JP2021502040A5 - - Google Patents

Download PDF

Info

Publication number
JP2021502040A5
JP2021502040A5 JP2019537374A JP2019537374A JP2021502040A5 JP 2021502040 A5 JP2021502040 A5 JP 2021502040A5 JP 2019537374 A JP2019537374 A JP 2019537374A JP 2019537374 A JP2019537374 A JP 2019537374A JP 2021502040 A5 JP2021502040 A5 JP 2021502040A5
Authority
JP
Japan
Prior art keywords
current
switched capacitor
conversion chip
capacitor conversion
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019537374A
Other languages
English (en)
Other versions
JP6949121B2 (ja
JP2021502040A (ja
Filing date
Publication date
Priority claimed from CN201811137409.2A external-priority patent/CN109274147B/zh
Application filed filed Critical
Publication of JP2021502040A publication Critical patent/JP2021502040A/ja
Publication of JP2021502040A5 publication Critical patent/JP2021502040A5/ja
Application granted granted Critical
Publication of JP6949121B2 publication Critical patent/JP6949121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

無線充電受信装置、充電システム及び端末
本開示は、端末の分野に関し、特に無線充電受信装置と、充電システムと、端末とに関する。
端末の普及に伴い、無線充電技術は、端末を充電する重要な形態となっている。
関連技術において、端末の内部に無線充電受信装置が設けられ、無線充電受信装置と無線充電送信装置との内部にいずれもコイルが設けられている。無線充電送信装置中の電流が充電コイルを流れると、電磁界が発生し、無線充電受信装置のコイルが電磁界に近づくと、無線充電受信装置の内部に電流が発生し、これにより、電流と電磁界との変換によって端末を充電する。端末のバッテリの入力電圧は比較的小さく、例えば4Vであり、充電電力及び効率を向上させるために、無線充電送信装置の出力電圧は一般的に高く、無線充電受信装置と無線充電送信装置との内部に設けられる降圧変換回路(BUCK回路)によって電圧変換が完成される。
関連技術における課題を解決するために、本開示は、無線充電受信装置と、充電システムと、端末とを提供する。
本開示の実施例の第1の形態によれば、無線充電受信装置が提供され、前記無線充電受信装置は、受信コイルと、受信チップと、スイッチトキャパシタ変換チップと、を含み、受信コイルは、無線充電送信装置の送信コイルの交番磁界にカップリングされて交流電源を取得し、受信チップの入力端が受信コイルにカップリング接続され、受信チップの出力端がスイッチトキャパシタ変換チップの入力端にカップリング接続されて、交流電源を第1の直流電源に変換し、スイッチトキャパシタ変換チップは、出力端がバッテリにカップリング接続されて、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電し、第2の直流電源の電圧は第1の直流電源の電圧より低く、また第2の直流電源の電流は第1の直流電源の電流より大きい。
実現可能な一設計において、スイッチトキャパシタ変換チップは、1次スイッチトキャパシタ変換チップと2次スイッチトキャパシタ変換チップとを含み、無線充電受信装置は、電源管理チップPMICをさらに含み、1次スイッチトキャパシタ変換チップの入力端が受信チップにカップリング接続され、1次スイッチトキャパシタ変換チップは、出力端が、2次スイッチトキャパシタ変換チップの入力端及び電源管理チップの入力端にそれぞれカップリング接続され、2次スイッチトキャパシタ変換チップと電源管理チップとの出力端が、いずれもバッテリにカップリング接続され、1次スイッチトキャパシタ変換チップは、第1の直流電源に基づいて第3の直流電源を出力し、第3の直流電源の電圧は第1の直流電源の電圧より低く、且つ第3の直流電源の電流は第1の直流電源の電流より高く、2次スイッチトキャパシタ変換チップは、第3の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいて第1の電流でバッテリを充電し、第2の直流電源の電圧は、第3の直流電源の電圧より低く、また第2の直流電源の電流は、第3の直流電源の電流より高く、電源管理チップは、第2の直流電源に基づいて第2の電流でバッテリを充電し、第2の電流は、第1の電流より小さい。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、電流制限モードに入るようにスイッチトキャパシタ変換チップを制御し、第1の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、スイッチトキャパシタ変換チップが電流制限モードに入ることは、具体的に、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗を大きくすることと、または、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにすることと、または、充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電することと、または、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮することとのうちの少なくとも1つを含む。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、電流制限モードを抜けるようにスイッチトキャパシタ変換チップを制御し、第2の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、通路電流は、スイッチトキャパシタ変換チップの入力電流と、スイッチトキャパシタ変換チップの出力電流と、スイッチトキャパシタ変換チップにおける内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含む。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、端末のプロセッサの第1の制御命令に従って電流閾値を調整する。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、端末のプロセッサの第2の制御命令に従ってオン状態にある。
本開示の実施例の第2の態様によれば、上記第1の態様のいずれかの無線充電受信装置を含む端末が提供される。
実現可能な一設計において、端末は、プロセッサをさらに含み、スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、電流制限モードに入るようにスイッチトキャパシタ変換チップを制御し、第1の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さく、プロセッサは、電流閾値を調整するための第1の制御命令を現在の所望の通路電流に基づいて出力し、スイッチトキャパシタ変換チップは、さらに、第1の制御命令に従って電流閾値を調整する。
実現可能な一設計において、プロセッサは、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗、キャパシタ変換チップの内部スイッチングトランジスタのオン状態、または、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間に基づいて、無線充電受信装置の受信チップの出力電圧を降下させるように制御する。
実現可能な一設計において、プロセッサは、さらに、定電圧充電段階に入る場合、スイッチトキャパシタ変換チップをオン状態であるように制御するための第2の制御命令を出力し、スイッチトキャパシタ変換チップは、さらに、第2の制御命令に従ってオン状態にある。
本開示の実施形態の第3の態様によれば、無線充電送信装置と、バッテリと、上記第1の態様のいずれかの無線充電受信装置と、を含む充電システムが提供される。
実現可能な一設計において、充電システムは、プロセッサをさらに含み、スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、電流制限モードに入るようにスイッチトキャパシタ変換チップを制御し、第1の電流オフセット量は、0以上であり、且つ電流閾値より小さく、プロセッサは、電流閾値を調整するための第1の制御命令を現在の所望の通路電流に基づいて出力し、スイッチトキャパシタ変換チップは、さらに、第1の制御命令に従って電流閾値を調整する。
実現可能な一設計において、プロセッサは、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗、キャパシタ変換チップの内部スイッチングトランジスタのオン状態、または、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間に基づいて、無線充電受信装置の受信チップの出力電圧を降下させるように制御する。
実現可能な一設計において、プロセッサは、さらに、定電圧充電段階に入る場合、スイッチトキャパシタ変換チップをオン状態であるように制御するための第2の制御命令を出力し、スイッチトキャパシタ変換チップは、さらに、第2の制御命令に従ってオン状態にある。
実現可能な一設計において、無線充電送信装置は、充電器と、送信チップと、送信コイルと、を含み、送信チップは、入力端が充電器にカップリング接続され、出力端が送信コイルにカップリング接続され、送信チップは、制御プロトコルに基づいて充電器と通信して、充電器によって出力される直流電源の電圧を制御し、直流電源を交流電源に変換し、送信コイルは、交流電源を交番磁界に変換する。
本開示によって提供される無線充電受信装置と、充電システムと、端末とは、送信コイルが無線充電送信装置の交番磁界にカップリングすることによって交流電源を取得し、受信チップは、当該交流電源を第1の直流電源に変換し、スイッチトキャパシタ変換チップは、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電し、第2の直流電源の電圧は、第1の直流電源の電圧より低く、また第2の直流電源の電流は、第1の直流電源の電流より大きく、これにより、変換効率が極めて高いスイッチトキャパシタ変換チップの使用が実現され、充電電力及び充電効率を向上させる。それに、無線充電送信装置の出力電圧が高いほど、充電効率の向上が顕著になる。
以上の一般的な説明及び以下の詳細な説明は、単に例示及び解釈するためのものであり、本開示を限定するものではないと理解されるべきである。
ここの図面は、本明細書に組み込まれて本明細書の一部を構成し、本開示に適する実施例を示しており、明細書と共に、本開示の原理を説明するために用いられる。
例示的な一実施例に係る無線充電受信装置のブロック図である。 例示的な一実施例に係るスイッチトキャパシタ変換チップの変換プロセスの概略図である。 例示的な一実施例に係るスイッチトキャパシタ変換チップの変換プロセスの概略図である。 別の例示的な実施例に係る無線充電受信装置のブロック図である。 さらに別の例示的な実施例に係る無線充電受信装置のブロック図である。 例示的な一実施例に係る波形図である。 例示的な一実施例に係る波形図である。 例示的な一実施例に係る無線充電受信装置の概略図である。 例示的な一実施例に係る無線充電受信装置の概略図である。 例示的な一実施例に係る端末800のブロック図である。 例示的一実施形態による、バッテリ充電の概略図である。 例示的な一実施例に係る充電システムの概略図である。
ここで例示的な実施例を詳細に説明し、その例が図面に示される。以下の説明が図面に係る場合、他の示しがない限り、異なる図面における同一の符号が、同一又は類似の要素を示す。以下の例示的な実施例に記載される実施形態は、本出願と一致する全ての実施形態を表すものではない。むしろ、それらは、単に特許請求の範囲に詳述されている、本開示の一部の態様と一致する装置及び方法の例である。
図1は、本発明の一実施例に係る無線充電受信装置のブロック図である。図1に示すように、本実施例の無線充電受信装置10は、受信コイル11と、受信チップ12と、スイッチトキャパシタ変換チップ13と、を含む。受信コイル11の入力端が、無線充電送信装置の送信コイルの交番磁界にカップリングされて交流電源を取得する。受信チップ12の入力端が受信コイル11にカップリング接続され、受信チップ12の出力端がスイッチトキャパシタ変換チップ13の入力端にカップリング接続されて、交流電源を第1の直流電源に変換する。スイッチトキャパシタ変換チップ13の出力端が、バッテリにカップリング接続されて、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電する。第2の直流電源の電圧は、第1の直流電源の電圧より低く、また第2の直流電源の電流は、第1の直流電源の電流より大きい。
具体的には、受電コイル11は、無線充電送信装置の送電コイルの交番磁界にカップリングされて、交流電源を取得し、受信チップ12は、当該交流電源を第1の直流電源に変換し、スイッチトキャパシタ変換チップ13は、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電し、第2の直流電源の電圧は、第1の直流電源の電圧より低く、また第2の直流電源の電流は、第1の直流電源の電流より高い。
ここで、カップリング接続は、具体的には、直接接続と間接接続とを含むことができる。
ここで、コイル11は、具体的に、交番磁界にカップリングされて交流電源を取得することができる任意のタイプのコイルであってもよい。
ここで、受信チップ12は、具体的に、交流電源を整流することにより、直流電源を取得することができる任意のチップであってもよい。
ここで、スイッチトキャパシタ変換チップ13は、第1の直流電源に基づいて第2の直流電源を出力する。すなわち、スイッチトキャパシタ変換チップは、受信チップによって出力される第1の直流電源の電圧を降下させるとともに、第1の直流電源の電流を上昇させる。この場合、スイッチトキャパシタ変換チップが作動状態にあると考えてもよい。一般に、スイッチトキャパシタ変換チップを、スイッチトキャパシタ変換チップの外部ピン構成によってオン状態またはオープン状態にすることができる。さらに、作動状態にあるようにスイッチトキャパシタ変換チップを電源管理チップ(Power Management Integrated Circuit,PMIC)、プロセッサ、またはシングルチップマイクロコンピュータなどの他のチップによって制御することができる。作動状態にあるようにスイッチトキャパシタ変換チップを他のチップによって制御する具体的な形態について、本開示は限定せず、例えば、動作状態にあるようにスイッチトキャパシタ変換チップを他のチップによって制御するための命令をI2Cプロトコルを介してスイッチトキャパシタ変換チップに送信することができる。
ここで、スイッチトキャパシタ変換チップ13は、コンデンサの充放電をスイッチによって制御することにより、電圧降下及び電流上昇を実現するチップである。選択可能に、スイッチトキャパシタ変換チップは1/nスイッチトキャパシタ変換チップであってもよく、nは、1.5、2、または3などであってもよい。
ここで、スイッチトキャパシタ変換チップ13の変換プロセスは、第1段階Φ1と第2段階Φ2との2段階に分けることができる。第1段階Φ1では、図2Aに示すように、内部スイッチングトランジスタS1、S3、S5、及びS7がオンになり、キャパシタCF1が充電され、キャパシタCF2が放電され、電流の流れる方向は、図2Aの矢印のようになる。第1段階Φ2では、図2Bに示すように、内部スイッチングトランジスタS2、S4、S6及びS8がオンとなり、キャパシタCF1が放電し、キャパシタCF2が充電され、電流の流れる方向は図2Bの矢印のようになる。このようにオン・オフを繰り返すことにより、VOUT=1/nVIN、IOUT= n *IINの出力を実現することができる。なお、図2A及び図2Bにおいて、C1P、C1N、GND、C2P、C2N、VOUT及びVINは、いずれもPINピンであり、CBはコンデンサである。
なお、スイッチトキャパシタ変換チップ13の変換効率は、極めて高く、98%に達することができるが、BUCK回路の変換効率は低く、入力電圧と出力電圧との差が大きく異なる場合は、BUCK回路の発熱量が大きく、変換効率が低くなる。そのため、スイッチトキャパシタ変換チップにより電圧降下・電流上昇を実現することは、BUCK回路によって電圧降下を実現することにより、充電効率を向上させることができる。また、大電力の充電を実現するために、無線充電送信装置の出力電圧とバッテリの入力電圧とがさらに大きく異なるため、バック回路の効率がさらに低く、大電力充電場合にスイッチトキャパシタ変換チップの充電効率の向上効果がより顕著となる。
本実施形態に係る無線充電受信装置は、送信コイルによって無線充電送信装置の送信コイルの交番磁界にカップリングされ、交流電源を取得し、受信チップは、当該交流電源を第1の直流電源に変換し、スイッチトキャパシタ変換チップは、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電し、第2の直流電源の電圧は、第1の直流電源の電圧より低く、また第2の直流電源の電流は、第1の直流電源の電流より大きく、これにより、変換効率が極めて高いスイッチトキャパシタ変換チップの使用が実現され、充電電力及び充電効率を向上させる。それに、無線充電送信装置の出力電圧が高いほど、充電効率の向上が顕著になる。
図3は、本発明の別の例示的な実施例に係る無線充電受信装置のブロック図である。図3に示すように、図1に示す実施例に基づいて、スイッチトキャパシタ変換チップ13は、1次スイッチトキャパシタ変換チップ131と、2次スイッチトキャパシタ変換チップ132とを含む。無線充電受信装置は、電源管理チップPMIC14、例えば、BUCK回路をさらに含む。1次スイッチトキャパシタ変換チップ131の入力端が受信チップ12にカップリング接続され、1次スイッチトキャパシタ変換チップ131の出力端が2次スイッチトキャパシタ変換チップ132及びPMIC14の入力端にそれぞれカップリング接続される。2次スイッチトキャパシタ変換チップ132及びPMIC14の出力端は、いずれもバッテリにカップリング接続される。1次スイッチトキャパシタ変換チップ131は、第3の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいて第1の直流でバッテリを充電する。第2の直流電源の電圧は、第3の直流電源の電圧より低く、また第2の直流電源の電流は、第3の直流電源の電流より高い(すなわち、受信チップ12によって出力される第1の直流電源の電圧を降下させ、第1の直流電源の電流を上昇させてから、バッテリを充電する)。キャパシタ変換チップ132は、第3の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいて第1の電流でバッテリを充電し、第2の直流電源の電圧は、第3の直流電源の電圧より低く、また第2の直流電源の電流は、第3の直流電源の電流より高い(すなわち、1次スイッチトキャパシタ変換チップ131によって出力される第3の直流電源の電圧を降下させ、第3の直流電源の電流を上昇させてから、バッテリを充電する)。PMIC14は、第2の直流電源に基づいて第2の電流でバッテリを充電し、第2の電流は、第1の電流より小さい。ここで、第1の電流でバッテリを充電することは、定電流充電と理解されてもよく、第2の電流でバッテリを充電することは、定電圧充電と理解されてもよい。
具体的には、大電力充電が必要な場合は、PMIC14を作動せず、2次スイッチトキャパシタ変換チップ132を作動させ、2次スイッチトキャパシタ変換チップ132によって大電力充電が実現される。小電力充電が必要な場合は、PMIC14を作動させ、2次スイッチトキャパシタ変換チップ132を作動せず、PMIC14によって小電力充電が実現される。選択可能に、PMIC及び2次スイッチトキャパシタ変換チップ132を作動するようにまたは動作しないように端末のプロセッサによって制御することができる。具体的には、1次スイッチトキャパシタ変換チップ+2次スイッチトキャパシタ変換チップによって定電流充電段階を実現することができ、1次スイッチトキャパシタ変換チップ+PMICによって定電圧充電段階を実現することができる。ここでは、PMICを充電チップとして使用することができる。なお、5W未満などの小電力で充電する場合、スイッチトキャパシタ変換チップをオン状態にし、例えば1次スイッチトキャパシタ変換チップをオン状態にし、2次スイッチトキャパシタ変換チップをオープン状態にすることができる。
図4に示すように、無線充電受信装置は、バッテリを充電することに加えて、端末のハードウェア及びソフトウェアシステムに電力を供給することができる。端末が無線充電受信装置によってバッテリを充電するとき、ハードウェア及びソフトウェアシステムの負荷dlは、通常変動して、IOUTが突然にΔI変化することを引き起こす場合があり、それによってIRECの変化を引き起こしてしまい(例えば、2段のスイッチトキャパシタ変換チップを含み、且つ各段のスイッチトキャパシタ変換チップが1/2スイッチトキャパシタ変換チップである場合、IRECの変化は1/4ΔIであり)、IRECが大きく変化すると、無線充電システムの通信に影響を及ぼす問題、例えば、無線充電システムの通信中断を引き起こす可能性がある。例えば、図5Aに示すように、51はIOUTの波形を表し、52は、IOUTの変動によるVRECの変動の波形を表す。
また、図5Bに示すように、無線充電を行う場合、無線充電送信装置における送信チップは、無線充電受信装置における受信チップとリアルタイムで通信する必要があり、VRECに振幅が大きいリップルを重畳し、これによって電流IOUTが通信に伴って頻繁に変動し、過充電の問題を引き起こす可能性がある。例えば、VRECが400mV近くに上昇すると、2段の1/2スイッチトキャパシタ変換チップを経由して、出力VOUTのリップルは400mVになり、バッテリの内部抵抗が100mオームの場合、IOUTの瞬時変動は1アンペア(A)である。
ハードウェア及びソフトウェアシステムの負荷の変動及びVRECの変動による上記の問題は、通路電流の変化で表すことができることがわかるので、上記の2つの問題を解決して充電プロセスの安定性を改善するために、選択可能に、スイッチトキャパシタ変換チップ13は、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、電流制限モードに入るようにスイッチトキャパシタ変換チップ13を制御し、第1の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。ここで、電流制限モードとは、スイッチトキャパシタ変換チップの電流を制限することであり、具体的には、スイッチトキャパシタ変換チップの入力電流、出力電流、及び/または内部スイッチングトランジスタの電流を制限することができる。スイッチトキャパシタは、電流制限モードに入ることにより、通路電流が小さくなり、通路電流の急激な変化という上記の問題が回避される。
具体的には、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、通路電流が異常であることを表し、無線充電システムの通信に影響を及ぼしたり、過充電を引き起こしたりする可能性がある。通路電流が電流閾値と第1の電流オフセット量との差より小さい場合、通路電流が正常であることを表し、無線充電システムの通信に影響を及ぼしたり、過充電を引き起こしたりすることはない。
選択可能に、通路電流は、スイッチトキャパシタ変換チップ13の入力電流と、スイッチトキャパシタ変換チップ13の出力電流と、スイッチトキャパシタ変換チップ13における内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含むことができる。
選択可能に、スイッチトキャパシタ変換チップが1次スイッチトキャパシタ変換チップと2次スイッチトキャパシタ変換チップとを含む場合、1次スイッチトキャパシタ変換チップと2次スイッチトキャパシタ変換チップとのいずれか一方によって通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、電流制限モードに入るように自体を制御する。
さらに選択可能に、1次スイッチトキャパシタ変換チップによって通路電流を検出する場合、通路電流入力は、1次スイッチトキャパシタ変換チップ131の入力電流(IREC)と、1次スイッチトキャパシタ変換チップ131の出力電流(IBUS)と、2次スイッチトキャパシタ変換チップ132とPMICとが並列接続することによって出力される主回路電流IOUTと、1次スイッチトキャパシタ変換チップ131における内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含むことができる。2次スイッチトキャパシタ変換チップによって通路電流を検出する場合、通路電流入力は、1次スイッチトキャパシタ変換チップ131の入力電流と、1次スイッチトキャパシタ変換チップ131の出力電流と、2次スイッチトキャパシタ変換チップ132とPMICとが並列接続することによって出力される電流IOUTと、2次スイッチトキャパシタ変換チップ132の内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含むことができる。
選択可能に、スイッチトキャパシタ変換チップ131は、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、電流制限モードを抜けるように当該スイッチトキャパシタ変換チップを制御し、第2の電流オフセット量は、ゼロ以上であり、且つ電流の閾値より小さい。なお、ここの電流制限モードを抜けることは、上記の電流制限モードに入ることに対応する。
選択可能に、第1の電流オフセット量は、第2の電流オフセット量と等しくてもよい。第1の電流オフセット量及び第2の電流オフセット量、ならびに第1の電流オフセット量及び第2の電流オフセット量が両方ともゼロより大きいことによって、電流閾値の箇所で電流制限モードに入ることと電流制限モードを抜けることとの切り替えを繰り返すことを回避することができる。
選択可能に、スイッチトキャパシタ変換チップ13は、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗を大きくすることによって電流制限モードに入ることができる。選択可能に、充電効率を改善するために、スイッチトキャパシタ変換チップの作動時に、内部スイッチングトランジスタのオン抵抗は、通常、最小値であり、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、スイッチトキャパシタ変換チップは、直ちに各内部スイッチングトランジスタのオン抵抗を大きくして電流制限モードに入り、それによって通路電流が小さくなる。さらに、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、スイッチトキャパシタ変換チップは、直ちに各内部スイッチングトランジスタのオン抵抗を最小値に小さくして電流制限モードを抜け、それによって通路電流が大きくなる。例えば、IRECの電流閾値を1.1Aにすることができ、ハードウェア及びソフトウェアのシステム負荷(またはVREC)が変動することによってIRECが1.1A以上になると、スイッチトキャパシタチップは、数スイッチングサイクル以内に直ちに応答して電流制限モードに入って、各内部スイッチングトランジスタのオン抵抗を低くし、その応答時間は、一般に数十マイクロ秒以内である。ソフトウェア及びハードウェアのシステム負荷(またはVREC)の変動がなくなると、スイッチトキャパシタ変換チップは、電流制限モードを抜け、その内部スイッチングトランジスタのオン抵抗が最小値に戻る。
選択可能に、内部スイッチングトランジスタを、金属−酸化物半導体電界効果トランジスタ(Metal−Oxide−Semiconductor Field−Effect Transistor,MOSFET)とすることができる。
なお、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗の調整範囲について、本開示は限定しない。選択可能に、一定の範囲であってもよいし、通路電流と電流閾値との差に基づいて調整範囲を決定してもよい。
選択可能に、スイッチトキャパシタ変換チップ13は、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにするか、または充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電することによって、電流制限モードに入ることができる。ここで、充電キャパシタは、具体的には、図2A及び図2BにおけるCF1及びCF2であってもよい。第1段階Φ1において、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにすることは、具体的には、S1およびS3をオフにすることであってもよい。充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されることは、具体的には、S1およびS3をオフにするとともに、S6とS8をオンにすることであってよい。第2段階Φ2において、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにすることは、具体的には、S2およびS4をオフにすることであってもよく、充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されることは、具体的に、S2およびS4をオフにするとともに、S5とS7をオンにすることであってよい。具体的には、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、スイッチトキャパシタ変換チップは、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタを直ちにオフにするか、または充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電することによって電流制限モードに入り、これによって通路電流が小さくなる。さらに、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、スイッチトキャパシタ変換チップは、通常のキャパシタ充放電のスイッチングプロセスに戻り(例えば、図2A及び図2BにおけるΦ1及びΦ2の2つの段階は、内部スイッチングトランジスタのスイッチング繰り返しプロセスにそれぞれ対応する)、引き続き電流制限モードを抜け、それによって通路電流が大きくなる。
選択可能に、スイッチトキャパシタ変換チップの内部スイッチングトランジスタは、クロックによって一定の周波数及び一定の論理タイミングに従ってオン・オフにされるので、スイッチトキャパシタ変換チップに対してスキップサイクル制御を実行することによって、スイッチキャパシタ変換チップにおける、充電キャパシタを充電する内部スイッチングトランジスタをオフにすることができ、または充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電することができる。具体的には、図6に示すように、IOUTが破線で示す電流閾値を超えると、対応するクロック制御サイクル(すなわち、破線で示すクロックサイクル)において、充電キャパシタを充電する内部スイッチングトランジスタをオフにするか、または充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電する。さらに、IOUTが破線で示す電流閾値を超えない場合、対応するクロック制御サイクルにおいて、スイッチトキャパシタ変換チップは、通常のコンデンサの充放電のスイッチングプロセスに戻る。なお、図6では、第1の電流オフセット量及び第2の電流オフセット量が両方ともゼロであることを例とする。
選択可能に、スイッチトキャパシタ変換チップ13は、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮することによって電流制限モードに入ることができる。ここで、充電キャパシタは、具体的には、図2A及び図2BにおけるCF1及びCF2であってもよく、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮することは、具体的には、CF1及びCF2の充電時間を短縮することであってもよい。具体的には、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、スイッチトキャパシタ変換チップは、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を直ちに短縮して電流制限モードに入り、これによって通路電流が小さくなる。さらに、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、スイッチトキャパシタ変換チップは、通常の充電キャパシタの充電時間に戻って電流制限モードを抜け、これによって通路電流が大きくなる。
選択可能に、スイッチトキャパシタ変換チップの内部スイッチングトランジスタが一定の周波数に従って一定の論理タイミングによってオン・オフにされるので、スイッチキャパシタ変換チップは、クロックのデューティ比を小さくすることにより、スイッチキャパシタ変換チップにおける充電キャパシタの充電時間の短縮を実現することができる。具体的には、図7に示すように、IOUTが破線で示す電流閾値を超えると、クロック制御サイクルに対応するクロックデューティ比を小さくし、すなわち、充電時間を短くし、放電時間を長くする。さらに、IOUTが破線で示す電流閾値を超えない場合、クロック制御サイクルに対応するクロックのデューティを戻す。なお、図7では、第1の電流オフセット量及び第2の電流オフセット量が両方ともゼロであることを例とする。
選択可能に、スイッチトキャパシタ変換チップ13は、端末のプロセッサの第1の制御命令に従って電流閾値を調整する。具体的には、バッテリの異なる充電段階において、所望の通路電流が異なってもよく、より正確な制御のために、電流閾値をそれに応じて調整することができる。具体的には、所望の通路電流が大きいほど電流閾値を大きくすることができ、所望の通路電流が小さいほど電流閾値を小さくすることができる。
選択可能的に、スイッチトキャパシタ変換チップ13は、さらに、端末のプロセッサの第2の制御命令に従ってオン状態にあってもよい。具体的には、定電圧充電状態にある場合、電流を大きくする必要がないので、スイッチトキャパシタ変換チップをオン状態にあるように制御することができる。図2A及び図2Bに示す1/2スイッチトキャパシタ変換チップについて、スイッチトキャパシタ変換チップがオン状態であることは、具体的には、S1、S2、S5及びS6がいずれもオンであり、且つS3、S4、S7及びS8がいずれもオフであることであってよい。スイッチトキャパシタ変換チップがオン状態にある場合、VOUTはVINと等しくなってもよく、IOUTはIINと等しくなってもよい。なお、スイッチトキャパシタ変換チップ13が1次スイッチトキャパシタ変換チップ131と2次スイッチトキャパシタ変換チップ132とを含む場合、具体的には、1次スイッチトキャパシタ変換チップ131をオン状態にあるように制御することができる。
また、上述した、スイッチトキャパシタ変換チップは、充電通路の出力電流を検出し、充電通路の出力電流に基づいて電流制限モードに入ることにより、高い応答速度を実現することができる。
本実施例に係る無線充電受信装置では、1次スイッチトキャパシタ変換チップは、第1の直流電源に基づいて第3の直流電源を出力し、第3の直流電源の電圧は第1の直流電源の電圧より低く、且つ第3の直流電源の電流は第1の直流電源の電流より大きく、第2段のスイッチトキャパシタ変換チップは、第3の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいて第1の電流でバッテリを充電し、第2の直流電源の電圧は第3の直流電源の電圧より低く、また第2の直流電源の電流は第3の直流電源の電流より大きく、PMICは、第2の直流電源に基づいて第2の電流でバッテリを充電し、第2の電流は第1の電流より小さい。大電力充電の充電効率を向上させることに基づいて、小電力充電をさらに実現することができる。
図8は、例示的な一実施例に係る端末800のブロック図である。例えば、端末800は、携帯電話、コンピュータ、デジタル放送機器、メッセージングデバイス、ゲームコンソール、タブレットデバイス、医療機器、フィットネス機器、パーソナルデジタルアシスタントなどであってもよい。
図8を参照すると、端末800は、プロセッサユニット802と、メモリ804と、電源ユニット806と、マルチメディアユニット808と、オーディオユニット810と、入力/出力(I/O)インターフェース812と、センサユニット814と、通信ユニット816との1つ又は複数を含むことができる。
プロセッサユニット802は、通常、表示、電話呼び出し、データ通信、カメラ動作、および記憶動作に関連する動作などの端末800の全体的な動作を制御する。プロセッサユニット802は、上記方法のステップの全部または一部を実行するための命令を実行する1つまたは複数のプロセッサ820を含むことができる。さらに、プロセッサユニット802は、プロセッサユニット802と他のユニットとのインタラクションを容易にするために、1つまたは複数のモジュールを含むことができる。例えば、プロセッサユニット802は、マルチメディアユニット808とプロセッサユニット802とのインタラクションを容易にするために、マルチメディアモジュールを含むことができる。
メモリ804は、端末800での動作をサポートするために様々なタイプのデータを記憶するように構成される。これらのデータの例は、端末800上で動作する任意のアプリケーション又は方法の命令、連絡先データ、電話帳データ、メッセージ、画像、ビデオなどを含む。メモリ804は、スタティック・ランダム・アクセス・メモリ(SRAM)、電気的消去可能プログラマブル読み出し専用メモリ(EEPROM)、消去可能プログラマブル読み出し専用メモリ(EEPROM)、プログラマブル読み出し専用メモリ(PROM)、読み出し専用メモリ(ROM)、磁気メモリ、フラッシュメモリ、ディスク又はCDのような任意のタイプの揮発性又は不揮発性記憶装置、又はそれらの組み合わせによって実現することができる。
電源ユニット806は、端末800の様々なユニットに電力を供給する。電源ユニット806は、電源管理システムと、1つ又は複数の電源と、端末800の電力の生成、管理、及び分配に関連する他のユニットとを含むことができる。
マルチメディアユニット808は、端末800とユーザとの間に位置し且つ出力インタフェースを提供するスクリーンを含む。一部の実施例では、スクリーンは、液晶ディスプレイ(LCD)とタッチパネル(TP)とを含むことができる。スクリーンがタッチパネルを含む場合、スクリーンは、ユーザからの入力信号を受信するためのタッチスクリーンとして実現することができる。タッチパネルは、タッチ、スライド及びタッチパネル上のジェスチャを感知するための1つまたは複数のタッチセンサを含む。当該タッチセンサは、タッチ又はスライド動作の境界を感知するだけでなく、当該タッチ又はスライド動作に関連する持続時間及び圧力も検出することができる。一部の実施例では、マルチメディアユニット808は、フロントカメラおよび/またはリアカメラを含む。端末800が撮影モード又はビデオモードのような動作モードにあるとき、フロントカメラおよび/またはリアカメラは、外部のマルチメディアデータを受信することができる。各フロントカメラ及びリアカメラは、固定光学レンズシステムであってもよいし、焦点距離及び光学ズーム能力を有してもよい。
オーディオユニット810は、オーディオ信号を出力および/または入力するように構成される。例えば、オーディオユニット810は、1つのマイクロフォン(MIC)を含み、端末800が、呼び出しモード、記憶モード、及び音声認識モードなどの動作モードにあるとき、マイクロフォンが外部オーディオ信号を受信するように構成される。受信されたオーディオ信号は、メモリ804にさらに記憶されてもよいし、又は通信ユニット816を介して送信されてもよい。一部の実施例では、オーディオユニット810は、オーディオ信号を出力するためのスピーカをさらに含む。
(I/O)インターフェース812は、プロセッサユニット802と周辺機器インターフェースモジュールとの間のインターフェースを提供し、上記周辺機器インターフェースモジュールは、キーボード、クリックホイール、ボタンなどであってもよい。これらのボタンは、ホームボタンと、音量ボタンと、開始ボタンと、ロックボタンとを含むことができるが、これらに限定されない。
センサユニット814は、各方面の状態評価を端末800に提供するための1つ又は複数のセンサを含む。例えば、センサユニット814は、端末800のオン・オフ状態、端末800のディスプレイ及びキーパッドなどのユニットの相対的な位置決めを検出することができるとともに、センサユニット814は、端末800又は端末800の1つのユニットの位置の変化、ユーザと端末800との接触の有無、端末800の方位又は加速/減速、及び端末800の温度変化を検出することもできる。センサユニット814は、物理的接触なしで近くの物体の存在を検出するように構成された近接センサを含むことができる。センサユニット814は、イメージング用途に使用するためのCMOS又はCCDイメージセンサなどの光センサを含むことができる。一部の実施例では、当該センサユニット814は、加速度センサ、ジャイロセンサ、磁気センサ、圧力センサ、または温度センサをさらに含むことできる。
通信ユニット816は、端末800と他の装置との間の有線又は無線通信を容易にするように構成される。端末800は、通信規格に基づいた無線ネットワーク、例えば、WIFI、2G又は3G、又はそれらの組み合わせにアクセスすることができる。例示的な一実施例では、通信ユニット816は、ブロードキャストチャネルを介して外部ブロードキャスト管理システムからのブロードキャスト信号又はブロードキャスト関連情報を受信する。例示的な一実施例では、当該通信ユニット816は、近距離通信を促進する近距離通信(NFC)モジュールをさらに含む。例えば、NFCモジュールは、無線周波数識別(RFID)技術、赤外線データアソシエーション(IrDA)技術、超広帯域(UWB)技術、ブルートゥース(登録商標)(BT)技術、及び他の技術に基づいて実現することができる。
例示的な実施例では、端末800は、1つ又は複数の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラマブル論理デバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、コントローラ、マイクロコントローラ、マイクロプロセッサ又は他の電子デバイスによって実現することができ、上記方法を実行するために使用される。
例示的な実施例において、命令を含む非一時的なコンピュータ読み取り可能な記憶媒体がさらに提供され、例えば、命令を含むメモリ804がさらに提供され、上記命令は、端末800のプロセッサ820によって実行されて方法を完成する。例えば、非一時的なコンピュータ読み取り可能な記憶媒体は、ROM、ランダムアクセスメモリ(RAM)、CD-ROM、カセットテープ、フロッピーディスク、及び光データ記憶装置であってもよい。
ここで、端末800は、無線充電受信装置を含むことができ、当該無線充電受信装置は、受信コイルと、受信チップと、スイッチトキャパシタ変換チップと、を含み、受信コイルは、無線充電送信装置の送信コイルの交番磁界にカップリングされて交流電源を取得し、受信チップの入力端が受信コイルにカップリング接続され、受信チップの出力端がスイッチトキャパシタ変換チップの入力端にカップリング接続されて、交流電源を第1の直流電源に変換し、スイッチトキャパシタ変換チップは、出力端がバッテリにカップリング接続されて、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電し、第2の直流電源の電圧は第1の直流電源の電圧より低く、また第2の直流電源の電流は第1の直流電源の電流より大きい。
実現可能な一設計において、スイッチトキャパシタ変換チップは、1次スイッチトキャパシタ変換チップと2次スイッチトキャパシタ変換チップとを含み、無線充電受信装置は、電源管理チップPMICをさらに含み、1次スイッチトキャパシタ変換チップは、入力端が受信チップにカップリング接続され、出力端が、2次スイッチトキャパシタ変換チップの入力端及び電源管理チップの入力端にそれぞれカップリング接続され、2次スイッチトキャパシタ変換チップと電源管理チップとの出力端が、いずれもバッテリにカップリング接続され、1次スイッチトキャパシタ変換チップは、第1の直流電源に基づいて第3の直流電源を出力し、第3の直流電源の電圧は第1の直流電源の電圧より低く、且つ第3の直流電源の電流は第1の直流電源の電流より高く、2次スイッチトキャパシタ変換チップは、第3の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいて第1の電流でバッテリを充電し、第2の直流電源の電圧は、第3の直流電源の電圧より低く、また第2の直流電源の電流は、第3の直流電源の電流より高く、電源管理チップは、第2の直流電源に基づいて第2の電流でバッテリを充電し、第2の電流は、第1の電流より小さい。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、スイッチトキャパシタ変換チップは、電流制限モードに入るように制御され、第1の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、スイッチトキャパシタ変換チップが電流制限モードに入ることは、具体的に、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗を大きくすることと、または、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにすることと、または、充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電することと、または、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮することとのうちの少なくとも1つを含む。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、電流制限モードを抜けるようにスイッチトキャパシタ変換チップを制御し、第2の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、通路電流は、スイッチトキャパシタ変換チップの入力電流と、スイッチトキャパシタ変換チップの出力電流と、スイッチトキャパシタ変換チップにおける内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含む。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、端末のプロセッサの第1の制御命令に従って電流閾値を調整する。
選択可能に、充電効率を向上させ、電力伝送状態を最適化するために、プロセッサは、通路電流(例えば、IREC、IBUS、またはIOUT)及び電圧(VREC、VBUS、またはVOUT)をリアルタイムで検出するとともに、無線充電送信装置及び無線充電受信装置における各モジュール(例えば、スイッチトキャパシタ変換チップ)をリアルタイムで制御して、現在の電力を最大にし、効率を最高にし、充電をさらに安定させることができる。
具体的には、バッテリが定電流充電段階にある場合、バッテリ電圧が徐々に上昇し、それによってバッテリに流入する電流が徐々に減少するので、この場合、プロセッサが通路電流の減少を検出した後に出力電圧を上昇させるように充電器を制御して、充電電流を最大状態に維持することができる。バッテリが定電圧充電段階に入ると、バッテリ電流は徐々に減少するので、この場合、プロセッサは、電圧出力を降下させるように充電器を制御するか、またはスイッチチップをオン状態で作動するように制御して、全体の充電効率を向上させることができる。
実現可能な一設計において、プロセッサは、さらに、電流閾値を調整するための第1の制御命令を現在の所望の通路電流に基づいて出力し、スイッチトキャパシタ変換チップは、さらに、第1の制御命令に従って電流閾値を調整する。
具体的には、図9に示すように、バッテリ充電は、通常、定電圧充電段階と定電流充電段階とに分けられ、時間帯によって、通路電流は異なる。より正確な制御を達成するために、プロセッサは、現在の所望の通路電流に基づいて電流閾値を調整することができる。
実現可能な一設計において、プロセッサは、さらに、定電圧充電段階に入る場合、スイッチトキャパシタ変換チップをオン状態であるように制御するための第2の制御命令を出力し、スイッチトキャパシタ変換チップは、さらに、第2の制御命令に従ってオン状態にある。具体的には、プロセッサは、スイッチキャパシタ変換チップをオン状態になるようにトリガするためのトリガ信号をスイッチトキャパシタ変換チップに送信することができ、スイッチキャパシタ変換チップは、当該トリガ信号に基づいてオン状態になることができる。
実現可能な一設計において、スイッチトキャパシタ変換チップが、スイッチトキャパシタの内部スイッチングトランジスタのオン抵抗を大きくすることによって電流制限モードに入る場合、プロセッサは、さらに、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗に基づいて、受信チップの出力電圧を制御する。具体的には、プロセッサは、受信チップの出力電圧と、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗とに基づいて、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗が過大であるか否かを判断することができる。スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗が過大である場合、受信チップの出力電圧を降下させるように、例えば、受信チップの出力電圧を20mV降下させるように制御することができる。さらに、受信チップの出力電圧VRECが低くなるので、IRECも低くなり、同じ充電電力を実現するために、スイッチトキャパシタ変換チップは、その内部スイッチングトランジスタのオン抵抗を低くすることができる。
実現可能な一設計において、スイッチトキャパシタ変換チップが、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにする形態、または、充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電する形態で、電流制限モードに入る場合、プロセッサは、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン状態に基づいて、無線充電受信デバイスの受信チップの出力電圧を降下させるように制御する。具体的には、プロセッサは、受信チップの出力電圧と、降下させるの内部スイッチングトランジスタのオン状態とに基づいて、スイッチトキャパシタ変換チップが電流制限モードを抜けるべきか否かを判断することができる。スイッチトキャパシタ変換チップが電流制限モードを抜けるべきである場合、受信チップの出力電圧を降下させるように、例えば、受信チップの出力電圧を20mV降下させるように制御することができる。さらに、受信チップの出力電圧VRECが低くなるので、IRECも低くなり、同じ充電電力を実現するために、スイッチトキャパシタ変換チップは、電流制限モードを抜けることができる。
実現可能な一設計において、スイッチトキャパシタ変換チップが、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮する形態で電流制限モードに入る場合、プロセッサは、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間に基づいて、無線充電受信装置の受信チップの出力電圧を制御する。具体的には、プロセッサは、受信チップの出力電圧と、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間とに基づいて、スイッチトキャパシタ変換チップが電流制限モードを抜けるべきであるか否かを判断することができる。スイッチトキャパシタ変換チップが電流制限モードを抜けるべきである場合、受信チップの出力電圧を降下させるように、例えば、受信チップの出力電圧を20mV降下させるように制御することができる。さらに、受信チップの出力電圧VRECが低くなるので、IRECも低くなり、同じ充電電力を実現するために、スイッチトキャパシタ変換チップは、電流制限モードを抜けることができる。
本開示は、無線充電送信装置と、バッテリと、無線充電受信装置とを含む充電システムをさらに提供する。ここで、無線充電受信装置は、受信コイルと、受信チップと、スイッチトキャパシタ変換チップと、を含み、受信コイルは、無線充電送信装置の送信コイルの交番磁界にカップリングされて交流電源を取得し、受信チップの入力端が受信コイルにカップリング接続され、受信チップの出力端がスイッチトキャパシタ変換チップの入力端にカップリング接続されて、交流電源を第1の直流電源に変換し、スイッチトキャパシタ変換チップは、出力端がバッテリにカップリング接続されて、第1の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいてバッテリを充電し、第2の直流電源の電圧は第1の直流電源の電圧より低く、また第2の直流電源の電流は第1の直流電源の電流より大きい。
実現可能な一設計において、スイッチトキャパシタ変換チップは、1次スイッチトキャパシタ変換チップと2次スイッチトキャパシタ変換チップとを含み、無線充電受信装置は、電源管理チップPMICをさらに含み、1次スイッチトキャパシタ変換チップは、入力端が受信チップにカップリング接続され、出力端が、2次スイッチトキャパシタ変換チップの入力端及び電源管理チップの入力端にそれぞれカップリング接続され、2次スイッチトキャパシタ変換チップと電源管理チップとの出力端が、いずれもバッテリにカップリング接続され、1次スイッチトキャパシタ変換チップは、第1の直流電源に基づいて第3の直流電源を出力し、第3の直流電源の電圧は第1の直流電源の電圧より低く、且つ第3の直流電源の電流は第1の直流電源の電流より高く、2次スイッチトキャパシタ変換チップは、第3の直流電源に基づいて第2の直流電源を出力し、第2の直流電源に基づいて第1の電流でバッテリを充電し、第2の直流電源の電圧は、第3の直流電源の電圧より低く、また第2の直流電源の電流は、第3の直流電源の電流より高く、電源管理チップは、第2の直流電源に基づいて第2の電流でバッテリを充電し、第2の電流は、第1の電流より小さい。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、スイッチトキャパシタ変換チップは、電流制限モードに入るように制御され、第1の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、スイッチトキャパシタ変換チップが電流制限モードに入ることは、具体的に、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗を大きくすることと、または、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにすることと、または、充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続されて放電することと、または、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮することとのうちの少なくとも1つを含む。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流が電流閾値と第2の電流オフセット量との差より小さい場合、電流制限モードを抜けるようにスイッチトキャパシタ変換チップを制御し、第2の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、通路電流は、スイッチトキャパシタ変換チップの入力電流と、スイッチトキャパシタ変換チップの出力電流と、スイッチトキャパシタ変換チップにおける内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含む。
実現可能な一設計において、スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、スイッチトキャパシタ変換チップは、電流制限モードに入るように制御され、第1の電流オフセット量は、ゼロ以上であり、且つ電流閾値より小さい。
実現可能な一設計において、充電システムは、プロセッサとスイッチトキャパシタ変換チップとをさらに含み、前記プロセッサは、電流閾値を調整するための第1の制御命令を現在の所望の通路電流に基づいて出力し、前記スイッチトキャパシタ変換チップは、さらに、第1の制御命令に従って電流閾値を調整する。
実現可能な一設計において、プロセッサは、さらに、スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗、キャパシタ変換チップの内部スイッチングトランジスタのオン状態、または、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間に基づいて、無線充電受信装置の受信チップの出力電圧を降下させるように制御する。
実現可能な一設計において、プロセッサは、さらに、定電圧充電段階に入る場合、スイッチトキャパシタ変換チップをオン状態であるように制御するための第2の制御命令を出力し、スイッチトキャパシタ変換チップは、さらに、第2の制御命令に従ってオン状態にある。
図4に示す無線充電受信装置を例とし、図10に示すように、選択可能に、当該充電システムにおける無線充電送信装置は、充電器15と、送信チップ16と、送信コイル17と、を含む。送信チップ16の入力端が充電器15にカップリング接続され、送信チップ16の出力端が送信コイル17にカップリング接続され、送信チップ16は、制御プロトコルに基づいて充電器15と通信し、充電器15によって出力される直流電源の電圧を制御して、直流電源を交流電源に変換し、送信コイル17は、交流電源を交番磁界に変換する。ここで、充電器71は、送信チップ72に直接カップリング接続され、無線充電送信装置ではバック回路を無くしているため、バック回路による電力消費を回避することができ、充電効率がさらに向上するステップ。
選択可能に、制御プロトコルは、電力伝送(Power Delivery,PD)、急速充電(Quick Charge,QC)4.0、及び超充電プロトコル(Super Charge Protocol,SCP)プロトコルであってもよい。送信チップ16は、PD、QC4.0、SCPなどのプロトコルを介して充電器15と直接通信し、出力電圧の調整精度は20mVに達することができ、出力電圧は3V〜20V以上であり、バックエンドが必要とする電力を正確に調整することができる。また、送信チップの出力電圧がBUCK回路の出力電圧より高いので、コイル上の電流を小さくすることができ、それによってコイルの発熱が低減される。
なお、図10において、送信コイルと直列接続されているキャパシタと、受信コイルと直列接続されているキャパシタとは、いずれも充電電力を向上させるための共振キャパシタであってもよい。
一例として、充電電力を20ワット(W)とし、スイッチトキャパシタ変換チップを1/2スイッチトキャパシタ変換チップとすると、作業プロセスは、以下のようである。
(1)送信チップは、PD/QC4.0/SCPなどのプロトコルを介して充電器と直接通信し、充電器の出力電圧VDCを約20ボルト(V)調整する。
(2)送信チップは、充電器によって出力される直流電圧を交流電圧に変換して送信コイルに供給する。
(3)受信コイルが送信コイルのエネルギーにカップリング接続することにより、交流電圧を受信チップに出力し、受信コイルに流れる電流は約1アンペア(A)である。
(4)受信チップは、交流電圧を整流して約19Vの直流電圧VRECを出力し、通路電流IRECは約1.1A、であり、すなわち出力電力は20Wである。
(5)VRECは、1次1/2スイッチトキャパシタ変換チップによって半分降圧されて、出力VBUSは約9Vになり、通路電流IBUSは約2.2Aになる。
(6)VBUSは、2次1/2スイッチトキャパシタ変換チップによって半分降圧されて、出力VOUTは約9Vになり、通路電流IOUTは約4.4Aになる。
(7)VBUSは、PMICを介して補助電源として使用して、入力及び出力電流制限、トリクル、小電力充電などの機能を実現することができる。
当業者は、明細書を考慮し、ここで開示された発明を実践した後、本発明の他の実施例を容易に想到することができる。本出願は、本発明の一般的な原理に従って、本開示に開示されていない当該技術分野における周知の知識または慣用技術手段を含む、本発明のあらゆる変形、用途または適宜変更を網羅することを意図する。明細書及び実施例は例示的なものにすぎないと見なすべきであり、本願発明の本当な範囲及び精神は、請求の範囲によって示される。
なお、本開示は、上記説明に記載され、図面に示されている厳密な構成に限定されず、その範囲から逸脱しない限り、様々な修正及び変更を行うことができる。本開示の範囲は、添付の特許請求の範囲のみによって限定される。

Claims (17)

  1. 無線充電受信装置であって、
    受信コイルと、受信チップと、スイッチトキャパシタ変換チップと、を含み、
    前記受信コイルは、無線充電送信装置の送信コイルの交番磁界にカップリングして交流電源を取得し、
    前記受信チップは、入力端が前記受信コイルにカップリング接続され、出力端が前記スイッチトキャパシタ変換チップの入力端にカップリング接続されて、前記交流電源を第1の直流電源に変換し、
    前記スイッチトキャパシタ変換チップは、出力端がバッテリにカップリング接続されて、前記第1の直流電源に基づいて第2の直流電源を出力し、前記第2の直流電源に基づいてバッテリを充電し、前記第2の直流電源の電圧は前記第1の直流電源の電圧より低く、前記第2の直流電源の電流は前記第1の直流電源の電流より高い、
    ことを特徴とする無線充電受信装置。
  2. 前記スイッチトキャパシタ変換チップは、1次スイッチトキャパシタ変換チップと2次スイッチトキャパシタ変換チップとを含み、
    前記無線充電受信装置は、電源管理チップPMICをさらに含み、
    前記1次スイッチトキャパシタ変換チップは、入力端が前記受信チップにカップリング接続され、出力端が前記2次スイッチトキャパシタ変換チップの入力端と前記電源管理チップの入力端とにそれぞれカップリング接続され、前記2次スイッチトキャパシタ変換チップの出力端と前記電源管理チップの出力端とが、いずれも前記バッテリにカップリング接続され、
    前記1次スイッチトキャパシタ変換チップは、前記第1の直流電源に基づいて第3の直流電源を出力し、前記第3の直流電源の電圧は前記第1の直流電源の電圧より低く、前記第3の直流電源の電流は前記第1の直流電源の電流より高く、
    前記2次スイッチトキャパシタ変換チップは、前記第3の直流電源に基づいて第2の直流電源を出力し、前記第2の直流電源に基づいて第1の電流で前記バッテリを充電し、前記第2の直流電源の電圧は、前記第3の直流電源の電圧より低く、前記第2の直流電源の電流は、前記第3の直流電源の電流より高く、
    前記電源管理チップは、前記第2の直流電源に基づいて第2の電流で前記バッテリを充電し、前記第2の電流は、前記第1の電流より小さい、
    ことを特徴とする請求項1に記載の無線充電受信装置。
  3. 前記スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、前記通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、前記スイッチトキャパシタ変換チップを電流制限モードに入るように制御し、前記第1の電流オフセット量は、ゼロ以上であり、且つ前記電流閾値より小さい、
    ことを特徴とする請求項1または2に記載の無線充電受信装置。
  4. 前記スイッチトキャパシタ変換チップが、前記スイッチトキャパシタ変換チップを電流制限モードに入るように制御することは、具体的に、
    スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗を大きくすることと、スイッチトキャパシタ変換チップにおいて充電キャパシタを充電する内部スイッチングトランジスタをオフにすることと、充電キャパシタをスイッチトキャパシタ変換チップの出力端に並列接続して放電することと、スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間を短縮することとのうちの少なくとも1つを含む、
    ことを特徴とする請求項3に記載の無線充電受信装置。
  5. 前記スイッチトキャパシタ変換チップは、さらに、前記通路電流が前記電流閾値と第2の電流オフセット量との差より小さい場合、前記スイッチトキャパシタ変換チップを電流制限モードを終了するように制御し、前記第2の電流オフセット量は、ゼロ以上であり、且つ前記電流閾値より小さい、
    ことを特徴とする請求項3に記載の無線充電受信装置。
  6. 前記通路電流は、前記スイッチトキャパシタ変換チップの入力電流と、前記スイッチトキャパシタ変換チップの出力電流と、前記スイッチトキャパシタ変換チップにおける内部スイッチングトランジスタに流れる電流とのうちのいずれか1つを含む、
    ことを特徴とする請求項3に記載の無線充電受信装置。
  7. 前記スイッチトキャパシタ変換チップは、さらに、端末のプロセッサの第1の制御命令に従って前記電流閾値を調整する、
    ことを特徴とする請求項3に記載の無線充電受信装置。
  8. 前記スイッチトキャパシタ変換チップは、さらに、前記プロセッサの第2の制御命令に従ってオン状態にある、
    ことを特徴とする請求項7に記載の無線充電受信装置。
  9. 請求項1〜8のいずれかに記載の無線充電受信装置を含む、
    ことを特徴とする端末。
  10. 前記端末は、プロセッサをさらに含み、
    前記スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、前記通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、前記スイッチトキャパシタ変換チップを電流制限モードに入るように制御し、前記第1の電流オフセット量は、ゼロ以上であり、且つ前記電流閾値より小さく、
    前記プロセッサは、現在の所望の通路電流に基づいて、前記電流閾値を調整するための第1の制御命令を出力し、
    前記スイッチトキャパシタ変換チップは、さらに、前記第1の制御命令に従って前記電流閾値を調整する、
    ことを特徴とする請求項9に記載の端末。
  11. 前記プロセッサは、さらに、前記スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗、前記キャパシタ変換チップの内部スイッチングトランジスタのオン状態、または、前記スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間に基づいて、前記無線充電受信装置の受信チップの出力電圧を降下させるように制御する、
    ことを特徴とする請求項10に記載の端末。
  12. 前記プロセッサは、さらに、定電圧充電段階に入る場合、前記スイッチトキャパシタ変換チップをオン状態になるように制御するための第2の制御命令を出力し、
    前記スイッチトキャパシタ変換チップは、さらに、前記第2の制御命令に従ってオン状態にある、
    ことを特徴とする請求項10に記載の端末。
  13. 無線充電送信装置と、バッテリと、請求項1〜8のいずれかに記載の無線充電受信装置と、を含む、
    ことを特徴とする充電システム。
  14. 前記充電システムは、プロセッサをさらに含み、
    前記スイッチトキャパシタ変換チップは、さらに、通路電流を検出し、前記通路電流が電流閾値と第1の電流オフセット量との合計以上である場合、前記端末スイッチトキャパシタ変換チップを電流制限モードに入るように制御し、前記第1の電流オフセット量は、ゼロ以上であり、且つ前記電流閾値より小さく、
    前記プロセッサは、現在の所望の通路電流に基づいて、前記電流閾値を調整するための第1の制御命令を出力し、
    前記スイッチトキャパシタ変換チップは、さらに、前記第1の制御命令に従って前記電流閾値を調整する、
    ことを特徴とする請求項13に記載の充電システム。
  15. 前記プロセッサは、さらに、前記スイッチトキャパシタ変換チップの内部スイッチングトランジスタのオン抵抗、前記キャパシタ変換チップの内部スイッチングトランジスタのオン状態、または、前記スイッチトキャパシタ変換チップにおける充電キャパシタの充電時間に基づいて、前記無線充電受信装置の受信チップの出力電圧を降下させるように制御する、
    ことを特徴とする請求項14に記載の充電システム。
  16. 前記プロセッサは、さらに、定電圧充電段階に入る場合、前記スイッチトキャパシタ変換チップをオン状態になるように制御するための第2の制御命令を出力し、
    前記スイッチトキャパシタ変換チップは、さらに、前記第2の制御命令に従ってオン状態にある、
    ことを特徴とする請求項15に記載の充電システム。
  17. 前記無線充電送信装置は、充電器と、送信チップと、送信コイルと、を含み、
    前記送信チップは、入力端が前記充電器にカップリング接続され、出力端が前記送信コイルにカップリング接続され、
    前記送信チップは、制御プロトコルに基づいて前記充電器と通信して、前記充電器によって出力される直流電源の電圧を制御し、前記直流電源を交流電源に変換し、
    前記送信コイルは、前記交流電源を交番磁界に変換する、
    ことを特徴とする請求項13に記載の充電システム。
JP2019537374A 2018-09-28 2018-11-14 無線充電受信装置、充電システム及び端末 Active JP6949121B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811137409.2 2018-09-28
CN201811137409.2A CN109274147B (zh) 2018-09-28 2018-09-28 无线充电接收装置、充电系统及终端
PCT/CN2018/115420 WO2020062481A1 (zh) 2018-09-28 2018-11-14 无线充电接收装置、充电系统及终端

Publications (3)

Publication Number Publication Date
JP2021502040A JP2021502040A (ja) 2021-01-21
JP2021502040A5 true JP2021502040A5 (ja) 2021-03-04
JP6949121B2 JP6949121B2 (ja) 2021-10-13

Family

ID=65198105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019537374A Active JP6949121B2 (ja) 2018-09-28 2018-11-14 無線充電受信装置、充電システム及び端末

Country Status (7)

Country Link
US (1) US11527905B2 (ja)
EP (1) EP3651315A1 (ja)
JP (1) JP6949121B2 (ja)
KR (1) KR102207502B1 (ja)
CN (1) CN109274147B (ja)
RU (1) RU2733214C1 (ja)
WO (1) WO2020062481A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200099416A (ko) * 2019-02-14 2020-08-24 삼성전자주식회사 배터리를 충전하는 방법 및 그 방법을 적용한 전자 장치
CN111953082B (zh) 2019-05-14 2023-12-22 伏达半导体(合肥)股份有限公司 高效的无线充电系统和方法
CN110764023B (zh) * 2019-09-18 2021-07-09 华为技术有限公司 一种整流芯片及终端设备
CN113890354B (zh) * 2020-07-03 2024-04-09 华为技术有限公司 一种谐振开关电容电路、电子设备
CN114069748A (zh) * 2020-08-06 2022-02-18 北京小米移动软件有限公司 充电方法、装置、电子设备和存储介质
CN112072913B (zh) * 2020-09-22 2021-10-29 禹创半导体(深圳)有限公司 一种用于驱动显示ic的高兼容性电源架构
US20220311326A1 (en) * 2021-03-24 2022-09-29 Psemi Corporation Power converters and methods for protecting power converters
CN115769464A (zh) * 2021-05-26 2023-03-07 华为数字能源技术有限公司 一种反向无线充电的电子设备及方法
CN114665556A (zh) * 2022-04-01 2022-06-24 北京小米移动软件有限公司 充电转换装置、充电方法及装置、电子设备和存储介质
CN117526471A (zh) * 2022-07-28 2024-02-06 北京小米移动软件有限公司 应用于穿戴设备的无线充电电路及穿戴设备
CN116811588B (zh) * 2023-08-31 2024-02-09 宁德时代新能源科技股份有限公司 电力系统及电动汽车

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140129914A (ko) * 2013-04-30 2014-11-07 인텔렉추얼디스커버리 주식회사 무선 전력 수신 장치 및 무선 전력 수신 방법
RU133370U1 (ru) * 2013-05-20 2013-10-10 Федеральное государственное унитарное предприятие "18 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации Система индуктивной зарядки аккумуляторной батареи портативного устройства
CN105763048A (zh) * 2016-04-15 2016-07-13 上海交通大学 带串联型降压升流电路的buck变换器
GB2550368A (en) * 2016-05-17 2017-11-22 General Electric Technology Gmbh Control of high-voltage, direct current systems
US10516284B2 (en) 2016-09-15 2019-12-24 Qualcomm Incorporated Voltage controlled charge pump and battery charger
CN109891354B (zh) * 2016-11-01 2021-05-25 莱恩半导体股份有限公司 对有效高速电池充电的反馈控制
CN108233455A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种无线充电电路、方法、系统及电子设备
CN207518336U (zh) * 2017-07-31 2018-06-19 珠海市魅族科技有限公司 一种无线充电电路、系统及电子设备
CN207518328U (zh) * 2017-07-31 2018-06-19 珠海市魅族科技有限公司 一种终端设备及无线充电系统
CN108233454A (zh) * 2017-07-31 2018-06-29 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及电子设备
CN107947305A (zh) * 2017-12-01 2018-04-20 珠海市魅族科技有限公司 一种无线充电电路、系统、方法及终端设备
CN207766037U (zh) * 2017-12-01 2018-08-24 珠海市魅族科技有限公司 一种无线充电电路、系统及终端设备
CN108183559A (zh) * 2018-01-12 2018-06-19 广东希荻微电子有限公司 无线充电接收端直接给电池充电的单芯片工作方法
CN108539832A (zh) * 2018-03-16 2018-09-14 维沃移动通信有限公司 无线充电接收端设备、无线充电方法、系统及终端设备

Similar Documents

Publication Publication Date Title
JP6949121B2 (ja) 無線充電受信装置、充電システム及び端末
JP2021502040A5 (ja)
EP3599695B1 (en) Charging circuit, terminal and charging method
US7928705B2 (en) Switched mode voltage converter with low-current mode and methods of performing voltage conversion with low-current mode
JP5912514B2 (ja) 電子機器
KR102365912B1 (ko) 충전 회로, 전자 기기, 충전 방법 및 충전 장치
US11532951B2 (en) Electronic device including resonant charging circuit
US11088560B2 (en) Charger having fast transient response and control method thereof
EP4312337A1 (en) Circuit of wireless charging, method of charging battery and wearable device
CN216670603U (zh) 供电装置、芯片、电源及电子设备
CN112821475A (zh) 充电电路、充电控制方法及装置
TW202335410A (zh) 一種穩壓器電路及相關的控制方法
US9276469B2 (en) DC-DC converter for the control of a battery charge current in portable electronic devices
CN108718149A (zh) 供电电路及电子设备
US20240322562A1 (en) Battery hot swapping
CN116365722A (zh) 无线充电装置以及方法
CN114006429A (zh) 充电方法、装置、终端设备及计算机可读存储介质
CN115701678A (zh) 充电设备、受电设备、充电系统及充电控制方法
CN117996976A (zh) 无线充电芯片以及电子设备
CN117977730A (zh) 充电方法、装置、设备及存储介质
CN117526470A (zh) 无线充电方法、装置、可穿戴设备及存储介质
CN117335512A (zh) 充放电电路、充放电电池及电子设备
CN114498783A (zh) 一种无线充电的控制方法、装置、设备及存储介质
US8890485B2 (en) Charger circuit
CN118572804A (zh) 充电控制方法及装置、电子设备和存储介质