ジハロトリアジン16をピラゾール−アミン11と塩基の存在下で反応させ、ハロトリアジニル−ピラゾール−アリールオキシシクロヘキシルエステル17を得る。その後でハロトリアジン ピラゾール17を脱ハロゲン化に付し、ピラゾール−トリアジン18を得る。ピラゾール−トリアジンシクロヘキシルエステル18を脱保護に付し、ピラゾール−トリアジンシクロヘキシル酸19を得る。別法として、ハロトリアジン−ピラゾール17のハロゲンをアルコール(ROH)と塩基の存在下で置換することでアルコキシトリアジン−ピラゾール20が得られる。ピラゾール−アルコキシトリアジンシクロヘキシルエステル20の脱保護によりピラゾール−トリアジンシクロヘキシル酸21が得られる。
スキーム3
Figure 2021506859
スキーム4はピリミジン−ピラゾールアジンシクロヘキシル酸28の合成を記載する。4−ハロピラゾール3を(例えば、n−BuLiまたはt−BuLiで)メタル処理し、トリアルキルボレートと反応させてピラゾール4−ボロネート22(あるいはまた、加水分解後に対応するボロン酸)を得る。適宜置換された4−ヒドロキシ−2−ハロピリミジン23を3−ヒドロキシシクロヘキシルエステル8との光延反応に供し、対応するピリジミジンオキシシクロアルキルエステル24を供給する。ハロ−ピリミジン24をピラゾールボロネート22と鈴木−宮浦カップリング反応に供し、ピリミジニル−ピラゾール25を得る。ヒドロキシメチルピラゾール25の脱保護に付してアルコールを得、次にそれをスキーム1に記載されるのと同じ反応式(アルコール→ブロミド→アジド→アミン)に通してピリミジニルピラゾールアミン26とする。ついでピラゾールアミン26をハロ−アジン12と適切な塩基の存在下で(芳香族求核置換)反応に付すか、遷移金属(例えば、Pd)触媒のアミノ化を介して反応させ、ピリミジニル−ピラゾールアミノ−アジン27を得る。ピリミジニル−ピラゾールアジンシクロヘキシルエステル27を脱保護に付し、所望のピリミジニル−ピラゾールアジンシクロヘキシル酸28を得る。
スキーム4
Figure 2021506859
スキーム5はピラゾール−アジンアリールオキシ−シクロヘキシル酸15の別の合成を記載する。ヒドロキシアリール/ヘテロアリール−ピラゾール5を保護し、つづいて該アルコールの脱保護に付し、ピラゾールアルコール29を得、次にそれを(PBrまたはCBr/PhPなどの臭素化剤を用いて)対応するピラゾールブロミド30に、その後で(スキーム1に示されるように、該ブロミドのNaN置換、つづいてアジド生成物のシュタウディンガー還元[PhP/HO]での2工程操作を介して)ピラゾールアミン31に変換する。次にピラゾールアミン31を、ハロ−アジン12と、塩基介在性反応または遷移金属触媒性クロスカップリング反応(例えば、パラジウム介在性)のいずれかに供し、ピラゾールアミノ−アジン32を供給する。該ピラゾール−アジン32を脱保護に付し、ヒドロキシ−アリール/ヒドロキシヘテロアリールピラゾール33を得、次にそれをヒドロキシ−シクロヘキシルエステル8との光延反応に供する。ついで、得られたピラゾール−アジン−シクロヘキシルエステル14を(スキーム1に記載されるように)脱保護に付し、所望のピラゾール−アジンシクロヘキシル酸15を得る。
スキーム5
Figure 2021506859
スキーム6はピラゾール−エチル−アジンシクロヘキシル酸40の合成を記載する。該ピラゾールメタノール中間体9を対応するアルデヒドに酸化し(例えば、デス−マーチン・ペルヨージナンまたはスワーン酸化)、次にそれをオレフィン化反応(例えば、ウィッチヒまたはペターソンオレフィン化反応)に供し、それによりピラゾール末端オレフィン34を得る。オレフィン34を末端炭素で(例えば、9−BBNを用いて)ヒドロホウ素化に供し、つづいて酸化の後処理に付し、対応するピラゾールエチルアルコール35を得る。次にピラゾールエチルアルコール35をPBr(またはCBr/PhPなどの他のマイルドな臭素化剤)と反応させて対応するブロミド36を得る。ブロミド36をNaN(または他のアジド均等試薬)と置換させてピラゾールアジド37を得、それを還元(例えば、PhP/水を用いるシュタウディンガー還元)に供し、ピラゾールアミン38を得る。次にピラゾールアミン38をハロ−アジン12と、適切な塩基の下で、または遷移金属(例えば、Pd)触媒のアミノ化を介して反応させてピラゾールアミノ−アジン39を得、次にそれをエステル脱保護に付し、所望のピラゾール−エチル−アミノ−アジンアリールオキシシクロヘキシル酸40を得る。
スキーム6
Figure 2021506859
スキーム7はピラゾールアミノ−アジン酸の合成を記載する。シクロヘキシルエーテルピラゾール−アルコール9をピラゾールカルボン酸41への酸化(例えば、パラジウムジクロメートで該酸に直接的に、またはアルデヒドを介する2工程の操作[スワーン酸化か、またはデス−マーチン・ペルヨージナンに、つづいて該酸へのNaClO酸化に付す操作、例えば、Lindgren, B. O.、Acta Chem. Scand. 1973, 27, 888])に供する。イソキサゾール酸41をt−ブタノールの存在下でクルチウス転位に付し、ピラゾールNH−Boc−カルバメート42を得る。該ピラゾールNH−Bocカルバメート42を酸性条件下で脱保護に付し、ピラゾールアミン43を得る。該ピラゾール−アミン43をついでハロ−アジン12との遷移金属触媒のクロスカップリング反応に供し、ピラゾールアミノ−アジンシクロヘキシルエステル44を得、次にそれをエステル脱保護に付し、所望のピラゾール−アミノアジン−アリールオキシシクロヘキシル酸45を得る。
スキーム7
Figure 2021506859
スキーム8はピラゾール−アジンシクロヘキシル酸14およびピリミジン−ピラゾール−アジンシクロヘキシル酸28への別の合成経路を記載する。4−ハロピラゾールアルデヒド46(例えば、ピラゾールアルコール3を脱保護に、つづいてデス−マーチンまたはスワーン酸化に付すことで入手可能)は、(BPinでのPd介在性ホウ素化を介して;例えば、Ishiyama, T. et al, J. Org. Chem. 1995, 60, 7508-7510)中間体のピラゾールアルデヒドボロネート47に変換される。4−ハロアレン/ヘテロアレン−オキシシクロヘキシルエステル24をピラゾールアルデヒドボロネート47との鈴木−宮浦カップリング反応に供し、ピラゾールアルデヒドオキシシクロアルキルエステル48を得る。ピラゾールアルデヒド48と適宜置換されたアミノ−アジン15とでイミンを形成させ(例えば、Ti(OiPr)Cl)などのルイス酸で触媒作用に付される)、つづいて還元アミノ化(例えば、NaBH(OAc)、Abdel-Magid, A. F.ら、J. Org. Chem. 1996, 61, 3849-3862を参照のこと、またはNaBHCNを用いる)に付し、対応するピラゾールアミノ−アジンシクロヘキシルエステルを得る。このピラゾール−アジンシクロヘキシルエステルを酸脱保護に付し、アリール/ヘテロアリールピラゾール−アジンシクロヘキシル酸14を得る。4−ハロピリミジンオキシシクロヘキシルエステル20をピラゾールアルデヒドボロネート47と対応する鈴木−宮浦カップリング反応に供し、ピリミジン−ピラゾールアルデヒド49を得る。ピリミジン−ピラゾールアルデヒド49と適宜置換されたアミノ−アジン15とでイミンを形成し、つづいて還元アミノ化に付しても対応するピリミジン−ピラゾールアミノ−アジンシクロヘキシルエステルを得る。このピリミジン−ピラゾール−アジンシクロヘキシルエステルを酸脱保護に付し、ピリミジン−ピラゾール−アジンオキシシクロヘキシル酸22を得る。
スキーム8
Figure 2021506859
スキーム9はピラゾール−アジンシクロヘキシル酸56の合成を記載する。4−ヒドロキシアリール/ヘテロアリールボロネート4と3−ヒドロキシシクロヘキシルエステル6との光延反応条件(Kumara Swamy, K. C.、Chem. Rev., 2009, 109, 2551-2651)下で反応させ、対応するアリール/ヘテロアリールオキシシクロアルキルエステル50を供給する。保護された1,5−ジアルキル−1H−ピラゾール−4−カルボン酸エステル51を臭素化し、ブロモ−ピラゾール52を得る。該ブロモピラゾール41をアリール/ヘテロアリールボロネート50(または対応するボロン酸)との鈴木−宮浦カップリング反応に供し、対応するピラゾール−アリール/ヘテロアリールオキシシクロアルキルエステル53を供給する。53の該ピラゾールエステルを選択的に脱保護して対応するピラゾールカルボン酸54とし、次にそれを(例えば、クロロギ酸アルキルと反応させ、つづいてNaBHとの低温還元を介する2工程の1ポット反応により、またはスキーム1にあるようにジボランで直接的に)還元して対応するピラゾールアルコール55とする。次にシクロヘキシルエステル−ピラゾールアルコール55を、スキーム1にて記載されるのと同じ合成式によってピラゾールアミノ−アジン酸56に変換する(すなわち、8→14)。
スキーム9
Figure 2021506859
VII.実施例
以下の実施例は、本発明の一部の範囲および特定の実施態様として例示として提案され、本発明の範囲を限定することを意図するものではない。略語および化学記号は、特に言及されない限り、通常のおよび慣例の意味を有する。特に言及されない限り、本明細書に記載される化合物は、本明細書に開示されるスキームおよび他の方法を用いて、合成し、単離し、および特徴付けられているか、あるいは、同様のものを用いて合成されうる。
適切には、反応は乾燥窒素(またはアルゴン)雰囲気下で行われた。無水反応については、EMからのDRISOLV(登録商標)溶媒を用いた。他の反応については、試薬用またはHPLC用の溶媒を用いた。特に言及されない限り、全ての購入可能な試薬は、入手したままで用いた。
マイクロ波反応は、マイクロ波(2.5GHz)照射下、マイクロ波反応容器中で、400W Biotage Initiator機器を用いて行った。
実施例の特性決定または精製において、HPLC/MSおよび分取/分析HPLC法を用いた。
NMR(核磁気共鳴)スペクトルは一般に、示される溶媒中で、BrukerまたはJEOLの400MHzおよび500MHz機器において得た。全ての化学シフトは、内部標準として、溶媒共鳴によってテトラメチルシランからのppmで報告する。HNMRスペクトルデータは、一般に以下のように報告する:化学シフト、多重度(s=シングレット、br s=ブロード シングレット、d=ダブレット、dd=ダブレットのダブレット、t=トリプレット、q=カルテット、sep=セプテット、m=マルチプレット、app=見かけ)、カップリング定数(Hz)、および積分値。
H NMRスペクトルがd−DMSO中で得られている実施例において、水の抑制シーケンスがしばしば用いられる。このシーケンスは、水のシグナル、および通常は3.30−3.65ppmの間にある、全体的なプロトンの積分値に影響しうる、同じ領域にある任意のプロトンのピークを効率的に抑制する。
用語HPLCは、以下の方法のうちの1つを用いた、Shimadzu高速液体クロマトグラフィー機器をいう:
HPLC−1:Sunfire C18 カラム(4.6×150mm) 3.5μm、12分にわたり、10から100%B:Aの勾配、次いで3分間、100%Bで保持。
移動相A:水:CHCN(95:5)中の0.05%TFA
移動相B:CHCN:水(95:5)中の0.05%TFA
TFA緩衝液 pH=2.5; 流速:1mL/分;波長:254nm、220nm。

HPLC−2:XBridge フェニル(4.6×150mm) 3.5μm、12分にわたり、10から100%B:Aの勾配、次いで3分間、100%Bで保持。
移動相A:水:CHCN(95:5)中の0.05%TFA
移動相B:CHCN:水(95:5)中の0.05%TFA
TFA緩衝液 pH=2.5;流速:1mL/分;波長:254nm、220nm。

HPLC−3:Chiralpak AD−H、4.6×250mm、5μm。
移動相:30%EtOH−ヘプタン(1:1)/70%CO
流速=40mL/分、100Bar、35℃;波長:220nm

HPLC−4:Waters Acquity UPLC BEH C18、 2.1×50mm、1.7μm粒子;
移動相A:10mM NHOAcを含む、5:95 CHCN:水;
移動相B:10mM NHOAcを含む、95:5 CHCN:水;
温度:50℃;勾配:3分にわたり、0−100%B、次いで0.75分間、100%Bで保持;流速:1.11mL/分;検出:220nmにおけるUV。

HPLC−5:Waters Acquity UPLC BEH C18、 2.1×50mm、1.7μm粒子;
移動相A:0.1%TFAを含む、5:95 CHCN:水;
移動相B:0.1%TFAを含む、95:5 CHCN:水;
温度:50℃;勾配:3分にわたり、0−100%B、次いで0.75分間、100%Bで保持;流速:1.11mL/分;検出:220nmにおけるUV。
中間体1. イソプロピル トランス−3−((6−(5−(ブロモメチル)−1−メチル−1H−ピラゾール−4−イル)ピリジン−3−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体1A. 4−ブロモ−1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−1H−ピラゾール
Figure 2021506859
p−TsOH・HO(0.050g、0.262ミリモル)を(4−ブロモ−1−メチル−1H−ピラゾール−5−イル)メタノール(1.0g、5.2ミリモル)および3,4−ジヒドロ−2H−ピラン(1.32g、15.7ミリモル)のDCM(10mL)中溶液に0℃で添加した。反応物を室温までの加温に供し、室温で一夜撹拌した。該反応物を0℃に冷却し、NaHCO飽和水溶液でpH7に中和した。該混合物をDCM(10mL)と水(10mL)との間に分配させ、水層をDCM(3x10mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。残渣をクロマトグラフィー(SiO;EtOAc/ヘキサン)に付し、表記化合物(1.40g、5.09ミリモル、収率97%)を無色の油として得た。H NMR(500MHz、CDCl) δ 7.41(s,1H)、4.72(d,J=12.9Hz,1H)、4.65(dd,J=4.1、3.0Hz,1H)、4.58(d,J=12.9Hz,1H)、3.93(s,3H)、3.88(ddd,J=11.6、8.3、3.1Hz,1H)、3.57(dddd,J=11.0、5.0、3.9、1.4Hz,1H)、3.49(d,J=5.5Hz,2H)、1.85−1.75(m,1H)、1.75−1.66(m,1H)、1.66−1.48(m,4H);[M+H]=275.1
中間体1B. 1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1H−ピラゾール
Figure 2021506859
中間体1A(469mg、1.71ミリモル)、KOAc(502mg、5.11ミリモル)、ビス(ピナコラト)ジボロン(649mg、2.56ミリモル)の1,4 ジオキサン(10mL)中混合物をNで5分間にわたって脱気処理に付した。PdCl(dppf)(125mg、0.170ミリモル)を加え、該反応物をNで5分間にわたって再び脱気処理に付した。反応容器を密封し、85℃で10時間加熱し、次に室温に冷却した。該混合物をEtOAc(10mL)と水(10mL)との間に分配させ、水相をEtOAc(3x10mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮して粗表記化合物(717mg、0.89ミリモル、収率52.2%)を黄色の透明な油として得た。[M+H]=323.1
中間体1C. イソプロピル トランス−3−((6−ブロモピリジン−3−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
6−ブロモピリジン−3−オール(300mg、1.72ミリモル)、(±)−シス−イソプロピル 3−ヒドロキシシクロヘキサン カルボキシレート(353mg、1.90ミリモル)、EtN(0.264mL、1.90ミリモル)およびPhP(497mg、1.90ミリモル)の0℃でのTHF(2mL)中混合物に、DIAD(0.369mL、1.90ミリモル)を15分間にわたって滴下して加えた。該反応物を室温で一夜撹拌し、次にEtOAc(5mL)と水(5mL)との間に分配させた。水層をEtOAc(3x10mL)で抽出した。有機抽出液を合わせ、ブライン(5mL)で洗浄し、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(SiO;EtOAc/ヘキサン)に供し、表記化合物(255mg、0.745ミリモル、収率43.2%)を白色の固体として得た。H NMR(500MHz、CDCl) δ 8.07(d,J=3.2Hz,1H)、7.36(d,J=8.8Hz,1H)、7.14(dd,J=8.7、3.1Hz,1H)、5.02(hept,J=6.3Hz,1H)、4.61(dq,J=8.7、5.3、4.2Hz,1H)、2.76(tt,J=9.0、4.4Hz,1H)、2.03−1.51(m,8H)、1.24(dd,J=6.3、1.9Hz、6H);[M+H]=342
中間体1D. イソプロピル トランス−3−((6−(1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−1H−ピラゾール−4−イル)ピリジン−3−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体1B(717mg、0.891ミリモル)の1,4−ジオキサン(2mL)中溶液に、中間体1C(254mg、0.742ミリモル)およびKHPO(388mg、2.23ミリモル)、第2世代XPhosプレ触媒(29mg、0.037ミリモル)および水(2mL)を添加した。 該混合物を真空下でインキュベートし、Arを再びチャージした(3x)。該混合物を60℃で24時間撹拌し、ついで室温に冷却し、室温で24時間撹拌した。該混合物をEtOAc(3x5mL)で抽出し、乾燥(MgSO)させ、真空下で濃縮して粗生成物を得た。該粗材料をクロマトグラフィー(12g SiO、12分間に及ぶヘキサン中0〜100%EtOAcの連続勾配に付す)に供し、表記化合物(212mg、0.42ミリモル、収率56%)を淡黄色の油として得た。H NMR(500MHz、CDCl) δ 8.30(d,J=2.9Hz,1H)、7.76(s,1H)、7.46−7.39(m,1H)、7.28−7.21(m,1H)、5.08−4.94(m,3H)、4.72(dd,J=4.5、3.0Hz,1H)、4.65(tq,J=5.5、2.8Hz,1H)、3.97(s,3H)、3.88(ddd,J=11.3、7.9、3.2Hz,1H)、3.56−3.45(m,1H)、2.80(tt,J=9.8、4.1Hz,1H)、2.09−1.48(m,14H)、1.24(dd,J=6.3、1.8Hz、6H);[M+H]=458.1
中間体1E. イソプロピル トランス−3−((6−(5−(ヒドロキシメチル)−1−メチル−1H−ピラゾール−4−イル)ピリジン−3−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体1D(212mg、0.463ミリモル)のMeOH(5mL)中溶液に、PPTS(12mg、0.046ミリモル)を添加した。該混合物を60℃で4時間加熱し、次に室温に冷却し、NaHCO飽和水溶液(2mL)でクエンチさせ、真空下で濃縮してMeOHを得た。残渣をEtOAc(3x5mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(4g SiO;12分間に及ぶヘキサン中0%〜100%EtOAcの連続勾配に付す)に供し、表記化合物(75mg、0.201ミリモル、収率43.3%)を無色の油として得た。H NMR(500MHz、CDCl) δ 8.15(d,J=2.9Hz,1H)、7.66(s,1H)、7.43(d,J=8.8Hz,1H)、7.26(dd,J=8.8、2.9Hz,1H)、6.93(s,1H)、4.95(hept,J=6.2Hz,1H)、4.65(s,2H)、4.58(dq,J=5.8、2.8Hz,1H)、3.85(3、3H)、2.72(tt,J=9.0、4.3Hz,1H)、1.99−1.46(m,8H)、1.17(dd,J=6.3、2.3Hz、6H);[M+H]=374.2
中間体1
PBr(0.040mL、0.426ミリモル)を中間体1E(53mg、0.142ミリモル)のDME(1.5mL)中溶液に0℃で添加した。該反応物を室温で一夜撹拌し、ついで0℃に冷却し、NaHCO飽和水溶液で中和してpH7とした。該混合物をDCM(5mL)と水(3mL)との間に分配させ、水層をDCM(3x3mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。残渣をクロマトグラフィー(SiO;EtOAc/ヘキサン)に付し、表記化合物(55mg、0.126ミリモル、収率89%)を白色の固体として得た。H NMR(500MHz、CDCl) δ 8.34(d,J=2.8Hz,1H)、7.74(s,1H)、7.45(d,J=8.8Hz,1H)、7.32−7.24(m,1H)、5.11(s,2H)、5.04(p,J=6.2Hz,1H)、4.68(tt,J=5.5、3.0Hz,1H)、3.96(s,3H)、2.80(dd,J=9.4、4.2Hz,1H)、2.09−1.53(m,8H)、1.26(dd,J=6.2、2.5Hz、6H);[M+H]=436.0
中間体2. イソプロピル (1S,3S)−3−((2−(5−(アミノメチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体2A. (4−ブロモ−1−メチル−1H−ピラゾール−5−イル)メタノール
Figure 2021506859
4−ブロモ−1−メチル−1H−ピラゾール−5−カルボン酸(5.0g、24.4ミリモル)およびBH・THF(36.6mL、THF中1M溶液、36.6ミリモル)のTHF(50mL)中混合物を50℃で2日間撹拌し;この時点でLCMSは反応の完了を示した。該反応物を室温に冷却し、水性1N HClを用いて0℃で注意してクエンチさせ、室温で1時間撹拌し、その後で該混合物をEtOAc(3x50mL)で抽出した。有機抽出液を合わせ、真空下で濃縮した。残渣をクロマトグラフィー(80g SiO;25分間にわたってヘキサン中0%〜100%EtOAcの連続勾配に付す)に供し、表記化合物(3.60g、18.9ミリモル、収率77%)を白色の固体として得た。LCMS:[M+H]=193.0
中間体2B. 4−ブロモ−1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−1H−ピラゾール
Figure 2021506859
p−TsOH・HO(0.050g、0.262ミリモル)を中間体2A(1.0g、5.23ミリモル)および3,4−ジヒドロ−2H−ピラン(1.32g、15.7ミリモル)の室温でのDCM(10mL)中溶液に0℃で添加した。該反応物を室温までの加温に供し、室温で一夜撹拌した。該混合物を0℃に冷却し、飽和水性NaHCOで中和してpH7とし、次にDCM(10mL)とHO(10mL)との間に分配させた。水層をDCM(3x10mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。残渣をクロマトグラフィー(40g SiO;14分間に及ぶ0%−80%EtOAc/ヘキサンの連続勾配に付す)に供し、表記化合物(1.40g、5.1ミリモル、収率97%)を無色の油として得た。H NMR(500MHz、CDCl) δ 7.41(s,1H)、4.72(d,J=12.9Hz,1H)、4.65(dd,J=4.1、3.0Hz,1H)、4.58(d,J=12.9Hz,1H)、3.93(s,3H)、3.88(ddd,J=11.6、8.3、3.1Hz,1H)、3.57(dddd,J=11.0、5.0、3.9、1.4Hz,1H)、3.49(d,J=5.5Hz,2H)、1.85−1.75(m,1H)、1.75−1.66(m,1H)、1.66−1.48(m,4H);[M+H]=275.1
中間体2C. 1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1H−ピラゾール
Figure 2021506859
中間体2B(550mg、2.00ミリモル)、KOAc(589mg、6.00ミリモル)およびBPin(761mg、3.00ミリモル)の1,4−ジオキサン(10mL)中の撹拌混合物をArで5分間にわたって激しく泡立たせた。Pd(dppf)Cl−CHCl(163mg、0.20ミリモル)を添加し、該反応物にArをフラッシュさせ、次に100℃で16時間加熱した;LCMS分析は、16時間後に、該反応物が完了していることを示した。該反応混合物を室温に冷却し、CHCl(20mL)とHO(10mL)との間に分配させ;得られた混合物を激しく撹拌した。有機層を乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をさらに精製することなく次の工程にて用いた。
中間体2D. 2−ブロモ−4−メチルピリミジン−5−オール
Figure 2021506859
2−クロロ−4−メチルピリミジン−5−オール(500mg、3.46ミリモル)およびHBr(HOAc中30重量%;3mL)の混合物を110℃で一夜加熱し、その後でLCMSは反応の完了を示した。該反応混合物を室温に冷却し、ついで氷上に注ぎ、EtOAc(3x50mL)で抽出した。有機抽出液を合わせ、飽和水性NaCO、水およびブラインで洗浄し、次に乾燥(NaSO)させ、真空下で濃縮し、表記化合物(630mg、3.33ミリモル、収率96%)をオフホワイトの固体として得た。[M+H]=189.1
中間体2E. 4−メチル−2−(1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−1H−ピラゾール−4−イル)ピリミジン−5−オール
Figure 2021506859
ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(101mg、0.14ミリモル)、2C(552mg、1.71ミリモル)、2D(270mg、1.43ミリモル)、水性2M NaCO(3.6mL、7.14ミリモル)のMeCN(7mL)中混合物をマイクロ波反応器中にて100℃で1時間加熱し、次に室温に冷却し、飽和水性NaHCOで希釈し、EtOAc(3x50mL)で抽出した。有機抽出液を合わせ、ブラインで洗浄し、乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(80g SiO、ヘキサン中0%−90%EtOAcの連続勾配に付す)に供し、表記化合物(250mg、0.82ミリモル、収率58%)をベージュ色の固体として得た。H NMR(500MHz、CDCl) δ 8.85(d,J=1.42Hz,1H)、8.14(d,J=1.41Hz,1H)、5.15(m,2H)、4.98(m,1H)、4.69(m,1H)、4.13(s,3H)、3.82(ddd,J=11.33、7.90、3.08Hz,1H)、3.49(m,1H)、2.74(tt,J=11.5、3.67Hz,1H)、2.15(m,1H)、1.98−1.50(m,13H)、1.20(m,6H);[M+H]=305.1;H NMR(500MHz、DMSO−d) δ 8.17(s,1H)、7.86(s,1H)、5.26(d,J=11.9Hz,1H)、5.09(d,J=11.9Hz,1H)、4.77−4.69(m,1H)、3.87(s,3H)、3.85−3.77(m,2H)、2.37(s,3H)、1.73−1.39(m,6H)
中間体2F. イソプロピル (1S,3S)−3−((4−メチル−2−(1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−1H−ピラゾール−4−イル)ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
(E)−ジアゼン−1,2−ジイルビス(ピペリジン−1−イルメタノン)(435mg、1.73ミリモル)、トルエン(8mL)およびBuP(0.43mL、1.73ミリモル)の混合物を室温で30分間撹拌し、その後で中間体2E(210mg、0.69ミリモル)およびイソプロピル (1S,3R)−3−ヒドロキシシクロヘキサン−1−カルボキシレート(231mg、1.24ミリモル)を連続して添加した。該反応混合物を85℃で9時間加熱し、その後でLC/MSは所望の生成物の形成を示した。該反応物を室温に冷却し、CHClで希釈し;該混合物を濾過し、濾液を真空下で濃縮した。粗油性生成物をクロマトグラフィー(80g SiO;25分間に及ぶ0%〜90%EtOAc/ヘキサンの連続勾配に付し、20分間にわたって90%で保持する)に供し、表記化合物(190mg、0.40ミリモル、収率58%)を明黄色の油として得た。H NMR(500MHz、CDCl) δ 8.98(s,1H)、8.09(s,1H)、5.51(t,J=6.90Hz,1H)、5.43(s,1H)、4.98(m,1H)、4.80(d,J=6.88、2H)、4.07(s,3H)、2.72(tt,J=11.5、3.67Hz,1H)、2.15(m,1H)、1.98−1.50(m,7H)、1.20(m,6H);[M+H]=473.2
中間体2G. イソプロピル (1S,3S)−3−((2−(5−(ヒドロキシメチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体2F(463mg、0.98ミリモル)のMeOH(5mL)中溶液に、PPTS(0.932g、3.71ミリモル)を添加した。該反応混合物を60℃で2時間加熱し、次に室温に冷却し、水および飽和水性NaHCOで希釈した。該混合物をEtOAc(3x10mL)で抽出した。有機抽出液を合わせ、真空下で濃縮してクロマトグラフィー(40g SiO;12分間に及ぶヘキサン中0%〜100%EtOAcの連続勾配に付し、ついで100%EtOAcで10分間保持する)に供し、表記化合物(323mg、0.79ミリモル、収率81%)を白色の固体として得た。LCMS:[M+H]=389.3;H NMR(500MHz、DMSO−d) δ 8.43(s,1H)、7.88(s,1H)、5.48(t,J=5.7Hz,1H)、5.00(d,J=5.8Hz,2H)、4.90(p,J=6.3Hz,1H)、4.82(s,1H)、3.90(s,3H)、2.67(d,J=10.3Hz,1H)、2.42(s,3H)、2.04−1.44(m,8H)、1.18(d,J=6.2Hz、6H)
中間体2H. イソプロピル (1S,3S)−3−((2−(5−(ブロモメチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体2G(423mg、1.089ミリモル)の0℃でのDCM(15mL)中溶液に、PBr(0.15mL、1.63ミリモル)を添加した。該反応物を室温で一夜撹拌し、ついで0℃に冷却し、NaHCO飽和水溶液で中和し、pHをほぼ7とした。該混合物をDCM(20mL)と水(10mL)との間に分配させ、水層をDCM(3x10mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。残渣をクロマトグラフィー(24g SiO;12分間に及ぶヘキサン中0%〜100%EtOAcの連続勾配に付し)に供し、表記化合物(450mg、0.997ミリモル、収率92%)を白色の固体として得た。LCMS:[M+H]=451.2;H NMR(400MHz、CDCl) δ 8.26(s,1H)、8.11(s,1H)、5.24(s,2H)、5.05(hept,J=6.3Hz,1H)、4.74(dp,J=5.1、2.7Hz,1H)、3.97(s,3H)、2.78(tt,J=9.8、4.0Hz,1H)、2.52(s,3H)、2.16−1.56(m,8H)、1.27(dd,J=6.2、2.2Hz、6H)
中間体2I. イソプロピル (1S,3S)−3−((2−(5−(アジドメチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体2H(500mg、1.11ミリモル)のDMF(2mL)中溶液に、NaN(72mg、1.11ミリモル)を加え、該反応混合物を80℃で1時間撹拌し;この時点でLCMS分析は反応が完了していることを示した。該反応混合物を室温に冷却し、EtOAcと水(各10mL)との間に分配させ、得られた混合物を室温で15分間撹拌した。有機層を乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(24g SiO;12分間に及ぶヘキサン中0%〜100%EtOAcの連続勾配に付す)に供し、表記化合物(368mg、0.890ミリモル、収率80%)を無色の油として得た。LCMS:[M+H]=414.3;H NMR(500MHz、CDCl) δ 8.25(s,1H)、8.14(s,1H)、5.09−5.03(m,1H)、5.02(s,2H)、4.74(dp,J=5.2、2.7Hz,1H)、3.96(s,3H)、2.78(tq,J=8.0、4.1Hz,1H)、2.52(s,3H)、2.15−1.57(m,8H)、1.27(dd,J=6.3、2.5Hz、6H)
中間体2
中間体2I(338mg、0.817ミリモル)のTHF(6mL)およびHO(2.0mL)中溶液に、PhP(257mg、0.981ミリモル)を加え、該反応物を室温で一夜撹拌し、次にEtOAcおよび水(各10mL)に溶かした。得られた混合物を室温で15分間撹拌し、その後で有機層を分離した。水層をEtOAc(3x5mL)で抽出した。有機抽出液を合わせ、乾燥(NaSO)させ、真空下で濃縮させた。残りの粗生成物をクロマトグラフィー(12g SiO;100%EtOAcで10分間、ついで4分間に及ぶEtOAc中0%〜75%MeOHの連続勾配に付し、10分間保持する;流速=30mL/分)に供し、表記化合物(269mg、0.694ミリモル、収率85%)をベタベタした黄色の油として得た。LCMS:[M+H]=388.3;H NMR(500MHz、CDCN) δ 8.28(s,1H)、7.90(s,1H)、4.97(hept,J=6.2Hz,1H)、4.73(dp,J=5.4、2.8Hz,1H)、4.09(brs,2H)、3.88(s,3H)、2.75(tt,J=9.9、4.0Hz,1H)、2.44(s,3H)、2.11−1.53(m,8H)、1.22(d,J=6.3Hz、6H)
中間体3. イソプロピル (1S,3S)−3−((2−(5−ホルミル−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体3A. 1−メチル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1H−ピラゾール−5−カルバルデヒド
Figure 2021506859
4−ブロモ−1−メチル−1H−ピラゾール−5−カルバルデヒド(2.50g、13.2ミリモル)、ビス(ピナコラト)ジボロン(5.04g、19.8ミリモル)、KOAc(3.89g、39.7ミリモル)およびPdCl(dppf)(0.484g、0.661ミリモル)の1,4−ジオキサン(50mL)中混合物を脱気処理に付し、ついでN下の80℃で18時間加熱し、次に室温に冷却した。該反応混合物をEtOAcで希釈し、ついで濾過し、真空下で濃縮させた。残渣をクロマトグラフィー(80g SiO;20分間に及ぶヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、表記化合物(3.0g、12.7ミリモル、収率96%)を白色の固体として得た。H NMR(400MHz、CDCl) δ 10.27(s,1H)、7.78(s,1H)、4.19(s,3H)、1.34(s,12H);11B NMR(128MHz、CDCl) δ 29.2(brs,1B)
中間体3B. 2−クロロ−5−メトキシ−4−メチルピリミジン
Figure 2021506859
2,4−ジクロロ−5−メトキシピリミジン(5.70g、31.8ミリモル)、トリメチル−ボロキシン(5.34mL、38.2ミリモル)およびKPO(13.5g、63.7ミリモル)のTHF(50mL)中の脱気処理に付した混合物を密封し、60℃で16時間撹拌し、次に室温に冷却した。該反応混合物をEtOAcと水との間に分配させた。水相をEtOAc(2x)で抽出し;有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。該粗材料をクロマトグラフィー(220g SiO;25分間に及ぶヘキサン中0%〜30%EtOAcの連続勾配に付す)に供し、表記化合物(1.6g、10.28ミリモル、32.3%)を白色の固体として得た。H NMR(500MHz、CDCl) δ 8.05(s,1H)、3.92(s,3H)、2.45(s,3H)
3C. 2−クロロ−4−メチルピリミジン−5−オール
Figure 2021506859
中間体3B(1.60g、10.09ミリモル)のDCM(20mL)中の−78℃での溶液に、BBr(3.82mL、40.4ミリモル)を滴下して加えた。該反応混合物をゆっくりと室温までの加温に供し、室温で16時間撹拌し、次にNaHCO飽和水溶液(pHを約4に調整した)で注意してクエンチさせ、EtOAcと水との間に分配させた。水相をEtOAc(2x)で抽出し;有機層を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(40g SiO;15分間に及ぶヘキサン中0−100%EtOAcの連続勾配に付す)に供し、表記化合物(1.33g、9.20ミリモル、収率91%)を白色の固体として得た。H NMR(400MHz、DMSO−d) δ 10.63(s,1H)、8.11(s,1H)、2.34(s,3H)
中間体3D. イソプロピル (1S,3S)−3−((2−クロロ−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体3C(1.30g、9.0ミリモル)、イソプロピル (1S,3R)−3−ヒドロキシシクロヘキサン−1−カルボキシレート(3.01g、16.2ミリモル)およびBuP(4.44mL、18.0ミリモル)の1,4−ジオキサン(50mL)中溶液に、(E)−ジアゼン−1,2−ジイルビス(ピペリジン−1−イルメタノン)(4.54g、18.0ミリモル)を室温で添加した。 該反応混合物を75℃で3日間撹拌し、次に室温に冷却して濾過した。濾液を真空下で濃縮した。残渣をクロマトグラフィー(80g SiO;25分間に及ぶヘキサン中0%〜30%EtOAcの連続勾配に付す)に供し、表記化合物(1.72g、5.50ミリモル、収率61.1%)を透明な油として得た。H NMR(500MHz、CDCl) δ 8.14(s,1H)、5.04(spt,J=6.2Hz,1H)、4.71(brd,J=2.2Hz,1H)、2.75(tt,J=8.9、4.3Hz,1H)、2.49(s,3H)、2.10−1.84(m,4H)、1.78−1.59(m,4H)、1.26(dd,J=6.2、2.9Hz、6H)
中間体3
ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロ−パラジウム(II)(Pd(amphos)Cl);0.204g、0.288ミリモル)、中間体3A(1.630g、6.91ミリモル)、中間体3D(1.72g、5.50ミリモル)および水性2M NaCO(8.63mL、17.3ミリモル)のMeCN(50mL)中混合物を脱気処理に付し、密封した。該反応混合物をマイクロ波にて120℃で1.5時間加熱し、次に室温に冷却した。該反応混合物を飽和水性NaHCOで希釈し、EtOAc(3x)で抽出した。有機抽出液を合わせ、ブラインで洗浄し、乾燥(NaSO)させ、真空下で濃縮した。該粗生成物をクロマトグラフィー(80g SiO;25分間に及ぶヘキサン中0%−50%EtOAcの連続勾配に付す)に供し、表記化合物(1.0g、2.59ミリモル、収率45%)を油として得た。[M+H]=387.2;H NMR(400MHz、CDCl) δ 10.88(s,1H)、8.26(s,1H)、8.11(s,1H)、5.03(spt,J=6.2Hz,1H)、4.80−4.72(m,1H)、4.22(s,3H)、2.82−2.71(m,1H)、2.50(s,3H)、2.14−1.87(m,4H)、1.80−1.57(m,4H)、1.25(dd,J=6.3、1.9Hz、6H)
中間体4. イソプロピル (1S,3S)−3−((2−(5−(アミノメチル)−1−メチル−1H−ピラゾール−4−イル)−4−エチル−ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体4A. 2−クロロ−4−エチルピリミジン−5−オール
Figure 2021506859
2−クロロ−4−エチル−5−メトキシピリミジン(4.0g、23.2ミリモル)のN下の室温でのDCM(46mL)中溶液に、1M BBr/CHCl(46.3mL、46.3ミリモル)をゆっくりと添加した。該反応物を室温で2日間撹拌し、その後で氷を注意して添加し、そのpHを50%水性NaOHで約6に調整した。該混合物をEtOAc(3x)で抽出し;有機抽出液を合わせ、真空下で濃縮した。該粗生成物をクロマトグラフィー(120g SiO;ヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、2−クロロ−4−エチルピリミジン−5−オール(2.0g、10.0ミリモル、収率43%)を得た。LCMS:[M+H]=159.2
中間体4B. イソプロピル (1S,3S)−3−((2−クロロ−4−エチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体4A(1.32g、8.3ミリモル)、イソプロピル (1S,3R)−3−ヒドロキシ−シクロヘキサン−1−カルボキシレート(2.79g、15ミリモル)およびPhP(6.55g、25ミリモル)の室温でのTHF(20mL)中溶液に、DEAD(3.95mL、25ミリモル)をゆっくりと添加した。該反応物を50℃で2日間撹拌し、次に真空下で濃縮した。残渣をクロマトグラフィー(120g SiO、40分間にわたって50mL/分でヘキサン中0〜50%EtOAcの連続勾配に付し、ついで30分間にわたって100%EtOAcで保持する)に供し、表記化合物(0.83g、2.03ミリモル、収率24.4%);LCMS:[M+H]=327.2
中間体4C. イソプロピル (1S,3S)−3−((4−エチル−2−(1−メチル−5−(((テトラヒドロ−2H−ピラン−2−イル)オキシ)メチル)−1H−ピラゾール−4−イル)ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロPd(II)(0.18g、0.25ミリモル)、中間体2C(3.64g、5.1ミリモル)および中間体4B(0.83g、2.03ミリモル)の2M水性NaCO(3.81mL、7.62ミリモル)および1,4 ジオキサン(5mL)中混合物をマイクロ波反応器中にて120℃で1.5時間加熱し、次に室温に冷却した。該反応混合物を飽和水性NaHCOで希釈し、EtOAc(3x20mL)で抽出した。有機抽出液を合わせ、ブラインで洗浄し、乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(40g SiO;次に80g SiO;ヘキサン中0%−100%EtOAcの連続勾配に付す)に供し、表記化合物(1.37g、2.39ミリモル、収率94%)を暗色の油として得た。LCMS:[M+H]=487.3
中間体4D. イソプロピル (1S,3S)−3−((4−エチル−2−(5−(ヒドロキシメチル)−1−メチル−1H−ピラゾール−4−イル)ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体4C(1.37g、2.82ミリモル)およびPPTS(0.071g、0.282ミリモル)のMeOH(5mL)中混合物を60℃で一夜加熱し、次に室温に冷却し、真空下で濃縮させた。残渣をDCMと飽和水性NaHCOとの間に分配させ;有機層をNaSOで乾燥させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(40g SiO;ヘキサン中0%〜100%EtOAcの連続勾配に付す)に供し、表記化合物(0.868g、2.16ミリモル、収率77%)を得た。LCMS:[M+H]=403.3
中間体4E. イソプロピル (1S,3S)−3−((2−(5−(ブロモメチル)−1−メチル−1H−ピラゾール−4−イル)−4−エチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
PBr(610μl、3.35ミリモル)を中間体4D(540mg、1.34ミリモル)の0℃でのTHF(5mL)中溶液に添加した。該反応物を室温で一夜撹拌し、次に0℃に冷却し、飽和水性NaHCOで中和した。該混合物をEtOAc(100mL)と水(10mL)との間に分配させ、水層をEtOAc(3x10mL)で抽出した。有機層を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。残渣をクロマトグラフィー(40g SiO;20分間に及ぶヘキサン中0%〜100%EtOAcの連続勾配に付す)に供し、表記化合物(375mg、0.8ミリモル、収率60%)]を白色の固体として得た。LCMS:[M+H]=467.2
中間体4F. イソプロピル (1S,3S)−3−((2−(5−(アジドメチル)−1−メチル−1H−ピラゾール−4−イル)−4−エチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体4E(375mg、0.806ミリモル)およびNaN(79mg、1.21ミリモル)のDMF(5mL)中混合物を80℃で1時間撹拌し、次に室温に冷却し、EtOAcと水との間に分配させた。該混合物を室温で15分間撹拌した。有機層を乾燥(NaSO)させ、真空下で濃縮し、表記化合物(0.35g、0.737ミリモル、収率91%)を透明な油として得た。[M+H]=428.2
中間体4
中間体4F(0.25g、0.59ミリモル)のTHF(5mL)およびHO(1mL)中溶液に、PhP(0.169g、0.643ミリモル)を添加した。該反応物を室温で一夜撹拌し;LCMS分析は反応が完了していることを示した。該反応混合物をEtOAcと水との間に分配させ;得られた混合物を室温で撹拌した。15分後、有機層を分離し、乾燥(NaSO)させ、真空下で濃縮させた。残渣をクロマトグラフィー(24g SiO;20分間に及ぶヘキサン中0%〜100%EtOAcの連続勾配に、ついで20分間に及ぶCHCl中0%〜15%MeOHの連続勾配に付す)に供し、表記化合物(130mg、0.324ミリモル、収率55.4%)を白色の泡沫体として得た。C2131として、LCMS:[M+H]=402.3;H NMR(CDCl) δ:8.26(s,1H)、8.10(s,1H)、5.32(s,1H)、5.05(dt,J=12.6、6.2Hz,1H)、4.73(brs,1H)、4.21(s,2H)、3.97(s,3H)、2.89(q,J=7.4Hz,2H)、2.68−2.82(m,1H)、1.58−2.23(m,8H)、1.36(t,J=7.6Hz,3H)、1.27(dd,J=6.3、2.2Hz、6H)
中間体5. 3−(4−(((1S,3S)−3−(イソプロポキシカルボニル)シクロヘキシル)オキシ)フェニル)−1,5−ジメチル−1H−ピラゾール−4−カルボン酸
Figure 2021506859
中間体5A. メチル 1,5−ジメチル−1H−ピラゾール−4−カルボキシレート
Figure 2021506859
1,5−ジメチル−1H−ピラゾール−4−カルボン酸(1.0g、7.14ミリモル)の0℃でのDCM/MeOH(各7mL)中溶液に、ヘキサン中2M TMSCHN(4.28mL、8.56ミリモル)を添加した。該反応混合物を0℃で1時間撹拌し、、次に室温までの加温に供し、室温で一夜撹拌し、次に真空下で濃縮した。該粗生成物をクロマトグラフィー(80g SiO;20分間に及ぶヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、表記化合物(900mg、5.84ミリモル、収率82%)を得た。LCMS:[M+H]=155.2
中間体5B. メチル 3−ブロモ−1,5−ジメチル−1H−ピラゾール−4−カルボキシレート
Figure 2021506859
中間体5A(1.10g、7.14ミリモル)のMeCN(14.3mL)中溶液に、HOAc(4.1mL、71.4ミリモル)およびBr(0.44mL、8.56ミリモル)を添加した。該反応混合物を室温で16時間撹拌し、次に飽和水性チオ硫酸ナトリウム(20mL)で洗浄し、EtOAc(3x20mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮した。該粗生成物をクロマトグラフィー(80g SiO;20分間に及ぶヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、表記化合物(400mg、25%)を得た。H NMR(400MHz、CDCl) δ 3.79−3.71(m,3H)、3.68−3.60(m,3H)、2.45−2.33(m,3H)
中間体5C. イソプロピル (1S,3S)−3−(4−ブロモフェノキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
4−ブロモフェノール(500mg、2.89ミリモル)およびイソプロピル (1S,3R)−3−ヒドロキシシクロヘキサン−1−カルボキシレート(538mg、2.89ミリモル)のトルエン(5.8mL)中溶液に、BuP(2.20mL、8.67ミリモル)および(E)−ジアゼン−1,2−ジイルビス(ピペリジン−1−イルメタノン)(2.20g、8.67ミリモル)を連続して少しずつ添加した。該反応混合物を50℃で2時間加熱し、次に室温に冷却した。ヘキサン(6mL)を該混合物に添加し;白色の固体が沈殿し、それを濾去した。濾液を真空下で濃縮した。該粗生成物をクロマトグラフィー(80g SiO;20分間に及ぶヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、表記化合物(400mg、1.17ミリモル、収率40.6%);H NMR(400MHz、CDCl) δ 7.28−7.20(m,2H)、6.75−6.64(m,2H)、4.95−4.82(m,1H)、4.52−4.38(m,1H)、2.73−2.58(m,1H)、2.16−2.01(m,2H)、1.98−1.67(m,2H)、1.64−1.49(m,4H)、1.19−1.04(m,6H)
中間体5D. イソプロピル (1S,3S)−3−(4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェノキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体5C(1.3g、3.8ミリモル)、ビス−ピナコラトジボロン(1.5g、5.8ミリモル)、KOAc(1.15g、12ミリモル)の1,4−ジオキサン(8mL)中混合物に、Xphos Pd G2プレ触媒(76mg、0.096ミリモル)を室温で添加した。該混合物を80℃で16時間加熱し、次に室温に冷却し、NaHCO飽和水溶液(20mL)で洗浄し、EtOAc(3x20mL)で抽出した。有機抽出液を合わせ、乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(80g SiO;20分間に及ぶヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、表記化合物(1.00g、67%)を得た。H NMR(400MHz、CDCl) δ 7.81−7.71(m,2H)、7.00−6.88(m,2H)、5.09−4.96(m,1H)、4.74−4.62(m,1H)、2.89−2.73(m,1H)、2.11−2.04(m,1H)、1.97−1.86(m,2H)、1.80−1.70(m,1H)、1.67−1.59(m,2H)、1.40−1.34(m,12H)、1.32−1.28(m,2H)、1.27−1.21(m,6H)
中間体5E. メチル 3−(4−(((1S,3S)−3−(イソプロポキシカルボニル)シクロヘキシル)オキシ)フェニル)−1,5−ジメチル−1H−ピラゾール−4−カルボキシレート
Figure 2021506859
中間体5D(32mg、0.082ミリモル)、中間体5B(19mg、0.082ミリモル)、およびビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(7mg、8マイクロモル)のMeCN(1mL)および水(0.05mL)中混合物を、マイクロ波反応器中にて100℃で1時間撹拌させ、次に室温に冷却した。該反応混合物を水(25mL)で希釈し、EtOAc(2x50mL)で抽出し;有機層を合わせ、水およびブライン(各50mL)で洗浄し、乾燥(NaSO)させ、真空下で濃縮した。該粗生成物をクロマトグラフィー(12g SiO;10分間に及ぶヘキサン中0%〜50%EtOAcの連続勾配に付す)に供し、表記化合物(20mg、0.048ミリモル、収率59.2%)を透明な油として得た。H NMR(400MHz、CDCl) δ 7.61−7.46(m,2H)、7.08−6.85(m,2H)、5.14−4.94(m,1H)、4.73−4.58(m,1H)、3.90−3.82(m,3H)、3.81−3.70(m,3H)、2.88−2.74(m,1H)、2.62−2.48(m,3H)、2.17−2.03(m,1H)、1.97−1.87(m,3H)、1.84−1.72(m,1H)、1.65−1.53(m,3H)、1.33−1.20(m,6H)
中間体5
中間体1E(60mg、0.145ミリモル)およびLiI(97mg、0.724ミリモル)のDMF(0.5mL)中混合物をマイクロ波反応器中にて180℃で30分間加熱し、次に室温に冷却し、真空下で濃縮させた。残渣を分取HPLC(C18 30x100mmカラム;220nmで検出;流速=40mL/分;10分間に及ぶ0%B〜100%Bの連続勾配に付し、100%Bで2分間保持する、ここでA=90:10:0.1 HO:MeCN:TFA、およびB=90:10:0.1 MeCN:HO:TFA)を介して精製し、表記化合物(20mg、0.050ミリモル、収率34.5%)を得た。LCMS:[M+H]=401.2
実施例1. トランス−3−((6−(1−メチル−5−(((4−フェニルピリミジン−2−イル)アミノ)メチル)−1H−ピラゾール−4−イル)ピリジン−3−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
4−フェニルピリミジン−2−アミン(20mg、0.113ミリモル)の−78℃でのTHF(0.5mL)中溶液に、n−BuLi(0.071mL、ヘキサン中1.5M溶液、0.113ミリモル)を添加した。該混合物を室温までの加温に供し、室温で5分間撹拌させた。中間体1(20mg、0.046ミリモル)のTHF(0.5mL)中溶液を速やかに加え、該混合物を室温で48時間撹拌した。MeOH(0.5mL)およびLiOH・HO(64mg、1.52ミリモル)/水(1mL)を反応混合物に添加し、それを室温で18時間撹拌した。揮発物を真空下で除去し、残渣をHO(1mL)に溶かした。水性混合物を1N水性HClを用いてpHを約5に調整し、EtOAc(3x2mL)で抽出した。有機抽出液を合わせ、ブライン(2mL)で洗浄し、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC/MS(カラム:エックスブリッジ(XBridge)C18、19x200mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:23分間にわたって8−43%Bとし、次に100%Bで5分間保持する;流速:20mL/分)に付して精製し、所望の生成物を得た。この材料をさらに分取LC/MS:カラム(エックスブリッジ・シールド(XBridge Shield)RP18、19x200mm、5−μm粒子;移動相A:5:95 MeCN:HO+10mM NHOAc;移動相B:95:5 MeCN:HO+10mM NHOAc;勾配:25分間にわたって15−55%Bとし、次に100%Bで5分間保持する;流速:20mL/分)に付してさらに精製した。所望の生成物を含有するフラクションを合わせ、遠心分離による蒸発を介して乾燥させ、表記化合物(1mg;収率2%)を得た。LCMS:[M+H]=485.2;H NMR(500MHz、DMSO−d) δ 8.37(s,2H)、8.03(s,2H)、7.85(s,1H)、7.66(d,J=8.7Hz,1H)、7.53−7.41(m,4H),7.23−7.15(m,1H)、4.99(brs,2H)、4.74(s,1H)、3.96(s,3H)、2.72−2.64(m,1H)、2.03−1.48(m,8H);hLPA IC50=122nM
実施例2. (1S,3S)−3−((2−(5−(((4−イソプロポキシピリミジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
中間体2(5mg、0.01ミリモル)の室温でのn−BuOH(0.7mL)中溶液に、2−クロロ−4−イソプロポキシピリミジン(4mg、0.02ミリモル)およびiPrNEt(9μL、0.05ミリモル)を添加した。該反応物を180℃で80分間撹拌し、次に室温に冷却した。THF(0.8mL)/MeOH(0.4mL)/HO(0.4mL)を該反応混合物に、つづいてLiOH・HO(3mg、0.07ミリモル)を室温で添加した。該反応物を室温で一夜撹拌し、次に真空下で濃縮し、その残渣をHO(5mL)で希釈した。該混合物のpHを水性1N HClで約5の酸性に調整し、それをEtOAc(3x5mL)で抽出した。有機抽出液を合わせ、ブライン(2mL)で洗浄し、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC/MS:カラム:ウォーターズ・エックスブリッジ(Waters XBridge)C18、19x200mm、5−μm粒子;ガードカラム:ウォーターズ・エックスブリッジC18、19x10mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:20分間にわたって15−55%Bとし、ついで100%Bで4分間保持する;流速:20mL/分に付して精製した。所望の生成物を含有するフラクションを合わせ、遠心分離による蒸発を介して濃縮し、表記化合物(6.5mg、8.7マイクロモル、収率67%)を得た。LCMS:[M+H]=482.3;H NMR(500MHz、DMSO−d) δ 8.42(s,1H)、8.06(brs,1H)、7.93(s,1H)、6.23(brd,J=6.1Hz,1H)、5.26−5.16(m,1H)、5.06(brs,2H)、4.84−4.77(m,1H)、3.92(s,3H)、2.68−2.60(m,1H)、2.42(s,3H)、2.06−1.44(m,8H)、1.22(d,J=6.1Hz、6H);hLPA IC50=29nM
実施例3. (1S,3S)−3−((2−(5−(((4−エトキシピリミジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチル−ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
中間体2(10mg、0.026ミリモル)のn−BuOH(1.2mL)中溶液に、2−クロロ−4−エトキシピリミジン(5mg、0.031ミリモル)およびiPrNEt(9μl、0.052ミリモル)を添加した。該混合物をマイクロ波反応器中にて180℃で3時間加熱し、次に室温に冷却した。該反応混合物に、THF(0.5mL)/HO(0.5mL)/MeOH(0.5mL)およびLiOH・HO(6mg、0.13ミリモル)を添加し、該混合物を室温で一夜撹拌した。揮発物を真空下で除去し、残渣をHO(1mL)で希釈し、ついで該混合物を1N水性HClを用いてpHを約5に調整し、EtOAc(3x2mL)で抽出した。有機抽出液を合わせ、ブライン(2mL)で洗浄し、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC/MS:カラム(エックスブリッジC18、19x200mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:20分間にわたって10−55%Bとし、ついで100%Bで4分間保持する;流速:20mL/分)に付して精製した。所望の生成物を含有するフラクションを合わせ、遠心分離による蒸発を介して乾燥させ、表記化合物(ビスTFA塩;8.7mg、収率47%;LC−MSで純度96%)を得た。LCMS:[M+H]=454.2;H NMR(500MHz、DMSO−d) δ 8.46(s,1H)、8.07(d,J=6.0Hz,1H)、7.91(s,1H)、6.13(dd,J=5.9、2.3Hz,1H)、5.03(brs,2H)、4.83(s,1H)、4.22(q,J=7.1Hz,2H)、3.95(s,3H)、2.67(t,J=8.9Hz,1H)、2.44(s,3H)、2.09−1.48(m,8H)、1.24(t,J=7.2Hz,3H);hLPA IC50=22nM
以下の表1に列挙される実施例は、実施例1および2の製造について記載される操作に従って合成された。
表1
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
実施例18. (1S,3S)−3−((2−(5−((4−イソプロポキシピリミジン−2−イル)アミノ)−1−メチル−1H−ピラゾール−4−イル)−4−メチル−ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
18A. イソプロピル (1S,3S)−3−((2−ブロモ−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
(E)−ジアゼン−1,2−ジイルビス(ピペリジン−1−イルメタノン(3.47g、13.8ミリモル)、およびBuP(3.44mL、13.8ミリモル)のトルエン(30mL)中混合物を、圧力バイアルにて室温で30分間撹拌し、その後で2−ブロモ−4−メチルピリミジン−5−オール(1.3g、6.88ミリモル)およびイソプロピル (1S,3R)−3−ヒドロキシシクロヘキサン−1−カルボキシレート(2.31g、12.4ミリモル)を連続して添加した。該反応混合物を85℃で9時間加熱し、次に室温に冷却した。該混合物をDCM(10mL)で希釈し、濾過し、真空下で濃縮させた。粗油性生成物をクロマトグラフィー(120g SiO;25分間に及ぶ0%〜90%のEtOAc:ヘキサンの連続勾配に付し、20分間にわたって90%で保持する)に供し、表記化合物(1.80g、5.04ミリモル、収率73.3%)を明黄色の油として得た。H NMR(500MHz、DMSO−d) δ 8.32(d,J=3.7Hz,1H)、4.90(p,J=6.4Hz,1H)、4.80(s,1H)、2.70−2.59(m,1H)、2.38(s,3H)、2.01−1.46(m,8H)、1.18(d,J=6.3Hz、6H);[M+H]=357
18B. tert−ブチル 1−メチル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1H−ピラゾール−5−カルボキシレート
Figure 2021506859
tert−ブチル 4−ブロモ−1−メチル−1H−ピラゾール−5−カルボキシレート(1.5g、5.74ミリモル)、KOAc(1.69g、17.2ミリモル)およびBpin(2.19g、8.62ミリモル)の1,4−ジオキサン(20mL)中の撹拌した混合物を、Arで5分間にわたって激しく泡立たせた。Pd(dppf)Cl−CHCl(0.47g、0.57ミリモル)を加え、該反応フラスコにArをフラッシュさせ、次に100℃で16時間加熱した。LCMS分析は、16時間後、該反応が完了していることを示した。該反応混合物を室温に冷却し、ついでDCMおよびHO(各20mL)を、得られた混合物を激しく撹拌した。有機層を分離し、乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をさらに精製することなく次の工程にて用いた。[M+H]=309.2
18C. tert−ブチル 4−(5−(((1S,3S)−3−(イソプロポキシカルボニル)シクロヘキシル)オキシ)−4−メチルピリミジン−2−イル)−1−メチル−1H−ピラゾール−5−カルボキシレート
Figure 2021506859
ビス(ジ−tert−ブチル(4−ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(0.169g、0.239ミリモル)、18B(0.884g、2.87ミリモル)および18A(0.854g、2.392ミリモル)の水性2M NaCO(5.98mL、12.0ミリモル)およびMeCN(12mL)中混合物を、マイクロ波反応器中にて100℃で1時間加熱し、次に室温に冷却した。該混合物をNaHCO飽和水溶液で希釈し、EtOAc(3x10mL)で抽出した。有機抽出液を合わせ、ブラインで洗浄し、乾燥(NaSO)させ、真空下で濃縮させた。該粗生成物をクロマトグラフィー(80g SiO、0%−90%EtOAc:ヘキサンの連続勾配に付す)に供し、表記化合物(1.08g、2.36ミリモル、収率98%)をベージュ色の固体として得た。[M+H]=459.3
18D. 4−(5−(((1S,3S)−3−(イソプロポキシカルボニル)シクロヘキシル)オキシ)−4−メチルピリミジン−2−イル)−1−メチル−1H−ピラゾール−5−カルボン酸
Figure 2021506859
18C(1.08g、2.355ミリモル)のDCM(20mL)中溶液に、TFA(9.07mL、118ミリモル)を滴下して加えた。該反応物を室温で20時間撹拌し、次に真空下で濃縮して粗表記化合物(1.20g、2.89ミリモル、収率>100%)を着色した油として得、それをさらに精製することなく次の工程にて用いた。H NMR(500MHz、DMSO−d) δ 8.62(s,1H)、8.14(s,1H)、4.94−4.87(m,2H)、4.12(s,3H)、2.72−2.62(m,1H)、2.49(s,3H)、2.08−1.44(m,8H)、1.19(dd,J=6.4、1.9Hz、6H);[M+H]=403.2
18E. イソプロピル (1S,3S)−3−((2−(5−((tert−ブトキシカルボニル)アミノ)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
粗18D(600mg、1.49ミリモル)、(PhO)PON(0.58mL、2.68ミリモル)、tert−ブタノール(331mg、2.23ミリモル)、EtN(0.83mL、5.95ミリモル)のトルエン(3mL)中混合物を80℃で2時間撹拌し、次に室温に冷却し、真空下で濃縮させた。該粗生成物をクロマトグラフィー(80g SiO;25分間に及ぶ0%〜100%EtOAc:ヘキサンの連続勾配に付す)に供し、表記化合物(248mg、0.524ミリモル、収率35.2%)を無色の油として得た。H NMR(500MHz、CDCl)(約1:1の回転異性体) δ 8.71(s,1H)、8.23(s,0.5H)、8.04(s,0.5H)、5.05(p,J=6.3Hz,1H)、4.76(s,0.5H)、4.72(s,0.5H)、3.89(s,3H)、2.82−2.72(m,1H)、2.51(brs,3H)、2.15−1.47(m,8H)、1.27(brs,15H);[M+H]=474.3
18F. イソプロピル (1S,3S)−3−((2−(5−アミノ−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
18E(238mg、0.503ミリモル)のDCM(5mL)中溶液に、TFA(3.87mL、50.3ミリモル)を室温で滴下して加えた。該混合物を室温で20時間撹拌し、次に真空下で濃縮し、トルエン(3x5mL)と共沸させ、真空下で24時間乾燥させ、表記化合物(TFA塩;220mg、0.561ミリモル、収率92%)を淡色の油として得た。H NMR(500MHz、DMSO−d) δ 8.32(s,1H)、7.64(s,1H)、6.31(s,2H)、4.89(p,J=6.2Hz,1H)、4.71(s,1H)、2.70−2.63(m,1H)、2.39(s,3H)、2.00−1.42(m,8H)、1.18(d,J=6.2Hz、6H)(ピラゾール上の−CH基のプロトンは水抑制のために観察されなかった);[M+H]=374.3
実施例18
(9,9−ジメチル−9H−キサンテン−4,5−ジイル)ビス(ジフェニルホスファン)(5mg、8マイクロモル)、18F(15mg、0.04ミリモル)、2−クロロ−4−イソプロポキシピリミジン(8mg、0.05ミリモル)、BINAP(5mg、8マイクロモル)、Pd(dba)(2mg、4マイクロモル)およびCsCO(20mg、0.06ミリモル)のトルエン(1mL)中混合物を、密封した試験管中、110℃で一夜加熱し、次に室温に冷却し、真空下で濃縮させた。残渣をTHF(0.5mL)、MeOH(0.5mL)、およびHO(0.5mL)に溶かした。LiOH・HO(17mg、0.4ミリモル)を加え、該反応物を室温で14時間撹拌し、次に真空下で濃縮した。残渣をEtOAc(2mL)/HO(1mL)に溶かし、該溶液を1N水性HClでpHを約5に調整した。該混合物をEtOAc(3x2mL)で抽出し;有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。残渣をDMFに溶かし、分取LC/MS(カラム:エックスブリッジC18、200mm x19mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:18%Bで10分間保持し、20分間にわたって18−58%Bとし、ついで100%Bで4分間保持する;流速:20mL/分;カラム温度:25℃)を介して精製した。所望の生成物を含有するフラクションを合わせ、遠心分離による蒸発を介して乾燥させ、表記化合物(ビスTFA塩、1mg、収率3%;LC−MSで純度84%)を得た。LCMS:[M+H]=468.4;H NMR(500MHz、DMSO−d) δ 8.31(s,1H)、8.08(d,J=5.7Hz,1H)、7.92(s,1H)、6.18(d,J=5.7Hz,1H)、5.10−4.98(m,1H)、4.75(s,1H)、3.72(s,3H)、2.68−2.59(m,1H)、2.27(s,3H)、2.01−1.47(m,8H)、1.21−1.15(m,6H);hLPA IC50=1014nM
以下の表2に列挙される実施例は、実施例18の製造について記載される操作によって合成された。
表2
Figure 2021506859
実施例21. (1S,3S)−3−((2−(5−(((4−エトキシピリミジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)−4−エチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
中間体4(15mg、0.037ミリモル)のn−BuOH(0.7mL)中溶液に、2−クロロ−4−エトキシピリミジン(7mg、0.045ミリモル)およびiPrNEt(65μL、0.374ミリモル)を室温で添加した。該混合物を180℃で3時間撹拌し、次に室温に冷却し、真空下で濃縮させた。残渣をTHF(0.5mL)およびMeOH(0.1mL)に溶かし、水性4N LiOH(0.093mL、0.374ミリモル)を添加し、該反応物を室温で一夜撹拌した。該反応混合物を濾過し、分取HPLC(フェノメネックス(PHENOMENEX)(登録商標)、アキシア 5μ C18 30x100mmカラム;220nmで検出;流速=40mL/分;10分間に及ぶ0%B〜100%Bの連続勾配に付し、100%Bで2分間保持する、ここでA=90:10:0.1 HO:MeOH:TFA、およびB=90:10:0.1 MeOH:HO:TFA)に付して精製し、表記化合物(8.7mg、0.017ミリモル、収率46.6%)を得た。LCMS:[M+H]=482.4;H NMR(500MHz、DMSO−d) δ:8.43(s,1H)、8.07(brd,J=6.1Hz,1H)、7.94(s,1H)、7.03−7.39(m,1H)、6.30(brd,J=6.1Hz,1H)、4.92−5.31(m,2H)、4.84(brs,1H)、4.24(brd,J=6.4Hz,2H)、3.92(s,1H)、3.58−3.80(m,2H)、2.78(q,J=7.6Hz,2H)、2.60(brt,J=10.2Hz,1H)、1.40−2.17(m,8H)、1.22(m,6H);hLPA IC50=5nM
以下の表3に列挙される実施例は、実施例21の製造について記載される操作によって合成された。
表3
Figure 2021506859
Figure 2021506859
Figure 2021506859
実施例28:(1S,3S)−3−((2−(5−(((4−エトキシピリミジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
イソプロピル (1S,3S)−3−((2−(5−ホルミル−1−メチル−1H−ピラゾール−4−イル)ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート(2−クロロ−5−メトキシピリミジンより出発することを除いて、中間体3と同じ方法にて製造される、15mg、0.040ミリモル)、4−エトキシピリミジン−2−アミン(8.4mg、0.060ミリモル)のMeOH(0.5mL)中溶液に、HOAc(12μL、0.20ミリモル)を添加した。該反応混合物を65℃で2時間加熱し、次に室温に冷却した。NaBHCN(5.1mg、0.081ミリモル)を加え、該反応物を室温で2時間撹拌した。飽和水性NaHCO(1mL)を添加し、水層をEtOAc(3x2mL)で抽出した。有機層を合わせ、ブライン(3mL)で洗浄し、乾燥(MgSO)させ、真空下で濃縮して粗アミノ−ピリミジン還元アミノ化生成物を得た。該粗生成物をTHFおよび水(各0.5mL)に溶かした。LiOH・HO(8.5mg、0.2ミリモル)を加え;該反応物を室温で16時間撹拌し、次に真空下で濃縮した。残渣をEtOAc(2mL)/水(1mL)に溶かし、pHを1N水性HClで約5に調整した。該混合物をEtOAc(3x2mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC/MS(カラム:エックスブリッジC18、200mm x19mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:8%Bで0分間保持し、20分間にわたって8−48%Bとし、ついで100%Bで4分間保持する;流速:20mL/分;カラム温度:25℃;フラクションの収集はMSおよびUVシグナルによりトリガーに供された)に付して精製し、表記化合物(11.9mg、収率43%;LCMS純度=100%)を得た。LCMS:[M+H]=454.4;H NMR(500MHz、DMSO−d) δ 8.57(s,2H)、8.28(brs,1H)、8.05(d,J=6.0Hz,1H)、7.93(s,1H)、6.16(d,J=6.1Hz,1H)、5.03(s,2H)、4.82(s,1H)、4.15(brs,2H)、3.94(s,3H)、2.70−2.62(m,1H)、2.02−1.46(m,8H)、1.20(t,J=7.2Hz,3H);hLPA IC50=23nM
実施例29:((1S,3S)−3−((2−(5−(((4−エトキシピリミジン−2−イル)(メチル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)ピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
実施例28(4.6mg、10マイクロモル)の0℃でのTHF(0.5mL)中溶液に、NaH(4mg、鉱油中60%分散液、0.1ミリモル)を添加した。該混合物を10分間撹拌し、次にMeI(7μL;0.11ミリモル)を添加した。該反応混合物を室温で一夜撹拌し、次にLiOH・HO(2.1mg、0.050ミリモル)の水(0.5mL)中溶液を加えることでクエンチさせた。該反応物を室温で2時間撹拌し、次に真空下で濃縮した。残渣をEtOAc(2mL)/水(1mL)に溶かし、1N水性HClでpHを約5に調整した。該混合物をEtOAc(3x2mL)で抽出した。有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC/MS(カラム:エックスブリッジC18、200mm x19mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:9%Bで0分間保持し、20分間にわたって9−49%Bとし、次に100%Bで4分間保持する;流速:20mL/分;カラム温度:25℃;フラクションの収集はUVシグナルによってトリガーに供された)に付して精製し、表記化合物(2mg、収率29%;LCMSで純度=100%)を得た。LCMS:[M+H]=468.1;H NMR(500MHz、DMSO−d) δ 8.56(s,2H)、8.14(d,J=5.6Hz,1H)、7.99(s,1H)、6.10(d,J=5.6Hz,1H)、5.54(s,2H)、4.82(s,1H)、4.30(q,J=7.0Hz,2H)、3.74(s,3H)、2.91(s,3H)、2.71−2.61(m,1H)、2.02−1.46(m,8H)、1.28(t,J=7.1Hz,3H);hLPA IC50=151nM
実施例30:トランス−3−((6−(5−(([1,1’−ビフェニル]−3−イルオキシ)メチル)−1−メチル−1H−ピラゾール−4−イル)ピリジン−3−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
中間体1(5mg、0.011ミリモル)、および[1,1’−ビフェニル]−3−オール(3.9mg、0.023ミリモル)の混合物をトルエン(3x0.5mL)と共沸させ、次にCHCl(57μL)に溶かし、AgCO(9.5mg、0.034ミリモル)を添加した。該反応混合物を室温で72時間撹拌した。LCMSは[M+H]=526.2の形成を示した。該混合物をDCM(1mL)で希釈し、シリンジフィルターを通して濾過し、銀塩を除去し;濾液を真空下で濃縮した。上記の粗ビフェニルエーテル/THF(0.5mL)に、MeOH(0.5mL)およびLiOH・HO(9mg、0.22ミリモル)/水(0.5mL)を添加した。該反応混合物を室温で14時間撹拌し、ついで有機揮発物を真空下で除去した。1N水性HClを用いてpHを約5に調整した。該混合物をEtOAc(5x5mL)で抽出し;有機抽出液を合わせ、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC(カラム:エックスブリッジC18、19x200mm、5−μm粒子;移動相A:5:95 MeCN:HO+10mM水性NHOAc;移動相B:95:5 MeCN:HO+10mM水性NHOAc;勾配:25分間にわたって20−60%Bとし、次に100%Bで5分間保持する;流速:20mL/分)に付して精製し、表記化合物(0.3mg、収率5.5%;LCMS純度=98%)を得た。LCMS:[M+H]=483.9;H NMR(500MHz、DMSO−d) δ 8.33(d,J=2.8Hz,1H)、7.93(s,1H)、7.65(d,J=8.9Hz,1H)、7.50(dd,J=8.9、2.9Hz,1H)、7.46(d,J=7.6Hz,2H)、7.35(dq,J=14.3、7.4Hz、4H)、7.30(s,1H)、7.23(d,J=7.6Hz,1H)、7.03(d,J=8.3Hz,1H)、5.79(s,2H)、4.72(s,1H)、3.93(s,3H)、1.99−1.42(m,8H);(酸に対してαのプロトンは水抑制のために観察されない)。hLPA IC50=104nM
以下の表に列挙される化合物を、特定の化合物の製造について前記される操作を用いて製造した。
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
Figure 2021506859
実施例43. (1S,3S)−3−((2−(5−(((4−イソプロピル−1,3,5−トリアジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボン酸
Figure 2021506859
43A. イソプロピル (1S,3S)−3−((2−(5−(((4−クロロ−6−イソプロピル−1,3,5−トリアジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
中間体2(15mg、0.04ミリモル)、2,4−ジクロロ−6−イソプロピル−1,3,5−トリアジン(11mg、0.06ミリモル)およびiPrNEt(0.03mL、0.16ミリモル)のTHF(0.7mL)中混合物を室温で120分間撹拌し、ついで次の工程に用いた。LCMS:[M+H]=543.3
43B. イソプロピル (1S,3S)−3−((2−(5−(((4−イソプロピル−1,3,5−トリアジン−2−イル)アミノ)メチル)−1−メチル−1H−ピラゾール−4−イル)−4−メチルピリミジン−5−イル)オキシ)シクロヘキサン−1−カルボキシレート
Figure 2021506859
10%Pd/C(11mg、0.01ミリモル)を43A(21mg、0.04ミリモル)のTHF(5mL)中溶液にAr下の室温で添加した。ArをHと置き換え、該反応物を1atmのH下で一夜撹拌し、その後で触媒を濾去した。濾液を真空下で濃縮した。残りの粗生成物をさらに精製することなく次の工程に用いた。LCMS:[M+H]=509.3.
実施例43
43B(20mg、0.04ミリモル)のTHF(0.8mL)/MeOH(0.4mL)/HO(0.4mL)中溶液に、LiOH・HO(8mg、0.20ミリモル)を室温で添加した。該混合物を室温で一夜撹拌し、次に真空下で濃縮した。残渣をHO(5mL)で希釈し、そのpHを1N水性HClを用いて約5に調整し、EtOAc(3x5mL)で抽出した。有機層を合わせ、ブライン(2mL)で洗浄し、乾燥(MgSO)させ、真空下で濃縮させた。該粗生成物を分取LC/MS(カラム:エックスブリッジC18、200mm x19mm、5−μm粒子;移動相A:5:95 MeCN:HO+0.1%TFA;移動相B:95:5 MeCN:HO+0.1%TFA;勾配:13%Bで0分間保持し、20分間にわたって13−53%Bとし、ついで100%Bで4分間保持する;流速:20mL/分;カラム温度:25℃;フラクションの収集はMSおよびUVシグナルによってトリガーに供された)に付して精製し、表記化合物(9.1mg、収率39%)を無色の油として得た。LCMS:[M+H]=467.4;H NMR(500MHz、DMSO−d) δ 8.61−8.36(m,2H)、7.90(s,1H)、5.11−4.99(m,2H)、4.79(brs,1H)、3.93(s,3H)、2.79−2.61(m,2H)、2.40(s,3H)、2.05−1.43(m,8H)、1.22−1.03(m,6H);hLPA IC50=28nM
本発明の別の特徴が、発明を説明するために記載され、それを限定しないものとする、例示としての実施態様の上記した記載を読む過程で明らかとなるであろう。本発明は、その精神または本質的属性から逸脱することなく、他の特定の形態にて具現化され得る。本発明は本明細書に記載の発明の好ましい態様のあらゆる組み合わせを包含する。本発明のありとあらゆる実施態様は、他のいずれの実施態様とも一緒になってさらなる実施態様を記載し得ることが理解される。実施態様の各々個々の構成要素がそれ自体独立した実施態様であることも理解される。その上、実施態様のいずれの構成要素もいずれかの実施態様からのありとあらゆる他の構成要素と合わさってさらなる実施態様を記載するものとする。

Claims (31)

  1. 式(I):
    Figure 2021506859
    [式中
    、X、X、およびXは、各々独立して、CRまたはNである;ただし、X、X、X、またはXのうち2つ以上はNでなく;
    はNまたはNR5bであり;
    およびQのうち一方はCR5aであって、他方はNまたはNR5bであり;
    破線の円は芳香環を形成する任意の結合を表し;
    Lは、共有結合、または0〜4個のRで置換されるC1−4アルキレンであり;
    ZはNRまたはOであり;
    Y環は、フェニル、またはアジン部分であり;
    は(−CHであり;
    aは0または1の整数であり;
    は、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、またはハロアルコキシであり;
    nは0、1、または2の整数であり;
    は、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、=S、−NR、=NH、=N−OH、=NR、=N−OR、−NO、−S(O)、−S(O)NHR、−S(O)NR、−S(O)OR、−OS(O)、−OS(O)OR、−P(O)(OR)(OR)、−C(O)R、−C(NR)R、−C(O)OR、−C(O)NR、−C(NR)NR、−OC(O)R、−NRC(O)R、−OC(O)OR、−NRC(O)OR、−OC(O)NR、−NRC(O)NR、−NRC(NR)R、−NRC(NR)NR、C1−6アルキル、C1−6重水素化アルキル、C1−6ヘテロアルキル、6〜10員のアリール、アリールアルキル、5〜10員のヘテロアリール、ヘテロアリールアルキル、3〜8員のカルボシクリル、カルボシクリルアルキル、4〜8員の ヘテロシクリル、またはヘテロシクリルアルキルであり;ここで該アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、ヘテロシクリル、およびRは、それら自体で、またはもう一つ別の基の一部として、各々独立して、0〜5個のRで置換され;
    は、C1−6アルキル、C1−6重水素化アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、カルボシクリルアルキル、ヘテロシクリル、およびヘテロシクリルアルキルからなる群より選択され;
    は、各々独立して、水素またはRであり;
    は、各々独立して、Rであるか;あるいはまた、2個のRが、それらの結合する窒素原子と一緒になって、4〜7員のヘテロシクリルを形成し;
    は、各々独立して、R、アルコキシ、ハロアルコキシ、アルキルアミノ、シクロアルキルアミノ、ヘテロシクリルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、シクロアルコキシ、ヘテロシクリルオキシ、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アリールアミノ、アラルキルアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシ、アルキルチオ、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、=S、−NR、=NH、=N−OH、=NR、=N−OR、−NO、−S(O)、−S(O)NHR、−S(O)NR、−S(O)OR、−OS(O)、−OS(O)OR、−P(O)(OR)(OR)、−C(O)R、−C(NR)R、−C(O)OR、−C(O)NR、−C(NR)NR、−OC(O)R、−NRC(O)R、−OC(O)OR、−NRC(O)OR、−NRC(O)NR、−NRC(NR)R、および−NRC(NR)NRからなる群より選択されるか;あるいはまた、1または2個のRが、アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル上で、Rが結合する原子と一緒になって、環または架橋部分を形成し;
    は、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、またはハロアルコキシであるか;またはRおよびRは、それらの結合する原子と一緒になって、単環または二環式環部分を形成し;
    mは0、1、または2の整数であり;
    5aおよびRは、各々独立して、水素、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
    5bは、水素、C1−6アルキル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
    は、ハロ、オキソ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
    は、水素またはC1−4アルキルであり;
    は、−CN、−C(O)OR10、−C(O)NR11a11b
    Figure 2021506859
    からなる群より選択され;
    は、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、またはハロアルコキシアルキルであり;
    10は、水素またはC1−10アルキルであり;および
    11aおよびR11bは、各々独立して、水素、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシである]
    で示される化合物、あるいはその立体異性体、互変異性体、または医薬的に許容される塩もしくは溶媒和物。
  2. Figure 2021506859
    で示される部分が
    Figure 2021506859
    であり;
    、Y、Y、およびYが、各々独立して、NまたはCHである:ただし、Y、Y、Y、およびYの少なくとも1つがCHである、
    請求項1に記載の化合物。
  3. Figure 2021506859
    で示される部分が
    Figure 2021506859
    である、請求項1または2に記載の化合物。
  4. が、ハロ、シアノ、ヒドロキシル、アミノ、−OR、−SR、−NR、C1−6アルキル、C1−6ヘテロアルキル、6〜10員のアリール、アリールアルキル、5〜10員のヘテロアリール、ヘテロアリールアルキル、3〜8員のカルボシクリル、カルボシクリルアルキル、4〜8員のヘテロシクリル、またはヘテロシクリルアルキルであり;ここで該アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、ヘテロシクリル、およびRが、それら自体で、またはもう一つ別の基の一部として、各々独立して、0〜5個のRで置換され;
    が、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、カルボシクリルアルキル、ヘテロシクリル、およびヘテロシクリルアルキルからなる群より選択され;
    が、各々独立して、水素またはRであり;
    が、各々独立して、Rであるか;あるいはまた、2個のRが、それらの結合する窒素原子と一緒になって、4〜7員のヘテロシクリルを形成し;
    が、各々独立して、R、アルコキシ、ハロアルコキシ、アルキルアミノ、シクロアルキルアミノ、ヘテロシクリルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、シクロアルコキシ、ヘテロシクリルオキシ、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アリールアミノ、アラルキルアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシ、アルキルチオ、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、および−NRからなる群より選択されるか;あるいはまた、1または2個のRが、アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル上で、Rが結合する原子と一緒になって、環または架橋部分を形成する、
    請求項1〜3のいずれか一項に記載の化合物。
  5. 式(IIa)または(IIb):
    Figure 2021506859
    [式中
    、Y、およびYは、各々独立して、NまたはCHであり;
    7aは、水素、ハロ、オキソ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;
    fは0、1、2、または3の整数であり;
    5aおよびR5bは、独立して、水素またはC1−4アルキルであり;および
    、R、n、R、R、m、X、X、X、X、およびZは、請求項1〜5のいずれか一項にて定義されるとおりである、
    請求項1〜4のいずれか一項に記載の化合物。
  6. がCRであり、ここでRが水素またはC1−4アルキルである、請求項5に記載の化合物。
  7. がNである、請求項5または6に記載の化合物。
  8. Figure 2021506859
    で示される部分が
    Figure 2021506859
    より選択され;
    6aは、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アルコキシ、またはハロアルコキシであり;および
    dが0、1、または2の整数である、
    請求項5〜7のいずれか一項に記載の化合物。
  9. fが0または1である、請求項5〜8のいずれか一項に記載の化合物。
  10. が水素またはメチルである、請求項5〜9のいずれか一項に記載の化合物。
  11. がCOHである、請求項5〜10のいずれか一項に記載の化合物。
  12. 式(IIIa)または(IIIb):
    Figure 2021506859
    [式中
    、Y、およびYは、各々独立して、NまたはCHであり;
    ZはOまたはNHであり;
    2aは、水素、クロロ、フルオロ、またはC1−4アルキルであり;および
    、R、R、m、X、X、X、およびXは、請求項1〜12のいずれか一項にて定義されるとおりである]
    で示される、請求項1〜11のいずれか一項に記載の化合物。
  13. Figure 2021506859
    で示される部分が
    Figure 2021506859
    より選択される、請求項12に記載の化合物。
  14. がCOHである、請求項12または13に記載の化合物。。
  15. がCRであり;
    がNまたはCHであり;
    がNであり;
    がNまたはCHであり;および
    が、水素、ハロ、シアノ、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、またはアルコキシである、
    請求項12〜14のいずれか一項に記載の化合物。
  16. Figure 2021506859
    で示される部分が
    Figure 2021506859
    であり;
    6aが、水素、メチル、またはエチルである、
    請求項12〜15のいずれか一項に記載の化合物。
  17. Figure 2021506859
    で示される部分が
    Figure 2021506859
    であり;および
    mが0または1である、
    請求項12〜16のいずれか一項に記載の化合物。
  18. Figure 2021506859
    で示される部分が
    Figure 2021506859
    であり;および
    mが0または1である、
    請求項12〜17のいずれか一項に記載の化合物。
  19. が、ハロ、シアノ、ヒドロキシル、アミノ、−OR、−SR、−NR、C1−6アルキル、C1−6アルコキシ、C1−6ハロアルキル、C1−6ハロアルコキシ、C1−6ヘテロアルキル、6〜10員のアリール、アリールアルキル、5〜10員のヘテロアリール、ヘテロアリールアルキル、3〜8員のカルボシクリル、カルボシクリルアルキル、4〜8員のヘテロシクリル、またはヘテロシクリルアルキルであり;ここで該アルキル、アルコキシ、ハロアルキル、ハロアルコキシ、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、ヘテロシクリル、およびRが、それら自体で、またはもう一つ別の基の一部として、各々独立して、0〜5個のRで置換され;
    が、C1−6アルキル、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシアルキル、ハロアルコキシアルキル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、カルボシクリル、カルボシクリルアルキル、ヘテロシクリル、およびヘテロシクリルアルキルからなる群より選択され;
    が、各々独立して、水素またはRであり;
    が、各々独立して、Rであるか;あるいはまた、2個のRが、それらの結合する窒素原子と一緒になって、4〜7員のヘテロシクリルを形成し;
    が、各々独立して、R、アルコキシ、ハロアルコキシ、アルキルアミノ、シクロアルキルアミノ、ヘテロシクリルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、シクロアルコキシ、ヘテロシクリルオキシ、ハロアルコキシ、アルコキシアルコキシ、ハロアルキルアミノ、アルコキシアルキルアミノ、ハロアルコキシアルキルアミノ、アリールアミノ、アラルキルアミノ、アリールオキシ、アラルキルオキシ、ヘテロアリールオキシ、ヘテロアリールアルキルオキシ、アルキルチオ、ハロ、シアノ、ヒドロキシル、アミノ、オキソ、−OR、−SR、および−NRからなる群より選択されるか;あるいはまた、1または2個のRが、アルキル、ヘテロアルキル、アリール、ヘテロアリール、カルボシクリル、またはヘテロシクリル上で、Rが結合する原子と一緒になって、環または架橋部分を形成し;
    mが0、1、または2であり;および
    が、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、C4−6ヘテロシクリル、アルキルアミノ、ハロアルキル、ヒドロキシアルキル、アミノアルキル、アルコキシ、アルコキシアルキル、ハロアルコキシアルキル、またはハロアルコキシである、
    請求項12〜18のいずれか一項に記載の化合物。
  20. が、C1−6アルキル、C1−6アルコキシ、C1−6ハロアルキル、C1−6ハロアルコキシ、C3−6シクロアルキル、フェニル、ベンジル、(1〜3個のヘテロ原子を含有し、その各々がN、O、およびSより独立して選択される、6員のヘテロアリール)、アルコキシ、アルコキシアルキル、−O−シクロアルキル、−O−フェニル、−O−ベンジル、および−NH−アルキルであり;該アルキル、アルコキシ、ハロアルキル、シクロアルキル、フェニル、ベンジル、およびヘテロアリールの各々が、それら自体で、またはもう一つ別の基の一部として、0〜3個のRで独立して置換され;および
    は、各々独立して、ハロ、シアノ、ヒドロキシル、アミノ、C1−6アルキル、C3−6シクロアルキル、または−C1−6アルコキシである、
    請求項12〜19のいずれか一項に記載の化合物。
  21. 明細書に記載される実施例の任意の1つから選択される、請求項1に記載の化合物、あるいはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物。
  22. 請求項1〜21のいずれか一項に記載の1または複数の化合物、あるいはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物;および医薬的に許容される担体または希釈剤を含む、医薬組成物。
  23. 治療において用いるための、請求項1〜21のいずれか一項に記載の化合物、あるいはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物。
  24. リゾホスファチジン酸受容体1(LPA)の調節不全に関連する疾患、障害、または病状の治療に用いるための、請求項1〜21のいずれか一項に記載の化合物、またはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物、あるいは請求項22に記載の医薬組成物。
  25. 疾患、障害、または病状が、病理学的線維症、移植片拒絶反応、がん、骨粗しょう症または炎症性障害である、請求項24に記載の使用のための化合物、またはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物、あるいは組成物。
  26. 病理学的線維症が、肺、肝臓、腎臓、心臓、真皮、眼、または膵線維症である、請求項25に記載の使用のための化合物、またはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物、あるいは組成物。
  27. 疾患、障害、または病状が、特発性肺線維症(IPF)、非アルコール性脂肪性肝炎(NASH)、非アルコール性脂肪性肝疾患(NAFLD)、慢性腎疾患、糖尿病性腎疾患、および全身性硬化症である、請求項24に記載の使用のための化合物、またはその立体異性体、互変異性体、または医薬的に許容される塩、もしくは溶媒和物、あるいは組成物。
  28. 癌が、膀胱、血液、骨、脳、乳房、中枢神経系、頸、結腸、子宮内膜、食道、胆嚢、生殖器、泌尿生殖器、頭部、腎臓、喉頭、肝臓、肺、筋肉組織、頸部、口腔または鼻粘膜、卵巣、膵臓、前立腺、皮膚、脾臓、小腸、大腸、胃、精巣、または甲状腺の癌である、請求項25に記載の使用のための化合物、またはその立体異性体、互変異性体、もしくは医薬的に許容される塩、もしくは溶媒和物、あるいは組成物。
  29. 必要な哺乳動物において、線維症の治療に用いるための、請求項1〜21のいずれか一項に記載の化合物、またはその立体異性体、互変異性体、もしくは医薬的に許容される塩、もしくは溶媒和物、あるいは請求項22に記載の医薬組成物。
  30. 線維症が、特発性肺線維症(IPF)、非アルコール性脂肪性肝炎(NASH)、慢性腎疾患、糖尿病性腎疾患、および全身性硬化症である、請求項29に記載の使用のための化合物、またはその立体異性体、互変異性体、もしくは医薬的に許容される塩、もしくは溶媒和物、あるいは組成物。
  31. 必要な哺乳動物における、肺線維症(特発性肺線維症)、喘息、慢性閉塞性肺疾患(COPD)、腎線維症、急性腎障害、慢性腎臓病、肝線維症(非アルコール性脂肪性肝炎)、皮膚線維症、腸線維症、乳癌、膵臓癌、卵巣癌、前立腺癌、神経膠芽腫、骨癌、結腸癌、腸癌、頭頸部癌、黒色腫、多発性骨髄腫、慢性リンパ性白血病、癌性疼痛、腫瘍転移、移植臓器拒絶、強皮症、眼線維症、加齢黄斑変性症(AMD)、糖尿病網膜症、コラーゲン性血管疾患、アテローム性動脈硬化症、レイノー現象、または神経障害性疼痛の治療において用いるための、請求項1〜21のいずれか一項に記載の化合物、またはその立体異性体、互変異性体、もしくは医薬的に許容される塩、もしくは溶媒和物、あるいは請求項22に記載の医薬組成物。
JP2020533677A 2017-12-19 2018-12-18 Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアジン Active JP7299892B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762607392P 2017-12-19 2017-12-19
US62/607,392 2017-12-19
PCT/US2018/066116 WO2019126089A1 (en) 2017-12-19 2018-12-18 Cyclohexyl acid pyrazole azines as lpa antagonists

Publications (2)

Publication Number Publication Date
JP2021506859A true JP2021506859A (ja) 2021-02-22
JP7299892B2 JP7299892B2 (ja) 2023-06-28

Family

ID=65003578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533677A Active JP7299892B2 (ja) 2017-12-19 2018-12-18 Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアジン

Country Status (7)

Country Link
US (1) US11312706B2 (ja)
EP (1) EP3728222B1 (ja)
JP (1) JP7299892B2 (ja)
KR (1) KR20200100723A (ja)
CN (1) CN112055710A (ja)
ES (1) ES2944304T3 (ja)
WO (1) WO2019126089A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR108838A1 (es) 2016-06-21 2018-10-03 Bristol Myers Squibb Co Ácidos de carbamoiloximetil triazol ciclohexilo como antagonistas de lpa
CN114728168B (zh) 2019-11-15 2024-04-09 吉利德科学公司 三唑氨基甲酸酯吡啶基磺酰胺作为lpa受体拮抗剂及其用途
AU2020402940A1 (en) * 2019-12-11 2022-06-02 Sichuan Haisco Pharmaceutical Co., Ltd. Nitrogen-containing heterocyclic autotaxin inhibitor, and composition containing same and use thereof
EP4161936A1 (en) 2020-06-03 2023-04-12 Gilead Sciences, Inc. Lpa receptor antagonists and uses thereof
TWI838626B (zh) 2020-06-03 2024-04-11 美商基利科學股份有限公司 Lpa受體拮抗劑及其用途
EP4337641A1 (en) 2021-05-11 2024-03-20 Gilead Sciences, Inc. Lpa receptor antagonists and uses thereof
AU2022405082A1 (en) 2021-12-08 2024-07-11 Gilead Sciences, Inc. Lpa receptor antagonists and uses thereof
AR128613A1 (es) 2022-02-25 2024-05-29 Lhotse Bio Inc Compuestos y composiciones para el tratamiento de afecciones asociadas con la actividad del receptor de lpa
KR20230143965A (ko) 2022-04-06 2023-10-13 (주)샤페론 타우로데옥시콜린산 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 폐섬유증 예방 또는 치료용 조성물
WO2024161371A1 (en) * 2023-02-02 2024-08-08 Gt Gain Therapeutics Sa Substituted azoles their use in the treatment of diseases associated with alpha-1 -antitrypsin (a1at) deficiency

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012078593A2 (en) * 2010-12-07 2012-06-14 Amira Pharmaceuticals, Inc. Lysophosphatidic acid receptor antagonists and uses thereof
JP2016515536A (ja) * 2013-03-15 2016-05-30 エピゲン バイオサイエンシズ, インコーポレイテッドEpigen Biosciences, Inc. 疾患の治療に有用な複素環化合物
JP2021506860A (ja) * 2017-12-19 2021-02-22 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸トリアゾールアジン
JP2021506878A (ja) * 2017-12-19 2021-02-22 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸イソキサゾールアジン
JP2021507898A (ja) * 2017-12-19 2021-02-25 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアゾール
JP2021507900A (ja) * 2017-12-19 2021-02-25 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸トリアゾールアゾール

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396808B2 (ja) 2001-02-08 2010-01-13 小野薬品工業株式会社 Lpa受容体調節剤からなる泌尿器疾患治療剤
US7432271B2 (en) 2003-09-02 2008-10-07 Bristol-Myers Squibb Company Pyrazolyl inhibitors of 15-lipoxygenase
WO2011017350A2 (en) * 2009-08-04 2011-02-10 Amira Pharmaceuticals, Inc. Compounds as lysophosphatidic acid receptor antagonists
GB2474120B (en) 2009-10-01 2011-12-21 Amira Pharmaceuticals Inc Compounds as Lysophosphatidic acid receptor antagonists
GB2474748B (en) 2009-10-01 2011-10-12 Amira Pharmaceuticals Inc Polycyclic compounds as lysophosphatidic acid receptor antagonists
WO2012100436A1 (en) 2011-01-30 2012-08-02 Curegenix Inc. Compound as antagonist of lysophosphatidic acid receptor, composition, and use thereof
WO2012138648A1 (en) 2011-04-06 2012-10-11 Irm Llc Compositions and methods for modulating lpa receptors
WO2013070879A1 (en) 2011-11-10 2013-05-16 Bristol-Myers Squibb Company Methods for treating spinal cord injury with lpa receptor antagonists
WO2013085824A1 (en) 2011-12-04 2013-06-13 Angion Biomedica Corp. Small molecule anti-fibrotic compounds and uses thereof
KR20150021057A (ko) 2012-06-20 2015-02-27 에프. 호프만-라 로슈 아게 Lpar 길항제로서의 n-알킬트라이아졸 화합물
CA2869564A1 (en) 2012-06-20 2013-12-27 F. Hoffmann-La Roche Ag N-aryltriazole compounds as lpar antagonists
EP3200588A4 (en) 2014-09-17 2018-04-25 Epizyme, Inc. Arginine methyltransferase inhibitors and uses thereof
AR108838A1 (es) 2016-06-21 2018-10-03 Bristol Myers Squibb Co Ácidos de carbamoiloximetil triazol ciclohexilo como antagonistas de lpa
RS62710B1 (sr) 2017-12-19 2022-01-31 Bristol Myers Squibb Co Triazol n-vezane karbamoil cikloheksil kiseline kao lpa antagonisti

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012078593A2 (en) * 2010-12-07 2012-06-14 Amira Pharmaceuticals, Inc. Lysophosphatidic acid receptor antagonists and uses thereof
JP2016515536A (ja) * 2013-03-15 2016-05-30 エピゲン バイオサイエンシズ, インコーポレイテッドEpigen Biosciences, Inc. 疾患の治療に有用な複素環化合物
JP2021506860A (ja) * 2017-12-19 2021-02-22 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸トリアゾールアジン
JP2021506878A (ja) * 2017-12-19 2021-02-22 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸イソキサゾールアジン
JP2021507898A (ja) * 2017-12-19 2021-02-25 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアゾール
JP2021507900A (ja) * 2017-12-19 2021-02-25 ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company Lpaアンタゴニストとしてのシクロヘキシル酸トリアゾールアゾール

Also Published As

Publication number Publication date
CN112055710A (zh) 2020-12-08
US20210087178A1 (en) 2021-03-25
ES2944304T3 (es) 2023-06-20
EP3728222B1 (en) 2023-03-29
JP7299892B2 (ja) 2023-06-28
WO2019126089A1 (en) 2019-06-27
EP3728222A1 (en) 2020-10-28
US11312706B2 (en) 2022-04-26
KR20200100723A (ko) 2020-08-26

Similar Documents

Publication Publication Date Title
JP7526096B2 (ja) Lpaアンタゴニストとしてのシクロヘキシル酸イソキサゾールアジン
JP7208240B2 (ja) Lpaアンタゴニストとしてのシクロヘキシル酸トリアゾールアジン
JP7256807B2 (ja) Lpaアンタゴニストとしてのシクロヘキシル酸イソキサゾールアゾール
KR102702231B1 (ko) Lpa 길항제로서의 피라졸 o-연결된 카르바모일 시클로헥실 산
JP7427658B2 (ja) Lpaアンタゴニストとしてのシクロペンチル酸
JP7301839B2 (ja) Lpaアンタゴニストとしてのピラゾールn-連結のカルバモイルシクロヘキシル酸
JP2021508686A (ja) Lpaアンタゴニストとしてのトリアゾールn結合カルバモイルシクロヘキシル酸
JP7299892B2 (ja) Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアジン
JP2021507896A (ja) Lpaアンタゴニストとしてのイソキサゾールn結合カルバモイルシクロヘキシル酸
JP7212047B2 (ja) Lpaアンタゴニストとしてのシクロヘキシル酸ピラゾールアゾール
JP7412424B2 (ja) Lpaアンタゴニストとしてのオキサビシクロ酸
JP2021507900A (ja) Lpaアンタゴニストとしてのシクロヘキシル酸トリアゾールアゾール
JP7429224B2 (ja) Lpaアンタゴニストとしてのシクロヘプチル酸
JP2021507899A (ja) Lpaアンタゴニストとしてのイソキサゾールo−架橋カルバモイルシクロヘキシル酸
KR20220024550A (ko) Lpa 길항제로서의 시클로부틸 카르복실산

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230616

R150 Certificate of patent or registration of utility model

Ref document number: 7299892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150