JP2021196989A - 計画装置、計画方法およびプログラム - Google Patents

計画装置、計画方法およびプログラム Download PDF

Info

Publication number
JP2021196989A
JP2021196989A JP2020104272A JP2020104272A JP2021196989A JP 2021196989 A JP2021196989 A JP 2021196989A JP 2020104272 A JP2020104272 A JP 2020104272A JP 2020104272 A JP2020104272 A JP 2020104272A JP 2021196989 A JP2021196989 A JP 2021196989A
Authority
JP
Japan
Prior art keywords
subsystem
maintenance
plan
priority
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020104272A
Other languages
English (en)
Inventor
俊作 松本
Shunsaku Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2020104272A priority Critical patent/JP2021196989A/ja
Priority to CN202110554997.5A priority patent/CN113822459A/zh
Priority to US17/329,400 priority patent/US20210398087A1/en
Publication of JP2021196989A publication Critical patent/JP2021196989A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/08Probabilistic or stochastic CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/22Yield analysis or yield optimisation

Abstract

【課題】運転計画または保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成する。【解決手段】重点特定部は、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する対象システムの評価指標の変化が大きい重点サブシステムを特定する。計画生成部は、重点サブシステムについて、評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成する。【選択図】図1

Description

本開示は、計画装置、計画方法およびプログラムに関する。
特許文献1には、プラントなどの多数のサブシステムを有する複雑なシステムについて、プラントの全体的な生産損失の原因となっている箇所を抽出する技術が開示されている。
米国特許出願公開第2019/0121334号明細書
ところで、対象システムの運転および保守は互いにトレードオフの関係にあり、双方の最適化を行うことは困難である。特許文献1に開示された技術は、対象システムのセンサデータと当該システムのデジタルモデルとの比較により、生産損失の原因となっているサブシステムを抽出する。しかしながら、サブシステムによっては、保守を重点的に行ってもその生産性の向上に寄与しないものがある。例えば、故障が発生する頻度が保守の条件によらず変わらないサブシステムについて保守計画を検討しても、生産性を向上することは困難である。
本開示の目的は、運転計画または保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成することができる計画装置、計画方法およびプログラムを提供することにある。
本発明の第1の態様によれば、計画装置は、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定する重点特定部と、前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成する計画生成部とを備える。
本発明の第2の態様によれば、計画方法は、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定するステップと、前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成するステップとを備える。
本発明の第3の態様によれば、プログラムは、コンピュータに、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定するステップと、前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成するステップとを実行させる。
上記態様のうち少なくとも1つの態様によれば、運転計画または保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成することができる。
第1の実施形態に係る管理装置の構成を示す概略ブロック図である。 第1の実施形態に係る計画の生成方法を示すフローチャートである。 第1の実施形態における対象システムの故障確率の時系列の推測結果の例を示す図である。 第1の実施形態に係る事前保全コストと事後保全コストの関係の例を示す図である。 第1の実施形態に係る運転範囲の出力の例を示す第1の図である。 第1の実施形態に係る運転範囲の出力の例を示す第2の図である。 運転計画ごとの破損確率の比較情報を表す図である。 第1の実施形態に係る重点サブシステムの状態を示す図の一例である。 チョークバルブの開度と配管のエロージョン率との関係を示すグラフデータの例である。 配管厚さに基づく寿命予測データの例である。 管理装置の機能を示す概略ブロック図である。 FMEAモジュールの入出力関係を示す図である。 故障評価モジュールの入出力関係を示す図である。 保守評価モジュールの入出力関係を示す図である。 RAM分析モジュールの入出力関係を示す図である。 機器リスク評価モジュールの入出力関係を示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
〈第1の実施形態〉
《管理装置1の構成》
以下、図面を参照しながら実施形態について詳しく説明する。
図1は、第1の実施形態に係る管理装置1の構成を示す概略ブロック図である。
第1の実施形態に係る管理装置1は、複数のサブシステムからなる対象システムの運転計画および保守計画を生成する。管理装置1は計画装置の一例である。対象システムの例としては、発電プラントや石油生産プラントなどの産業プラントが挙げられる。
管理装置1は、記憶部11、故障評価部12、保守評価部13、RAM分析部14(RAM:Reliability, Availability, and Maintainability)、入力部15、リスク分析部16、状態監視部17、出力部18を備える。
記憶部11は、対象システムの設計時に実施されたFMEA(Failure Mode and Effect Analysis)によって求められた対象システムの故障リスクに関するデータを記憶する。具体的には、記憶部11は、故障モードリスト、信頼性ブロック図、故障率データベース、およびサブシステムの数理モデルを記憶する。
故障モードリストは、対象システムが備える故障の可能性があるサブシステムと、当該サブシステムの故障モードと、当該故障モードによる影響(危険優先指数)とを関連付けたリストである。
信頼性ブロック図は、サブシステムどうしの故障のつながりを示すデータである。信頼性ブロック図は、画像データでなくてよく、コンピュータによってサブシステムどうしの関係を特定可能なデータであればよい。信頼性ブロック図で表される各サブシステムは、メンテナンス管理単位で切り分けられる。
故障率データベースは、各サブシステムの故障率に関するデータを格納するデータベースである。故障率データベースが格納するデータは、FMEAによって得られたものに限られず、公開信頼性データベース、独自に用意したプライベートデータベース、公開データおよびプライベートデータを重みづけして結合したものなどから得られるものであってもよい。
サブシステムの数理モデルは、サブシステムの故障に関する挙動を模擬するためのモデルである。数理モデルは、例えば、故障率データベースのデータから生成される統計モデル(データドリブンモデル)や物理モデル、あるいは、両者のハイブリッドモデルによって実現される。なお、一般的に物理モデルの構築には、サブシステムの詳細な設計情報が必要であり、統計モデルと比較して労力を要する。そのため、管理装置1の初期状態においては、記憶部11は数理モデルとして統計モデルのみを記憶していてよい。
故障評価部12は、記憶部11が記憶する数理モデルに基づいて、各サブシステムの故障について評価する。具体的には、故障評価部12は、記憶部11が記憶する数理モデルに基づいて、各サブシステムの統計的故障率(statistical failure rate)を算出する。故障評価部12は、シミュレーションによって、各サブシステムについて、故障のリスクを所定の閾値以下に抑えるための標準運転範囲(Standard Operation Window)、および超えた場合に故障が直ちに発生する臨界運転範囲(Critical Operation Window)を特定する。例えば、故障評価部12は、統計モデルを用いてモンテカルロシミュレーションによりサブシステムの故障を模擬することで、統計的故障率、ならびに標準運転範囲および臨界運転範囲を算出する。また故障評価部12は、運転計画および保守計画と、記憶部11が記憶する数理モデルとに基づいて、故障確率(probability of failure)の時系列を求める。
保守評価部13は、コストまたは保守に要する時間が最小となるように保守条件を生成する。保守条件は、各サブシステムの故障モード別の事後保全に係る条件、および各サブシステムの事前保全に係る条件を含む。例えば、保守評価部13は、対象システムと類似のサブシステムを有する他のシステムの保守実績データに基づく統計モデルを用いて、対象のサブシステムの種類、統計的故障率、労働力および重機の使用などに係る単位コストから、対象のサブシステムの保守に掛かる時間および労働力を決定する。また、保守評価部13は、サブシステムの保守条件と、労働力および重機の使用などに係る単位コストとに基づいて、保守に掛かる時間およびコストを算出する。
RAM分析部14は、記憶部11が記憶する信頼性ブロック図、故障評価部12が算出した各サブシステムの統計的故障率、保守評価部13が算出した保守に掛かる時間およびコスト、並びに保守スケジュールに基づいて、各サブシステムの信頼性、可用性および収益性を算出する。RAM分析部14は、例えばモンテカルロシミュレーションにより、各サブシステムの信頼性、可用性および影響度を算出する。影響度は、サブシステムの故障によって生じる保守コスト、システムの運転の停止に伴う損失、人的被害、環境被害、信用失墜、保証稼働率未達のための補償などを、金額などによって定量的に表したものである。RAM分析部14は、運転条件および保守条件の変化に対する信頼性、可用性および影響度の変化が大きいサブシステムを、重点サブシステムとして特定する。
入力部15は、RAM分析部14によって特定された重点サブシステムに係る物理モデルの入力を受け付ける。入力された物理モデルは、記憶部11に記録される。
リスク分析部16は、RAM分析部14によって特定された重点サブシステムに係る物理モデルによるシミュレーションによって、当該重点サブシステムについて、システムの運転利益から保守コストおよび故障の影響を減算した金額が最も多くなるような適正運転範囲(Optimal Operation Window)を特定する。適正運転範囲は、標準運転範囲に包含される。
リスク分析部16は、システムの運転利益から保守コストおよび故障の影響を減算した金額が最も多くなる運転計画を生成する。リスク分析部16は、運転計画の探索において、計算量を低減するために、重点サブシステムの運転範囲を適正運転範囲内に限定して探索する。リスク分析部16は、生成した運転計画に基づいて、保守コストまたは故障確率を低減するように保守スケジュールを決定する。
状態監視部17は、リスク分析部16が生成した運転計画および保守計画と、現実のシステムに設けられたセンサの計測値とに基づいて、重点サブシステムの状態を評価する。例えば、状態監視部17は、重点サブシステムにおける劣化の進行度合いや、故障が発生するまでの残り時間などを予測する。
出力部18は、リスク分析部16が決定した運転計画および保守計画、適正運転範囲、標準運転範囲および臨界運転範囲、ならびに状態監視部17の状態評価をディスプレイ等に出力する。
《管理装置1の動作》
次に、管理装置1を用いて対象システムの運転計画および保守計画を生成する方法について説明する。図2は、第1の実施形態に係る計画の生成方法を示すフローチャートである。
対象システムの設計時に実施されたFMEAにより得られた故障モードリスト、信頼性ブロック図および故障率データベースは、予め記憶部11に記憶される。また、記憶部11に記憶される故障率データベースに基づいて、管理者は故障が発生し得る各サブシステムの統計モデルを生成し、記憶部11に記録する。統計モデルの生成は、故障率データベースに基づいて管理装置1が自動的に生成してもよい。
管理装置1が計画の生成処理を開始すると、故障評価部12は、記憶部11が記憶する統計モデルに基づいて、各サブシステムの統計的故障率ならびに標準運転範囲および臨界運転範囲を算出する(ステップS1)。
次に、保守評価部13は、コストまたは保守に要する時間が最小となるように、記憶部11が記憶する各サブシステムの故障モード別の事後保全に係る保守条件、および各サブシステムの事前保全に係る保守条件を生成する(ステップS2)。保守評価部13は、予め設定された初期の保守条件を変更することで適切な保守条件を生成してもよいし、新規に保守条件を生成してもよい。保守評価部13は、生成した各保守条件について、必要なコストおよび時間を特定する(ステップS3)。
RAM分析部14は、ステップS3で算出した保守に掛かる時間およびコスト、ならびに記憶部11が記憶する統計モデルに基づいて、各サブシステムの故障による影響度の大きさを算出する(ステップS4)。また、RAM分析部14は、記憶部11が記憶する信頼性ブロック図、およびステップS1で算出した各サブシステムの統計的故障率とステップS4で算出した故障による影響度に基づいて、ある運転期間での各サブシステムの故障リスクを重要度として算出する(ステップS5)。なお、影響度と故障確率を乗算したものは、リスクの大きさを示し、第1の実施形態における評価指標に相当する。RAM分析部14は、ステップS6で算出した重要度が所定の閾値より大きいサブシステムを、重点サブシステムとして特定する(ステップS6)。なお、他の実施形態においては、RAM分析部14は、重要度が大きい上位所定数のサブシステムを重点サブシステムとして特定してもよい。RAM分析部14は、特定した重点サブシステムの識別情報(品番、名称、設置個所など)をディスプレイ等に表示させる(ステップS7)。これにより、管理者は物理モデルの作成が必要な重点サブシステムを認識することができる。
管理者は、ステップS7で表示された重点サブシステムについて、特に、保守や運転条件の違いにより、故障確率が変動しうるサブシステムについて、故障を模擬する物理モデルを生成する。このとき、管理者は、1つの重点サブシステムについて、異なる物理現象を模擬する複数のシミュレーションモデルを生成することが好ましい。例えば、重点サブシステムが固形物を含む流体を輸送する配管である場合に、流体解析に基づくシミュレーションモデルと、摩耗を模擬するシミュレーションモデルとを生成することができる。
入力部15は、管理者から重点サブシステムに係る物理モデルの入力を受け付ける(ステップS8)。入力部15は、物理モデルと重点サブシステムの識別情報とを関連付けて記憶部11に記録する(ステップS9)。
リスク分析部16は、記憶部11が記憶する重点サブシステムに係る物理モデル、および他のサブシステムに係る統計モデルを用いて、対象システムの挙動のシミュレートする(ステップS10)。リスク分析部16は、シミュレートの結果に基づいて、重点サブシステムについて、システムの運転利益から保守コストおよび故障の影響を減算した金額が最も多くなるような適正運転範囲を特定する(ステップS11)。適正運転範囲は、標準運転範囲に包含されるため、リスク分析部16は、標準運転範囲内での運転をシミュレートすることで、適正運転範囲を探索する。
次に、リスク分析部16は、重点サブシステムの制御パラメータが取れる範囲をステップS11で特定した適正運転範囲に限定して対象システムの挙動をシミュレートし、対象システムの運転利益から保守コストおよび故障の影響を減算した金額が最も多くなる運転計画を生成する(ステップS12)。このとき、リスク分析部16は、確率でまたは予め設定されたタイミングで不安定振動などの損傷進行イベントが発生するようにシミュレーションを行う。
故障評価部12は、ステップS12で生成した運転計画に基づいて、各重点サブシステムの物理モデルを用いたシミュレーションを行い、事前保全のスケジュールに基づいて、対象システムの寿命までの故障確率の時系列を推定する(ステップS13)。図3は、第1の実施形態における対象システムの故障確率の時系列の推測結果の例を示す図である。このとき、故障評価部12は、図3に示すように、重点サブシステムに生じる劣化の進行度について想定されるワーストケースからベストケースまでの不確実性を確率分布として設定してシミュレーションを行う。不確実性の例としては、配管コロージョンの進行度合い、ウェルから産出されるオイルガスに占める土砂量や性状、材料強度のばらつきなどが挙げられる。
リスク分析部16は、各重点サブシステムについてステップS14において推定した故障確率およびステップS13で特定した保守コストの両方が予め設定された故障確率閾値およびコスト閾値を下回るか否かを判定する(ステップS15)。
少なくとも1つの重点サブシステムについて、故障確率および保守コストの少なくとも1つ閾値以上である場合(ステップS15:NO)、リスク分析部16は、ステップS13で生成した運転計画に基づいて、保守コストおよび故障確率を最小化するように保守計画を決定する(ステップS16)。例えば、リスク分析部16は、事前保全のスケジュールを変更しながら、保守評価部13にステップS13で生成した運転計画に基づいて事前保全コストおよび事後保全コストをそれぞれ求めさせ、その合計が最小となるように事前保全のスケジュールを決定する。図4は、第1の実施形態に係る事前保全コストと事後保全コストの関係の例を示す図である。図4に示すように、事前保全コストは、事前保全を実行するインターバルが長いほど低くなる。他方、事前保全のインターバルが長いほど、故障確率は増加するため、事後保全が生じる可能性が高くなり、事後保全コストが増加する。事後保全コストは実際の事後保全に要するコストに故障確率を乗算することで、期待値として求められる。リスク分析部16は、事前保全コストおよび事後保全コストの和が最小となるように事前保全のスケジュールを決定する。
リスク分析部16は、運転計画および保守計画の探索終了条件を満たしたか否かを判定する(ステップS17)。探索終了条件の例としては、ステップS11からステップS16までの処理を所定回数繰り返すこと、ステップS13で求めた運転利益から保守コストおよび故障の影響を減算した金額の変化率が所定値を下回ることなどが挙げられる。探索終了条件を満たしていない場合(ステップS17:NO)、リスク分析部16は、ステップS11に戻り、ステップS16で決定した事前保全スケジュールに基づいて、対象システムの挙動をシミュレートする。これは、事前保全スケジュールの変更に伴い、故障確率が変化するため、対象システムの運転利益、保守コストおよび故障の影響が変化するためである。
他方、ステップS15において、すべての重点サブシステムについて、故障確率および保守コストのいずれもが閾値未満である場合(ステップS15:YES)、またはステップS17において探索終了条件を満たした場合(ステップS17:YES)、出力部18は、生成した運転計画および保守計画、ならびに適正運転範囲を出力する(ステップS18)。
例えば、出力部18は、利用者から重点サブシステムの制御パラメータうち1つもしくは2つの選択を受け付け、選択された制御パラメータを軸に取った運転範囲のグラフを出力する。
図5は、第1の実施形態に係る運転範囲の出力の例を示す第1の図である。
出力部18は、重点サブシステムの1つの制御パラメータの選択を受け付けると、図5に示すように、選択された制御パラメータの臨界運転範囲、標準運転範囲、および適正運転範囲を表す一次元のグラフを出力する。
図6は、第1の実施形態に係る運転範囲の出力の例を示す第2の図である。出力部18は、重点サブシステムの2つの制御パラメータの選択を受け付けると、図6に示すように、選択された2つの制御パラメータを軸に取り、利益の大きさをヒートマップ表示し、臨界運転範囲、標準運転範囲、および適正運転範囲を表す枠線を有する2次元のグラフを出力する。
また、出力部18は、運転計画および保守計画を出力する際、併せて初期条件に係る計画と最適化された計画とのシミュレート結果に基づいて、経済性の比較情報を出力してもよい。例えば、出力部18は、図7に示すように、管理装置1が生成した運転計画および保守計画に基づいて運転する場合の破損確率の時系列と、初期条件に係る計画に基づいて運転する場合の破損確率の時系列とを比較するグラフを出力してもよい。図7は、運転計画ごとの破損確率の比較情報を表す図である。当該情報は、例えば、ステップS13のシミュレート結果を用いて生成される。すなわち、当該シミュレーション結果には、不安定振動などの損傷進行イベントの発生を含む。
対象システムが運転を開始すると、管理装置1の状態監視部17は、対象システムのセンサから計測値を収集する。状態監視部17は、取得した計測値と、リスク分析部16が生成した運転計画および保守計画とに基づいて、重点サブシステムの状態を評価する。具体的には、状態監視部17は、記憶部11が記憶する重点サブシステムの物理モデルを用いて、取得した計測値に基づくシミュレーションを行い、重点サブシステムの現在の状態を推定する。そして、状態監視部17は、リスク分析部16が生成した運転計画および保守計画に基づいて、将来の故障確率の時系列を予測する。
出力部18は、状態監視部17によって評価された重点サブシステムの状態を出力する。図8は、第1の実施形態に係る重点サブシステムの状態を示す図の一例である。出力部18は、例えば図8に示すように、重点サブシステムの部位を二次元のマップに射影したときの対応関係を示す図と、過去の運転データに基づいて評価された状態を示すマップと、運転計画および保守計画に基づく将来の運転予測とに基づく寿命の予測結果を示すマップとを出力する。なお、図8に示す図において重点サブシステムはL字配管であり、劣化要因はエロージョンである。
《作用・効果》
このように、第1の実施形態によれば、管理装置1は、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、複数のサブシステム重点サブシステムを特定し、重点サブシステムについて、評価指標が最適化されるように、運転計画および保守計画を生成する。これにより、管理装置1は、運転計画および保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成することができる。
また、第1の実施形態によれば、管理装置1は、対象システムを構成する故障の可能性があるサブシステムに係る数理モデルに基づいてRAM分析を行うことで、重点サブシステムを特定する。これにより、故障時の損害やサブシステムの信頼性に基づいて運転計画および保守計画の変更による利益、信頼性、リスクの感度が高いサブシステムを特定することができる。
第1の実施形態によれば、管理装置1は、サブシステムの統計モデルを用いて対象システムの全体のRAM分析を行い、重点サブシステムについては、物理モデルを用いてリスク分析を行う。このように、第1の実施形態によれば、管理装置1は、知見および労力を要する物理モデルの生成を、詳細な故障リスクの評価が必要な機器に限定することで、効率的に計画を生成することができる。
《適用例》
発明者らは、上記の管理装置1を、パイプラインシステムの運転計画および保守計画の検討のために適用した。上記手順によるRAM分析の結果、当該パイプラインシステムにおいて、エロージョンによる故障モードが生じる特定の配管が重点サブシステムとして抽出された。そこで、発明者らは、当該配管について、粒子による配管のエロージョンを模擬する流体力学モデルおよび摩耗を模擬する摩耗物理モデルを生成した。このように、1つのサブシステムについて複数の異なる視点に基づくシミュレーションモデルを生成することで、故障に係る複雑な現象を適切に模擬することができる。当該流体力学モデルおよび摩耗物理モデルは、変数として、粒子の径および組成、流体の流量、配管の材質および表面状態、混相流の状態を有する。
具体的には、以下の手順でモデルの生成を行った。まず、重点サブシステムにおいて、モデリングの対象とする領域および次元を決定する。次に、重点サブシステムの三次元モデルを生成する。当該三次元モデルには、配管、装置、バルブなどが含まれる。次に、流体の変数の取り得る範囲を決定する。変数の例としては、流体におけるGFR、濃度、粘土、圧力、温度、速度、砂粒の硬さおよび大きさ、などが挙げられる。次に、モデルに重点サブシステムの各部位の組成を設定する。モデルにエロージョン率に係る関数を設定する。次に、制御パラメータの範囲を設定する。次に、流体力学に係る状態、および流体力学分析に用いる行列を生成する。
管理装置1のリスク分析部16は、上述のモデルに基づいて流体の流量を調整するバルブ開度の運転条件を探索し、運転条件に基づいて損傷進展イベントを含む運転計画を生成する。リスク分析部16は、生成した運転計画に基づいて重点サブシステムに係る配管の摩耗による寿命を予測する。出力部18は、ダッシュボードデータとして、重点サブシステムに係る配管のバルブ開度と摩耗率との関係を示すグラフデータ、損傷進行イベントを含む運転解析結果(図7)、および配管厚さに基づく寿命予測データを出力する。
図9は、チョークバルブの開度と配管のエロージョン率との関係を示すグラフデータの例である。リスク分析部16は、流体力学モデルにより、図9に示すように、バルブ開度及び粒子径の組み合わせに対するエロージョン率を表すコンターマップC1を生成する。
リスク分析部16は、生成したコンターマップに基づいて、バルブ開度と破損リスクおよびメンテナンス費用の関係を決定する。すなわち、コンターマップにおけるエロージョン率が高いほど破損リスクおよびメンテナンス費用は高くなる。リスク分析部16は、システムの運転利益から保守コストおよび故障の影響を減算した金額が最も多くなるような適正運転範囲を特定する。そして、利用者が表示対象として、重点サブシステムのバルブ開度を選択すると、出力部18は、図9に示すように、バルブ開度の臨界運転範囲、標準運転範囲、および適正運転範囲を表す一次元のグラフC2を出力する。
図10は、配管厚さに基づく寿命予測データの例である。
また、出力部18は、運転データに基づいて評価された現在の状態を示すコンターマップC11を出力する。管理装置1は利用者から、表示されたコンターマップC11のうち重点サブシステムの任意の部位の指定を受け付ける。利用者が一の部位を指定すると、出力部18は、コンターマップC11の指定された部位C111を強調表示する。出力部18は、当該部位に係る減肉量の時系列のグラフC12を出力する。出力部18は、過去の運転データに基づいて、初期時点から現在時刻までの減肉量のグラフを生成する。また出力部18は、運転計画および保守計画に基づく将来の運転予測とに基づく寿命の予測結果に基づいて、現在時刻から故障時期までの減肉量のグラフを生成する。なお、出力部18は、利用者によってグラフC12の任意の時刻の指定を受け付けた場合に、コンターマップC11が表示する時刻を変化させてもよい。
このように、発明者らは、パイプラインシステムにおいて上記の管理装置1の有用性を実証することができた。
〈他の実施形態〉
以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
上述した実施形態に係る管理装置1は、単独のコンピュータによって構成されるものであってもよいし、管理装置1の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することで管理装置1として機能するものであってもよい。
〈管理装置1の概要〉
工業システムは、サブシステムや要素に分離できる。例えば、オイルガスプラットフォームのトップサイドチョーク弁周りでは、弁体、弁軸、入口配管、出口配管などがあり、これらは、要素と考えることができる。一般的な運転条件に対して、各部位に対応する損傷メカニズムが定義されるが、損傷量を予測するには、CFD(computational fluid dynamics:数値流体力学)やFEA(finite element analysis:有限要素解析)などの物理現象を模擬した、高忠実度なモデルが必要となる場合が多い。
しかし、これらの高忠実度なモデルを構築するには、コンピュータコスト(金額、時間)のみでなく、包括的なドメイン知識や各種設計情報が必要となり、情報収集、計算実装にはコストがかかる。したがって、高忠実度なモデルは、安全性、稼働率、収益性などの観点で、高リスクと判断された機器に絞って、実装したいという要望がある。
RAM分析は、大規模な機械システムの技術リスクマネジメントと、対策に関するリソース最適化を通じたシステム稼働率、収益性を効率的に改良するための、確率論的リスク評価ツールである。RAM分析には、通常、データドリブンモデルの一種である、統計的故障率が用いられるため、大規模な工業システムの要素に適用することができる。
すなわち、工業システムのO&Mの最適化は、まず、FMEAにより、主要な故障モードと対象部位を同定し、次に、統計的故障率を用いたRAM分析により、安全性、稼働率、信頼性、収益性などの観点での重要機器を抽出することから始める。そして、重要機器の中から、故障メカニズムが明確で、O&Mの改善によりリスク、収益性が変動する設備を抽出し、FEMやCFDなどの物理現象を模擬した高忠実度モデルを用いて、各種運転条件、保守条件の組合せ下で、どのように損傷量や、破損リスクや収益性が変動するか予測することで、O&Mの適正化を図る。
図11は、管理装置1の主要な機能を示す概略ブロック図である。
管理装置1は、FMPAモジュールM1、故障評価モジュールM2、保守評価モジュールM3、RAM分析モジュールM4、および機器リスク評価モジュールM5を備える。
図1に示すように、管理装置1の処理の大きな流れは、以下の通りである。
まず、管理装置1は、FMEAおよびRAM分析により高リスク機器を抽出し、抽出した機器のうち、O&M(Operation and Maintenance)による損傷リスクの変動があるものをさらに抽出し、当該機器のモデルを構築する(Individual Risk Evaluation)。管理装置1は、多数のO&M条件に応じた損傷予測、破損確率評価ができるモデルを、FEM、CFDなどの物理モデルを通じて、事前に行うことで、Operation AnalysisやMaintenance Analysisの計算負荷を低減する。管理装置1は、O&M解析の結果をメンテナンスや、運転条件に反映して、再度、個別機器の故障リスク評価を行う(Individual Risk Evaluation)。
図12は、FMEAモジュールM1の入出力関係を示す図である。
FMEAモジュールM1は、機器毎に、主要な部品/故障モード、故障メカニズムと対応する故障の影響度を評価する。影響度の例としては、復旧時間、事後保全費用や、人的損害、環境への影響などが挙げられる。FMEAモジュールM1には、設計データベースから機器の詳細図面および設計計算書が入力される。また、P&ID(Piping and instrumentation diagram)から機器および部品のリストが入力される。FMEAモジュールM1は、RAM分析モジュールM4に信頼性ブロック図を出力し、故障評価モジュールM2、保守評価モジュールM3および機器リスク評価モジュールM5に、故障モードと影響度のリストを出力する。
図13は、故障評価モジュールの入出力関係を示す図である。
故障評価モジュールM2は、機器の物理モデルや、データドリブンモデル、それらを組み合わせたハイブリッドモデルを用いて、機器の健全性診断や寿命予測を行う。物理モデルの例としては、Computational Fluid Dynamics(CFD)、Multi-Body Dynamics(MBD)、Finite Element Analysis(FEA)、材料強度モデル(疲労であればParis則, 疲労曲線など)が挙げられる。データドリブンモデルの例としては、生存分析(累積ハザード法など)、指数分布モデル(偶発故障、統計的故障率)、異常予兆検知 (Maharanobis-Taguchi Method)などが挙げられる。
故障評価モジュールM2には、FMEAモジュールM1から、機器毎の故障モードおよび影響度リストが入力される。故障評価モジュールM2には、個別機器設計データベースから詳細図面および設計計算書が入力される。故障評価モジュールM2には、試験データベースから、実構造試験結果、サブシステム・コンポーネント試験結果、要素試験結果が入力される。故障評価モジュールM2には、製造データべースから、製作後形状計測結果、熱処理、加工履歴が入力される。故障評価モジュールM2には、信頼性データベースから、公開データベース(OREDA, NPRD etc.)、社内類似プラントの信頼性データ、フィールドデータ、評価対象プラント固有の信頼性データ、フィールドデータが入力される。故障評価モジュールM2には、RAM分析モジュールM4からRAM分析実施後の重要機器リストが入力される。
故障評価モジュールM2は、機器リスク評価モジュールM5に、運転条件や、メンテナンス条件を変数とした、破損確率予測を出力する。故障評価モジュールM2は、RAM分析モジュールM4に、統計的故障率(指数分布モデル)を出力する。
図14は、保守評価モジュールM3の入出力関係を示す図である。
保守評価モジュールM3は、要望保全のコストと期間を最小化するようなスケジュールを検討する予防保全スケジューラ機能と、故障時の想定作業内容から、費用と所要時間を予測する事後保全評価機能とを有する。保守評価モジュールM3には、FMEAモジュールM1から機器毎の故障モードおよび影響度リストが入力される。保守評価モジュールM3には、検査メニューとして、各部位、損傷モードに対する検査内容(目視検査、超音波検査、など)が入力される。保守評価モジュールM3には、予防保全、事後保全計画の変数として、予防保全の工程や中長期スケジュール、故障時の予想復旧工程が入力される。保守評価モジュールM3には、コスト、スケジュール情報として、人件費、重機および消耗品の単価、作業員能力(溶接作業、重機操作), 人数などのリソース、及びWork Breakdown Structure(WBS)が入力される。保守評価モジュールM3には、信頼性データベースから、公開データベース(OREDA etc.)、社内類似プラントの信頼性データ、フィールドデータ、評価対象プラント固有の信頼性データ、フィールドデータが入力される。保守評価モジュールM3には、機器リスク評価モジュールM5から、重要機器群に関する各保守条件での機器リスク評価が入力される。
保守評価モジュールM3は、機器リスク評価モジュールM5およびRAM分析モジュールM4に、故障時の復旧時間、予防保全費用および事後保全費用を出力する。保守評価モジュールM3は、RAM分析モジュールM4に、さらに予防保全計画を出力する。
図15は、RAM分析モジュールの入出力関係を示す図である。
RAM分析モジュールM4は、RAM分析により、機器レベル、システムレベルの信頼性、稼働率、リスク(重要度)を定量化し、O&M改善の余地のある機器(重要機器)の抽出を行う。重要度は、通常、破損確率と影響度の積で評価される。影響度は、システム信頼性、稼働率、収益性への影響度などで評価される。RAM分析モジュールM4は、パレート図などを用いて、重要機器(高リスク機器)を見える化することで、重要機器の抽出を行う。またRAM分析モジュールM4は、システム信頼性、稼働率、収益性の確率分布を求める。
RAM分析モジュールM4には、FMEAモジュールM1から、信頼性ブロック図が入力される。RAM分析モジュールM4には、故障評価モジュールM2から、統計的故障率が入力される。RAM分析モジュールM4には、保守評価モジュールM3から、予防保全計画、故障時の復旧時間、事後保全費用、および予防保全費用が入力される。RAM分析モジュールM4には、市場情報として、油価などが入力される。
RAM分析モジュールM4は、故障評価モジュールM2に、抽出した重要機器を出力する。
図16は、機器リスク評価モジュールの入出力関係を示す図である。
機器リスク評価モジュールM5は、得られた応答計測、検査計測データで、機器故障予測を修正(キャリブレーション)する。また機器リスク評価モジュールM5は、機器の破損確率評価(運転条件、保守条件の関数)を用いて、運転性、保守性を分析する。
機器リスク評価モジュールM5には、FMEAモジュールM1から、重要機器の故障モードおよび影響度が入力される。機器リスク評価モジュールM5には、故障評価モジュールM2から、重要機器の故障確率(運転、保守条件の関数)が入力される。機器リスク評価モジュールM5には、保守評価モジュールM3から復旧時間、事後保全費用、予防保全費用が入力される。機器リスク評価モジュールM5には、RAM分析モジュールM4から、重要機器の故障影響度が入力される。機器リスク評価モジュールM5には、運転状態・モニタリング情報として、運転情報、応答計測(ひずみ、温度)、損傷計測(減肉量など)が入力される。
機器リスク評価モジュールM5は、運転性の分析のために、任意の保守計画における、最適運転条件の策定を行う。機器リスク評価モジュールM5は、保守性分析のために、任意の運転計画における、最適保守条件の策定を行う。
〈コンピュータ構成〉
図17は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ90は、プロセッサ91、メインメモリ93、ストレージ95、インタフェース97を備える。
上述の管理装置1は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ95に記憶されている。プロセッサ91は、プログラムをストレージ95から読み出してメインメモリ93に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ93に確保する。プロセッサ91の例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。
プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ90は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ91によって実現される機能の一部または全部が当該集積回路によって実現されてよい。このような集積回路も、プロセッサの一例に含まれる。
ストレージ95の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD−ROM(Compact Disc Read Only Memory)、DVD−ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ95は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース97または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ93に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ95は、一時的でない有形の記憶媒体である。
また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ95に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
〈付記〉
各実施形態に記載の計画装置、計画方法およびプログラムは、例えば以下のように把握され得る。
(1)第1の態様によれば、計画装置(1)は、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定する重点特定部(14)と、前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成する計画生成部(16)とを備える。「特定する」とは、第1の値を用いて複数の値を取り得る第2の値を定めることである。例えば、「特定する」は、第1の値から第2の値を算出すること、テーブルを参照して第1の値に対応する第2の値を読み出すこと、第1の値をクエリとして第2の値を検索すること、第1の値に基づいて複数の候補の中から第2の値を選択することなどを含む。サブシステムは、部品およびコンポーネントを含む。
これにより、計画装置(1)は、運転計画および保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成することができる。
(2)第2の態様によれば、第1の態様に係る計画装置(1)において、前記重点特定部(14)は、前記対象システムを構成する故障の可能性があるサブシステムに係る数理モデルに基づいて、前記重点サブシステムを特定するものであってよい。
これにより、計画装置(1)は、故障時の損害やサブシステムの信頼性に基づいて運転計画および保守計画の変更による利益、信頼性、リスクの感度が高いサブシステムを特定することができる。
(3)第3の態様によれば、第1または第2の態様に係る計画装置(1)において、前記計画生成部(16)は、前記重点サブシステムについて、前記評価指標が最適化されるように前記運転計画を生成し、当該運転計画に基づく前記重点サブシステムの前記評価指標が許容条件を満たさない場合、前記評価指標が最適化されるように前記保守計画を変更した後に、前記重点サブシステムについて、前記評価指標が最適化されるように前記運転計画を変更するものであってよい。
これにより、計画装置(1)は、同時に最適化することができない運転計画および保守計画について、適切に最適化を試みることができる。
(4)第4の態様によれば、第1から3の何れかの態様に係る計画装置(1)において、前記計画生成部(16)は、前記重点サブシステムの運転範囲内において、前記評価指標が最適化される前記運転条件を探索するものであってよい。
これにより、計画装置(1)は、運転条件の探索範囲を狭め、計算量を低減することができる。
(5)第5の態様によれば、第4の態様に係る計画装置(1)において、前記運転条件は、前記重点サブシステムに係る数理モデルに基づいて定められるものであってよい。
これにより、計画装置(1)は、実際に使用される可能性があるパラメータの範囲において運転条件を探索することができる。
(6)第6の態様によれば、第4または第5の態様に係る計画装置(1)が、前記重点サブシステムの前記運転条件を示すデータを出力する範囲出力部(18)を備えるものであってよい。
これにより、利用者は、計画装置(1)が出力するデータに基づいて対象システムを適切に運転することができる。
(7)第7の態様によれば、第4から第6の何れかの態様に係る計画装置(1)において、前記範囲出力部(18)は、前記重点サブシステムの制御パラメータのうち1つまたは2つと、前記評価指標と、前記運転条件の関係を示すグラフデータを出力するものであってよい。
これにより、利用者は、運転条件を視覚に基づいて直感的に認識することができる。
(8)第8の態様によれば、第6または第7の態様に係る計画装置(1)において、前記数理モデルは、流体による前記重点サブシステムの摩耗を模擬する流体力学モデルであって、前記計画生成部は、前記数理モデルに基づいて前記流体の流量を調整するバルブ開度の運転条件を探索し、前記運転条件に基づいて損傷進展イベントを含む運転計画を生成し、前記運転計画に基づいて前記重点サブシステムの摩耗による寿命を予測し、前記範囲出力部は、前記重点サブシステムのバルブ開度と摩耗率との関係を示すグラフデータを出力するものであってよい。
これにより、計画装置(1)は、流体が流れる重点サブシステムについて、適切に摩耗に係るリスクを評価することができる。
(9)第9の態様によれば、第1から第8の何れかの態様に係る計画装置(1)が、前記重点サブシステムに係る前記数理モデルと、前記重点サブシステムから計測された状態量の計測値に基づいて、前記重点サブシステムの状態を示すデータを出力する状態出力部(18)を備えるものであってよい。
これにより、利用者は、重点サブシステムの現在の状態を認識することができる。
(10)第10の態様によれば、第1から第9の何れかの態様に係る計画装置(1)において、前記重点サブシステムに係る前記数理モデルは、異なる物理現象を模擬する複数のシミュレーションモデルを含むものであってよい。
これにより、計画装置(1)は、故障に係る複雑な現象を適切に模擬することができる。
(11)第11の態様によれば、第10の態様に係る計画装置において、前記重点サブシステムに係る前記数理モデルは、流体解析に基づくシミュレーションモデルと、摩耗を模擬するシミュレーションモデルとを含むものであってよい。
これにより、計画装置(1)は、流体が流れる重点サブシステムについて、故障に係る複雑な現象を適切に模擬することができる。
(12)第12の態様によれば、計画方法は、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定するステップと、前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成するステップとを備える。
これにより、当該計画方法によれば、運転計画および保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成することができる。
(13)第13の態様によれば、プログラムは、コンピュータに、対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定するステップと、前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成するステップとを実行させる。
これにより、プログラムを実行するコンピュータ(90)は、運転計画および保守計画の変更による利益、信頼性、リスクの感度が特に高いサブシステムについて最適化されるように、効率的に計画を生成することができる。
1 管理装置
11 記憶部
12 故障評価部
13 保守評価部
14 RAM分析部
15 入力部
16 リスク分析部
17 状態監視部
18 出力部

Claims (13)

  1. 対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定する重点特定部と、
    前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成する計画生成部と
    を備える計画装置。
  2. 前記重点特定部は、前記対象システムを構成する故障の可能性があるサブシステムに係る数理モデルに基づいて、前記重点サブシステムを特定する
    請求項1に記載の計画装置。
  3. 前記計画生成部は、
    前記重点サブシステムについて、前記評価指標が最適化されるように前記運転計画を生成し、
    当該運転計画に基づく前記重点サブシステムの前記評価指標が許容条件を満たさない場合、前記評価指標が最適化されるように前記保守計画を変更した後に、前記重点サブシステムについて、前記評価指標が最適化されるように前記運転計画を変更する
    請求項1または請求項2に記載の計画装置。
  4. 前記計画生成部は、前記重点サブシステムの運転範囲内において、前記評価指標が最適化される前記運転条件を探索する
    請求項1から請求項3の何れか1項に記載の計画装置。
  5. 前記運転条件は、前記重点サブシステムに係る数理モデルに基づいて定められる
    請求項4に記載の計画装置。
  6. 前記重点サブシステムの前記運転条件を示すデータを出力する範囲出力部
    を備える請求項4または請求項5に記載の計画装置。
  7. 前記範囲出力部は、前記重点サブシステムの制御パラメータのうち1つまたは2つと、前記評価指標と、前記運転条件の関係を示すグラフデータを出力する
    請求項6に記載の計画装置。
  8. 前記数理モデルは、流体による前記重点サブシステムの摩耗を模擬する流体力学モデルであって、
    前記計画生成部は、前記数理モデルに基づいて前記流体の流量を調整するバルブ開度の運転条件を探索し、前記運転条件に基づいて損傷進展イベントを含む運転計画を生成し、前記運転計画に基づいて前記重点サブシステムの摩耗による寿命を予測し、
    前記範囲出力部は、前記重点サブシステムのバルブ開度と摩耗率との関係を示すグラフデータを出力する
    請求項6または請求項7に記載の計画装置。
  9. 前記重点サブシステムに係る前記数理モデルと、前記重点サブシステムから計測された状態量の計測値に基づいて、前記重点サブシステムの状態を示すデータを出力する状態出力部
    を備える請求項1から請求項8の何れか1項に記載の計画装置。
  10. 前記重点サブシステムに係る前記数理モデルは、異なる物理現象を模擬する複数のシミュレーションモデルを含む
    請求項1から請求項9の何れか1項に記載の計画装置。
  11. 前記重点サブシステムに係る前記数理モデルは、流体解析に基づくシミュレーションモデルと、摩耗を模擬するシミュレーションモデルとを含む
    請求項10に記載の計画装置。
  12. 対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定するステップと、
    前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成するステップと
    を備える計画方法。
  13. コンピュータに、
    対象システムを構成する複数のサブシステムの挙動を模擬する数理モデルに基づいて、前記複数のサブシステムのうち、運転条件および保守条件の少なくとも一方の変化に対する前記対象システムの評価指標の変化が大きい重点サブシステムを特定するステップと、
    前記重点サブシステムについて、前記評価指標が最適化されるように、運転計画および保守計画の少なくとも一方を生成するステップと
    を実行させるためのプログラム。
JP2020104272A 2020-06-17 2020-06-17 計画装置、計画方法およびプログラム Withdrawn JP2021196989A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020104272A JP2021196989A (ja) 2020-06-17 2020-06-17 計画装置、計画方法およびプログラム
CN202110554997.5A CN113822459A (zh) 2020-06-17 2021-05-20 计划装置、计划方法以及程序
US17/329,400 US20210398087A1 (en) 2020-06-17 2021-05-25 Planning device, planning method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020104272A JP2021196989A (ja) 2020-06-17 2020-06-17 計画装置、計画方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2021196989A true JP2021196989A (ja) 2021-12-27

Family

ID=78923743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020104272A Withdrawn JP2021196989A (ja) 2020-06-17 2020-06-17 計画装置、計画方法およびプログラム

Country Status (3)

Country Link
US (1) US20210398087A1 (ja)
JP (1) JP2021196989A (ja)
CN (1) CN113822459A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218749A1 (ja) * 2022-05-13 2023-11-16 三菱造船株式会社 監視装置、表示方法及びプログラム
WO2023223650A1 (ja) * 2022-05-18 2023-11-23 株式会社日立製作所 保守計画立案システム及び保守計画立案方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0411873A3 (en) * 1989-08-02 1993-11-18 Westinghouse Electric Corp Improved plant operating system employing a deterministic, probabilistic and subjective modeling system
JP2002123314A (ja) * 2000-10-12 2002-04-26 Chiyoda Corp 設備保全の最適化システム
US8660875B2 (en) * 2009-11-02 2014-02-25 Applied Materials, Inc. Automated corrective and predictive maintenance system
CN101968864A (zh) * 2010-11-17 2011-02-09 山东电力研究院 以电力系统运行可靠性为中心的设备重要性评价方法
JP2013061819A (ja) * 2011-09-14 2013-04-04 Hitachi Ltd 保守計画システム、保守計画システムサーバ、及び保守計画システムクライアント端末
US9563198B2 (en) * 2012-03-08 2017-02-07 General Electric Company Method and system to model risk of unplanned outages of power generation machine
US9569397B2 (en) * 2012-07-12 2017-02-14 General Electric Company Methods and systems for maintenance of turbomachinery
US20150324759A1 (en) * 2014-05-09 2015-11-12 International Business Machines Corporation Equipment preventive maintenance scheduling
DE102016218278A1 (de) * 2016-09-22 2018-03-22 Robert Bosch Gmbh Funktionsüberwachung von Magnetventilen für Kraftstoffeinspritzsysteme
JP6966857B2 (ja) * 2017-03-29 2021-11-17 三菱重工業株式会社 運転保守管理方法、プログラム、及び運転保守管理システム
JP6836954B2 (ja) * 2017-04-26 2021-03-03 株式会社日立製作所 車両保守計画装置、及び車両保守計画評価方法
CN108492203A (zh) * 2018-02-27 2018-09-04 西南石油大学 一种石油钻修机设备完整性管理方法及系统
CN108416526B (zh) * 2018-03-15 2020-12-22 哈尔滨工程大学 一种核电站生产计划的在线时间相关风险监测系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218749A1 (ja) * 2022-05-13 2023-11-16 三菱造船株式会社 監視装置、表示方法及びプログラム
WO2023223650A1 (ja) * 2022-05-18 2023-11-23 株式会社日立製作所 保守計画立案システム及び保守計画立案方法

Also Published As

Publication number Publication date
US20210398087A1 (en) 2021-12-23
CN113822459A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
Asadzadeh et al. An integrated systemic model for optimization of condition-based maintenance with human error
JP6949060B2 (ja) パイプライン、圧力容器及び配管系の水素誘起割れ(hic)の迅速な予測ならびにそれに関する処置をとるためのシステムと方法
Stapelberg Availability and maintainability in engineering design
Ahmadzadeh et al. Remaining useful life estimation
JP5179086B2 (ja) 工業プロセスの監視方法及び監視システム
EP3296830B1 (en) Plant state displaying apparatus, plant state displaying system, and method of displaying plant state
AU2018237279B2 (en) Predictive integrity analysis
Marzouk et al. A case-based reasoning approach for estimating the costs of pump station projects
JP6427357B2 (ja) 診断支援システム及び診断支援方法
Tambe et al. A superimposition based approach for maintenance and quality plan optimization with production schedule, availability, repair time and detection time constraints for a single machine
Soltanali et al. An improved fuzzy inference system-based risk analysis approach with application to automotive production line
JP2021196989A (ja) 計画装置、計画方法およびプログラム
Zhou et al. A dynamic reliability-centered maintenance analysis method for natural gas compressor station based on diagnostic and prognostic technology
CA2689246C (en) Monitoring methods and apparatus
KR101282244B1 (ko) 원자력발전소 설비의 예방/고장 정비정보 관리 시스템 및 그 방법
Paltrinieri et al. Dynamic risk analysis—Fundamentals
Soori et al. Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
JP2020177571A (ja) 異常予兆診断装置、異常予兆診断方法及び異常予兆診断プログラム
TWI802294B (zh) 實驗點推薦裝置、實驗點推薦方法及半導體裝置製造系統
CN112819262A (zh) 存储器、工艺管道检维修决策方法、装置和设备
JP7441768B2 (ja) 保全シミュレーション装置、および、保全シミュレーション方法
Dev et al. System modeling and analysis of a Gas turbine power plant using graph theoretic approach
Bitanov Reliability study of subsea control module with focus on statistical methods
O’Halloran et al. Early design stage reliability analysis using function-flow failure rates
CN111967774A (zh) 软件质量风险预测方法及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230724