JP2021188562A - Electric heating-type catalyst device - Google Patents

Electric heating-type catalyst device Download PDF

Info

Publication number
JP2021188562A
JP2021188562A JP2020094719A JP2020094719A JP2021188562A JP 2021188562 A JP2021188562 A JP 2021188562A JP 2020094719 A JP2020094719 A JP 2020094719A JP 2020094719 A JP2020094719 A JP 2020094719A JP 2021188562 A JP2021188562 A JP 2021188562A
Authority
JP
Japan
Prior art keywords
width
carrier
connecting portion
comb
extending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020094719A
Other languages
Japanese (ja)
Other versions
JP7347334B2 (en
Inventor
連太郎 森
Rentaro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020094719A priority Critical patent/JP7347334B2/en
Publication of JP2021188562A publication Critical patent/JP2021188562A/en
Application granted granted Critical
Publication of JP7347334B2 publication Critical patent/JP7347334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an electric heating-type catalyst device which can homogeneously heat a carrier via comb-shaped electrodes.SOLUTION: An electric heating-type catalyst device 1 comprises: a circular columnar carrier 10 at which a metal catalyst is carried; a pair of comb-shaped electrodes 5 having a plurality of wiring parts 51, a connection part 52 and an extension part 54; an underlayer 4 formed at an external peripheral face of the carrier 10, and interposed between the comb-shaped electrodes 5 and the carrier 10; and a fixing layer 6 for fixing the wiring parts 51 to the underlayer 4 by being joined to the underlayer 4 so as to cover a part of the wiring parts 51. A width C1 of the extension part 54 is narrower than a width B1 of the connection part 52 in a direction orthogonal to a width direction D1, and a width-expanded part 53 which is expanded in a width into a trapezoidal shape so as to approximate the width B1 of the connection part 52 from the width C1 of the extension part 54 as progressing toward the connection part 52 from the extension part 54 is formed between the extension part 54 and the connection part 52.SELECTED DRAWING: Figure 3

Description

本発明は、触媒が担持された担体と、これに取付けられた電極と、を少なくとも備えた電気加熱式触媒装置に関する。 The present invention relates to an electrically heated catalyst device including at least a carrier on which a catalyst is supported and an electrode attached to the carrier.

従来から、排気ガスの浄化を図るために通電加熱される電気加熱式触媒装置が知られている。たとえば、電気加熱式触媒装置は、金属触媒が担持された担体と、担体に通電するために担体に対して固定される櫛状電極と、を備えている。ここで、櫛状電極は、バッテリなどの外部電源からの電流を担体に通電し、担体は、櫛状電極を介して通電されることにより加熱されて、担体に担持された金属触媒が活性化する。電気加熱式触媒装置によれば、通電により担体を強制的に加熱することで、排気ガスを効果的に浄化することが可能である。 Conventionally, an electric heating type catalyst device that is energized and heated in order to purify exhaust gas has been known. For example, an electrically heated catalyst device includes a carrier on which a metal catalyst is supported and a comb-shaped electrode that is fixed to the carrier in order to energize the carrier. Here, the comb-shaped electrode energizes the carrier with a current from an external power source such as a battery, and the carrier is heated by being energized via the comb-shaped electrode to activate the metal catalyst supported on the carrier. do. According to the electric heating type catalyst device, it is possible to effectively purify the exhaust gas by forcibly heating the carrier by energization.

このような電気加熱式触媒装置として、例えば、特許文献1には、担体の周方向に沿って延在する複数の配線部を備えた櫛状電極を、固定層を介して担体(に形成された下地層)に固定した電気加熱式触媒装置が開示されている。ここで、複数の配線部は、その一端側で連結部に連結されており、連結部に対して複数の配線部側とは反対側に向かって、帯状の延在部が形成されている。 As such an electrically heated catalyst device, for example, in Patent Document 1, a comb-shaped electrode having a plurality of wiring portions extending along the circumferential direction of the carrier is formed on the carrier (on the carrier) via a fixed layer. An electrically heated catalyst device fixed to the base layer) is disclosed. Here, the plurality of wiring portions are connected to the connecting portion on one end side thereof, and a strip-shaped extending portion is formed toward the side opposite to the plurality of wiring portions side with respect to the connecting portion.

国際公開2013/038449号International Publication 2013/0384449

しかしながら、櫛状電極を固定する際、櫛状電極の配線が担体の周面の下地層に倣うように、延在部を介して配線に張力を付与した状態で、各配線を下地層に固定するが、この際、各配線の張力が不均一になることがあり、下地層から浮き上がる配線も存在する。この結果、浮き上がった配線を下地層に固定層を介して固定すると、下地層と配線との間に隙間が発生してしまう。これにより、電気加熱式触媒装置の櫛状電極に繰り返し電流を通電した場合、その繰り返しに伴う熱応力により、固定層の内部において局所的にクラックが発生することがある。これにより、クラックが発生した部分では、配線部から固定層を通して担体に通電できないことがあり、担体を均一に加熱することができない場合がある。 However, when fixing the comb-shaped electrode, each wiring is fixed to the base layer in a state where tension is applied to the wiring through the extending portion so that the wiring of the comb-shaped electrode follows the base layer on the peripheral surface of the carrier. However, at this time, the tension of each wiring may be non-uniform, and some wiring may rise from the base layer. As a result, when the floating wiring is fixed to the base layer via the fixing layer, a gap is generated between the base layer and the wiring. As a result, when a comb-shaped electrode of an electrically heated catalyst device is repeatedly energized, cracks may occur locally inside the fixed layer due to the thermal stress associated with the repetition. As a result, in the cracked portion, the carrier may not be energized from the wiring portion through the fixed layer, and the carrier may not be uniformly heated.

また、櫛状電極が固定された担体を排気管等に取付ける際に、たとえば、延在部を引張ってしまうと、延在部の張力が各配線に分散されるが、分散された配線の張力が不均一に作用する。この結果、相対的に高い張力が作用する配線および固定層が損傷し、担体を均一に加熱することができないおそれがある。 Further, when the carrier to which the comb-shaped electrode is fixed is attached to the exhaust pipe or the like, for example, if the extending portion is pulled, the tension of the extending portion is dispersed in each wiring, but the tension of the dispersed wiring is distributed. Acts unevenly. As a result, the wiring and the fixed layer on which relatively high tension acts may be damaged, and the carrier may not be heated uniformly.

本発明は、このような点を鑑みてなされたものであり、櫛状電極を介して担体を均一に加熱することができる電気加熱式触媒装置を提供することにある。 The present invention has been made in view of these points, and an object of the present invention is to provide an electrically heated catalyst device capable of uniformly heating a carrier via a comb-shaped electrode.

前記課題を鑑みて本発明に係る電気加熱式触媒装置は、金属触媒が担持された円柱状の担体と、前記担体の軸方向に間隔を開けて配列され、かつ、前記担体の周方向に沿って延在する複数の配線部と、前記複数の配線部の一端を連結する連結部と、前記連結部に対して前記複数の配線部側とは反対側に向かって延在した帯状の延在部と、を備えた一対の櫛状電極と、前記担体の外周面に形成され、前記櫛状電極と前記担体との間に介在する下地層と、前記各配線部の一部を覆うように前記下地層と接合されることにより、前記各配線部を、前記下地層に固定する固定層と、を備えた電気加熱式触媒装置であって、前記軸方向と直交する方向において、前記延在部の幅は、前記連結部の幅よりも狭く、前記延在部と前記連結部との間には、前記延在部から前記連結部に進むに従って、前記延在部の幅から前記連結部の幅に近づくように、台形状に幅が広がった拡幅部が形成されていることを特徴とする。 In view of the above problems, the electrically heated catalyst device according to the present invention is arranged with a columnar carrier on which a metal catalyst is supported at intervals in the axial direction of the carrier, and is arranged along the circumferential direction of the carrier. A strip-shaped extension extending toward the side opposite to the plurality of wiring portions with respect to the connecting portion and the connecting portion connecting one end of the plurality of wiring portions. A pair of comb-shaped electrodes provided with a portion, a base layer formed on the outer peripheral surface of the carrier and interposed between the comb-shaped electrode and the carrier, and a part of each wiring portion. An electrically heated catalyst device including a fixed layer for fixing each wiring portion to the base layer by being joined to the base layer, and extending in a direction orthogonal to the axial direction. The width of the portion is narrower than the width of the connecting portion, and between the extending portion and the connecting portion, as the extension progresses from the extending portion to the connecting portion, the width of the extending portion increases to the connecting portion. It is characterized in that a widened portion having a widened width in a trapezoidal shape is formed so as to approach the width of the above.

本発明によれば、櫛状電極の延在部と連結部との間には、延在部から連結部に進むに従って、延在部の幅から連結部の幅に近づくように、台形状に幅が広がった拡幅部が形成されている。これにより、たとえば、電気加熱式触媒装置を取付ける際に、櫛状電極の延在部に張力が作用したとしても、その張力は、拡幅部で幅方向に分散されるため、各配線に均一に分散させることができる。この結果、張力に起因した配線の損傷を抑えることにより、櫛状電極を介して担体を均一に加熱することができる。 According to the present invention, between the extending portion and the connecting portion of the comb-shaped electrode, a trapezoidal shape is formed so as to approach the width of the connecting portion from the width of the extending portion as the extension portion progresses to the connecting portion. A widened portion with a wider width is formed. As a result, for example, even if tension acts on the extending portion of the comb-shaped electrode when mounting the electrically heated catalyst device, the tension is dispersed in the width direction at the widening portion, so that the tension is uniformly distributed to each wiring. Can be dispersed. As a result, the carrier can be uniformly heated via the comb-shaped electrode by suppressing damage to the wiring due to tension.

さらに好ましい態様としては、前記連結部の幅と、前記連結部側の前記拡幅部の幅とが一致しており、前記延在部の幅と、前記延在部側の前記拡幅部の幅とが一致している。この態様によれば、これらの幅の関係を満たすことにより、櫛状電極の延在部に作用した張力を、各配線により均一に分散させることができる。 In a more preferable embodiment, the width of the connecting portion and the width of the widening portion on the connecting portion side are the same, and the width of the extending portion and the width of the widening portion on the extending portion side are the same. Are in agreement. According to this aspect, by satisfying the relationship of these widths, the tension acting on the extending portion of the comb-shaped electrode can be uniformly dispersed by each wiring.

さらに好まし態様としては、前記連結部の幅をB1とし、前記連結部の幅方向と直交する方向の前記拡幅部の長さをH1とするときに、H1/B1が、0.28〜1.12の範囲にある。この態様によれば、H1/B1が、0.28〜1.12の範囲を満たすことにより、配線に作用する張力をより均一に分散することができる。ここで、H1/B1が、0.28未満の場合には、拡幅部による張力の分散作用が十分でないことがあり、一方、H1/B1が、1.12を超えた場合には、張力の分散作用をそれ以上期待することができないばかりでなく、拡幅部の大きさが大きくなるため、スペース状の制約を受けることがある。 As a further preferred embodiment, when the width of the connecting portion is B1 and the length of the widening portion in the direction orthogonal to the width direction of the connecting portion is H1, H1 / B1 is 0.28 to 1. It is in the range of .12. According to this aspect, when H1 / B1 satisfies the range of 0.28 to 1.12, the tension acting on the wiring can be more uniformly dispersed. Here, when H1 / B1 is less than 0.28, the tension dispersion action by the widening portion may not be sufficient, while when H1 / B1 exceeds 1.12, the tension is increased. Not only can the dispersive effect not be expected any more, but also the size of the widened portion becomes large, so that there may be space-like restrictions.

さらに好ましい態様としては、前記拡幅部の幅方向の中央には、前記延在部から前記連結部に向かって延びた長孔が形成されている。この態様によれば、拡幅部の幅方向の中央には、延在部からの張力が他の部位に比べて大きく作用しやすいが、この部分に長孔を設けることにより、拡幅部の幅方向の中央に作用する張力を分散することができる。 As a more preferable embodiment, an elongated hole extending from the extending portion toward the connecting portion is formed in the center of the widened portion in the width direction. According to this aspect, tension from the extending portion tends to act more in the center of the widening portion in the width direction than in other portions, but by providing a long hole in this portion, the width direction of the widening portion is provided. The tension acting in the center of the can be dispersed.

本発明によれば、櫛状電極を介して担体を均一に加熱することができる。 According to the present invention, the carrier can be uniformly heated via the comb-shaped electrode.

本発明の実施形態に係る電気加熱式触媒装置の模式的斜視図である。It is a schematic perspective view of the electric heating type catalyst apparatus which concerns on embodiment of this invention. 図1に示す電気加熱式触媒装置を排気管に取付けた状態の断面図である。It is sectional drawing of the state which attached the electric heating type catalyst apparatus shown in FIG. 1 to an exhaust pipe. 図1に示す電気加熱式触媒装置の櫛状電極を折り曲げる前の状態を示した図である。It is a figure which showed the state before bending the comb-shaped electrode of the electric heating type catalyst apparatus shown in FIG. 図1に示す電気加熱式触媒装置の製造方法のうち下地層の成形状態を示した模式的概念図である。It is a schematic conceptual diagram which showed the molding state of the base layer among the manufacturing methods of the electric heating type catalyst apparatus shown in FIG. 図1に示す電気加熱式触媒装置の製造方法のうち電極の配置状態を示した模式的概念図である。It is a schematic conceptual diagram which showed the arrangement state of the electrode in the manufacturing method of the electric heating type catalyst apparatus shown in FIG. 図1に示す電気加熱式触媒装置の製造方法のうち固定層の成形前の状態を示した模式的概念図である。It is a schematic conceptual diagram which showed the state before molding of the fixed layer among the manufacturing methods of the electric heating type catalyst apparatus shown in FIG. 図1に示す電気加熱式触媒装置の製造方法のうち固定層の成形後の状態を示した模式的概念図である。It is a schematic conceptual diagram which showed the state after molding of the fixed layer among the manufacturing methods of the electric heating type catalyst apparatus shown in FIG. 図1に示す電気加熱式触媒装置の製造方法のうち櫛状電極に成形後の状態を示した模式的概念図である。It is a schematic conceptual diagram which showed the state after molding on the comb-shaped electrode in the manufacturing method of the electric heating type catalyst apparatus shown in FIG. 実施例1に係る櫛状電極の平面図である。It is a top view of the comb-shaped electrode which concerns on Example 1. FIG. 実施例2に係る櫛状電極の平面図である。It is a top view of the comb-shaped electrode which concerns on Example 2. FIG. 実施例3に係る櫛状電極の平面図である。It is a top view of the comb-shaped electrode which concerns on Example 3. FIG. 実施例4に係る櫛状電極の平面図である。It is a top view of the comb-shaped electrode which concerns on Example 4. FIG. 実施例5に係る櫛状電極の平面図である。It is a top view of the comb-shaped electrode which concerns on Example 5. FIG. 比較例1に係る櫛状電極の平面図である。It is a top view of the comb-shaped electrode which concerns on Comparative Example 1. FIG. 実施例1〜5および比較例1に係る櫛状電極の応用分布のグラフである。It is a graph of the application distribution of the comb-shaped electrode which concerns on Examples 1-5 and Comparative Example 1. 実施例3に相当する電極シートの平面図である。It is a top view of the electrode sheet corresponding to Example 3. FIG. 実施例6および比較例2に係る櫛状電極の配線の位置と、配線と下地層の隙間の大きさとの関係を測定した結果である。This is the result of measuring the relationship between the position of the wiring of the comb-shaped electrode according to Example 6 and Comparative Example 2 and the size of the gap between the wiring and the base layer.

以下に、図1〜図3を参照して、本発明の実施形態に係る電気加熱式触媒装置を説明し、次に、図4A〜図4Eを参照して、図1に示す電気加熱式触媒装置の製造方法を簡単に、説明する。 Hereinafter, the electrically heated catalyst device according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3, and then, with reference to FIGS. 4A to 4E, the electrically heated catalyst shown in FIG. 1 will be described. The manufacturing method of the device will be briefly described.

1.電気加熱式触媒装置1について
電気加熱式触媒装置1は、例えば自動車等の排気経路上に設けられ、エンジンから排出される排気ガスを浄化する装置である。図1に示すように、電気加熱式触媒装置1は、担体10、下地層4、櫛状電極5、および固定層6を備えている。図2に示すように、電気加熱式触媒装置1は、排気管71内に挿入されており、セラミックス等からなる保持マット72を介して、排気管71内に保持されている。
1. 1. About the electric heating type catalyst device The electric heating type catalyst device 1 is a device provided on an exhaust path of, for example, an automobile or the like and purifies the exhaust gas discharged from the engine. As shown in FIG. 1, the electrically heated catalyst device 1 includes a carrier 10, a base layer 4, a comb-shaped electrode 5, and a fixed layer 6. As shown in FIG. 2, the electrically heated catalyst device 1 is inserted in the exhaust pipe 71 and is held in the exhaust pipe 71 via a holding mat 72 made of ceramics or the like.

1−1.担体10について
図1に示すように、担体10は、外径が円柱状のセラミックスからなる多孔質部材であり、その内部はハニカム構造10aを有しており、担体10の中心軸CLに沿って延在した複数の空孔により、担体10の内部を排気ガスが通過することができる。
1-1. About the carrier 10 As shown in FIG. 1, the carrier 10 is a porous member made of ceramics having a columnar outer diameter, and has a honeycomb structure 10a inside thereof, along the central axis CL of the carrier 10. Exhaust gas can pass through the inside of the carrier 10 due to the plurality of extending holes.

担体10を構成するセラミックスは、例えばSiC(炭化珪素)粒子とSi(珪素)粒子とで構成される複合材などを挙げることができ、導電性を有するセラミックスであれば得に限定されるものではない。さらに、担体10のハニカム構造10aを形成する壁面には、白金、パラジウム、ロジウム等の金属触媒が担持されている。 Examples of the ceramics constituting the carrier 10 include a composite material composed of SiC (silicon carbide) particles and Si (silicon) particles, and the ceramics having conductivity are not limited to those obtained. No. Further, a metal catalyst such as platinum, palladium, or rhodium is supported on the wall surface of the carrier 10 that forms the honeycomb structure 10a.

担体10の外周面10bには、後述する櫛状電極5を担体10に固定するための下地層4が形成されている。下地層4は、櫛状電極5と担体10との間に介在し、後述する固定層6を介して、一対の櫛状電極5が固定される。 On the outer peripheral surface 10b of the carrier 10, a base layer 4 for fixing the comb-shaped electrode 5 described later to the carrier 10 is formed. The base layer 4 is interposed between the comb-shaped electrode 5 and the carrier 10, and the pair of comb-shaped electrodes 5 are fixed via the fixing layer 6 described later.

本実施形態では、下地層4は、各櫛状電極5を固定するための下地層であり、中心軸CLを挟んで、担体10の外周面10bの反対側となる位置(担体10を中心軸CL周りに略180°回転させた位置)に2つ形成されている。担体10の外周面10bに形成された第1下地層4aと、第1下地層4aの上に形成された第2下地層4bと、を備えている。第1下地層4aは、導電性を有したセラミックス材料からなり、本実施形態では、SiC(炭化珪素)粒子とSi(珪素)粒子とで構成される複合材の層である。 In the present embodiment, the base layer 4 is a base layer for fixing each comb-shaped electrode 5, and is located on the opposite side of the outer peripheral surface 10b of the carrier 10 with the central axis CL interposed therebetween (the carrier 10 is the central axis). Two are formed at a position rotated by approximately 180 ° around the CL). A first base layer 4a formed on the outer peripheral surface 10b of the carrier 10 and a second base layer 4b formed on the first base layer 4a are provided. The first base layer 4a is made of a ceramic material having conductivity, and in the present embodiment, is a layer of a composite material composed of SiC (silicon carbide) particles and Si (silicon) particles.

ここで、担体10に含有するSiC粒子の割合は、第1下地層4aを構成するSiC粒子の割合よりも多いことがより好ましい。これにより、担体10の抵抗値を、第1下地層4aのものに比べて高くし、担体10の発熱性を高めることができる。 Here, it is more preferable that the ratio of the SiC particles contained in the carrier 10 is higher than the ratio of the SiC particles constituting the first base layer 4a. As a result, the resistance value of the carrier 10 can be made higher than that of the first base layer 4a, and the heat generation property of the carrier 10 can be enhanced.

このような関係を前提として、担体10を構成するSiC(炭化珪素)粒子とSi(珪素)粒子の合計量を100%としたときに、SiC(炭化珪素)は、65体積%〜75体積%であることが好ましい。これに対して、第1下地層4aを構成するSiC(炭化珪素)粒子とSi(珪素)粒子の合計量を100体積%としたときに、SiC(炭化珪素)は、55体積%〜65体積%であることが好ましい。 On the premise of such a relationship, when the total amount of SiC (silicon carbide) particles and Si (silicon) particles constituting the carrier 10 is 100%, the amount of SiC (silicon carbide) is 65% by volume to 75% by volume. Is preferable. On the other hand, when the total amount of SiC (silicon carbide) particles and Si (silicon) particles constituting the first base layer 4a is 100% by volume, the amount of SiC (silicon carbide) is 55% by volume to 65% by volume. % Is preferable.

1−2.下地層4について
第2下地層4bは、酸化鉱物からなる酸化鉱物粒子が分散しており、この酸化鉱物粒子を金属マトリクスで連結した層である。具体的には、金属マトリクスは、NiCr合金またはMCrAlY合金(但し、MはFe、Co、Niのうち少なくとも一種)などを挙げることができる。酸化鉱物は、SiOやAlなどの酸化物を主な成分とするものであり、例えば、ベントナイトやマイカあるいはそれらの混合物などからなることが好ましい。本実施形態では、第2下地層4bは、第1下地層4aの表面に金属マトリクスとなるNiCr合金粒子と酸化鉱物粒子となるベントナイト粒子とを混合した混合粉末を溶射した層である。
1-2. About the base layer 4 The second base layer 4b is a layer in which oxide mineral particles made of oxide minerals are dispersed and the oxide mineral particles are connected by a metal matrix. Specifically, examples of the metal matrix include NiCr alloys and MCrAlY alloys (where M is at least one of Fe, Co, and Ni). The oxidized mineral contains an oxide such as SiO 2 or Al 2 O 3 as a main component, and is preferably composed of, for example, bentonite, mica, or a mixture thereof. In the present embodiment, the second base layer 4b is a layer obtained by spraying a mixed powder of a mixture of NiCr alloy particles serving as a metal matrix and bentonite particles serving as oxide mineral particles on the surface of the first base layer 4a.

なお、本実施形態では、第2下地層4bの抵抗値、第1下地層4aの抵抗値、および担体10の抵抗値の順に、これらの抵抗値が高くなっている。したがって、これらの中で、担体10が最も抵抗値が高いため、通電時に担体10が加熱され易い。また、第2下地層4bの抵抗値を、第1下地層4aの抵抗値よりも低くすることにより、第2下地層4bで櫛状電極5からの電流を担体10の周方向D2に流れ易くすることができる。なお、第1下地層4aは、第2下地層4bにより、担体10の周方向D2(図4A等参照)に流れた電流が、担体10に流れるように、中間の抵抗値として調整される層となっている。 In the present embodiment, the resistance values of the second base layer 4b, the resistance value of the first base layer 4a, and the resistance value of the carrier 10 increase in this order. Therefore, among these, the carrier 10 has the highest resistance value, so that the carrier 10 is easily heated when energized. Further, by lowering the resistance value of the second base layer 4b to be lower than the resistance value of the first base layer 4a, the current from the comb-shaped electrode 5 in the second base layer 4b can easily flow in the circumferential direction D2 of the carrier 10. can do. The first base layer 4a is a layer adjusted by the second base layer 4b as an intermediate resistance value so that the current flowing in the circumferential direction D2 of the carrier 10 (see FIG. 4A and the like) flows through the carrier 10. It has become.

1−3.櫛状電極5について
本実施形態では、電気加熱式触媒装置1は、図1に示すように、Fe−Cr合金(例えばステンレス鋼)などの導電性を有した金属からなる一対の櫛状電極5、5を備えている。一対の櫛状電極5、5は、中心軸CLを挟んで、担体10の外周面10bの反対側となる位置(担体10を中心軸CL周りに180°回転させた位置)に配置されている。
1-3. About the comb-shaped electrode 5 In the present embodiment, as shown in FIG. 1, the electric heating type catalyst device 1 is a pair of comb-shaped electrodes 5 made of a conductive metal such as an Fe—Cr alloy (for example, stainless steel). It is equipped with 5. The pair of comb-shaped electrodes 5 and 5 are arranged at positions opposite to the outer peripheral surface 10b of the carrier 10 (positions in which the carrier 10 is rotated by 180 ° around the central axis CL) with the central axis CL interposed therebetween. ..

各櫛状電極5は、複数の配線部51と、連結部52と、拡幅部53と、延在部54と、を備えている。なお、櫛状電極5の特徴点となる拡幅部53は、後述する。 Each comb-shaped electrode 5 includes a plurality of wiring portions 51, a connecting portion 52, a widening portion 53, and an extending portion 54. The widening portion 53, which is a characteristic point of the comb-shaped electrode 5, will be described later.

複数の配線部51は、担体10の軸方向D1に間隔を開けて配列(並設)されており、各配線部51は、担体10の周方向D2に沿って延在している。連結部52は、軸方向Dの両端に位置する配線部51の間にわたって形成されており、複数の配線部51の一端を連結している。本実施形態では、連結部52は矩形状であり、軸方向D1に沿った連結部52の幅B1は、同じである。なお、本実施形態では、連結部52は、矩形状であるが、延在部54側の角部に丸みを帯びていてもよい。 The plurality of wiring portions 51 are arranged (paralleled) at intervals in the axial direction D1 of the carrier 10, and each wiring portion 51 extends along the circumferential direction D2 of the carrier 10. The connecting portion 52 is formed between the wiring portions 51 located at both ends in the axial direction D, and connects one ends of the plurality of wiring portions 51. In the present embodiment, the connecting portion 52 has a rectangular shape, and the width B1 of the connecting portion 52 along the axial direction D1 is the same. In the present embodiment, the connecting portion 52 has a rectangular shape, but the corner portion on the extending portion 54 side may be rounded.

図3に示すように、櫛状電極5を折り曲げる前の状態で、延在部54は、連結部52に対して複数の配線部51側とは反対側に向かって延在している。本実施形態では、延在部54は帯状であり、軸方向D1と直交する方向において、延在部54の幅C1は、連結部52の幅B1よりも狭い。延在部54は、電気的に電源(図示せず)の端子に接続される接続用の貫通孔55aが形成されている。 As shown in FIG. 3, in the state before the comb-shaped electrode 5 is bent, the extending portion 54 extends toward the connecting portion 52 toward the side opposite to the plurality of wiring portions 51 side. In the present embodiment, the extending portion 54 has a band shape, and the width C1 of the extending portion 54 is narrower than the width B1 of the connecting portion 52 in the direction orthogonal to the axial direction D1. The extending portion 54 is formed with a through hole 55a for connection, which is electrically connected to a terminal of a power supply (not shown).

1−4.固定層6について
図1〜図3に示すように、固定層6は、各配線部51の両側において、その一部を覆うように下地層4と接合されることにより、各配線部51を、下地層4に固定している。すなわち、本実施形態では、固定層6を介して、配線部51が下地層4(第2下地層4b)に固定されている。図1および図3に示すように、各櫛状電極5を固定する複数の固定層6は、周方向D2に沿って千鳥状に配置されている。なお、固定層6は、直線状に並列に配置されていてもよい。固定層6は、第2下地層4bで例示した材料からなり、本実施形態では、第2下地層4bと同じ材料からなってもよい。
1-4. About the fixed layer 6 As shown in FIGS. 1 to 3, the fixed layer 6 is joined to the base layer 4 so as to cover a part of each wiring portion 51 on both sides of each wiring portion 51. It is fixed to the base layer 4. That is, in the present embodiment, the wiring portion 51 is fixed to the base layer 4 (second base layer 4b) via the fixed layer 6. As shown in FIGS. 1 and 3, the plurality of fixing layers 6 for fixing each comb-shaped electrode 5 are arranged in a staggered manner along the circumferential direction D2. The fixed layers 6 may be arranged in parallel in a straight line. The fixed layer 6 is made of the material exemplified by the second base layer 4b, and may be made of the same material as the second base layer 4b in the present embodiment.

ここで、第2下地層4bおよび固定層6に含まれるベントナイトなどの酸化鉱物(粒子)と、NiCr合金などの金属(マトリクス)との割合は、これらの合計量に対して、酸化鉱物(粒子)が、55〜70体積%であることが好ましい。ここで、固定層6の金属(マトリクス)の含有割合は、第2下地層4bに比べて少ないことが好ましい。これにより、固定層6の熱膨張率を、配線部51の熱膨張率に近づけることができ、配線部51の熱収縮により固定層6に作用する熱応力を低減することができる。 Here, the ratio of the oxide mineral (particles) such as bentonite contained in the second base layer 4b and the fixed layer 6 to the metal (matrix) such as NiCr alloy is the oxide mineral (particles) with respect to the total amount thereof. ) Is preferably 55 to 70% by volume. Here, the content ratio of the metal (matrix) in the fixed layer 6 is preferably smaller than that in the second base layer 4b. As a result, the coefficient of thermal expansion of the fixed layer 6 can be brought close to the coefficient of thermal expansion of the wiring portion 51, and the thermal stress acting on the fixed layer 6 due to the thermal shrinkage of the wiring portion 51 can be reduced.

さらに、長手方向D1に沿った担体10の中心軸CLに対して直交する方向から、担体10の外周面10bを視たときに、固定層6は、矩形状である。本実施形態では、固定層6は、正方形状であるが、長方形状であってもよい。 Further, the fixed layer 6 has a rectangular shape when the outer peripheral surface 10b of the carrier 10 is viewed from a direction orthogonal to the central axis CL of the carrier 10 along the longitudinal direction D1. In the present embodiment, the fixed layer 6 has a square shape, but may have a rectangular shape.

1−5.櫛状電極5の拡幅部53について
櫛状電極5の拡幅部53は、延在部54と連結部52との間に形成されている。拡幅部53は、延在部54から連結部52に進むに従って、延在部54の幅から連結部52の幅B1に近づくように、台形状に幅が広がった形状を有している。これにより、電気加熱式触媒装置1を取付ける際に、櫛状電極5の延在部54に張力が作用したとしても、その張力は、拡幅部53で、櫛状電極5の幅方向に分散されるため、各配線部51に均一に分散させることができる。この結果、張力に起因した配線部51の損傷を抑えることにより、櫛状電極5を介して担体10を均一に加熱することができる。
1-5. About the widening portion 53 of the comb-shaped electrode 5 The widening portion 53 of the comb-shaped electrode 5 is formed between the extending portion 54 and the connecting portion 52. The widening portion 53 has a trapezoidal width so as to approach the width B1 of the connecting portion 52 from the width of the extending portion 54 as it advances from the extending portion 54 to the connecting portion 52. As a result, even if tension acts on the extending portion 54 of the comb-shaped electrode 5 when the electrically heated catalyst device 1 is attached, the tension is dispersed in the widening portion 53 in the width direction of the comb-shaped electrode 5. Therefore, it can be uniformly dispersed in each wiring portion 51. As a result, the carrier 10 can be uniformly heated via the comb-shaped electrode 5 by suppressing damage to the wiring portion 51 due to tension.

さらに本実施形態では、連結部52の幅B1と、連結部52側の拡幅部53の幅とが一致しており、延在部54の幅C1と、延在部54側の拡幅部53の幅とが一致している。これらの幅の関係を満たすことにより、連結部52の側辺と拡幅部53の台形状の斜辺とが、段差なく連続して形成され、延在部54の側辺と拡幅部53の台形状の斜辺とが、段差なく連続して形成される。このようにして、櫛状電極5の延在部54に作用した張力を、各配線部51により均一に分散させることができる。さらに、台形状の拡幅部53の底辺と、斜辺との成す角度は、45°以上であることが好ましい。これにより、すべての配線部51に対して、延在部54からの力を分散して作用させることができる。 Further, in the present embodiment, the width B1 of the connecting portion 52 and the width of the widening portion 53 on the connecting portion 52 side are the same, and the width C1 of the extending portion 54 and the widening portion 53 on the extending portion 54 side Matches the width. By satisfying these width relationships, the side side of the connecting portion 52 and the hypotenuse of the trapezoidal shape of the widening portion 53 are continuously formed without a step, and the side side of the extending portion 54 and the trapezoidal shape of the widening portion 53 are formed. The hypotenuse of is continuously formed without a step. In this way, the tension acting on the extending portion 54 of the comb-shaped electrode 5 can be uniformly dispersed by each wiring portion 51. Further, the angle formed by the base of the trapezoidal widening portion 53 and the hypotenuse is preferably 45 ° or more. As a result, the force from the extending portion 54 can be dispersed and acted on all the wiring portions 51.

さらに、本実施形態では、連結部52の幅をB1とし、連結部52の幅方向と直交する方向の拡幅部53の長さをH1とするときに、H1/B1が、0.28〜1.12の範囲にある。後述する解析結果からも明らかなように、H1/B1が、0.28〜1.12の範囲を満たすことにより、配線部51に作用する張力をより均一に分散することができる。ここで、H1/B1が、0.28未満の場合には、拡幅部53による張力の分散作用が十分でないことがあり、一方、H1/B1が、1.12を超えた場合には、張力の分散作用をそれ以上期待することができないばかりでなく、拡幅部53の大きさが大きくなるため、スペース状の制約を受けることがある。 Further, in the present embodiment, when the width of the connecting portion 52 is B1 and the length of the widening portion 53 in the direction orthogonal to the width direction of the connecting portion 52 is H1, H1 / B1 is 0.28 to 1. It is in the range of .12. As is clear from the analysis results described later, when H1 / B1 satisfies the range of 0.28 to 1.12, the tension acting on the wiring portion 51 can be more uniformly dispersed. Here, when H1 / B1 is less than 0.28, the tension dispersion action by the widening portion 53 may not be sufficient, while when H1 / B1 exceeds 1.12, the tension may not be sufficient. Not only can the dispersal effect of the above be not expected any more, but also the size of the widening portion 53 becomes large, so that there may be space-like restrictions.

さらに、本実施形態では、拡幅部53の幅方向の中央には、延在部54から連結部52に向かって延びた長孔53aが形成されている。長孔53aは、拡幅部53のみに形成されていてもよく、例えば、連結部52および延在部54のいずれか一方または双方に延びていてもよい。拡幅部53の幅方向の中央には、延在部54からの張力が他の部位に比べて大きく作用しやすいが、この部分に長孔53aを設けることにより、拡幅部53の幅方向の中央に作用する張力を分散することができる。 Further, in the present embodiment, a long hole 53a extending from the extending portion 54 toward the connecting portion 52 is formed in the center of the widening portion 53 in the width direction. The elongated hole 53a may be formed only in the widening portion 53, and may extend to, for example, one or both of the connecting portion 52 and the extending portion 54. At the center of the widening portion 53 in the width direction, the tension from the extending portion 54 tends to act more than other parts, but by providing the elongated hole 53a in this portion, the center of the widening portion 53 in the width direction. The tension acting on the can be dispersed.

図3に示すように、下地層4に固定された櫛状電極5は、幅方向(軸方向D1)に沿って、連結部52で折り曲げられ、拡幅部53と延在部54との境界線でさらに折り曲げられている。延在部54の先端側の部分は、電源ボックス73に挿入され、電源側の端子(図示せず)と接続される。 As shown in FIG. 3, the comb-shaped electrode 5 fixed to the base layer 4 is bent at the connecting portion 52 along the width direction (axial direction D1), and the boundary line between the widening portion 53 and the extending portion 54. It is further bent at. The tip end side portion of the extending portion 54 is inserted into the power supply box 73 and connected to a terminal (not shown) on the power supply side.

2.電気加熱式触媒装置1の製造方法について
以下に図1に示す電気加熱式触媒装置1の製造方法を、図4A〜図4Eを参照して説明する。
2. 2. About the manufacturing method of the electric heating type catalyst device 1 The manufacturing method of the electric heating type catalyst device 1 shown in FIG. 1 will be described below with reference to FIGS. 4A to 4E.

2−1.下地層4を形成する工程について
まず、図4Aに示すように、セラミックスからなる担体10の外周面10bに、下地層4を成形する。なお、下地層4を成形する工程では、一対の下地層4,4を成形する。具体的には、まず、上述した金属触媒が担持された担体10を準備し、この担体10の外周面10bに、SiC(炭化珪素)粒子とSi(珪素)粒子を分散媒で分散させたペースト材を塗布し、これを焼成することにより、第1下地層4a、4aを成形する。ここで、ペースト材の塗布は、スクリーン印刷により行ってもよい。この後、金属触媒を担持する。
2-1. Regarding the Step of Forming the Underlayer 4 First, as shown in FIG. 4A, the underlayer 4 is formed on the outer peripheral surface 10b of the carrier 10 made of ceramics. In the step of molding the base layer 4, a pair of base layers 4 and 4 are molded. Specifically, first, a carrier 10 on which the above-mentioned metal catalyst is supported is prepared, and SiC (silicon carbide) particles and Si (silicon) particles are dispersed on the outer peripheral surface 10b of the carrier 10 with a dispersion medium. The first base layer 4a and 4a are formed by applying a material and firing the material. Here, the paste material may be applied by screen printing. After this, a metal catalyst is supported.

次に、第1下地層4a、4aの上に、第2下地層4b、4bの形状に応じた開口を有した金属製のマスキング材(図示せず)を配置する。次に、この開口に向かって、NiCr合金粒子とベントナイト粒子とを混合した粉末を、たとえば、ガスフレーム溶射、またはプラズマ溶射等の溶射により吹き付けて、NiCr合金を溶融し、第2下地層4b、4bを成形する。 Next, a metal masking material (not shown) having openings corresponding to the shapes of the second base layers 4b and 4b is arranged on the first base layers 4a and 4a. Next, a powder obtained by mixing NiCr alloy particles and bentonite particles is sprayed toward this opening by spraying such as gas frame spraying or plasma spraying to melt the NiCr alloy, and the second base layer 4b, Mold 4b.

2−2.電極シート50を下地層4に配置する工程について
次に、図4Bに示すように、担体10の周方向D2に沿って複数の配線部51が延在するように、複数の配線部51が形成された櫛状電極5を含む電極シート50を下地層4の表面に配置する。
2-2. Regarding the step of arranging the electrode sheet 50 on the base layer 4, next, as shown in FIG. 4B, a plurality of wiring portions 51 are formed so that the plurality of wiring portions 51 extend along the circumferential direction D2 of the carrier 10. An electrode sheet 50 including the comb-shaped electrode 5 is arranged on the surface of the base layer 4.

ここで、電極シート50を説明する。電極シート50は、Fe−Cr合金(例えばステンレス鋼)などの導電性を有し、可撓性を有した金属シートである。電極シート50は、以下に示す構造を有しており、打ち向き成形等により成形される。電極シート50は、間隔を開けて配列された複数の配線部51と、複数の配線部51の一端を連結する第1連結部52Aと、複数の配線部51の他端を連結する第2連結部52Bと、を備えている。電極シート50は、第1連結部52Aに対して複数の配線部51側とは反対側に延在した帯状の第1延在部54Aと、第1連結部52Aに対して複数の配線部51側とは反対側に延在した帯状の第2延在部54Bと、を備えている。 Here, the electrode sheet 50 will be described. The electrode sheet 50 is a metal sheet having conductivity and flexibility such as Fe—Cr alloy (for example, stainless steel). The electrode sheet 50 has the following structure and is molded by face-to-face molding or the like. The electrode sheet 50 has a plurality of wiring portions 51 arranged at intervals, a first connecting portion 52A that connects one end of the plurality of wiring portions 51, and a second connecting portion that connects the other ends of the plurality of wiring portions 51. It is provided with a portion 52B. The electrode sheet 50 has a strip-shaped first extending portion 54A extending on the side opposite to the plurality of wiring portions 51 side with respect to the first connecting portion 52A, and a plurality of wiring portions 51 with respect to the first connecting portion 52A. It is provided with a band-shaped second extending portion 54B extending on the side opposite to the side.

第1延在部54Aの幅は、第1連結部52Aの幅よりも狭く、第2延在部54Bの幅は、第2連結部52Bの幅よりも狭い。第1延在部54Aと第1連結部52Aとの間には、第1延在部54Aから第1連結部52Aに進むに従って、第1延在部54Aの幅から第1連結部52Aの幅に近づくように、台形状に幅が広がった第1拡幅部53Aが形成されている。さらに、第2延在部54Bと第2連結部52Bとの間には、第2延在部54Bから第2連結部52Bに進むに従って、第2延在部54Bの幅から第2連結部52Bの幅に近づくように、台形状に幅が広がった第2拡幅部53Bが形成されている。 The width of the first extending portion 54A is narrower than the width of the first connecting portion 52A, and the width of the second extending portion 54B is narrower than the width of the second connecting portion 52B. Between the first extending portion 54A and the first connecting portion 52A, the width of the first connecting portion 52A from the width of the first extending portion 54A as the first extending portion 54A progresses to the first connecting portion 52A. A first widening portion 53A having a trapezoidal width is formed so as to approach. Further, between the second extending portion 54B and the second connecting portion 52B, as the second extending portion 54B proceeds to the second connecting portion 52B, the width of the second extending portion 54B increases to the second connecting portion 52B. A second widening portion 53B having a trapezoidal width is formed so as to approach the width of the above.

このような構造の電極シート50を下地層4の表面に配置する際に、複数の配線部51に張力が付与されるように電極シート50を引張りながら、複数の配線部51を、担体10の周方向D2に沿って下地層4の表面に倣わせる。具体的には、第1延在部54Aと第2延在部54Bとを離間する方向に引張りながら、複数の配線部51が、下地層4の表面に倣うように、これを湾曲させる。 When the electrode sheet 50 having such a structure is arranged on the surface of the base layer 4, the plurality of wiring portions 51 are attached to the carrier 10 while pulling the electrode sheet 50 so that tension is applied to the plurality of wiring portions 51. It is made to imitate the surface of the base layer 4 along the circumferential direction D2. Specifically, while pulling the first extending portion 54A and the second extending portion 54B in a direction away from each other, the plurality of wiring portions 51 are curved so as to imitate the surface of the base layer 4.

ここで、電極シート50に含まれる櫛状電極5は、配線部51、第1連結部52A、第1拡幅部53A、および第1延在部54Aである。第1連結部52Aが、櫛状電極5の連結部52に相当し、第1拡幅部53Aが、櫛状電極5の拡幅部53に相当し、第1延在部54Aが、延在部54に相当する。なお、図7には、以下の実施例で使用した電極シート50の平面図を示している。 Here, the comb-shaped electrode 5 included in the electrode sheet 50 is a wiring portion 51, a first connecting portion 52A, a first widening portion 53A, and a first extending portion 54A. The first connecting portion 52A corresponds to the connecting portion 52 of the comb-shaped electrode 5, the first widening portion 53A corresponds to the widening portion 53 of the comb-shaped electrode 5, and the first extending portion 54A corresponds to the extending portion 54. Corresponds to. Note that FIG. 7 shows a plan view of the electrode sheet 50 used in the following examples.

図示の如く、電極シート50には、第1および第2拡幅部53A、53Bが形成されているので、複数の配線部51に張力が付与されるように電極シート50を両側から引張りながら、複数の配線部51を、担体10の周方向に沿って下地層4の表面に倣わせると、複数の配線部51に均一に張力が分散される。この結果、各配線部51が下地層4から浮き上がることを抑制し、複数の配線部51を下地層4の表面に倣わせた状態で、下地層4に固定層6を接合することができる。このような結果、下地層4と配線部51との間に隙間が発生することを抑制し、櫛状電極5に繰り返し電流を通電した場合であっても、その繰り返しに伴う熱応力により、固定層6の内部において局所的にクラックが発生することを抑えることができる。 As shown in the figure, since the first and second widening portions 53A and 53B are formed on the electrode sheet 50, a plurality of electrode sheets 50 are pulled from both sides so that tension is applied to the plurality of wiring portions 51. When the wiring portion 51 of the above is made to follow the surface of the base layer 4 along the circumferential direction of the carrier 10, the tension is uniformly distributed to the plurality of wiring portions 51. As a result, the fixed layer 6 can be joined to the base layer 4 in a state where each wiring portion 51 is prevented from floating from the base layer 4 and the plurality of wiring portions 51 are made to imitate the surface of the base layer 4. As a result, it is possible to suppress the generation of a gap between the base layer 4 and the wiring portion 51, and even when a comb-shaped electrode 5 is repeatedly energized, it is fixed by the thermal stress associated with the repetition. It is possible to suppress the occurrence of local cracks inside the layer 6.

本実施形態では、第1連結部52Aの幅B1と、第1連結部52A側の第1拡幅部53Aの幅とが一致しており、第1延在部54Aの幅C1と、第1延在部54A側の第1拡幅部53Aの幅とが一致している。第2連結部52Bの幅と、第2連結部52B側の第2拡幅部53Bの幅とが一致しており、第2延在部54Bの幅と、第2延在部54B側の第2拡幅部53Bの幅とが一致している。 In the present embodiment, the width B1 of the first connecting portion 52A and the width of the first widening portion 53A on the first connecting portion 52A side are the same, and the width C1 of the first extending portion 54A and the first extension The width of the first widening portion 53A on the existing portion 54A side is the same as that of the first widening portion 53A. The width of the second connecting portion 52B and the width of the second widening portion 53B on the second connecting portion 52B side match, and the width of the second extending portion 54B and the second on the second extending portion 54B side. It matches the width of the widening portion 53B.

これらの幅の関係を満たすことにより、第1連結部52Aの側辺と第1拡幅部53Aの台形状の斜辺とが、段差なく連続して形成され、第1延在部54Aの側辺と第1拡幅部53Aの台形状の斜辺とが、段差なく連続して形成される。第2連結部52Bの側辺と第2拡幅部53Bの台形状の斜辺とが、段差なく連続して形成され、第2延在部54Bの側辺と第2拡幅部53Bの台形状の斜辺とが、段差なく連続して形成される。このように、電極シート50の第1延在部54Aと第2延在部54Bの両側から、配線部51に張力を付与した際に、張力を各配線部51により均一に分散させることができる。 By satisfying these width relationships, the side side of the first connecting portion 52A and the trapezoidal hypotenuse of the first widening portion 53A are continuously formed without a step, and the side side of the first extending portion 54A. The hypotenuse of the trapezoidal shape of the first widening portion 53A is continuously formed without a step. The side side of the second connecting portion 52B and the hypotenuse of the trapezoidal shape of the second widening portion 53B are continuously formed without a step, and the side side of the second extending portion 54B and the hypotenuse of the trapezoidal shape of the second widening portion 53B are formed. And are continuously formed without steps. In this way, when tension is applied to the wiring portion 51 from both sides of the first extending portion 54A and the second extending portion 54B of the electrode sheet 50, the tension can be uniformly dispersed by each wiring portion 51. ..

さらに、本実施形態では、第1連結部52Aの幅をB1とし、第1連結部52Aの幅と直交する方向の第1拡幅部53Aの長さをH1とするときに、H1/B1が、0.28〜1.12の範囲にある。第2連結部52Bの幅をB2とし、第2連結部52Bの幅と直交する方向の第2拡幅部53Bの長さをH2とするときに、H2/B2が、0.28〜1.12の範囲にある。 Further, in the present embodiment, when the width of the first connecting portion 52A is B1 and the length of the first widening portion 53A in the direction orthogonal to the width of the first connecting portion 52A is H1, H1 / B1 is determined. It is in the range of 0.28 to 1.12. When the width of the second connecting portion 52B is B2 and the length of the second widening portion 53B in the direction orthogonal to the width of the second connecting portion 52B is H2, H2 / B2 is 0.28 to 1.12. Is in the range of.

これらの幅の関係を満たすことにより、H1/B1およびH2/B2が、0.28〜1.12の範囲を満たすことにより、配線部51に作用する張力をより均一に分散することができる。ここで、H1/B1およびH2/B2が、0.28未満の場合には、第1および第2拡幅部53A、53Bによる張力の分散作用が十分でないことがあり、一方、H1/B1およびH2/B2が、1.12を超えた場合には、張力の分散作用をそれ以上期待することができない。特に、H2/B2が、1.12を超えた場合には、櫛状電極5の第1拡幅部53Aの大きさが大きくなるため、スペース状の制約を受けることがある By satisfying the relationship of these widths, H1 / B1 and H2 / B2 satisfy the range of 0.28 to 1.12, so that the tension acting on the wiring portion 51 can be more uniformly dispersed. Here, when H1 / B1 and H2 / B2 are less than 0.28, the tension dispersion action by the first and second widening portions 53A and 53B may not be sufficient, while H1 / B1 and H2 When / B2 exceeds 1.12, the tension dispersion action cannot be expected any more. In particular, when H2 / B2 exceeds 1.12, the size of the first widening portion 53A of the comb-shaped electrode 5 becomes large, so that there may be space-like restrictions.

さらに、第1拡幅部53Aの幅方向の中央には、第1延在部54Aから第1連結部52Aに向かって延びた第1長孔53aが形成されており、第2拡幅部53Bの幅方向の中央には、第2延在部54Bから第2連結部52Bに向かって延びた第2長孔53bが形成されている。第1および第2拡幅部53A、53Bの幅方向の中央には、第1および第2延在部54A、54Bからの張力が他の部位に比べて大きく作用しやすいが、これらの部分に第1および第2長孔53a、53bを設けることにより、第1および第2拡幅部53A、53Bの幅方向の中央に作用する張力を分散することができる。 Further, at the center of the first widening portion 53A in the width direction, a first elongated hole 53a extending from the first extending portion 54A toward the first connecting portion 52A is formed, and the width of the second widening portion 53B is formed. At the center of the direction, a second elongated hole 53b extending from the second extending portion 54B toward the second connecting portion 52B is formed. In the center of the first and second widening portions 53A and 53B in the width direction, the tension from the first and second extending portions 54A and 54B is likely to act more than other portions, but the tension from the first and second extending portions 54A and 54B is likely to act on these portions. By providing the first and second elongated holes 53a and 53b, the tension acting on the center of the first and second widening portions 53A and 53B in the width direction can be dispersed.

2−3.配線部51を下地層4に固定する工程について
次に、下地層4に固定する工程において、複数の配線部51を下地層4の表面に倣わせた状態で、各配線部51の一部を覆うように下地層4に固定層6を接合し、各配線部51を、下地層4に固定する。
2-3. About the step of fixing the wiring portion 51 to the base layer 4 Next, in the step of fixing the wiring portion 51 to the base layer 4, a part of each wiring portion 51 is formed in a state where the plurality of wiring portions 51 follow the surface of the base layer 4. The fixing layer 6 is joined to the base layer 4 so as to cover the base layer 4, and each wiring portion 51 is fixed to the base layer 4.

この工程では、まず、図4Cに示すように、電極シート50が配置された担体10の外周面10bに、マスキング材8を配置する。マスキング材8には、各固定層6の形状およびこれらの配置状態に応じた矩形状の開口81が形成されており、各開口81に、電極シート50の配線部51が露出するように、外周面10bにマスキング材8を配置する。 In this step, first, as shown in FIG. 4C, the masking material 8 is arranged on the outer peripheral surface 10b of the carrier 10 on which the electrode sheet 50 is arranged. The masking material 8 is formed with rectangular openings 81 according to the shape of each fixed layer 6 and their arrangement state, and the outer periphery thereof is exposed so that the wiring portion 51 of the electrode sheet 50 is exposed in each opening 81. The masking material 8 is arranged on the surface 10b.

次に、図4Cに示す状態から、第2下地層4bと同じ方法で、各開口81に向かって、NiCr合金粒子とベントナイト粒子とを混合した粉末を、たとえばガスフレーム溶射、またはプラズマ溶射等の溶射により吹き付けて、NiCr合金を溶融し、固定層6を成形する。これにより、図4Dに示すように、マスキング材8を取り除いた状態で、固定層6が、各配線部51の一部を覆いかつ下地層4に接合するよう成形され、これによって、固定層6を介して下地層4に各配線部51が固定される。 Next, from the state shown in FIG. 4C, a powder obtained by mixing NiCr alloy particles and bentonite particles is sprayed toward each opening 81 in the same manner as in the second base layer 4b, for example, by gas flame spraying or plasma spraying. It is sprayed by thermal spraying to melt the NiCr alloy and form the fixed layer 6. As a result, as shown in FIG. 4D, the fixed layer 6 is formed so as to cover a part of each wiring portion 51 and to be joined to the base layer 4 in a state where the masking material 8 is removed, whereby the fixed layer 6 is formed. Each wiring portion 51 is fixed to the base layer 4 via the above.

2−4.電極シート50の一部を切り離す工程について
電極シート50から、櫛状電極5が下地層4に残るように、電極シート50の一部を切り離す。具体的には、櫛状電極5が下地層4に残るように、櫛状電極5以外の部分を電極シート50から切断する。
2-4. About the step of separating a part of the electrode sheet 50 A part of the electrode sheet 50 is separated from the electrode sheet 50 so that the comb-shaped electrode 5 remains on the base layer 4. Specifically, the portion other than the comb-shaped electrode 5 is cut from the electrode sheet 50 so that the comb-shaped electrode 5 remains on the base layer 4.

このようにして得られた電気加熱式触媒装置1に対して、櫛状電極5は、幅方向(軸方向D1)に沿って、連結部52で折り曲げ、拡幅部53と延在部54との境界線でさらに折り曲げ、排気管71内に挿入する。その後、延在部54の先端側の部分を、電源ボックス73に挿入し、電源側の端子(図示せず)と接続する。 With respect to the electrically heated catalyst device 1 thus obtained, the comb-shaped electrode 5 is bent at the connecting portion 52 along the width direction (axial direction D1), and the widening portion 53 and the extending portion 54 are formed. It is further bent at the boundary line and inserted into the exhaust pipe 71. After that, the tip end side portion of the extending portion 54 is inserted into the power supply box 73 and connected to a terminal (not shown) on the power supply side.

以下に本発明の実施例を説明する。 Examples of the present invention will be described below.

図5A〜図5Fに示す形状の櫛状電極に対する応力解析を行った。なお、図5A〜図5Fに示す櫛状電極5A〜5Fは、それぞれ実施例1〜5および比較例1に対応する。 Stress analysis was performed on the comb-shaped electrodes having the shapes shown in FIGS. 5A to 5F. The comb-shaped electrodes 5A to 5F shown in FIGS. 5A to 5F correspond to Examples 1 to 5 and Comparative Example 1, respectively.

比較例1の櫛状電極5Fとは異なり、実施例1〜5の櫛状電極5A〜5Eが、共通する点は、延在部54と連結部52との間に、延在部54から連結部52に進むに従って、延在部54の幅から連結部52の幅に近づくように、台形状に幅が広がった拡幅部53が形成されている点である。実施例1〜5の櫛状電極5A〜5Eは、拡幅部53の形状が異なる。 Unlike the comb-shaped electrodes 5F of Comparative Example 1, the comb-shaped electrodes 5A to 5E of Examples 1 to 5 have in common that they are connected from the extending portion 54 between the extending portion 54 and the connecting portion 52. It is a point that the widening portion 53 having a trapezoidal width is formed so as to approach the width of the connecting portion 52 from the width of the extending portion 54 toward the portion 52. The comb-shaped electrodes 5A to 5E of Examples 1 to 5 have different shapes of the widening portions 53.

実施例5の櫛状電極5Eと異なり、実施例1〜4の櫛状電極5A〜5Dが共通する点は、連結部52の幅と、連結部52側の拡幅部53の幅と、が一致している点である。各櫛状電極5A〜5Eの連結部52の幅をB1とし、連結部52の幅方向と直交する方向の拡幅部53の長さをH1とするときの、H1/B1の値を表1に示す。なお、比較例1の櫛状電極5Fは、拡幅部53が無いため、H1=0として、H1/B1を算出している。 Unlike the comb-shaped electrodes 5E of the fifth embodiment, the comb-shaped electrodes 5A to 5D of the first to fourth embodiments have one common point: the width of the connecting portion 52 and the width of the widening portion 53 on the connecting portion 52 side. This is the point we are doing. Table 1 shows the values of H1 / B1 when the width of the connecting portion 52 of each comb-shaped electrode 5A to 5E is B1 and the length of the widening portion 53 in the direction orthogonal to the width direction of the connecting portion 52 is H1. show. Since the comb-shaped electrode 5F of Comparative Example 1 does not have the widening portion 53, H1 / B1 is calculated with H1 = 0.

Figure 2021188562
Figure 2021188562

図6は、実施例1〜5および比較例1に係る櫛状電極5A〜5Fの各配線部51の先端を固定した状態で、延在部54を引張ったときの応力分布である。配線部51に作用する応力(最大)の値を示したグラフであり「端」は、櫛状電極5A〜5Fの端の配線部51であり、「中央」は、櫛状電極5A〜5Fの中央の配線部51である。 FIG. 6 shows the stress distribution when the extending portion 54 is pulled with the tips of the wiring portions 51 of the comb-shaped electrodes 5A to 5F according to Examples 1 to 5 and Comparative Example 1 fixed. It is a graph showing the value of the stress (maximum) acting on the wiring portion 51, the "end" is the wiring portion 51 at the end of the comb-shaped electrodes 5A to 5F, and the "center" is the comb-shaped electrode 5A to 5F. The central wiring portion 51.

図6に示すように、比較例の櫛状電極の配線部の応力は、端側に進むに従って、減少した。また、実施例1〜4の順に、櫛状電極の配線部の応力は、端側に進んでも、減少し難い結果となり、中央から端までの配線部の応力は均一になった。これは、延在部54と連結部52との間に、延在部54から連結部52に進むに従って、延在部54の幅から連結部52の幅に近づくように、台形状に幅が広がった拡幅部53を設けたことにより、各配線部51に応力が均一に分散したからであると考えられる。特に、実施例2〜4に示すように、H1/B1が、0.28以上であれば、より均一になる。なお、ここでは示していないが、H1/B1が、1.12を超えると、張力の分散作用をそれ以上期待することができないばかりでなく、拡幅部53の大きさが大きくなるため、スペース状の制約を受けることがある。 As shown in FIG. 6, the stress of the wiring portion of the comb-shaped electrode of the comparative example decreased toward the end side. Further, in the order of Examples 1 to 4, the stress of the wiring portion of the comb-shaped electrode was difficult to decrease even if it proceeded to the end side, and the stress of the wiring portion from the center to the end became uniform. This is a trapezoidal width between the extending portion 54 and the connecting portion 52 so that the width of the extending portion 54 approaches the width of the connecting portion 52 as the extending portion 54 progresses to the connecting portion 52. It is considered that this is because the stress is uniformly dispersed in each wiring portion 51 by providing the widened portion 53. In particular, as shown in Examples 2 to 4, when H1 / B1 is 0.28 or more, it becomes more uniform. Although not shown here, when H1 / B1 exceeds 1.12, not only the tension dispersion effect cannot be expected any more, but also the size of the widening portion 53 becomes large, so that the space is formed. May be restricted by.

実施例3の櫛状電極5CのH1/B1と、実施例5の櫛状電極5DのH1/B1は同じであるが、実施例3の櫛状電極5Cの方が、各配線部51に応力が均一に分散している。これは、連結部52の幅と、連結部52側の拡幅部53の幅とが一致していることにより、両側の配線部51まで均一に応力が作用したことによると考えられる。 H1 / B1 of the comb-shaped electrode 5C of Example 3 and H1 / B1 of the comb-shaped electrode 5D of Example 5 are the same, but the comb-shaped electrode 5C of Example 3 stresses each wiring portion 51. Are evenly dispersed. It is considered that this is because the width of the connecting portion 52 and the width of the widening portion 53 on the connecting portion 52 side match, so that the stress acts uniformly on the wiring portions 51 on both sides.

(実施例6)
図4A〜図4Eに示す手順に従って、実施例3に相当する図7に示す電極シートを用いて、図1に示すような電気加熱式触媒装置を作製した。まず、直径80mm、長さ65mmのSiC粒子とSi粒子を主材とした担体を準備し、この担体に金属触媒を担持させた。なお、単体のSiC粒子とSi粒子との合計量に対して、SiC粒子は、70体積%であり、Si粒子は、30体積%である。この担体の周面に、SiC粒子およびSi粒子を混合したペースト材を塗布し、これを焼成して第1下地層を成形した。なお、固定層のSiC粒子とSi粒子との合計量に対して、SiC粒子は、60体積%であり、Si粒子は、40体積%である。第1下地層は、第1下地層全体に対して、気孔率40体積%となり、厚さ0.23mmの多孔質層であった。次に、第1下地層の上に、Ni−50CrからなるNiCr粒子(32体積%)とベントナイト粒子(68体積%)を混合した溶射粉末を、プラズマ溶射により溶射し、多孔質の第2下地層を成形した(図4A参照)。第2下地層は、第2下地層全体に対して、気孔率が10体積%となり、厚さ0.1mmの多孔質層であった。
(Example 6)
According to the procedure shown in FIGS. 4A to 4E, an electrically heated catalyst device as shown in FIG. 1 was manufactured using the electrode sheet shown in FIG. 7 corresponding to the third embodiment. First, a carrier mainly composed of SiC particles having a diameter of 80 mm and a length of 65 mm and Si particles was prepared, and a metal catalyst was supported on the carrier. The SiC particles are 70% by volume and the Si particles are 30% by volume with respect to the total amount of the single SiC particles and the Si particles. A paste material containing SiC particles and Si particles was applied to the peripheral surface of the carrier, and the paste material was fired to form a first base layer. The SiC particles are 60% by volume and the Si particles are 40% by volume with respect to the total amount of the SiC particles and the Si particles in the fixed layer. The first base layer was a porous layer having a porosity of 40% by volume and a thickness of 0.23 mm with respect to the entire first base layer. Next, on the first base layer, a sprayed powder obtained by mixing NiCr particles (32% by volume) and bentonite particles (68% by volume) made of Ni-50Cr was sprayed by plasma spraying to perform a second lower porous surface. The formation was formed (see FIG. 4A). The second base layer was a porous layer having a porosity of 10% by volume and a thickness of 0.1 mm with respect to the entire second base layer.

次に、幅1mmの配線部を15本有したステンレス鋼(Fe−20Cr−5Al)製の電極を準備し、これを図4Bに示すように第2下地層に配置した後、図4Cに示すように、3mm×3mmの矩形状に開口を有したマスキング材で覆った。次に、第2下地層と同じ方法で、固定層を成形した。固定層を成形後、マスキング材を取り除き、余剰となる部分を切除し、一方の櫛状電極を、固定層を介して下地層に固定した。さらに、担体10を中心軸CLまわりに180°回転させて、同上の工程により、他方の櫛状電極を固定し、電気加熱式触媒装置を得た。 Next, an electrode made of stainless steel (Fe-20Cr-5Al) having 15 wiring portions having a width of 1 mm was prepared, placed on the second base layer as shown in FIG. 4B, and then shown in FIG. 4C. As described above, it was covered with a masking material having a rectangular opening of 3 mm × 3 mm. Next, the fixed layer was formed in the same manner as the second base layer. After molding the fixed layer, the masking material was removed, the excess portion was cut off, and one comb-shaped electrode was fixed to the base layer via the fixed layer. Further, the carrier 10 was rotated by 180 ° around the central axis CL, and the other comb-shaped electrode was fixed by the same step to obtain an electrically heated catalyst device.

(比較例2)
実施例6と同じようにして、電気加熱式触媒装置を作製した。実施例6との相違点は、図5Fの比較例1に係る櫛状電極5Fに相当する電極シートから電気加熱式触媒装置を作製した点である。
(Comparative Example 2)
An electrically heated catalyst device was produced in the same manner as in Example 6. The difference from Example 6 is that an electrically heated catalyst device is manufactured from an electrode sheet corresponding to the comb-shaped electrode 5F according to Comparative Example 1 in FIG. 5F.

実施例6および比較例2に係る櫛状電極の位置と、配線部と下地層の隙間の大きさとの関係を測定した。この結果を図8に示す。この結果から、比較例2の隙間は、実施例6のものよりも、バラツキが大きいことがわかった。この結果から、比較例2に比べて、実施例6のものは、各配線部に比較的安定した張力を作用させながら、固定層により固定できたと考えられる。 The relationship between the positions of the comb-shaped electrodes according to Example 6 and Comparative Example 2 and the size of the gap between the wiring portion and the base layer was measured. The result is shown in FIG. From this result, it was found that the gap of Comparative Example 2 had a larger variation than that of Example 6. From this result, it is considered that, as compared with Comparative Example 2, in Example 6, the wiring portion could be fixed by the fixed layer while applying a relatively stable tension to each wiring portion.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various aspects are described within the scope of the claims as long as the spirit of the present invention is not deviated. It is possible to make design changes.

1:電気加熱式触媒装置、4:下地層、5〜5F:櫛状電極、6:固定層、10:担体、50:電極シート、51:配線部、52:連結部、52A:第1連結部、52B:第2連結部、53:拡幅部、53A:第1拡幅部、53B:第2拡幅部、54:延在部、54A:第1延在部、54B:第2延在部。 1: Electric heating type catalyst device, 4: Underlayer, 5-5F: Comb-shaped electrode, 6: Fixed layer, 10: Carrier, 50: Electrode sheet, 51: Wiring part, 52: Connection part, 52A: First connection Part, 52B: 2nd connecting part, 53: widening part, 53A: 1st widening part, 53B: 2nd widening part, 54: extending part, 54A: 1st extending part, 54B: 2nd extending part.

Claims (4)

金属触媒が担持された円柱状の担体と、
前記担体の軸方向に間隔を開けて配列され、かつ、前記担体の周方向に沿って延在する複数の配線部と、前記複数の配線部の一端を連結する連結部と、前記連結部に対して前記複数の配線部側とは反対側に向かって延在した帯状の延在部と、を備えた一対の櫛状電極と、
前記担体の外周面に形成され、前記櫛状電極と前記担体との間に介在する下地層と、
前記各配線部の一部を覆うように前記下地層と接合されることにより、前記各配線部を、前記下地層に固定する固定層と、を備えた電気加熱式触媒装置であって、
前記軸方向と直交する方向において、前記延在部の幅は、前記連結部の幅よりも狭く、
前記延在部と前記連結部との間には、前記延在部から前記連結部に進むに従って、前記延在部の幅から前記連結部の幅に近づくように、台形状に幅が広がった拡幅部が形成されていることを特徴とする電気加熱式触媒装置。
A columnar carrier carrying a metal catalyst and
A plurality of wiring portions arranged at intervals in the axial direction of the carrier and extending along the circumferential direction of the carrier, a connecting portion connecting one end of the plurality of wiring portions, and the connecting portion. On the other hand, a pair of comb-shaped electrodes provided with a strip-shaped extending portion extending toward the side opposite to the plurality of wiring portions side.
An underlayer formed on the outer peripheral surface of the carrier and interposed between the comb-shaped electrode and the carrier,
An electrically heated catalyst device including a fixed layer for fixing each wiring portion to the base layer by being joined to the base layer so as to cover a part of each wiring portion.
In the direction orthogonal to the axial direction, the width of the extending portion is narrower than the width of the connecting portion.
The width between the extending portion and the connecting portion is widened in a trapezoidal shape so as to approach the width of the connecting portion from the width of the extending portion as the extension progresses from the extending portion to the connecting portion. An electrically heated catalyst device characterized in that a widened portion is formed.
前記連結部の幅と、前記連結部側の前記拡幅部の幅とが一致しており、
前記延在部の幅と、前記延在部側の前記拡幅部の幅とが一致していることを特徴とする請求項1に記載の電気加熱式触媒装置。
The width of the connecting portion and the width of the widening portion on the connecting portion side are the same.
The electrically heated catalyst device according to claim 1, wherein the width of the extending portion and the width of the widening portion on the extending portion side match.
前記連結部の幅をB1とし、前記連結部の幅方向と直交する方向の前記拡幅部の長さをH1とするときに、H1/B1が、0.28〜1.12の範囲にあることを特徴とする請求項2に記載の電気加熱式触媒装置。 When the width of the connecting portion is B1 and the length of the widening portion in the direction orthogonal to the width direction of the connecting portion is H1, H1 / B1 is in the range of 0.28 to 1.12. The electrically heated catalyst device according to claim 2. 前記拡幅部の幅方向の中央には、前記延在部から前記連結部に向かって延びた長孔が形成されていることを特徴とする請求項1〜3のいずれか一項に記載の電気加熱式触媒装置。
The electricity according to any one of claims 1 to 3, wherein an elongated hole extending from the extending portion toward the connecting portion is formed in the center of the widening portion in the width direction. Heated catalyst device.
JP2020094719A 2020-05-29 2020-05-29 Electrically heated catalyst device Active JP7347334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020094719A JP7347334B2 (en) 2020-05-29 2020-05-29 Electrically heated catalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020094719A JP7347334B2 (en) 2020-05-29 2020-05-29 Electrically heated catalyst device

Publications (2)

Publication Number Publication Date
JP2021188562A true JP2021188562A (en) 2021-12-13
JP7347334B2 JP7347334B2 (en) 2023-09-20

Family

ID=78849098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020094719A Active JP7347334B2 (en) 2020-05-29 2020-05-29 Electrically heated catalyst device

Country Status (1)

Country Link
JP (1) JP7347334B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107452A (en) * 2013-12-04 2015-06-11 トヨタ自動車株式会社 Electrically heated catalyst device and method for producing the same
JP2016031053A (en) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 Energization heating type catalyst device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107452A (en) * 2013-12-04 2015-06-11 トヨタ自動車株式会社 Electrically heated catalyst device and method for producing the same
JP2016031053A (en) * 2014-07-29 2016-03-07 トヨタ自動車株式会社 Energization heating type catalyst device

Also Published As

Publication number Publication date
JP7347334B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP7047604B2 (en) Electric heating type catalyst device
US10773207B2 (en) Conductive honeycomb structure
US5405422A (en) Self-heating filter
JP6438939B2 (en) Honeycomb structure
CN110314709B (en) Electrically heated catalyst support
JP6956038B2 (en) Carrier for electrically heated catalyst
JP2017166327A (en) Honeycomb type heating apparatus, and usage and manufacturing method thereof
CN111195533A (en) Carrier for electrically heated catalyst and exhaust gas purification device
JP7182530B2 (en) Electrically heated carrier and exhaust gas purification device
JP2013158714A (en) Electrically heated catalyst device
JP7155054B2 (en) Electrically heated carrier and exhaust gas purification device
JPH0666132A (en) Honeycomb heater
JP2021188562A (en) Electric heating-type catalyst device
CN110886637B (en) Carrier for electrically heated catalyst and exhaust gas purification device
JP5765221B2 (en) Electric heating catalyst device and method for manufacturing the same
JP6905929B2 (en) Honeycomb structure
JP7320154B1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purifier
US11725557B2 (en) Electric heating type carrier and exhaust gas purification device
WO2021176927A1 (en) Electrically heated converter and production method for electrically heated converter
WO2021176785A1 (en) Electric heating-type carrier, exhaust gas purification device, and metal electrode
US20230313721A1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
WO2021106261A1 (en) Electrical heating-type carrier, and exhaust gas purification device
JP2022093013A (en) Electric heating type carrier and exhaust emission control system
JP2022144219A (en) Honeycomb structure, electrically heated carrier and exhaust emission control device
JP2023149427A (en) Honeycomb structure, manufacturing method for the same, and shape adjustment method for honeycomb molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7347334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151