WO2021176785A1 - Electric heating-type carrier, exhaust gas purification device, and metal electrode - Google Patents

Electric heating-type carrier, exhaust gas purification device, and metal electrode Download PDF

Info

Publication number
WO2021176785A1
WO2021176785A1 PCT/JP2020/044882 JP2020044882W WO2021176785A1 WO 2021176785 A1 WO2021176785 A1 WO 2021176785A1 JP 2020044882 W JP2020044882 W JP 2020044882W WO 2021176785 A1 WO2021176785 A1 WO 2021176785A1
Authority
WO
WIPO (PCT)
Prior art keywords
tongue piece
neck
honeycomb structure
head
metal electrode
Prior art date
Application number
PCT/JP2020/044882
Other languages
French (fr)
Japanese (ja)
Inventor
傑士 高田
尚哉 高瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2022504975A priority Critical patent/JPWO2021176785A1/ja
Publication of WO2021176785A1 publication Critical patent/WO2021176785A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes

Definitions

  • the present invention relates to an electrically heated carrier, an exhaust gas purifying device, and a metal electrode.
  • the present invention relates to an electrically heated carrier, an exhaust gas purifying device, and a metal electrode in which the generation of cracks due to a difference in thermal expansion during heating is satisfactorily suppressed.
  • a plurality of flow paths are formed by penetrating from one bottom surface to the other bottom surface.
  • a columnar honeycomb structure having a plurality of partition walls forming a cell partition is supported by a catalyst. In this way, when the exhaust gas is treated by the catalyst supported on the honeycomb structure, it is necessary to raise the temperature of the catalyst to its active temperature, but when the engine is started, the exhaust gas does not reach the active temperature. There was a problem that it was not sufficiently purified.
  • plug-in hybrid vehicles PHEVs
  • HVs hybrid vehicles
  • a metal electrode is connected to a columnar honeycomb structure made of conductive ceramics, and the honeycomb structure itself is heated by energization so that the catalyst can be heated to the active temperature before starting the engine.
  • Electric heating catalyst EHC
  • EHC In EHC, in order to heat the ceramic carrier by energization and efficiently purify the exhaust gas, it is necessary to heat the ceramic carrier while making the temperature distribution inside uniform. To achieve this, it is necessary to pass the current through the ceramic carrier as uniformly as possible.
  • Patent Document 1 as one of the measures, a ceramic carrier, a surface electrode arranged on the surface of the ceramic carrier, and a comb tooth in which three or more teeth are arranged in parallel with each other and connected to the surface electrode, respectively.
  • EHC has been proposed, which is provided with a metal electrode having a portion, and the comb tooth portion is formed so that the electrical resistance of the tooth near the end is lower than the electrical resistance of the tooth near the center. Then, it is described that according to such a configuration, the temperature distribution inside the ceramic carrier can be made uniform when the ceramic carrier is energized and heated.
  • the present invention has been made in consideration of the above problems, and provides an electrically heated carrier, an exhaust gas purifying device, and a metal electrode in which the generation of cracks due to a difference in thermal expansion during heating is satisfactorily suppressed. That is the issue.
  • the present inventor has determined that the metal electrode provided on the electrode layer arranged on the surface of the outer peripheral wall of the honeycomb structure is provided with a main body portion and a plurality of tongue pieces extending from the main body portion.
  • the tongue piece has a neck and a head, and the head of the tongue piece is arranged so that at least a part of it is in contact with the electrode layer. It has been found that the above problem can be solved by controlling the relationship between the length A to the tip and the minimum value B of the width of the neck. Therefore, the present invention is specified as follows.
  • the tongue piece of the metal electrode has a neck and a head. The head of the tongue piece is arranged so that at least a part thereof is in contact with the electrode layer.
  • the length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck have a relationship of 10 ⁇ A / B ⁇ 160.
  • An electroheated carrier that meets. (2) The electrically heated carrier according to (1) and A can body holding the electrically heated carrier and Exhaust gas purification device with. (3) A metal electrode configured to be disposable on the surface of the outer peripheral wall of a ceramic columnar honeycomb structure having an outer peripheral wall and a partition wall.
  • the metal electrode includes a main body portion and a plurality of tongue pieces extending from the main body portion.
  • the tongue piece of the metal electrode has a neck and a head.
  • the length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck have a relationship of 10 ⁇ A / B ⁇ 160.
  • an electrically heated carrier an exhaust gas purifying device, and a metal electrode in which the generation of cracks due to a difference in thermal expansion during heating is satisfactorily suppressed.
  • FIG. 1 shows a schematic view of the appearance of the columnar honeycomb structure 10 of the electrically heated carrier 20 according to the embodiment of the present invention.
  • FIG. 2 shows a schematic appearance of the electrode layers 14a and 14b provided on the columnar honeycomb structure 10 of the electrically heated carrier 20 and the metal electrodes 30 provided on the electrode layers 14a and 14b according to the embodiment of the present invention. The figure is shown.
  • the columnar honeycomb structure 10 includes an outer peripheral wall 12 and a partition wall 13 which is disposed inside the outer peripheral wall 12 and divides a plurality of cells 15 which penetrate from one end face to the other end face to form a flow path. Have.
  • the outer shape of the columnar honeycomb structure 10 is not particularly limited as long as it is columnar. , Octagon, etc.) can be shaped like a columnar shape. Further, the size of the columnar honeycomb structure 10 is preferably 2000 to 20000 mm 2 and preferably 5000 to 15000 mm for the reason of improving heat resistance (suppressing cracks entering the circumferential direction of the outer peripheral wall). it is more preferably 2.
  • the columnar honeycomb structure 10 has conductivity.
  • the columnar honeycomb structure 10 is not particularly limited in electrical resistivity as long as it can be energized and generated by Joule heat, but it is preferably 0.1 to 200 ⁇ cm, more preferably 1 to 200 ⁇ cm. It is more preferably 10 to 100 ⁇ cm.
  • the electrical resistivity of the columnar honeycomb structure 10 is a value measured at 25 ° C. by the four-terminal method.
  • the columnar honeycomb structure 10 is composed of ceramics and metal, and contains 40% by volume or less of metal.
  • the metal component of the columnar honeycomb structure 10 may be 30% by volume or less, 20% by volume or less, or 10% by volume or less.
  • the material of the columnar honeycomb structure 10 composed of ceramics and metal is not limited, but is not limited to oxide-based ceramics such as alumina, mulite, zirconia and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride and aluminum nitride. It can be selected from the group consisting of oxide-based ceramics. Further, a silicon carbide-metal silicon composite material, a silicon carbide / graphite composite material, or the like can also be used.
  • the material of the columnar honeycomb structure 10 preferably contains a silicon-silicon carbide composite material or ceramics containing silicon carbide as a main component and a metal. , Silicon-Silicon Carbide Composite or Silicon Carbide and Metals are more preferred.
  • the material of the columnar honeycomb structure 10 is mainly composed of a silicon-silicon carbide composite material
  • the columnar honeycomb structure 10 contains the silicon-silicon carbide composite material (total mass) as a total of 90 masses. It means that it contains more than%.
  • the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder for binding the silicon carbide particles, and a plurality of silicon carbide particles are formed between the silicon carbide particles. It is preferably bonded by silicon so as to form pores.
  • the material of the columnar honeycomb structure 10 is mainly composed of silicon carbide, it means that the columnar honeycomb structure 10 contains silicon carbide (total mass) in an amount of 90% by mass or more of the whole. means.
  • the “mass of silicon carbide particles as aggregate” contained in the columnar honeycomb structure 10 and the columnar honeycomb structure 10 are contained.
  • the ratio of the "mass of silicon as a binder" contained in the columnar honeycomb structure 10 to the total of the "mass of silicon as a composite” is preferably 10 to 40% by mass, preferably 15 to 35. It is more preferably mass%. When it is 10% by mass or more, the strength of the columnar honeycomb structure 10 is sufficiently maintained. When it is 40% by mass or less, it becomes easy to maintain the shape at the time of firing.
  • the shape of the cell in the cross section perpendicular to the extending direction of the cell 15 is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Among these, a quadrangle and a hexagon are preferable.
  • a quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
  • the thickness of the partition wall 13 forming the cell 15 is preferably 0.1 to 0.3 mm, more preferably 0.15 to 0.25 mm.
  • the thickness of the partition wall 13 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the columnar honeycomb structure 10.
  • the thickness of the partition wall 13 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the columnar honeycomb structure 10 is used as a catalyst carrier and a catalyst is supported.
  • the thickness of the partition wall 13 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 15 that passes through the partition wall 13 in a cross section perpendicular to the extending direction of the cell 15.
  • the columnar honeycomb structure 10 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 70 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 15.
  • the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured.
  • the cell density is 150 cells / cm 2 or less, when the columnar honeycomb structure 10 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large.
  • the cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the columnar honeycomb structure 10 excluding the outer wall 12 portion.
  • the thickness of the outer peripheral wall 12 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more.
  • the thickness of the outer peripheral wall 12 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less.
  • the thickness of the outer peripheral wall 12 is the normal direction with respect to the tangent line of the outer peripheral wall 12 at the measurement location when the portion of the outer peripheral wall 12 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell. Defined as thickness.
  • the partition wall 13 can be made porous.
  • the porosity of the partition wall 13 is preferably 35 to 60%, more preferably 35 to 45%. When the porosity is 35% or more, it becomes easier to suppress deformation during firing. When the porosity is 60% or less, the strength of the columnar honeycomb structure 10 is sufficiently maintained. Porosity is a value measured by a mercury porosimeter.
  • the average pore diameter of the partition wall 13 of the columnar honeycomb structure 10 is preferably 2 to 15 ⁇ m, more preferably 4 to 8 ⁇ m. When the average pore diameter is 2 ⁇ m or more, it is suppressed that the electrical resistivity becomes too large. When the average pore diameter is 15 ⁇ m or less, it is suppressed that the electrical resistivity becomes too small.
  • the average pore diameter is a value measured by a mercury porosimeter.
  • Electrode layer In the columnar honeycomb structure 10, a pair of electrode layers 14a and 14b are arranged on the surface of the outer peripheral wall 12. In the pair of electrode layers 14a and 14b, one electrode layer is provided so as to face the other electrode layer of the pair of electrode layers 14a and 14b with the central axis of the columnar honeycomb structure 10 interposed therebetween. ..
  • the pair of electrode layers may not be provided as described above. For example, on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 10, only one of the above electrodes (either one of the electrode layer 14a or the electrode layer 14b) is provided. It may be provided.
  • each of the electrode layers 14a and 14b is on the outer surface of the outer peripheral wall 12 and is formed by the outer peripheral wall 12. It is preferable to extend the cells in a band shape in the circumferential direction and the extending direction of the cell. Specifically, each of the electrode layers 14a and 14b has a length of 80% or more, preferably a length of 90% or more, and more preferably a total length between both bottom surfaces of the columnar honeycomb structure 10. It is desirable that the current extends over the electrode layers 14a and 14b from the viewpoint that the current easily spreads in the axial direction.
  • the electrode layers 14a and 14b are provided with slit-shaped separation bands 19 extending along the axial direction of the columnar honeycomb structure 10, respectively, as shown in FIG.
  • the separation band 19 has a function of alleviating the difference in thermal expansion between the columnar honeycomb structure 10 and the electrode layers 14a and 14b when the electrically heated carrier 20 is heated, and the electrode layers 14a and 14b due to the difference in thermal expansion It has a function of suppressing cracking and peeling.
  • the width of the slit-shaped separation band 19 is not particularly limited, but can be formed to, for example, 0.5 to 3.0 mm.
  • the separation band 19 of the electrode layers 14a and 14b may not be formed, and the electrode layer 14a and the electrode layer 14b may be one continuous electrode layer, respectively.
  • the thickness of each of the electrode layers 14a and 14b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced. When the thickness of each of the electrode layers 14a and 14b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced.
  • the thickness of each of the electrode layers 14a and 14b is relative to the tangent line of the outer surface of each of the electrode layers 14a and 14b at the measurement point when the portion of the electrode layer for which the thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell. It is defined as the thickness in the normal direction.
  • the electrical resistivity of the electrode layers 14a and 14b is preferably 1/10 or less, more preferably 1/20 or less, and preferably 1/30 or less of the electrical resistivity of the columnar honeycomb structure 10. Even more preferable. However, if the difference in electrical resistivity between the two becomes too large, the current is concentrated between the ends of the electrode layers 14a and 14b facing each other, and the heat generation of the columnar honeycomb structure 10 is biased.
  • the resistivity is preferably 1/200 or more, more preferably 1/150 or more, and even more preferably 1/100 or more of the electrical resistivity of the columnar honeycomb structure 10.
  • the electrical resistivity of the electrode layers 14a and 14b is a value measured at 25 ° C. by the four-terminal method.
  • a composite material (cermet) of metal and conductive ceramics can be used as the material of each of the electrode layers 14a and 14b.
  • the metal include elemental metals of Cr, Fe, Co, Ni, Si and Ti, and alloys containing at least one metal selected from the group consisting of these metals.
  • the conductive ceramics include, but are not limited to, silicon carbide (SiC), and examples thereof include metal compounds such as metal siliceates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2).
  • the composite material (cermet) of metal and conductive ceramics include a composite material of metallic silicon and silicon carbide, a composite material of metal siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further described above. From the viewpoint of reducing thermal expansion, a composite material obtained by adding one or more kinds of insulating ceramics such as alumina, mulite, zirconia, cordierite, silicon nitride and aluminum nitride to one or more kinds of metals can be mentioned.
  • the electrode layers 14a and 14b may be made of a columnar honeycomb by combining a metal silice such as tantalum silicate or chromium silicate and a composite material of metallic silicon and silicon carbide. It is preferable because it can be fired at the same time as the structural part, which contributes to simplification of the manufacturing process.
  • the metal electrode 30 is arranged on the electrode layers 14a and 14b and is electrically bonded. As a result, when a voltage is applied to the metal electrode 30, the columnar honeycomb structure 10 can be energized and the columnar honeycomb structure 10 is heated by Joule heat. Therefore, the columnar honeycomb structure 10 can be suitably used as a heater.
  • the applied voltage is preferably 12 to 900 V, more preferably 48 to 600 V, but the applied voltage can be changed as appropriate.
  • the material of the metal electrode 30 there are no particular restrictions as long as it is a metal, and a single metal, an alloy, or the like can be adopted.
  • a metal for example, Cr, Fe, Co. , Ni and Ti are preferably used as alloys containing at least one selected from the group, and stainless steel and Fe—Ni alloys are more preferable.
  • the metal electrode 30 includes a main body portion 31 and a plurality of tongue pieces 32 extending from the main body portion 31.
  • the tongue piece 32 of the metal electrode 30 has a neck portion 33 and a head portion 34, and the head portion 34 of the tongue piece 32 is arranged so that at least a part thereof is in contact with the electrode layers 14a and 14b.
  • the slit-shaped separation band 19 is formed in the electrode layers 14a and 14b as shown in FIG. 2, one metal electrode 30 is formed on both of the electrode layers 14a and 14b divided by the separation band 19. At least one of the plurality of tongue pieces 32 is arranged.
  • the main body portion 31 and the tongue piece 32 of the metal electrode 30, and the neck 33 and the head 34 of the tongue piece 32 may be formed separately and electrically connected to each other, or one metal plate. It may be integrally formed by cutting from.
  • the shape of the main body portion 31 is not particularly limited, but it is preferably plate-shaped from the viewpoint of manufacturing efficiency, operability, space saving, and the like. Further, the plate shape may be a flat plate shape or a curved plate shape.
  • the main body portion 31 may have a grip portion 36 formed on the side opposite to the tongue piece 32.
  • the grip portion 36 may be formed in a ring shape from the viewpoint of operability. Further, the grip portion 36 also has a function as a contact point for electrically connecting to the external electrode.
  • Each of the plurality of tongue pieces 32 is formed so that the neck portion 33 extends from the main body portion 31, and the head portion 34 at the tip thereof is electrically joined to the electrode layers 14a and 14b, respectively.
  • a welding base layer 39 may be provided between the head portion 34 and the electrode layers 14a and 14b.
  • the welding base layer 39 is provided on the electrode layers 14a and 14b, and the head 34 of the tongue piece 32 of the metal electrode 30 is further provided on the welding base layer 39, and laser welding or the like is performed from the head 34 side.
  • the head 34 of the metal electrode 30 and the electrode layers 14a and 14b are electrically connected by welding with the metal electrode 30.
  • the metal electrode 30 and the welding base layer 39 on the electrode layers 14a and 14b are formed by the welding penetration portion 40 formed between at least a part of the head 34 which is the tip of the plurality of tongue pieces 32 and the welding base layer 39. Is firmly joined. Further, the joint area S of the weld penetration portion 40 becomes the minimum area required for energization, and the thermal expansion difference between the weld penetration portion 40, the weld base layer 39, and the metal electrode 30 can be suppressed. Therefore, the stress generated in the joint portion in a high temperature environment can be satisfactorily suppressed.
  • the head 34 may be electrically bonded to the electrode layers 14a and 14b on the entire surface thereof, or may be electrically bonded to the electrode layers 14a and 14b in a part of the region of the head 34.
  • the welding base layer 39 can be formed of conductive ceramics.
  • the conductive ceramics constituting the welding base layer 39 include, but are not limited to, silicon carbide (SiC), and metal compounds such as metal silicates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2).
  • a composite material (cermet) containing one or more metals can be mentioned.
  • Specific examples of the cermet include a composite material of metallic silicon and silicon carbide, a composite material of metallic siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further, thermal expansion to the above-mentioned one or more kinds of metals.
  • a composite material to which one or more kinds of insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon carbide and aluminum nitride are added can be mentioned.
  • Twelve tongue pieces 32 of the metal electrode 30 shown in FIG. 2 extend from the lower end of the main body portion 31 of the plate-shaped portion at equal intervals, and six bodies extend toward one side surface of the main body portion 31 of the plate-shaped portion. It is formed so as to be folded, and six more bodies are formed so as to be folded in the direction of the other side surface of the main body portion 31 of the plate-shaped portion.
  • the number of tongue pieces 32 can be appropriately changed according to the requirements for the energizing performance of the metal electrode 30 and the columnar honeycomb structure 10.
  • the shape of the tongue piece 32 is not particularly limited, but it is preferably the shape shown in FIGS. 3 to 6, for example.
  • the tongue piece 32 shown in FIG. 3 has the same shape as the tongue piece 32 shown in FIG.
  • the tongue piece 32 shown in FIG. 3 is formed so that the neck portion 33 extends from one end of the plate-shaped main body portion 31, and is bent at two bent portions 35 in a direction of approximately 180 degrees, respectively, and is bent near the head portion 34.
  • the portion 38 is bent in a direction of approximately 90 degrees.
  • the tongue piece 32 shown in FIG. 4 is formed so that the neck portion 33 extends from one end of the plate-shaped main body portion 31, is bent in a direction of approximately 180 degrees at one bent portion 35, and is near the head portion 34.
  • the bent portion 38 is bent in a direction of approximately 90 degrees.
  • the elasticity of the metal electrode 30 is increased, and the columnar honeycomb structure 10 and the electrode layers 14a and 14b when the electrically heated carrier 20 is heated, and the electrode layers 14a and 14b.
  • the bent portion 35 which is a portion that is bent in a direction of approximately 180 degrees, is provided at one in FIG. 4 and two in FIG. 3, but three or more may be provided.
  • the neck portion 33 Although it depends on the material of the neck portion 33, the more the bent portion 35, the more the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10 and the electrode layers 14a and 14b and the metal electrode when the electrically heated carrier 20 is heated. The difference in thermal expansion from 30 can be relaxed better.
  • the tongue piece 32 shown in FIG. 5 is formed so that the neck portion 33 extends from one end of the plate-shaped main body portion 31, and is bent in the direction of approximately 90 degrees at the bent portion 38 near the head portion 34.
  • the neck portion 33 shown in FIG. 6 is formed so as to extend from one end of the plate-shaped main body portion 31 and reach the head portion 34 without being bent as it is.
  • the metal electrode 30 has a length A from the end of the neck 33, which is a starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33, and a minimum width B of the neck 33. Satisfies the relationship of 10 ⁇ A / B ⁇ 160.
  • the length A and the minimum value B of the width of the neck portion 33 are shown.
  • the length A is the total length of the neck portion 33 when the neck portion 33 is bent by the bent portion 35 by approximately 180 degrees.
  • the widths of the neck 33 are all uniformly formed, and the minimum value B of the width of the neck 33 may be measured at any position, but the bent portion 35 and the bent portion 38 are formed. It is preferable to measure at the removed position.
  • the length A from the end of the neck 33 which is the starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33 and the minimum width B of the neck 33 satisfy the relationship of 10 ⁇ A / B.
  • the elasticity of the metal electrode 30 becomes good, and the difference in thermal expansion between the columnar honeycomb structure 10 and the electrode layers 14a and 14b and the metal electrode 30 when the electrically heated carrier 20 is heated can be more satisfactorily relaxed. ..
  • the length A from the end of the neck 33 which is the starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33, and the minimum width B of the neck 33 have a relationship of A / B ⁇ 160.
  • the length A from the end of the neck 33, which is the starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33, and the minimum width B of the neck 33 have a relationship of 20 ⁇ A / B ⁇ 160. It is preferable to satisfy, it is more preferable to satisfy the relationship of 20 ⁇ A / B ⁇ 80, and it is further preferable to satisfy the relationship of 30 ⁇ A / B ⁇ 40.
  • the length of the neck 33 of the tongue piece 32 is preferably 10 to 1000 mm.
  • the length of the neck portion 33 of the tongue piece 32 is 10 mm or more, the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10, the electrode layers 14a and 14b, and the metal electrode 30 when the electrically heated carrier 20 is heated. The difference in thermal expansion with and from can be alleviated better. Further, if the length of the neck portion 33 of the tongue piece 32 is too large, the stress due to the vibration of the metal electrode 30 increases, so that the length is preferably 1000 mm or less.
  • the length of the neck 33 of the tongue piece 32 is more preferably 20 to 320 mm, and even more preferably 30 to 320 mm.
  • the minimum width B of the neck 33 of the tongue piece 32 is preferably 0.15 to 6.5 mm.
  • the minimum width B of the neck 33 of the tongue piece 32 is more preferably 0.15 to 5.0 mm, and even more preferably 0.15 to 4.0 mm.
  • the thickness of the neck 33 and the head 34 of the tongue piece 32 is preferably 0.05 to 0.7 mm, respectively. If the thickness of the neck 33 and the head 34 of the tongue piece 32 is too small, the strength of the metal electrode 30 will decrease, so the thickness is preferably 0.05 mm or more. Further, when the thickness of the neck 33 and the head 34 of the tongue piece 32 is 0.7 mm or less, the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10 and the electrode layer 14a when the electrically heated carrier 20 is heated. , 14b and the metal electrode 30 can better alleviate the difference in thermal expansion. The thickness of the neck 33 and the head 34 of the tongue piece 32 is more preferably 0.05 to 0.6 mm, and even more preferably 0.05 to 0.2 mm, respectively.
  • the length of the neck 33 of the tongue piece 32 from the bent portion 35 closest to the head 34 of the tongue piece 32 to the head 34 is 10 mm or more. Further, the length is more preferably 20 mm or more, and even more preferably 30 mm or more.
  • the planar shapes of the neck 33 and the head 34 of the tongue piece 32 are not particularly limited, but it is preferable to form the tongue pieces 32 into the shapes shown in FIGS. 7 to 9, for example.
  • the tongue piece 32a shown in FIG. 7 is provided with a rectangular head 34a having a width of about five times the width of the neck 33a at the tip of the elongated rectangular neck 33a.
  • the tongue piece 32b shown in FIG. 7 is provided with a rectangular head portion 34b having a width narrower than the width of the neck portion 33a at the tip of the elongated rectangular neck portion 33a.
  • the stress during thermal expansion is concentrated on the boundary between the neck 33a and 33b and the head 34a and 34b.
  • the tongue piece 32c shown in FIG. 8 has a shape in which the width gradually expands from the elongated rectangular neck portion 33c to the maximum width. More specifically, the head 34c of the tongue piece 32c has a linear tapered shape in which the width gradually expands from the neck portion 33c of the tongue piece 32c to the maximum width.
  • the tongue piece 32d shown in FIG. 8 has a shape in which the width gradually decreases from the elongated rectangular neck portion 33d to the minimum width. More specifically, the head 34d of the tongue piece 32d has a linear tapered shape whose width gradually decreases from the neck portion 33d of the tongue piece 32d to the minimum width.
  • the tongue piece 32e shown in FIG. 9 has a shape in which the width gradually expands from the elongated rectangular neck portion 33e to the maximum width. More specifically, the head 34e of the tongue piece 32e has a parabolic taper shape in which the width gradually expands from the neck portion 33e of the tongue piece 32e to reach the maximum width.
  • the tongue piece 32f shown in FIG. 9 has a shape in which the width gradually decreases from the elongated rectangular neck portion 33f to the minimum width. More specifically, the head 34f of the tongue piece 32f has a parabolic taper shape in which the width gradually decreases from the neck portion 33f of the tongue piece 32f to the minimum width.
  • the tongue pieces have a shape such as 32c, 32d, 32e, 32f, the stress generated during thermal expansion between the neck 33c, 33d, 33e, 33f and the head 34c, 34d, 34e, 34f is dispersed and relaxed. Therefore, it is possible to satisfactorily suppress the destruction in the region during thermal expansion.
  • the metal electrode 30 g may be formed in a comb-teeth shape.
  • the metal electrode 30 g includes a plate-shaped main body portion 31 g and a plurality of tongue pieces 32 g formed so as to extend from the plate-shaped main body portion 31 g.
  • Each of the plurality of tongue pieces 32g includes an elongated rectangular neck portion 33g and a rectangular head portion 34g provided at the tip of the neck portion 33g, which is wider than the neck portion 33g.
  • the width of the plurality of elongated rectangular neck portions 33 g can be formed to be 0.5 to 3.0 mm, respectively.
  • the head 34g may be narrower than the neck 33g as shown in FIG. 7, may have a linear taper shape as shown in FIG. 8, and may have a parabolic taper shape as shown in FIG. It may have a shape.
  • the electrically heated carrier 20 can be used as a catalyst.
  • a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 15.
  • the catalyst include noble metal-based catalysts and catalysts other than these.
  • a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali.
  • An example is a NO x storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NO x).
  • catalysts that do not use noble metals include NO x selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used.
  • the method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure.
  • the method for producing the electroheated carrier 20 of the present invention includes a step A1 for obtaining an unfired columnar honeycomb structure portion with an electrode layer forming paste and a columnar structure by firing the unfired columnar honeycomb structure portion with an electrode layer forming paste.
  • the step A2 for obtaining the honeycomb structure and the step A3 for welding the metal electrode to the columnar honeycomb structure are included.
  • a columnar honeycomb molded body which is a precursor of the columnar honeycomb structure is produced, and an electrode layer forming paste is applied to the side surface of the columnar honeycomb molded body to obtain an unfired columnar honeycomb structure with the electrode layer forming paste. It is a process.
  • the columnar honeycomb molded body can be produced according to the method for producing a columnar honeycomb molded body in a known method for producing a columnar honeycomb structure. For example, first, a metal silicon powder (metal silicon), a binder, a surfactant, a pore-forming material, water, or the like is added to silicon carbide powder (silicon carbide) to prepare a molding raw material.
  • the mass of the metallic silicon is 10 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metallic silicon.
  • the average particle size of the silicon carbide particles in the silicon carbide powder is preferably 3 to 50 ⁇ m, more preferably 3 to 40 ⁇ m.
  • the average particle size of metallic silicon (metallic silicon powder) is preferably 2 to 35 ⁇ m.
  • the average particle diameter of silicon carbide particles and metallic silicon (metal silicon particles) refers to the arithmetic average diameter based on the volume when the frequency distribution of particle size is measured by the laser diffraction method.
  • the silicon carbide particles are fine particles of silicon carbide constituting the silicon carbide powder, and the metallic silicon particles are fine particles of metallic silicon constituting the metallic silicon powder. This is a blending of molding raw materials when the material of the columnar honeycomb structure is silicon-silicon carbide-based composite material, and when the material of the columnar honeycomb structure is silicon carbide, metallic silicon is added. do not.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the binder content is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the water content is preferably 20 to 60 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used as the surfactant. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
  • the pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel.
  • the content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the average particle size of the pore-forming material is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be sufficiently formed. If it is larger than 30 ⁇ m, it may clog the base during molding.
  • the average particle size of the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • the average particle size of the pore-forming material is the average particle size after water absorption.
  • the clay is extruded to produce a columnar honeycomb molded body.
  • a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used.
  • both bottom portions of the columnar honeycomb molded body can be cut to obtain the desired length.
  • the columnar honeycomb molded body after drying is called a columnar honeycomb dried body.
  • the electrode layer forming paste for forming the electrode layer is prepared.
  • the electrode layer forming paste can be formed by appropriately adding various additives to the raw material powder (metal powder, ceramic powder, etc.) blended according to the required characteristics of the electrode layer and kneading.
  • the average particle size of the metal powder in the paste for the second electrode layer is made larger than the average particle size of the metal powder in the paste for the first electrode layer.
  • the bonding strength between the metal electrode and the electrode layer tends to improve.
  • the average particle size of the metal powder refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • the obtained electrode layer forming paste is applied to the side surface of the columnar honeycomb molded body (typically, the columnar honeycomb dried body) to obtain an unfired columnar honeycomb structure with the electrode layer forming paste.
  • the method of preparing the electrode layer forming paste and the method of applying the electrode layer forming paste to the columnar honeycomb structure can be performed according to a known method for producing a columnar honeycomb structure, but the electrode layer has a columnar honeycomb structure. In order to have a lower electrical resistance than that of the body, the metal content ratio can be increased or the particle size of the metal particles can be reduced as compared with the columnar honeycomb structure.
  • the columnar honeycomb molded body may be fired once before applying the electrode layer forming paste. That is, in this modified example, the columnar honeycomb molded body is fired to produce a columnar honeycomb fired body, and the electrode layer forming paste is applied to the columnar honeycomb fired body.
  • step A2 the unfired columnar honeycomb structure with the electrode layer forming paste is fired to obtain a columnar honeycomb structure.
  • the unfired columnar honeycomb structure with the electrode layer forming paste may be dried.
  • degreasing may be performed in order to remove the binder and the like.
  • the firing conditions it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon. Further, after firing, it is preferable to carry out an oxidation treatment at 1200 to 1350 ° C. for 1 to 10 hours in order to improve durability.
  • the method of degreasing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.
  • step A3 a pair of metal electrodes are welded to the surface of the electrode layer on the columnar honeycomb structure.
  • a welding method a laser welding method is preferable from the viewpoint of controlling the welding area and production efficiency.
  • the heads which are the tips of the plurality of tongue pieces of the metal electrodes, are arranged on the electrode layer and welded from the head side. As a result, an electrically heated carrier in which the metal electrode is electrically connected to the electrode layer is obtained.
  • the electrically heated carrier according to each embodiment of the present invention described above can be used for an exhaust gas purification device.
  • the exhaust gas purifying device has an electrically heated carrier and a can body that holds the electrically heated carrier.
  • the electrically heated carrier is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine.
  • a metal tubular member or the like accommodating an electrically heated carrier can be used.
  • Example> (1. Preparation of columnar clay) Silicon carbide (SiC) powder and metallic silicon (Si) powder were mixed at a mass ratio of 80:20 to prepare a ceramic raw material. Then, hydroxypropyl methylcellulose as a binder and a water-absorbent resin as a pore-forming material were added to the ceramic raw material, and water was added to prepare a molding raw material. Then, the molding raw material was kneaded with a vacuum clay kneader to prepare a columnar clay. The binder content was 7 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the content of the pore-forming material was 3 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the water content was 42 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the average particle size of the silicon carbide powder was 20 ⁇ m, and the average particle size of the metallic silicon powder was 6 ⁇ m.
  • the average particle size of the pore-forming material was 20 ⁇ m.
  • the average particle size of the silicon carbide powder, the metallic silicon powder, and the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • Electrode layer forming paste Metallic silicon (Si) powder, silicon carbide (SiC) powder, methyl cellulose, glycerin, and water were mixed with a rotating and revolving stirrer to prepare an electrode layer forming paste.
  • the average particle size of the metallic silicon powder was 6 ⁇ m.
  • the average particle size of the silicon carbide powder was 35 ⁇ m.
  • the electrode layer forming paste was applied to the outer surface of the outer peripheral wall of the dried honeycomb body at two locations so as to face each other with the central axis interposed therebetween. Each coating portion was formed in a band shape over the entire length between both bottom surfaces of the dried honeycomb body, and each was provided with a slit-shaped separation band extending along the axial direction of the dried honeycomb body. Next, the dried honeycomb structure after applying the electrode layer forming paste was dried at 120 ° C. to obtain an unfired honeycomb structure with the electrode layer forming paste.
  • the unfired honeycomb structure with the electrode layer forming paste was degreased at 550 ° C. for 3 hours in an air atmosphere.
  • the unfired honeycomb structure with the degreased electrode layer forming paste was fired and oxidized to prepare a honeycomb structure.
  • the firing was carried out in an argon atmosphere at 1450 ° C. for 2 hours.
  • the oxidation treatment was carried out in the air at 1300 ° C. for 1 hour.
  • the bottom surface of the honeycomb structure was circular with a diameter of 100 mm, and the height (length in the flow path direction of the cell) was 100 mm.
  • the cell density was 93 cells / cm 2
  • the thickness of the partition was 101.6 ⁇ m
  • the porosity of the partition was 45%
  • the average pore diameter of the partition was 8.6 ⁇ m.
  • the thickness of the electrode layer was 0.3 mm.
  • a metal electrode having the shape shown in FIG. 2 was formed by cutting a stainless steel plate and then bending it. For each metal electrode, the length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck, the minimum width B of the neck, and the thickness t of the neck and head of the tongue piece, respectively. It is shown in Table 1. Next, half of the 12 tongue pieces of the metal electrode are arranged on both of the electrode layers divided by the median strip, and each head is brought into contact with the electrode layer to perform laser welding from the head side. rice field.
  • ⁇ Evaluation of stress relaxation> As described above, a ceramic mat was wound around a honeycomb structure in which tongue pieces were fixed by welding to prepare a test product. Next, the test product was stored in a metal container, and a thermal shock test (vibration test) was conducted in which vibration with a frequency of 100 Hz and an acceleration of 30 G was applied for 24 hours. Next, the honeycomb structure after the thermal shock test is taken out from the metal storage container and visually inspected, and the number of path disconnections of the metal electrode regarding the portion joined to the honeycomb structure (number of peeling of the joint portion /). Number of metal breaks) was detected. Table 1 shows each of the above evaluation conditions and evaluation results.

Abstract

This electric heating-type carrier comprises: an outer peripheral wall; a columnar honeycomb structure made of ceramics, which is disposed inside the outer peripheral wall and has a partition wall partitioning a plurality of cells that form a flow path passing therethrough from one end surface to the other end surface thereof; an electrode layer disposed on the surface of the outer peripheral surface of the columnar honeycomb structure; and a metal electrode disposed on the electrode layer. The metal electrode includes a body part and a plurality of tongue pieces extending from the body part. The tongue pieces of the metal electrode each have a neck portion and a head portion. The head portion of the tongue piece is disposed so that at least a portion thereof is in contact with the electrode layer. A length A from a terminal of the neck portion, which is a starting point extending from the body part of the tongue piece, to a tip of the neck portion and a minimum width B of the width of the neck portion satisfy the relationship 10<A/B≦160.

Description

電気加熱式担体、排気ガス浄化装置及び金属電極Electric heating type carrier, exhaust gas purification device and metal electrode
 本発明は、電気加熱式担体、排気ガス浄化装置及び金属電極に関する。とりわけ、加熱時の熱膨張差に起因するクラックの発生が良好に抑制された電気加熱式担体、排気ガス浄化装置及び金属電極に関する。 The present invention relates to an electrically heated carrier, an exhaust gas purifying device, and a metal electrode. In particular, the present invention relates to an electrically heated carrier, an exhaust gas purifying device, and a metal electrode in which the generation of cracks due to a difference in thermal expansion during heating is satisfactorily suppressed.
 従来、自動車等のエンジンから排出される排気ガス中に含まれるHC、CO、NOx等の有害物質の浄化処理のため、一方の底面から他方の底面まで貫通して流路を形成する複数のセルを区画形成する複数の隔壁を有する柱状のハニカム構造体に触媒を担持したものが使用されている。このように、ハニカム構造体に担持した触媒によって排気ガスを処理する場合、触媒をその活性温度まで昇温する必要があるが、エンジン始動時には、触媒が活性温度に達していないため、排気ガスが十分に浄化されないという問題があった。特に、プラグインハイブリッド車(PHEV)やハイブリッド車(HV)は、その走行に、モーターのみによる走行を含むことから、エンジン始動頻度が少なく、エンジン始動時の触媒温度が低いため、エンジン始動直後の排気ガス浄化性能が悪化し易い。 Conventionally, for purification treatment of harmful substances such as HC, CO, NO x contained in the exhaust gas discharged from the engine of an automobile or the like, a plurality of flow paths are formed by penetrating from one bottom surface to the other bottom surface. A columnar honeycomb structure having a plurality of partition walls forming a cell partition is supported by a catalyst. In this way, when the exhaust gas is treated by the catalyst supported on the honeycomb structure, it is necessary to raise the temperature of the catalyst to its active temperature, but when the engine is started, the exhaust gas does not reach the active temperature. There was a problem that it was not sufficiently purified. In particular, plug-in hybrid vehicles (PHEVs) and hybrid vehicles (HVs) include traveling only by the motor, so the frequency of engine starting is low and the catalyst temperature at the time of starting the engine is low. Exhaust gas purification performance tends to deteriorate.
 この問題を解決するため、導電性セラミックスからなる柱状のハニカム構造体に金属電極を接続し、通電によりハニカム構造体自体を発熱させることで、触媒をエンジン始動前に活性温度まで昇温できるようにした電気加熱触媒(EHC)が提案されている。 In order to solve this problem, a metal electrode is connected to a columnar honeycomb structure made of conductive ceramics, and the honeycomb structure itself is heated by energization so that the catalyst can be heated to the active temperature before starting the engine. Electric heating catalyst (EHC) has been proposed.
 EHCにおいては、通電によってセラミック担体を加熱し、効率良く排気ガスを浄化するためには、セラミック担体の内部の温度分布を均一化しつつ、加熱することが必要となる。これを実現するには、電流をできるだけセラミック担体に均一に流す必要がある。 In EHC, in order to heat the ceramic carrier by energization and efficiently purify the exhaust gas, it is necessary to heat the ceramic carrier while making the temperature distribution inside uniform. To achieve this, it is necessary to pass the current through the ceramic carrier as uniformly as possible.
 特許文献1では、その方策の一つとして、セラミック担体と、セラミック担体の表面上に配設される表面電極と、3個以上の歯が互いに平行に並んでそれぞれ表面電極に接続される櫛歯部を有する金属電極とを備え、櫛歯部は、中央寄りの歯の電気抵抗に比べて端部寄りの歯の電気抵抗が低くなるように形成されているEHCが提案されている。そして、このような構成によれば、セラミック担体を通電加熱するうえでセラミック担体内部の温度分布の均一化を図ることができると記載されている。 In Patent Document 1, as one of the measures, a ceramic carrier, a surface electrode arranged on the surface of the ceramic carrier, and a comb tooth in which three or more teeth are arranged in parallel with each other and connected to the surface electrode, respectively. EHC has been proposed, which is provided with a metal electrode having a portion, and the comb tooth portion is formed so that the electrical resistance of the tooth near the end is lower than the electrical resistance of the tooth near the center. Then, it is described that according to such a configuration, the temperature distribution inside the ceramic carrier can be made uniform when the ceramic carrier is energized and heated.
特開2012-106164号公報Japanese Unexamined Patent Publication No. 2012-106164
 EHCに通電して加熱すると、ハニカム構造体及び電極層と、金属電極との間の熱膨張差により、クラックが発生する問題がある。特許文献1に記載のEHCでは、セラミック担体に均一に電流を流すため、金属電極の形態を櫛歯状としているが、上述の加熱時の熱膨張差に起因するクラックの発生を抑制することについては着目していない。 When the EHC is energized and heated, there is a problem that cracks occur due to the difference in thermal expansion between the honeycomb structure and the electrode layer and the metal electrode. In the EHC described in Patent Document 1, in order to allow an electric current to flow uniformly through the ceramic carrier, the shape of the metal electrode is comb-shaped. Is not paying attention.
 本発明は、以上の問題を勘案してなされたものであり、加熱時の熱膨張差に起因するクラックの発生が良好に抑制された電気加熱式担体、排気ガス浄化装置及び金属電極を提供することを課題とする。 The present invention has been made in consideration of the above problems, and provides an electrically heated carrier, an exhaust gas purifying device, and a metal electrode in which the generation of cracks due to a difference in thermal expansion during heating is satisfactorily suppressed. That is the issue.
 本発明者は鋭意検討の結果、ハニカム構造体の外周壁の表面に配設された電極層上に設けた金属電極について、本体部分と、本体部分から伸びる複数の舌片とを備えた構成とし、舌片が首部と頭部とを有し、舌片の頭部が、少なくとも一部が電極層と接するように配置し、舌片の本体部分から伸びる起点である首部の末端から、首部の先端までの長さAと、首部の幅の最小値Bとの関係を制御することで、上記課題を解決できることを見出した。そこで、本発明は以下のように特定される。
(1)外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
 前記柱状ハニカム構造体の外周壁の表面に配設された電極層と、
 前記電極層上に配設された金属電極と、
を備え、
 前記金属電極は、本体部分と、前記本体部分から伸びる複数の舌片とを備えており、
 前記金属電極の前記舌片は首部と頭部とを有し、
 前記舌片の頭部は、少なくとも一部が前記電極層と接するように配置され、
 前記舌片の前記本体部分から伸びる起点である前記首部の末端から、前記首部の先端までの長さAと、前記首部の幅の最小値Bとが、10<A/B≦160の関係を満たす電気加熱式担体。
(2)(1)に記載の電気加熱式担体と、
 前記電気加熱式担体を保持する缶体と、
を有する排気ガス浄化装置。
(3)外周壁と隔壁とを有するセラミックス製の柱状ハニカム構造体の前記外周壁の表面に配設可能に構成された金属電極であって、
 前記金属電極は、本体部分と、前記本体部分から伸びる複数の舌片とを備えており、
 前記金属電極の前記舌片は首部と頭部とを有し、
 前記舌片の前記本体部分から伸びる起点である前記首部の末端から、前記首部の先端までの長さAと、前記首部の幅の最小値Bとが、10<A/B≦160の関係を満たす金属電極。
As a result of diligent studies, the present inventor has determined that the metal electrode provided on the electrode layer arranged on the surface of the outer peripheral wall of the honeycomb structure is provided with a main body portion and a plurality of tongue pieces extending from the main body portion. , The tongue piece has a neck and a head, and the head of the tongue piece is arranged so that at least a part of it is in contact with the electrode layer. It has been found that the above problem can be solved by controlling the relationship between the length A to the tip and the minimum value B of the width of the neck. Therefore, the present invention is specified as follows.
(1) A columnar honeycomb made of ceramics having an outer peripheral wall and a partition wall which is disposed inside the outer peripheral wall and forms a plurality of cells which form a flow path from one end face to the other end face. Structure and
An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure, and
A metal electrode arranged on the electrode layer and
With
The metal electrode includes a main body portion and a plurality of tongue pieces extending from the main body portion.
The tongue piece of the metal electrode has a neck and a head.
The head of the tongue piece is arranged so that at least a part thereof is in contact with the electrode layer.
The length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck have a relationship of 10 <A / B ≦ 160. An electroheated carrier that meets.
(2) The electrically heated carrier according to (1) and
A can body holding the electrically heated carrier and
Exhaust gas purification device with.
(3) A metal electrode configured to be disposable on the surface of the outer peripheral wall of a ceramic columnar honeycomb structure having an outer peripheral wall and a partition wall.
The metal electrode includes a main body portion and a plurality of tongue pieces extending from the main body portion.
The tongue piece of the metal electrode has a neck and a head.
The length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck have a relationship of 10 <A / B ≦ 160. A metal electrode that meets.
 本発明によれば、加熱時の熱膨張差に起因するクラックの発生が良好に抑制された電気加熱式担体、排気ガス浄化装置及び金属電極を提供することができる。 According to the present invention, it is possible to provide an electrically heated carrier, an exhaust gas purifying device, and a metal electrode in which the generation of cracks due to a difference in thermal expansion during heating is satisfactorily suppressed.
本発明の実施形態における電気加熱式担体の柱状ハニカム構造体の外観模式図である。It is a schematic appearance figure of the columnar honeycomb structure of the electric heating type carrier in embodiment of this invention. 本発明の実施形態における電気加熱式担体の柱状ハニカム構造体上に設けられた電極層及び電極層上に設けられた金属電極の外観模式図である。It is a schematic appearance figure of the electrode layer provided on the columnar honeycomb structure of the electric heating type carrier in embodiment of this invention, and the metal electrode provided on the electrode layer. 本発明の一実施形態における舌片の外観模式図である。It is a schematic appearance figure of the tongue piece in one Embodiment of this invention. 本発明の他の実施形態における舌片の断面模式図である。It is sectional drawing of the tongue piece in another embodiment of this invention. 本発明の更に他の実施形態における舌片の断面模式図である。It is sectional drawing of the tongue piece in still another embodiment of this invention. 本発明の更に他の実施形態における舌片の断面模式図である。It is sectional drawing of the tongue piece in still another embodiment of this invention. 本発明の一実施形態における舌片の平面模式図である。It is a plane schematic diagram of the tongue piece in one Embodiment of this invention. 本発明の他の実施形態における舌片の平面模式図である。It is a plan view of the tongue piece in another embodiment of this invention. 本発明の更に他の実施形態における舌片の平面模式図である。It is a plane schematic diagram of the tongue piece in still another embodiment of this invention. 本発明の実施形態に係る櫛歯状の金属電極の平面模式図である。It is a plane schematic diagram of the comb-tooth-shaped metal electrode which concerns on embodiment of this invention. 本発明の実施形態における電気加熱式担体の柱状ハニカム構造体上に設けられた電極層、溶接下地層及び金属電極の断面模式図である。It is sectional drawing of the electrode layer, the welding base layer and the metal electrode provided on the columnar honeycomb structure of the electric heating type carrier in embodiment of this invention.
 以下、図面を参照して、本発明の電気加熱式担体、排気ガス浄化装置及び金属電極の実施の形態について説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the electrically heated carrier, the exhaust gas purifying device, and the metal electrode of the present invention will be described with reference to the drawings, but the present invention is not limited to this and is not construed as being limited to the present invention. Various changes, modifications and improvements can be made based on the knowledge of those skilled in the art as long as they do not deviate from the scope of.
<電気加熱式担体>
 図1は、本発明の実施形態における電気加熱式担体20の柱状ハニカム構造体10の外観模式図を示すものである。図2は、本発明の実施形態における電気加熱式担体20の柱状ハニカム構造体10上に設けられた電極層14a、14b、及び、電極層14a、14b上に設けられた金属電極30の外観模式図を示すものである。
<Electric heating type carrier>
FIG. 1 shows a schematic view of the appearance of the columnar honeycomb structure 10 of the electrically heated carrier 20 according to the embodiment of the present invention. FIG. 2 shows a schematic appearance of the electrode layers 14a and 14b provided on the columnar honeycomb structure 10 of the electrically heated carrier 20 and the metal electrodes 30 provided on the electrode layers 14a and 14b according to the embodiment of the present invention. The figure is shown.
(1.柱状ハニカム構造体)
 柱状ハニカム構造体10は、外周壁12と、外周壁12の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセル15を区画形成する隔壁13とを有する。
(1. Columnar honeycomb structure)
The columnar honeycomb structure 10 includes an outer peripheral wall 12 and a partition wall 13 which is disposed inside the outer peripheral wall 12 and divides a plurality of cells 15 which penetrate from one end face to the other end face to form a flow path. Have.
 柱状ハニカム構造体10の外形は柱状である限り特に限定されず、例えば、底面が円形の柱状(円柱形状)、底面がオーバル形状の柱状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の柱状等の形状とすることができる。また、柱状ハニカム構造体10の大きさは、耐熱性を高める(外周壁の周方向に入るクラックを抑制する)という理由により、底面の面積が2000~20000mm2であることが好ましく、5000~15000mm2であることが更に好ましい。 The outer shape of the columnar honeycomb structure 10 is not particularly limited as long as it is columnar. , Octagon, etc.) can be shaped like a columnar shape. Further, the size of the columnar honeycomb structure 10 is preferably 2000 to 20000 mm 2 and preferably 5000 to 15000 mm for the reason of improving heat resistance (suppressing cracks entering the circumferential direction of the outer peripheral wall). it is more preferably 2.
 柱状ハニカム構造体10は、導電性を有する。柱状ハニカム構造体10は、通電してジュール熱により発熱可能である限り、電気抵抗率については特に制限はないが、0.1~200Ωcmであることが好ましく、1~200Ωcmであることがより好ましく、10~100Ωcmであることが更に好ましい。本発明において、柱状ハニカム構造体10の電気抵抗率は、四端子法により25℃で測定した値とする。 The columnar honeycomb structure 10 has conductivity. The columnar honeycomb structure 10 is not particularly limited in electrical resistivity as long as it can be energized and generated by Joule heat, but it is preferably 0.1 to 200 Ωcm, more preferably 1 to 200 Ωcm. It is more preferably 10 to 100 Ωcm. In the present invention, the electrical resistivity of the columnar honeycomb structure 10 is a value measured at 25 ° C. by the four-terminal method.
 柱状ハニカム構造体10は、セラミックスと金属とで構成され、金属を40体積%以下含有する。柱状ハニカム構造体10の金属成分は30体積%以下でもよく、20体積%以下でもよく、10体積%以下でもよい。セラミックスと金属とで構成された柱状ハニカム構造体10の材質としては、限定的ではないが、アルミナ、ムライト、ジルコニア及びコージェライト等の酸化物系セラミックス、炭化珪素、窒化珪素及び窒化アルミ等の非酸化物系セラミックスからなる群から選択することができる。また、炭化珪素-金属珪素複合材や炭化珪素/グラファイト複合材等を用いることもできる。これらの中でも、耐熱性と導電性の両立の観点から、柱状ハニカム構造体10の材質は、珪素-炭化珪素複合材又は炭化珪素を主成分とするセラミックスと金属とを含有していることが好ましく、珪素-炭化珪素複合材又は炭化珪素と金属とを含有していることが更に好ましい。柱状ハニカム構造体10の材質が、珪素-炭化珪素複合材を主成分とするものであるというときは、柱状ハニカム構造体10が、珪素-炭化珪素複合材(合計質量)を、全体の90質量%以上含有していることを意味する。ここで、珪素-炭化珪素複合材は、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有するものであり、複数の炭化珪素粒子が、炭化珪素粒子間に細孔を形成するようにして、珪素によって結合されていることが好ましい。柱状ハニカム構造体10の材質が、炭化珪素を主成分とするものであるというときは、柱状ハニカム構造体10が、炭化珪素(合計質量)を、全体の90質量%以上含有していることを意味する。 The columnar honeycomb structure 10 is composed of ceramics and metal, and contains 40% by volume or less of metal. The metal component of the columnar honeycomb structure 10 may be 30% by volume or less, 20% by volume or less, or 10% by volume or less. The material of the columnar honeycomb structure 10 composed of ceramics and metal is not limited, but is not limited to oxide-based ceramics such as alumina, mulite, zirconia and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride and aluminum nitride. It can be selected from the group consisting of oxide-based ceramics. Further, a silicon carbide-metal silicon composite material, a silicon carbide / graphite composite material, or the like can also be used. Among these, from the viewpoint of achieving both heat resistance and conductivity, the material of the columnar honeycomb structure 10 preferably contains a silicon-silicon carbide composite material or ceramics containing silicon carbide as a main component and a metal. , Silicon-Silicon Carbide Composite or Silicon Carbide and Metals are more preferred. When the material of the columnar honeycomb structure 10 is mainly composed of a silicon-silicon carbide composite material, the columnar honeycomb structure 10 contains the silicon-silicon carbide composite material (total mass) as a total of 90 masses. It means that it contains more than%. Here, the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder for binding the silicon carbide particles, and a plurality of silicon carbide particles are formed between the silicon carbide particles. It is preferably bonded by silicon so as to form pores. When the material of the columnar honeycomb structure 10 is mainly composed of silicon carbide, it means that the columnar honeycomb structure 10 contains silicon carbide (total mass) in an amount of 90% by mass or more of the whole. means.
 柱状ハニカム構造体10が、珪素-炭化珪素複合材を含んでいる場合、柱状ハニカム構造体10に含有される「骨材としての炭化珪素粒子の質量」と、柱状ハニカム構造体10に含有される「結合材としての珪素の質量」との合計に対する、柱状ハニカム構造体10に含有される「結合材としての珪素の質量」の比率が、10~40質量%であることが好ましく、15~35質量%であることが更に好ましい。10質量%以上であると、柱状ハニカム構造体10の強度が十分に維持される。40質量%以下であると、焼成時に形状を保持しやすくなる。 When the columnar honeycomb structure 10 contains a silicon-silicon carbide composite material, the “mass of silicon carbide particles as aggregate” contained in the columnar honeycomb structure 10 and the columnar honeycomb structure 10 are contained. The ratio of the "mass of silicon as a binder" contained in the columnar honeycomb structure 10 to the total of the "mass of silicon as a composite" is preferably 10 to 40% by mass, preferably 15 to 35. It is more preferably mass%. When it is 10% by mass or more, the strength of the columnar honeycomb structure 10 is sufficiently maintained. When it is 40% by mass or less, it becomes easy to maintain the shape at the time of firing.
 セル15の延伸方向に垂直な断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせであることが好ましい。これ等のなかでも、四角形及び六角形が好ましい。セル形状をこのようにすることにより、柱状ハニカム構造体10に排気ガスを流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。構造強度及び加熱均一性を両立させやすいという観点からは、四角形が特に好ましい。 There is no limitation on the shape of the cell in the cross section perpendicular to the extending direction of the cell 15, but it is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Among these, a quadrangle and a hexagon are preferable. By making the cell shape in this way, the pressure loss when the exhaust gas is passed through the columnar honeycomb structure 10 is reduced, and the purification performance of the catalyst is excellent. A quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
 セル15を区画形成する隔壁13の厚みは、0.1~0.3mmであることが好ましく、0.15~0.25mmであることがより好ましい。隔壁13の厚みが0.1mm以上であることで、柱状ハニカム構造体10の強度が低下するのを抑制可能である。隔壁13の厚みが0.3mm以下であることで、柱状ハニカム構造体10を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなるのを抑制できる。本発明において、隔壁13の厚みは、セル15の延伸方向に垂直な断面において、隣接するセル15の重心同士を結ぶ線分のうち、隔壁13を通過する部分の長さとして定義される。 The thickness of the partition wall 13 forming the cell 15 is preferably 0.1 to 0.3 mm, more preferably 0.15 to 0.25 mm. When the thickness of the partition wall 13 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the columnar honeycomb structure 10. When the thickness of the partition wall 13 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the columnar honeycomb structure 10 is used as a catalyst carrier and a catalyst is supported. In the present invention, the thickness of the partition wall 13 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 15 that passes through the partition wall 13 in a cross section perpendicular to the extending direction of the cell 15.
 柱状ハニカム構造体10は、セル15の流路方向に垂直な断面において、セル密度が40~150セル/cm2であることが好ましく、70~100セル/cm2であることが更に好ましい。セル密度をこのような範囲にすることにより、排気ガスを流したときの圧力損失を小さくした状態で、触媒の浄化性能を高くすることができる。セル密度が40セル/cm2以上であると、触媒担持面積が十分に確保される。セル密度が150セル/cm2以下であると柱状ハニカム構造体10を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなりすぎることが抑制される。セル密度は、外側壁12部分を除く柱状ハニカム構造体10の一つの底面部分の面積でセル数を除して得られる値である。 The columnar honeycomb structure 10 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 70 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 15. By setting the cell density in such a range, the purification performance of the catalyst can be improved while the pressure loss when the exhaust gas is passed is reduced. When the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured. When the cell density is 150 cells / cm 2 or less, when the columnar honeycomb structure 10 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large. The cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the columnar honeycomb structure 10 excluding the outer wall 12 portion.
 柱状ハニカム構造体10の外周壁12を設けることは、柱状ハニカム構造体10の構造強度を確保し、また、セル15を流れる流体が外周壁12から漏洩するのを抑制する観点で有用である。具体的には、外周壁12の厚みは好ましくは0.1mm以上であり、より好ましくは0.15mm以上、更により好ましくは0.2mm以上である。但し、外周壁12を厚くしすぎると高強度になりすぎてしまい、隔壁13との強度バランスが崩れて耐熱衝撃性が低下することから、外周壁12の厚みは好ましくは1.0mm以下であり、より好ましくは0.7mm以下であり、更により好ましくは0.5mm以下である。ここで、外周壁12の厚みは、厚みを測定しようとする外周壁12の箇所をセルの延伸方向に垂直な断面で観察したときに、当該測定箇所における外周壁12の接線に対する法線方向の厚みとして定義される。 Providing the outer peripheral wall 12 of the columnar honeycomb structure 10 is useful from the viewpoint of ensuring the structural strength of the columnar honeycomb structure 10 and suppressing the fluid flowing through the cell 15 from leaking from the outer peripheral wall 12. Specifically, the thickness of the outer peripheral wall 12 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more. However, if the outer peripheral wall 12 is made too thick, the strength becomes too high, the strength balance with the partition wall 13 is lost, and the heat impact resistance is lowered. Therefore, the thickness of the outer peripheral wall 12 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less. Here, the thickness of the outer peripheral wall 12 is the normal direction with respect to the tangent line of the outer peripheral wall 12 at the measurement location when the portion of the outer peripheral wall 12 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell. Defined as thickness.
 隔壁13は多孔質とすることができる。隔壁13の気孔率は、35~60%であることが好ましく、35~45%であることが更に好ましい。気孔率が35%以上であると、焼成時の変形をより抑制しやすくなる。気孔率が60%以下であると柱状ハニカム構造体10の強度が十分に維持される。気孔率は、水銀ポロシメータにより測定した値である。 The partition wall 13 can be made porous. The porosity of the partition wall 13 is preferably 35 to 60%, more preferably 35 to 45%. When the porosity is 35% or more, it becomes easier to suppress deformation during firing. When the porosity is 60% or less, the strength of the columnar honeycomb structure 10 is sufficiently maintained. Porosity is a value measured by a mercury porosimeter.
 柱状ハニカム構造体10の隔壁13の平均細孔径は、2~15μmであることが好ましく、4~8μmであることが更に好ましい。平均細孔径が2μm以上であると、電気抵抗率が大きくなりすぎることが抑制される。平均細孔径が15μm以下であると、電気抵抗率が小さくなりすぎることが抑制される。平均細孔径は、水銀ポロシメータにより測定した値である。 The average pore diameter of the partition wall 13 of the columnar honeycomb structure 10 is preferably 2 to 15 μm, more preferably 4 to 8 μm. When the average pore diameter is 2 μm or more, it is suppressed that the electrical resistivity becomes too large. When the average pore diameter is 15 μm or less, it is suppressed that the electrical resistivity becomes too small. The average pore diameter is a value measured by a mercury porosimeter.
(2.電極層)
 柱状ハニカム構造体10は、外周壁12の表面に、一対の電極層14a、14bが配設されている。一対の電極層14a、14bにおいて、一方の電極層は、一対の電極層14a、14bの他方の電極層に対して、柱状ハニカム構造体10の中心軸を挟んで対向するように設けられている。なお、当該電極層は、上述のように一対設けなくてもよく、例えば柱状ハニカム構造体10の外周壁12の表面において、上述の一方のみ(電極層14aまたは電極層14bのいずれか一方のみ)設けられていてもよい。
(2. Electrode layer)
In the columnar honeycomb structure 10, a pair of electrode layers 14a and 14b are arranged on the surface of the outer peripheral wall 12. In the pair of electrode layers 14a and 14b, one electrode layer is provided so as to face the other electrode layer of the pair of electrode layers 14a and 14b with the central axis of the columnar honeycomb structure 10 interposed therebetween. .. The pair of electrode layers may not be provided as described above. For example, on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 10, only one of the above electrodes (either one of the electrode layer 14a or the electrode layer 14b) is provided. It may be provided.
 電極層14a、14bの形成領域に特段の制約はないが、柱状ハニカム構造体10の均一発熱性を高めるという観点からは、各電極層14a、14bは外周壁12の外面上で外周壁12の周方向及びセルの延伸方向に帯状に延設することが好ましい。具体的には、各電極層14a、14bは、柱状ハニカム構造体10の両底面間の80%以上の長さに亘って、好ましくは90%以上の長さに亘って、より好ましくは全長に亘って延びていることが、電極層14a、14bの軸方向へ電流が広がりやすいという観点から望ましい。 There are no particular restrictions on the formation regions of the electrode layers 14a and 14b, but from the viewpoint of enhancing the uniform heat generation of the columnar honeycomb structure 10, each of the electrode layers 14a and 14b is on the outer surface of the outer peripheral wall 12 and is formed by the outer peripheral wall 12. It is preferable to extend the cells in a band shape in the circumferential direction and the extending direction of the cell. Specifically, each of the electrode layers 14a and 14b has a length of 80% or more, preferably a length of 90% or more, and more preferably a total length between both bottom surfaces of the columnar honeycomb structure 10. It is desirable that the current extends over the electrode layers 14a and 14b from the viewpoint that the current easily spreads in the axial direction.
 本発明の実施形態において、電極層14a、14bは、それぞれ図2に示すように、柱状ハニカム構造体10の軸方向に沿って伸びるようなスリット状の分離帯19が設けられている。当該分離帯19は、電気加熱式担体20の加熱時に、柱状ハニカム構造体10と電極層14a、14bとの熱膨張差を緩和する機能を有し、当該熱膨張差による電極層14a、14bの割れや剥がれを抑制する機能を有する。スリット状の分離帯19の幅は特に限定されないが、例えば0.5~3.0mmに形成することができる。なお、電極層14a、14bの分離帯19は形成しなくてもよく、電極層14aと電極層14bとが、それぞれ1つの連続した電極層であってもよい。 In the embodiment of the present invention, the electrode layers 14a and 14b are provided with slit-shaped separation bands 19 extending along the axial direction of the columnar honeycomb structure 10, respectively, as shown in FIG. The separation band 19 has a function of alleviating the difference in thermal expansion between the columnar honeycomb structure 10 and the electrode layers 14a and 14b when the electrically heated carrier 20 is heated, and the electrode layers 14a and 14b due to the difference in thermal expansion It has a function of suppressing cracking and peeling. The width of the slit-shaped separation band 19 is not particularly limited, but can be formed to, for example, 0.5 to 3.0 mm. The separation band 19 of the electrode layers 14a and 14b may not be formed, and the electrode layer 14a and the electrode layer 14b may be one continuous electrode layer, respectively.
 各電極層14a、14bの厚みは、0.01~5mmであることが好ましく、0.01~3mmであることが更に好ましい。このような範囲とすることにより均一発熱性を高めることができる。各電極層14a、14bの厚みが0.01mm以上であると、電気抵抗が適切に制御され、より均一に発熱することができる。5mm以下であると、キャニング時に破損する恐れが低減される。各電極層14a、14bの厚みは、厚みを測定しようとする電極層の箇所をセルの延伸方向に垂直な断面で観察したときに、各電極層14a、14bの外面の当該測定箇所における接線に対する法線方向の厚みとして定義される。 The thickness of each of the electrode layers 14a and 14b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced. When the thickness of each of the electrode layers 14a and 14b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced. The thickness of each of the electrode layers 14a and 14b is relative to the tangent line of the outer surface of each of the electrode layers 14a and 14b at the measurement point when the portion of the electrode layer for which the thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell. It is defined as the thickness in the normal direction.
 各電極層14a、14bの電気抵抗率を柱状ハニカム構造体10の電気抵抗率より低くすることにより、電極層14a、14bに優先的に電気が流れやすくなり、通電時に電気がセルの流路方向及び周方向に広がりやすくなる。電極層14a、14bの電気抵抗率は、柱状ハニカム構造体10の電気抵抗率の1/10以下であることが好ましく、1/20以下であることがより好ましく、1/30以下であることが更により好ましい。但し、両者の電気抵抗率の差が大きくなりすぎると対向する電極層14a、14bの端部間に電流が集中して柱状ハニカム構造体10の発熱が偏ることから、電極層14a、14bの電気抵抗率は、柱状ハニカム構造体10の電気抵抗率の1/200以上であることが好ましく、1/150以上であることがより好ましく、1/100以上であることが更により好ましい。本発明において、電極層14a、14bの電気抵抗率は、四端子法により25℃で測定した値とする。 By making the electrical resistivity of each of the electrode layers 14a and 14b lower than the electrical resistivity of the columnar honeycomb structure 10, electricity can easily flow to the electrode layers 14a and 14b preferentially, and electricity flows in the cell flow path direction when energized. And it becomes easy to spread in the circumferential direction. The electrical resistivity of the electrode layers 14a and 14b is preferably 1/10 or less, more preferably 1/20 or less, and preferably 1/30 or less of the electrical resistivity of the columnar honeycomb structure 10. Even more preferable. However, if the difference in electrical resistivity between the two becomes too large, the current is concentrated between the ends of the electrode layers 14a and 14b facing each other, and the heat generation of the columnar honeycomb structure 10 is biased. The resistivity is preferably 1/200 or more, more preferably 1/150 or more, and even more preferably 1/100 or more of the electrical resistivity of the columnar honeycomb structure 10. In the present invention, the electrical resistivity of the electrode layers 14a and 14b is a value measured at 25 ° C. by the four-terminal method.
 各電極層14a、14bの材質は、金属及び導電性セラミックスとの複合材(サーメット)を使用することができる。金属としては、例えばCr、Fe、Co、Ni、Si又はTiの単体金属又はこれらの金属よりなる群から選択される少なくとも一種の金属を含有する合金が挙げられる。導電性セラミックスとしては、限定的ではないが、炭化珪素(SiC)が挙げられ、珪化タンタル(TaSi2)及び珪化クロム(CrSi2)等の金属珪化物等の金属化合物が挙げられる。金属及び導電性セラミックスとの複合材(サーメット)の具体例としては、金属珪素と炭化珪素の複合材、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材、更には上記の一種又は二種以上の金属に熱膨張低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素及び窒化アルミ等の絶縁性セラミックスを一種又は二種以上添加した複合材が挙げられる。電極層14a、14bの材質としては、上記の各種金属及び導電性セラミックスの中でも、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材との組合せとすることが、柱状ハニカム構造部と同時に焼成できるので製造工程の簡素化に資するという理由により好ましい。 As the material of each of the electrode layers 14a and 14b, a composite material (cermet) of metal and conductive ceramics can be used. Examples of the metal include elemental metals of Cr, Fe, Co, Ni, Si and Ti, and alloys containing at least one metal selected from the group consisting of these metals. Examples of the conductive ceramics include, but are not limited to, silicon carbide (SiC), and examples thereof include metal compounds such as metal siliceates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2). Specific examples of the composite material (cermet) of metal and conductive ceramics include a composite material of metallic silicon and silicon carbide, a composite material of metal siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further described above. From the viewpoint of reducing thermal expansion, a composite material obtained by adding one or more kinds of insulating ceramics such as alumina, mulite, zirconia, cordierite, silicon nitride and aluminum nitride to one or more kinds of metals can be mentioned. Among the various metals and conductive ceramics described above, the electrode layers 14a and 14b may be made of a columnar honeycomb by combining a metal silice such as tantalum silicate or chromium silicate and a composite material of metallic silicon and silicon carbide. It is preferable because it can be fired at the same time as the structural part, which contributes to simplification of the manufacturing process.
(3.金属電極)
 金属電極30は、電極層14a、14b上に配設され、電気的に接合されている。これにより、金属電極30に電圧を印加すると通電してジュール熱により柱状ハニカム構造体10を発熱させることが可能である。このため、柱状ハニカム構造体10はヒーターとしても好適に用いることができる。印加する電圧は12~900Vが好ましく、48~600Vが更に好ましいが、印加する電圧は適宜変更可能である。
(3. Metal electrode)
The metal electrode 30 is arranged on the electrode layers 14a and 14b and is electrically bonded. As a result, when a voltage is applied to the metal electrode 30, the columnar honeycomb structure 10 can be energized and the columnar honeycomb structure 10 is heated by Joule heat. Therefore, the columnar honeycomb structure 10 can be suitably used as a heater. The applied voltage is preferably 12 to 900 V, more preferably 48 to 600 V, but the applied voltage can be changed as appropriate.
 金属電極30の材質としては、金属であれば特段の制約はなく、単体金属及び合金等を採用することもできるが、耐食性、電気抵抗率及び線膨張率の観点から例えば、Cr、Fe、Co、Ni及びTiよりなる群から選択される少なくとも一種を含む合金とすることが好ましく、ステンレス鋼及びFe-Ni合金がより好ましい。 As the material of the metal electrode 30, there are no particular restrictions as long as it is a metal, and a single metal, an alloy, or the like can be adopted. However, from the viewpoint of corrosion resistance, electrical resistance, and linear expansion rate, for example, Cr, Fe, Co. , Ni and Ti are preferably used as alloys containing at least one selected from the group, and stainless steel and Fe—Ni alloys are more preferable.
 金属電極30は、本体部分31と、本体部分31から伸びる複数の舌片32とを備える。金属電極30の舌片32は首部33と頭部34とを有し、舌片32の頭部34は、少なくとも一部が電極層14a、14bと接するように配置されている。なお、図2に示すように電極層14a、14bにスリット状の分離帯19が形成されている場合は、分離帯19で分割された電極層14a、14bの両方に、1つの金属電極30の複数の舌片32の少なくとも1つが配設される。 The metal electrode 30 includes a main body portion 31 and a plurality of tongue pieces 32 extending from the main body portion 31. The tongue piece 32 of the metal electrode 30 has a neck portion 33 and a head portion 34, and the head portion 34 of the tongue piece 32 is arranged so that at least a part thereof is in contact with the electrode layers 14a and 14b. When the slit-shaped separation band 19 is formed in the electrode layers 14a and 14b as shown in FIG. 2, one metal electrode 30 is formed on both of the electrode layers 14a and 14b divided by the separation band 19. At least one of the plurality of tongue pieces 32 is arranged.
 金属電極30の本体部分31及び舌片32、更には舌片32の首部33及び頭部34は、それぞれ別々に形成したものを電気的に接続したものであってもよく、1枚の金属板から切断加工する等によって一体形成されたものであってもよい。 The main body portion 31 and the tongue piece 32 of the metal electrode 30, and the neck 33 and the head 34 of the tongue piece 32 may be formed separately and electrically connected to each other, or one metal plate. It may be integrally formed by cutting from.
 本体部分31の形状は特に限定されないが、製造効率、操作性、省スペース等の観点から、板状であるのが好ましい。また、当該板状は、平板状でもよく、曲面板状であってもよい。本体部分31には、舌片32とは反対側に把持部36が形成されていてもよい。把持部36は操作性の観点からリング状に形成されていてもよい。また、把持部36は外部電極と電気的に接続するための接点としての機能も有する。 The shape of the main body portion 31 is not particularly limited, but it is preferably plate-shaped from the viewpoint of manufacturing efficiency, operability, space saving, and the like. Further, the plate shape may be a flat plate shape or a curved plate shape. The main body portion 31 may have a grip portion 36 formed on the side opposite to the tongue piece 32. The grip portion 36 may be formed in a ring shape from the viewpoint of operability. Further, the grip portion 36 also has a function as a contact point for electrically connecting to the external electrode.
 複数の舌片32は、それぞれ首部33が本体部分31から伸びるように形成されており、その先端の頭部34でそれぞれ電極層14a、14bと電気的に接合されている。頭部34と電極層14a、14bとの間には、図11に示すように、溶接下地層39を設けてもよい。この場合、電極層14a、14b上に溶接下地層39を設け、溶接下地層39の上にさらに金属電極30の舌片32の頭部34を設けた状態で、頭部34側からレーザー溶接などによって溶接を行うことで、金属電極30の頭部34と電極層14a、14bとを電気的に接続する。このとき、複数の舌片32の先端である頭部34の少なくとも一部と溶接下地層39との間に生じる溶接溶け込み部40によって金属電極30と電極層14a、14b上の溶接下地層39とが強固に接合される。また、溶接溶け込み部40の接合面積Sが通電に必要な最小限の面積となり、溶接溶け込み部40、溶接下地層39及び金属電極30の間の熱膨張差を抑制することができる。このため、高温環境下での当該接合部分に発生する応力を良好に抑制することができる。頭部34は、その全面で電極層14a、14bと電気的に接合されていてもよく、頭部34の一部の領域で電極層14a、14bと電気的に接合されていてもよい。 Each of the plurality of tongue pieces 32 is formed so that the neck portion 33 extends from the main body portion 31, and the head portion 34 at the tip thereof is electrically joined to the electrode layers 14a and 14b, respectively. As shown in FIG. 11, a welding base layer 39 may be provided between the head portion 34 and the electrode layers 14a and 14b. In this case, the welding base layer 39 is provided on the electrode layers 14a and 14b, and the head 34 of the tongue piece 32 of the metal electrode 30 is further provided on the welding base layer 39, and laser welding or the like is performed from the head 34 side. The head 34 of the metal electrode 30 and the electrode layers 14a and 14b are electrically connected by welding with the metal electrode 30. At this time, the metal electrode 30 and the welding base layer 39 on the electrode layers 14a and 14b are formed by the welding penetration portion 40 formed between at least a part of the head 34 which is the tip of the plurality of tongue pieces 32 and the welding base layer 39. Is firmly joined. Further, the joint area S of the weld penetration portion 40 becomes the minimum area required for energization, and the thermal expansion difference between the weld penetration portion 40, the weld base layer 39, and the metal electrode 30 can be suppressed. Therefore, the stress generated in the joint portion in a high temperature environment can be satisfactorily suppressed. The head 34 may be electrically bonded to the electrode layers 14a and 14b on the entire surface thereof, or may be electrically bonded to the electrode layers 14a and 14b in a part of the region of the head 34.
 溶接下地層39は、導電性セラミックスで形成することができる。溶接下地層39を構成する導電性セラミックスとしては、限定的ではないが、炭化珪素(SiC)が挙げられ、珪化タンタル(TaSi2)及び珪化クロム(CrSi2)等の金属珪化物等の金属化合物が挙げられ、更には、一種以上の金属を含む複合材(サーメット)を挙げることができる。サーメットの具体例としては、金属珪素と炭化珪素の複合材、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材、更には上記の一種又は二種以上の金属に熱膨張低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素及び窒化アルミ等の絶縁性セラミックスを一種又は二種以上添加した複合材が挙げられる。 The welding base layer 39 can be formed of conductive ceramics. Examples of the conductive ceramics constituting the welding base layer 39 include, but are not limited to, silicon carbide (SiC), and metal compounds such as metal silicates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2). Further, a composite material (cermet) containing one or more metals can be mentioned. Specific examples of the cermet include a composite material of metallic silicon and silicon carbide, a composite material of metallic siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further, thermal expansion to the above-mentioned one or more kinds of metals. From the viewpoint of reduction, a composite material to which one or more kinds of insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon carbide and aluminum nitride are added can be mentioned.
 図2に示す金属電極30の複数の舌片32は、板状部の本体部分31の下端から等間隔で12体が伸びて、板状部の本体部分31の一方の側面方向に6体が折り畳まれるように形成され、板状部の本体部分31の他方の側面方向に更に6体が折り畳まれるように形成されている。舌片32の数は、金属電極30と柱状ハニカム構造体10との通電性能の要求に応じて適宜に変更し得る。 Twelve tongue pieces 32 of the metal electrode 30 shown in FIG. 2 extend from the lower end of the main body portion 31 of the plate-shaped portion at equal intervals, and six bodies extend toward one side surface of the main body portion 31 of the plate-shaped portion. It is formed so as to be folded, and six more bodies are formed so as to be folded in the direction of the other side surface of the main body portion 31 of the plate-shaped portion. The number of tongue pieces 32 can be appropriately changed according to the requirements for the energizing performance of the metal electrode 30 and the columnar honeycomb structure 10.
 舌片32の形状は特に限定されないが、例えば図3~6に示すような形状であるのが好ましい。図3に示す舌片32は、図2に示された舌片32と同様の形状を有している。図3に示す舌片32は、首部33が板状の本体部分31の一端から伸びるように形成され、2箇所の折曲部35でそれぞれ略180度方向に折り曲げられ、頭部34付近の屈曲部38で略90度方向に折り曲げられている。また、図4に示す舌片32は、首部33が板状の本体部分31の一端から伸びるように形成され、1箇所の折曲部35で略180度方向に折り曲げられ、頭部34付近の屈曲部38で略90度方向に折り曲げられている。このように、舌片32が複数の折曲部35を備えることで、金属電極30の弾性が増し、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差を緩和することで、クラックの発生をより良好に抑制することができる。また、首部33において、略180度方向に折り曲げられる部位である折曲部35は、図4では1つ、図3では2つ設けられているが、3つ以上設けられていてもよい。首部33の材質にもよるが、折曲部35が多いほど、金属電極30の弾性が増し、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差をより良好に緩和することができる。 The shape of the tongue piece 32 is not particularly limited, but it is preferably the shape shown in FIGS. 3 to 6, for example. The tongue piece 32 shown in FIG. 3 has the same shape as the tongue piece 32 shown in FIG. The tongue piece 32 shown in FIG. 3 is formed so that the neck portion 33 extends from one end of the plate-shaped main body portion 31, and is bent at two bent portions 35 in a direction of approximately 180 degrees, respectively, and is bent near the head portion 34. The portion 38 is bent in a direction of approximately 90 degrees. Further, the tongue piece 32 shown in FIG. 4 is formed so that the neck portion 33 extends from one end of the plate-shaped main body portion 31, is bent in a direction of approximately 180 degrees at one bent portion 35, and is near the head portion 34. The bent portion 38 is bent in a direction of approximately 90 degrees. As described above, when the tongue piece 32 includes the plurality of bent portions 35, the elasticity of the metal electrode 30 is increased, and the columnar honeycomb structure 10 and the electrode layers 14a and 14b when the electrically heated carrier 20 is heated, and the electrode layers 14a and 14b. By relaxing the difference in thermal expansion from the metal electrode 30, the occurrence of cracks can be suppressed more satisfactorily. Further, in the neck portion 33, the bent portion 35, which is a portion that is bent in a direction of approximately 180 degrees, is provided at one in FIG. 4 and two in FIG. 3, but three or more may be provided. Although it depends on the material of the neck portion 33, the more the bent portion 35, the more the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10 and the electrode layers 14a and 14b and the metal electrode when the electrically heated carrier 20 is heated. The difference in thermal expansion from 30 can be relaxed better.
 図5に示す舌片32は、首部33が板状の本体部分31の一端から伸びるように形成され、頭部34付近の屈曲部38で略90度方向に折り曲げられている。図6に示す首部33が板状の本体部分31の一端から伸びて、そのまま折り曲げられずに頭部34に到達するように形成されている。 The tongue piece 32 shown in FIG. 5 is formed so that the neck portion 33 extends from one end of the plate-shaped main body portion 31, and is bent in the direction of approximately 90 degrees at the bent portion 38 near the head portion 34. The neck portion 33 shown in FIG. 6 is formed so as to extend from one end of the plate-shaped main body portion 31 and reach the head portion 34 without being bent as it is.
 本発明の実施形態に係る金属電極30は、舌片32の本体部分31から伸びる起点である首部33の末端から、首部33の先端までの長さAと、首部33の幅の最小値Bとが、10<A/B≦160の関係を満たす。図3において、当該長さA、及び、首部33の幅の最小値Bを示している。図3に示すように、当該長さAは、首部33が折曲部35で略180度折り曲げられているような場合は、首部33の全長となる。また、図3では首部33の幅は全て一様に形成されており、首部33の幅の最小値Bはどの位置で測定したものであってもよいが、折曲部35及び屈曲部38を除いた位置で測定するのが好ましい。 The metal electrode 30 according to the embodiment of the present invention has a length A from the end of the neck 33, which is a starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33, and a minimum width B of the neck 33. Satisfies the relationship of 10 <A / B ≦ 160. In FIG. 3, the length A and the minimum value B of the width of the neck portion 33 are shown. As shown in FIG. 3, the length A is the total length of the neck portion 33 when the neck portion 33 is bent by the bent portion 35 by approximately 180 degrees. Further, in FIG. 3, the widths of the neck 33 are all uniformly formed, and the minimum value B of the width of the neck 33 may be measured at any position, but the bent portion 35 and the bent portion 38 are formed. It is preferable to measure at the removed position.
 舌片32の本体部分31から伸びる起点である首部33の末端から、首部33の先端までの長さAと、首部33の幅の最小値Bとが、10<A/Bの関係を満たすと、金属電極30の弾性が良好となり、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差をより良好に緩和することができる。また、舌片32の本体部分31から伸びる起点である首部33の末端から、首部33の先端までの長さAと、首部33の幅の最小値Bとが、A/B≦160の関係を満たすと、金属電極30の強度が保たれ、金属電極30の破壊を抑制することができる。舌片32の本体部分31から伸びる起点である首部33の末端から、首部33の先端までの長さAと、首部33の幅の最小値Bとが、20≦A/B≦160の関係を満たすのが好ましく、20≦A/B≦80の関係を満たすのがより好ましく、30≦A/B≦40の関係を満たすのが更に好ましい。 When the length A from the end of the neck 33, which is the starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33 and the minimum width B of the neck 33 satisfy the relationship of 10 <A / B. , The elasticity of the metal electrode 30 becomes good, and the difference in thermal expansion between the columnar honeycomb structure 10 and the electrode layers 14a and 14b and the metal electrode 30 when the electrically heated carrier 20 is heated can be more satisfactorily relaxed. .. Further, the length A from the end of the neck 33, which is the starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33, and the minimum width B of the neck 33 have a relationship of A / B ≦ 160. When it is satisfied, the strength of the metal electrode 30 is maintained, and the destruction of the metal electrode 30 can be suppressed. The length A from the end of the neck 33, which is the starting point extending from the main body 31 of the tongue piece 32, to the tip of the neck 33, and the minimum width B of the neck 33 have a relationship of 20 ≦ A / B ≦ 160. It is preferable to satisfy, it is more preferable to satisfy the relationship of 20 ≦ A / B ≦ 80, and it is further preferable to satisfy the relationship of 30 ≦ A / B ≦ 40.
 舌片32の首部33の長さは、10~1000mmであるのが好ましい。舌片32の首部33の長さが10mm以上であると、金属電極30の弾性が増し、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差をより良好に緩和することができる。また、舌片32の首部33の長さが大きすぎると金属電極30の振動による応力が増大するため、1000mm以下であるのが好ましい。舌片32の首部33の長さは、20~320mmであるのがより好ましく、30~320mmであるのが更により好ましい。 The length of the neck 33 of the tongue piece 32 is preferably 10 to 1000 mm. When the length of the neck portion 33 of the tongue piece 32 is 10 mm or more, the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10, the electrode layers 14a and 14b, and the metal electrode 30 when the electrically heated carrier 20 is heated. The difference in thermal expansion with and from can be alleviated better. Further, if the length of the neck portion 33 of the tongue piece 32 is too large, the stress due to the vibration of the metal electrode 30 increases, so that the length is preferably 1000 mm or less. The length of the neck 33 of the tongue piece 32 is more preferably 20 to 320 mm, and even more preferably 30 to 320 mm.
 舌片32の首部33の幅の最小値Bは、0.15~6.5mmであるのが好ましい。舌片32の首部33の幅の最小値Bが6.5mm以下であると、金属電極30の弾性が増し、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差をより良好に緩和することができる。また、舌片32の首部33の幅の最小値Bが小さすぎると金属電極30の強度が低下してしまうため、0.15mm以上であるのが好ましい。舌片32の首部33の幅の最小値Bは、0.15~5.0mmであるのがより好ましく、0.15~4.0mmであるのが更により好ましい。 The minimum width B of the neck 33 of the tongue piece 32 is preferably 0.15 to 6.5 mm. When the minimum value B of the width of the neck portion 33 of the tongue piece 32 is 6.5 mm or less, the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10 and the electrode layers 14a and 14b when the electrically heated carrier 20 is heated. And, the difference in thermal expansion from the metal electrode 30 can be relaxed more satisfactorily. Further, if the minimum value B of the width of the neck portion 33 of the tongue piece 32 is too small, the strength of the metal electrode 30 decreases, so that it is preferably 0.15 mm or more. The minimum width B of the neck 33 of the tongue piece 32 is more preferably 0.15 to 5.0 mm, and even more preferably 0.15 to 4.0 mm.
 舌片32の首部33及び頭部34の厚みは、それぞれ0.05~0.7mmであるのが好ましい。舌片32の首部33及び頭部34の厚みが小さすぎると金属電極30の強度が低下してしまうため、0.05mm以上であるのが好ましい。また、舌片32の首部33及び頭部34の厚みが0.7mm以下であると、金属電極30の弾性が増し、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差をより良好に緩和することができる。舌片32の首部33及び頭部34の厚みは、それぞれ0.05~0.6mmであるのがより好ましく、0.05~0.2mmであるのが更により好ましい。 The thickness of the neck 33 and the head 34 of the tongue piece 32 is preferably 0.05 to 0.7 mm, respectively. If the thickness of the neck 33 and the head 34 of the tongue piece 32 is too small, the strength of the metal electrode 30 will decrease, so the thickness is preferably 0.05 mm or more. Further, when the thickness of the neck 33 and the head 34 of the tongue piece 32 is 0.7 mm or less, the elasticity of the metal electrode 30 increases, and the columnar honeycomb structure 10 and the electrode layer 14a when the electrically heated carrier 20 is heated. , 14b and the metal electrode 30 can better alleviate the difference in thermal expansion. The thickness of the neck 33 and the head 34 of the tongue piece 32 is more preferably 0.05 to 0.6 mm, and even more preferably 0.05 to 0.2 mm, respectively.
 舌片32の首部33における、舌片32の頭部34に最も近い折曲部35から頭部34までの長さが大きいほど、電気加熱式担体20の加熱時の、柱状ハニカム構造体10及び電極層14a、14bと、金属電極30との熱膨張差をより良好に緩和することができる。このような観点から、舌片32の首部33における、舌片32の頭部34に最も近い折曲部35から頭部34までの長さが10mm以上であるのが好ましい。また、当該長さは20mm以上であるのがより好ましく、30mm以上であるのが更により好ましい。 The larger the length of the neck 33 of the tongue piece 32 from the bent portion 35 closest to the head 34 of the tongue piece 32 to the head 34, the more the columnar honeycomb structure 10 and the columnar honeycomb structure 10 and the electric heating type carrier 20 are heated. The difference in thermal expansion between the electrode layers 14a and 14b and the metal electrode 30 can be relaxed more satisfactorily. From this point of view, it is preferable that the length of the neck 33 of the tongue piece 32 from the bent portion 35 closest to the head 34 of the tongue piece 32 to the head 34 is 10 mm or more. Further, the length is more preferably 20 mm or more, and even more preferably 30 mm or more.
 舌片32の首部33及び頭部34の平面形状は特に限定されないが、例えば、図7~9に示す形状に形成するのが好ましい。図7に示す舌片32aは、細長く伸びた矩形状の首部33aの先端に、首部33aの幅の5倍程度の幅を有する矩形状の頭部34aを備えている。また、図7に示す舌片32bは、細長く伸びた矩形状の首部33aの先端に、首部33aの幅より更に細い幅を有する矩形状の頭部34bを備えている。 The planar shapes of the neck 33 and the head 34 of the tongue piece 32 are not particularly limited, but it is preferable to form the tongue pieces 32 into the shapes shown in FIGS. 7 to 9, for example. The tongue piece 32a shown in FIG. 7 is provided with a rectangular head 34a having a width of about five times the width of the neck 33a at the tip of the elongated rectangular neck 33a. Further, the tongue piece 32b shown in FIG. 7 is provided with a rectangular head portion 34b having a width narrower than the width of the neck portion 33a at the tip of the elongated rectangular neck portion 33a.
 舌片32a、32bのような形状であると、首部33a、33bと頭部34a、34bとの境界に熱膨張時の応力が集中する構造となるため、熱膨張時に破壊を生じさせる位置を意図的に設計することができる。 If the shape is like the tongue pieces 32a and 32b, the stress during thermal expansion is concentrated on the boundary between the neck 33a and 33b and the head 34a and 34b. Can be designed as a target.
 図8に示す舌片32cは、細長く伸びた矩形状の首部33cから幅が徐々に拡大して最大幅に至る形状を有している。より具体的には、舌片32cの頭部34cは、舌片32cの首部33cから幅が徐々に拡大して最大幅に至る線形テーパー形状を有している。 The tongue piece 32c shown in FIG. 8 has a shape in which the width gradually expands from the elongated rectangular neck portion 33c to the maximum width. More specifically, the head 34c of the tongue piece 32c has a linear tapered shape in which the width gradually expands from the neck portion 33c of the tongue piece 32c to the maximum width.
 図8に示す舌片32dは、細長く伸びた矩形状の首部33dから幅が徐々に縮小して最小幅に至る形状を有している。より具体的には、舌片32dの頭部34dは、舌片32dの首部33dから幅が徐々に縮小して最小幅に至る線形テーパー形状を有している。 The tongue piece 32d shown in FIG. 8 has a shape in which the width gradually decreases from the elongated rectangular neck portion 33d to the minimum width. More specifically, the head 34d of the tongue piece 32d has a linear tapered shape whose width gradually decreases from the neck portion 33d of the tongue piece 32d to the minimum width.
 図9に示す舌片32eは、細長く伸びた矩形状の首部33eから幅が徐々に拡大して最大幅に至る形状を有している。より具体的には、舌片32eの頭部34eは、舌片32eの首部33eから幅が徐々に拡大して最大幅に至る放物線テーパー形状を有している。 The tongue piece 32e shown in FIG. 9 has a shape in which the width gradually expands from the elongated rectangular neck portion 33e to the maximum width. More specifically, the head 34e of the tongue piece 32e has a parabolic taper shape in which the width gradually expands from the neck portion 33e of the tongue piece 32e to reach the maximum width.
 図9に示す舌片32fは、細長く伸びた矩形状の首部33fから幅が徐々に縮小して最小幅に至る形状を有している。より具体的には、舌片32fの頭部34fは、舌片32fの首部33fから幅が徐々に縮小して最小幅に至る放物線テーパー形状を有している。 The tongue piece 32f shown in FIG. 9 has a shape in which the width gradually decreases from the elongated rectangular neck portion 33f to the minimum width. More specifically, the head 34f of the tongue piece 32f has a parabolic taper shape in which the width gradually decreases from the neck portion 33f of the tongue piece 32f to the minimum width.
 舌片32c、32d、32e、32fのような形状であると、首部33c、33d、33e、33fと頭部34c、34d、34e、34fとの間に生じる熱膨張時の応力を分散して緩和する構造となるため、熱膨張時の当該領域における破壊を良好に抑制することができる。 If the tongue pieces have a shape such as 32c, 32d, 32e, 32f, the stress generated during thermal expansion between the neck 33c, 33d, 33e, 33f and the head 34c, 34d, 34e, 34f is dispersed and relaxed. Therefore, it is possible to satisfactorily suppress the destruction in the region during thermal expansion.
 金属電極30gは図10に示すように、櫛歯状に形成されていてもよい。金属電極30gは、板状の本体部分31gと、板状の本体部分31gから伸びるように形成された複数の舌片32gとを備える。複数の舌片32gは、それぞれ細長い矩形状の首部33gと、首部33gの先端に設けられた、首部33gより幅広の矩形状の頭部34gを備えている。櫛歯状の当該金属電極30gにおいて、複数の細長い矩形状の首部33gの幅は、それぞれ0.5~3.0mmに形成することができる。また、頭部34gは図7に示したように首部33gより幅が狭くてもよく、図8に示したように線形テーパー形状を有していてもよく、図9に示したように放物線テーパー形状を有していてもよい。 As shown in FIG. 10, the metal electrode 30 g may be formed in a comb-teeth shape. The metal electrode 30 g includes a plate-shaped main body portion 31 g and a plurality of tongue pieces 32 g formed so as to extend from the plate-shaped main body portion 31 g. Each of the plurality of tongue pieces 32g includes an elongated rectangular neck portion 33g and a rectangular head portion 34g provided at the tip of the neck portion 33g, which is wider than the neck portion 33g. In the comb-teeth-shaped metal electrode 30 g, the width of the plurality of elongated rectangular neck portions 33 g can be formed to be 0.5 to 3.0 mm, respectively. Further, the head 34g may be narrower than the neck 33g as shown in FIG. 7, may have a linear taper shape as shown in FIG. 8, and may have a parabolic taper shape as shown in FIG. It may have a shape.
 電気加熱式担体20に触媒を担持することにより、電気加熱式担体20を触媒体として使用することができる。複数のセル15の流路には、例えば、自動車排気ガス等の流体を流すことができる。触媒としては、例えば、貴金属系触媒又はこれら以外の触媒が挙げられる。貴金属系触媒としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)といった貴金属をアルミナ細孔表面に担持し、セリア、ジルコニア等の助触媒を含む三元触媒や酸化触媒、又は、アルカリ土類金属と白金を窒素酸化物(NOx)の吸蔵成分として含むNOx吸蔵還元触媒(LNT触媒)が例示される。貴金属を用いない触媒として、銅置換又は鉄置換ゼオライトを含むNOx選択還元触媒(SCR触媒)等が例示される。また、これらの触媒からなる群から選択される2種以上の触媒を用いてもよい。なお、触媒の担持方法についても特に制限はなく、従来、ハニカム構造体に触媒を担持する担持方法に準じて行うことができる。 By supporting the catalyst on the electrically heated carrier 20, the electrically heated carrier 20 can be used as a catalyst. For example, a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 15. Examples of the catalyst include noble metal-based catalysts and catalysts other than these. As the noble metal catalyst, a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali. An example is a NO x storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NO x). Examples of catalysts that do not use noble metals include NO x selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used. The method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure.
<電気加熱式担体の製造方法>
 次に、本発明に係る電気加熱式担体20を製造する方法について例示的に説明する。本発明の電気加熱式担体20の製造方法は一実施形態において、電極層形成ペースト付き未焼成柱状ハニカム構造部を得る工程A1と、電極層形成ペースト付き未焼成柱状ハニカム構造部を焼成して柱状ハニカム構造体を得る工程A2と、柱状ハニカム構造体に金属電極を溶接する工程A3とを含む。
<Manufacturing method of electrically heated carrier>
Next, a method for producing the electrically heated carrier 20 according to the present invention will be exemplified. In one embodiment, the method for producing the electroheated carrier 20 of the present invention includes a step A1 for obtaining an unfired columnar honeycomb structure portion with an electrode layer forming paste and a columnar structure by firing the unfired columnar honeycomb structure portion with an electrode layer forming paste. The step A2 for obtaining the honeycomb structure and the step A3 for welding the metal electrode to the columnar honeycomb structure are included.
 工程A1は、柱状ハニカム構造体の前駆体である柱状ハニカム成形体を作製し、柱状ハニカム成形体の側面に電極層形成ペーストを塗布して、電極層形成ペースト付き未焼成柱状ハニカム構造体を得る工程である。柱状ハニカム成形体の作製は、公知の柱状ハニカム構造体の製造方法における柱状ハニカム成形体の作製方法に準じて行うことができる。例えば、まず、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して成形原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が10~40質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、3~50μmが好ましく、3~40μmが更に好ましい。金属珪素(金属珪素粉末)の平均粒子径は、2~35μmであることが好ましい。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。なお、これは、柱状ハニカム構造体の材質を、珪素-炭化珪素系複合材とする場合の成形原料の配合であり、柱状ハニカム構造体の材質を炭化珪素とする場合には、金属珪素は添加しない。 In step A1, a columnar honeycomb molded body which is a precursor of the columnar honeycomb structure is produced, and an electrode layer forming paste is applied to the side surface of the columnar honeycomb molded body to obtain an unfired columnar honeycomb structure with the electrode layer forming paste. It is a process. The columnar honeycomb molded body can be produced according to the method for producing a columnar honeycomb molded body in a known method for producing a columnar honeycomb structure. For example, first, a metal silicon powder (metal silicon), a binder, a surfactant, a pore-forming material, water, or the like is added to silicon carbide powder (silicon carbide) to prepare a molding raw material. It is preferable that the mass of the metallic silicon is 10 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metallic silicon. The average particle size of the silicon carbide particles in the silicon carbide powder is preferably 3 to 50 μm, more preferably 3 to 40 μm. The average particle size of metallic silicon (metallic silicon powder) is preferably 2 to 35 μm. The average particle diameter of silicon carbide particles and metallic silicon (metal silicon particles) refers to the arithmetic average diameter based on the volume when the frequency distribution of particle size is measured by the laser diffraction method. The silicon carbide particles are fine particles of silicon carbide constituting the silicon carbide powder, and the metallic silicon particles are fine particles of metallic silicon constituting the metallic silicon powder. This is a blending of molding raw materials when the material of the columnar honeycomb structure is silicon-silicon carbide-based composite material, and when the material of the columnar honeycomb structure is silicon carbide, metallic silicon is added. do not.
 バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、2.0~10.0質量部であることが好ましい。 Examples of the binder include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination. The binder content is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
 水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~60質量部であることが好ましい。 The water content is preferably 20 to 60 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。 As the surfactant, ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metal silicon powder is 100 parts by mass.
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.5~10.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、成形時に口金に詰まることがある。造孔材の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。造孔材が吸水性樹脂の場合には、造孔材の平均粒子径は吸水後の平均粒子径のことである。 The pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel. The content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass. The average particle size of the pore-forming material is preferably 10 to 30 μm. If it is smaller than 10 μm, pores may not be sufficiently formed. If it is larger than 30 μm, it may clog the base during molding. The average particle size of the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method. When the pore-forming material is a water-absorbent resin, the average particle size of the pore-forming material is the average particle size after water absorption.
 次に、得られた成形原料を混練して坏土を形成した後、坏土を押出成形して柱状ハニカム成形体を作製する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度等を有する口金を用いることができる。次に、得られた柱状ハニカム成形体について、乾燥を行うことが好ましい。柱状ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、柱状ハニカム成形体の両底部を切断して所望の長さとすることができる。乾燥後の柱状ハニカム成形体を柱状ハニカム乾燥体と呼ぶ。 Next, after kneading the obtained molding raw materials to form a clay, the clay is extruded to produce a columnar honeycomb molded body. In extrusion molding, a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used. Next, it is preferable to dry the obtained columnar honeycomb molded body. When the length in the central axis direction of the columnar honeycomb molded body is not the desired length, both bottom portions of the columnar honeycomb molded body can be cut to obtain the desired length. The columnar honeycomb molded body after drying is called a columnar honeycomb dried body.
 次に、電極層を形成するための電極層形成ペーストを調合する。電極層形成ペーストは、電極層の要求特性に応じて配合した原料粉(金属粉末、及び、セラミックス粉末等)に各種添加剤を適宜添加して混練することで形成することができる。電極層を積層構造とする場合、第一の電極層用のペースト中の金属粉末の平均粒子径に比べて、第二の電極層用のペースト中の金属粉末の平均粒子径を大きくすることにより、金属電極と電極層の接合強度が向上する傾向にある。金属粉末の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。 Next, the electrode layer forming paste for forming the electrode layer is prepared. The electrode layer forming paste can be formed by appropriately adding various additives to the raw material powder (metal powder, ceramic powder, etc.) blended according to the required characteristics of the electrode layer and kneading. When the electrode layer has a laminated structure, the average particle size of the metal powder in the paste for the second electrode layer is made larger than the average particle size of the metal powder in the paste for the first electrode layer. , The bonding strength between the metal electrode and the electrode layer tends to improve. The average particle size of the metal powder refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
 次に、得られた電極層形成ペーストを、柱状ハニカム成形体(典型的には柱状ハニカム乾燥体)の側面に塗布し、電極層形成ペースト付き未焼成柱状ハニカム構造体を得る。電極層形成ペーストを調合する方法、及び電極層形成ペーストを柱状ハニカム成形体に塗布する方法については、公知の柱状ハニカム構造体の製造方法に準じて行うことができるが、電極層を柱状ハニカム構造体に比べて低い電気抵抗率にするために、柱状ハニカム構造体よりも金属の含有比率を高めたり、金属粒子の粒径を小さくしたりすることができる。 Next, the obtained electrode layer forming paste is applied to the side surface of the columnar honeycomb molded body (typically, the columnar honeycomb dried body) to obtain an unfired columnar honeycomb structure with the electrode layer forming paste. The method of preparing the electrode layer forming paste and the method of applying the electrode layer forming paste to the columnar honeycomb structure can be performed according to a known method for producing a columnar honeycomb structure, but the electrode layer has a columnar honeycomb structure. In order to have a lower electrical resistance than that of the body, the metal content ratio can be increased or the particle size of the metal particles can be reduced as compared with the columnar honeycomb structure.
 柱状ハニカム構造体の製造方法の変更例として、工程A1において、電極層形成ペーストを塗布する前に、柱状ハニカム成形体を一旦焼成してもよい。すなわち、この変更例では、柱状ハニカム成形体を焼成して柱状ハニカム焼成体を作製し、当該柱状ハニカム焼成体に、電極層形成ペーストを塗布する。 As an example of changing the method for manufacturing the columnar honeycomb structure, in step A1, the columnar honeycomb molded body may be fired once before applying the electrode layer forming paste. That is, in this modified example, the columnar honeycomb molded body is fired to produce a columnar honeycomb fired body, and the electrode layer forming paste is applied to the columnar honeycomb fired body.
 工程A2では、電極層形成ペースト付き未焼成柱状ハニカム構造体を焼成して、柱状ハニカム構造体を得る。焼成を行う前に、電極層形成ペースト付き未焼成柱状ハニカム構造体を乾燥してもよい。また、焼成の前に、バインダ等を除去するため、脱脂を行ってもよい。焼成条件としては、窒素、アルゴン等の不活性雰囲気において、1400~1500℃で、1~20時間加熱することが好ましい。また、焼成後、耐久性向上のために、1200~1350℃で、1~10時間、酸化処理を行うことが好ましい。脱脂及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。 In step A2, the unfired columnar honeycomb structure with the electrode layer forming paste is fired to obtain a columnar honeycomb structure. Before firing, the unfired columnar honeycomb structure with the electrode layer forming paste may be dried. Further, before firing, degreasing may be performed in order to remove the binder and the like. As the firing conditions, it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon. Further, after firing, it is preferable to carry out an oxidation treatment at 1200 to 1350 ° C. for 1 to 10 hours in order to improve durability. The method of degreasing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.
 工程A3では、柱状ハニカム構造体上の電極層の表面に一対の金属電極を溶接する。溶接方法としては、レーザー溶接する方法が溶接面積の制御及び生産効率の観点から好ましい。このとき、金属電極の複数の舌片の先端である頭部を電極層上に配置し、頭部側から溶接する。これにより、金属電極が電極層に電気的に接続された電気加熱式担体が得られる。 In step A3, a pair of metal electrodes are welded to the surface of the electrode layer on the columnar honeycomb structure. As a welding method, a laser welding method is preferable from the viewpoint of controlling the welding area and production efficiency. At this time, the heads, which are the tips of the plurality of tongue pieces of the metal electrodes, are arranged on the electrode layer and welded from the head side. As a result, an electrically heated carrier in which the metal electrode is electrically connected to the electrode layer is obtained.
<排気ガス浄化装置>
 上述した本発明の各実施形態に係る電気加熱式担体は、それぞれ排気ガス浄化装置に用いることができる。当該排気ガス浄化装置は、電気加熱式担体と、当該電気加熱式担体を保持する缶体とを有する。排気ガス浄化装置において、電気加熱式担体は、エンジンからの排気ガスを流すための排気ガス流路の途中に設置される。缶体としては、電気加熱式担体を収容する金属製の筒状部材等を用いることができる。
<Exhaust gas purification device>
The electrically heated carrier according to each embodiment of the present invention described above can be used for an exhaust gas purification device. The exhaust gas purifying device has an electrically heated carrier and a can body that holds the electrically heated carrier. In the exhaust gas purification device, the electrically heated carrier is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine. As the can body, a metal tubular member or the like accommodating an electrically heated carrier can be used.
 以下、本発明及びその利点をより良く理解するための実施例を例示するが、本発明は実施例に限定されるものではない。 Hereinafter, examples for better understanding the present invention and its advantages will be illustrated, but the present invention is not limited to the examples.
<実施例>
(1.円柱状の坏土の作製)
 炭化珪素(SiC)粉末と金属珪素(Si)粉末とを80:20の質量割合で混合してセラミックス原料を調製した。そして、セラミックス原料に、バインダとしてヒドロキシプロピルメチルセルロース、造孔材として吸水性樹脂を添加すると共に、水を添加して成形原料とした。そして、成形原料を真空土練機により混練し、円柱状の坏土を作製した。バインダの含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに7質量部とした。造孔材の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに3質量部とした。水の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに42質量部とした。炭化珪素粉末の平均粒子径は20μmであり、金属珪素粉末の平均粒子径は6μmであった。また、造孔材の平均粒子径は20μmであった。炭化珪素粉末、金属珪素粉末及び造孔材の平均粒子径は、レーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
<Example>
(1. Preparation of columnar clay)
Silicon carbide (SiC) powder and metallic silicon (Si) powder were mixed at a mass ratio of 80:20 to prepare a ceramic raw material. Then, hydroxypropyl methylcellulose as a binder and a water-absorbent resin as a pore-forming material were added to the ceramic raw material, and water was added to prepare a molding raw material. Then, the molding raw material was kneaded with a vacuum clay kneader to prepare a columnar clay. The binder content was 7 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass. The content of the pore-forming material was 3 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass. The water content was 42 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass. The average particle size of the silicon carbide powder was 20 μm, and the average particle size of the metallic silicon powder was 6 μm. The average particle size of the pore-forming material was 20 μm. The average particle size of the silicon carbide powder, the metallic silicon powder, and the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
(2.ハニカム乾燥体の作製)
 得られた円柱状の坏土を碁盤目状の口金構造を有する押出成形機を用いて成形し、セルの流路方向に垂直な断面における各セル形状が正方形である円柱状ハニカム成形体を得た。このハニカム成形体を高周波誘電加熱乾燥した後、熱風乾燥機を用いて120℃で2時間乾燥し、両底面を所定量切断して、ハニカム乾燥体を作製した。
(2. Preparation of dried honeycomb)
The obtained columnar clay was molded using an extrusion molding machine having a grid-like base structure to obtain a columnar honeycomb molded body in which each cell shape is square in a cross section perpendicular to the cell flow path direction. rice field. This honeycomb molded body was dried by high frequency dielectric heating and then dried at 120 ° C. for 2 hours using a hot air dryer, and both bottom surfaces were cut by a predetermined amount to prepare a honeycomb dried body.
(3.電極層形成ペーストの調製)
 金属珪素(Si)粉末、炭化珪素(SiC)粉末、メチルセルロース、グリセリン、及び水を、自転公転攪拌機で混合して、電極層形成ペーストを調製した。Si粉末、及びSiC粉末は体積比で、Si粉末:SiC粉末=40:60となるように配合した。また、Si粉末、及びSiC粉末の合計を100質量部としたときに、メチルセルロースは0.5質量部であり、グリセリンは10質量部であり、水は38質量部であった。金属珪素粉末の平均粒子径は6μmであった。炭化珪素粉末の平均粒子径は35μmであった。これらの平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
(3. Preparation of electrode layer forming paste)
Metallic silicon (Si) powder, silicon carbide (SiC) powder, methyl cellulose, glycerin, and water were mixed with a rotating and revolving stirrer to prepare an electrode layer forming paste. The Si powder and the SiC powder were blended so that the volume ratio was Si powder: SiC powder = 40:60. Further, when the total of Si powder and SiC powder was 100 parts by mass, methyl cellulose was 0.5 parts by mass, glycerin was 10 parts by mass, and water was 38 parts by mass. The average particle size of the metallic silicon powder was 6 μm. The average particle size of the silicon carbide powder was 35 μm. These average particle diameters refer to the arithmetic mean diameters based on the volume when the frequency distribution of particle size is measured by the laser diffraction method.
(4.ペーストの塗布)
 上記の電極層形成ペーストを上記ハニカム乾燥体の外周壁の外面上に中心軸を挟んで対向するように二箇所塗布した。各塗布部は、ハニカム乾燥体の両底面間の全長に亘って帯状に形成し、且つ、それぞれハニカム乾燥体の軸方向に沿って伸びるようなスリット状の分離帯を設けた。次いで、電極層形成ペーストを塗布後のハニカム乾燥体を120℃で乾燥して、電極層形成ペースト付き未焼成ハニカム構造体を得た。
(4. Paste application)
The electrode layer forming paste was applied to the outer surface of the outer peripheral wall of the dried honeycomb body at two locations so as to face each other with the central axis interposed therebetween. Each coating portion was formed in a band shape over the entire length between both bottom surfaces of the dried honeycomb body, and each was provided with a slit-shaped separation band extending along the axial direction of the dried honeycomb body. Next, the dried honeycomb structure after applying the electrode layer forming paste was dried at 120 ° C. to obtain an unfired honeycomb structure with the electrode layer forming paste.
(5.焼成)
 次に、電極層形成ペースト付き未焼成ハニカム構造体を、大気雰囲気において、550℃で3時間、脱脂した。次に、脱脂した電極層形成ペースト付き未焼成ハニカム構造体を、焼成し、酸化処理して、ハニカム構造体を作製した。焼成は、1450℃のアルゴン雰囲気中で2時間行った。酸化処理は、1300℃の大気中で1時間行った。
(5. Baking)
Next, the unfired honeycomb structure with the electrode layer forming paste was degreased at 550 ° C. for 3 hours in an air atmosphere. Next, the unfired honeycomb structure with the degreased electrode layer forming paste was fired and oxidized to prepare a honeycomb structure. The firing was carried out in an argon atmosphere at 1450 ° C. for 2 hours. The oxidation treatment was carried out in the air at 1300 ° C. for 1 hour.
 ハニカム構造体は、底面が直径100mmの円形であり、高さ(セルの流路方向における長さ)が100mmであった。セル密度は93セル/cm2であり、隔壁の厚みは101.6μmであり、隔壁の気孔率は45%であり、隔壁の平均細孔径は8.6μmであった。電極層の厚みは0.3mmであった。ハニカム構造体及び電極層と同一材質の試験片を用いて400℃における電気抵抗率を四端子法により測定したところ、それぞれ5Ωcm、0.01Ωcm、0.001Ωcmであった。 The bottom surface of the honeycomb structure was circular with a diameter of 100 mm, and the height (length in the flow path direction of the cell) was 100 mm. The cell density was 93 cells / cm 2 , the thickness of the partition was 101.6 μm, the porosity of the partition was 45%, and the average pore diameter of the partition was 8.6 μm. The thickness of the electrode layer was 0.3 mm. When the electrical resistivity at 400 ° C. was measured by the four-terminal method using a test piece made of the same material as the honeycomb structure and the electrode layer, it was 5 Ωcm, 0.01 Ω cm, and 0.001 Ω cm, respectively.
(6.金属電極の形成及び溶接)
 ステンレス製の板材を切断した後、折り曲げ加工することで、図2に示す形状の金属電極を形成した。各金属電極について、舌片の本体部分から伸びる起点である首部の末端から、首部の先端までの長さA、首部の幅の最小値B、舌片の首部及び頭部の厚みtについて、それぞれ表1に示す。次に、分離帯で分割された電極層の両方に、金属電極の12体の舌片の半数ずつを配設し、各頭部を電極層上に接触させて頭部側からレーザー溶接を行った。
(6. Formation and welding of metal electrodes)
A metal electrode having the shape shown in FIG. 2 was formed by cutting a stainless steel plate and then bending it. For each metal electrode, the length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck, the minimum width B of the neck, and the thickness t of the neck and head of the tongue piece, respectively. It is shown in Table 1. Next, half of the 12 tongue pieces of the metal electrode are arranged on both of the electrode layers divided by the median strip, and each head is brought into contact with the electrode layer to perform laser welding from the head side. rice field.
<応力緩和性の評価>
 上述のように、舌片を溶接にて固定したハニカム構造体に、セラミックマットを巻きつけて試験品を作製した。次に、当該試験品を金属容器に収納し、振動数100Hz及び加速度30Gの振動を、24時間加える熱衝撃試験(振動試験)を行った。次に、当該熱衝撃試験後のハニカム構造体を金属製収納容器から取り出して、目視確認し、金属電極の、ハニカム構造体に接合している部位に関する経路断線数(接合部位の剥がれの数/金属破断の数)を検出した。
 上述の各評価条件及び評価結果を表1に示す。
<Evaluation of stress relaxation>
As described above, a ceramic mat was wound around a honeycomb structure in which tongue pieces were fixed by welding to prepare a test product. Next, the test product was stored in a metal container, and a thermal shock test (vibration test) was conducted in which vibration with a frequency of 100 Hz and an acceleration of 30 G was applied for 24 hours. Next, the honeycomb structure after the thermal shock test is taken out from the metal storage container and visually inspected, and the number of path disconnections of the metal electrode regarding the portion joined to the honeycomb structure (number of peeling of the joint portion /). Number of metal breaks) was detected.
Table 1 shows each of the above evaluation conditions and evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(考察)
 実施例1~10は、舌片の本体部分から伸びる起点である首部の末端から、首部の先端までの長さAと、首部の幅の最小値Bとが、10<A/B≦160の関係を満たしていたため、熱衝撃試験後の接合部位の剥がれが良好に抑制されていた。
 これに対し、比較例1~4は、いずれも当該10<A/B≦160の関係を満たさなかったため、熱衝撃試験後の接合部位の剥がれが各実施例に比べて増大した。
(Discussion)
In Examples 1 to 10, the length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck are 10 <A / B ≦ 160. Since the relationship was satisfied, the peeling of the joint portion after the thermal shock test was well suppressed.
On the other hand, none of Comparative Examples 1 to 4 satisfied the relationship of 10 <A / B ≦ 160, so that the peeling of the joint portion after the thermal shock test increased as compared with each Example.
10 柱状ハニカム構造体
12 外周壁
13 隔壁
14a、14b 電極層
15 セル
19 分離帯
20 電気加熱式担体
30、30g 金属電極
31、31g 本体部分
32、32a、32b、32c、32d、32e、32f、32g 舌片
33、33a、33b、33c、33d、33e、33f、33g 首部
34、34a、34b、34c、34d、34e、34f、34g 頭部
35 折曲部
36 把持部
38 屈曲部
39 溶接下地層
40 溶接溶け込み部
10 Columnar honeycomb structure 12 Outer wall 13 Partition 14a, 14b Electrode layer 15 Cell 19 Separation zone 20 Electric heating type carrier 30, 30g Metal electrode 31, 31g Body part 32, 32a, 32b, 32c, 32d, 32e, 32f, 32g Tongue pieces 33, 33a, 33b, 33c, 33d, 33e, 33f, 33g Neck 34, 34a, 34b, 34c, 34d, 34e, 34f, 34g Head 35 Bent 36 Grip 38 Bend 39 Welding base layer 40 Weld penetration

Claims (16)

  1.  外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
     前記柱状ハニカム構造体の外周壁の表面に配設された電極層と、
     前記電極層上に配設された金属電極と、
    を備え、
     前記金属電極は、本体部分と、前記本体部分から伸びる複数の舌片とを備えており、
     前記金属電極の前記舌片は首部と頭部とを有し、
     前記舌片の頭部は、少なくとも一部が前記電極層と接するように配置され、
     前記舌片の前記本体部分から伸びる起点である前記首部の末端から、前記首部の先端までの長さAと、前記首部の幅の最小値Bとが、10<A/B≦160の関係を満たす電気加熱式担体。
    A columnar honeycomb structure made of ceramics having an outer peripheral wall, a partition wall arranged inside the outer peripheral wall and partitioning a plurality of cells forming a flow path from one end face to the other end face. ,
    An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure, and
    A metal electrode arranged on the electrode layer and
    With
    The metal electrode includes a main body portion and a plurality of tongue pieces extending from the main body portion.
    The tongue piece of the metal electrode has a neck and a head.
    The head of the tongue piece is arranged so that at least a part thereof is in contact with the electrode layer.
    The length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck have a relationship of 10 <A / B ≦ 160. An electroheated carrier that meets.
  2.  前記舌片の首部及び頭部の厚みが、それぞれ0.05~0.7mmである請求項1に記載の電気加熱式担体。 The electrically heated carrier according to claim 1, wherein the thickness of the neck and the head of the tongue piece is 0.05 to 0.7 mm, respectively.
  3.  前記舌片の首部の幅の最小値Bが、0.15~6.5mmである請求項1または2に記載の電気加熱式担体。 The electrically heated carrier according to claim 1 or 2, wherein the minimum value B of the width of the neck of the tongue piece is 0.15 to 6.5 mm.
  4.  前記舌片の首部の長さが、10~1000mmである請求項1~3のいずれか一項に記載の電気加熱式担体。 The electroheated carrier according to any one of claims 1 to 3, wherein the length of the neck of the tongue piece is 10 to 1000 mm.
  5.  前記舌片の頭部は、前記舌片の首部から幅が徐々に拡大して最大幅に至る形状を有している請求項1~4のいずれか一項に記載の電気加熱式担体。 The electroheated carrier according to any one of claims 1 to 4, wherein the head of the tongue piece has a shape in which the width gradually expands from the neck of the tongue piece to reach the maximum width.
  6.  前記舌片の頭部は、前記舌片の首部から幅が徐々に拡大して最大幅に至る線形テーパー形状を有している請求項5に記載の電気加熱式担体。 The electroheated carrier according to claim 5, wherein the head of the tongue piece has a linear tapered shape in which the width gradually expands from the neck of the tongue piece to reach the maximum width.
  7.  前記舌片の頭部は、前記舌片の首部から幅が徐々に拡大して最大幅に至る放物線テーパー形状を有している請求項5に記載の電気加熱式担体。 The electroheated carrier according to claim 5, wherein the head of the tongue piece has a parabolic taper shape in which the width gradually expands from the neck of the tongue piece to reach the maximum width.
  8.  前記舌片の頭部は、前記舌片の首部から幅が徐々に縮小して最小幅に至る形状を有している請求項1~4のいずれか一項に記載の電気加熱式担体。 The electroheated carrier according to any one of claims 1 to 4, wherein the head of the tongue piece has a shape in which the width gradually decreases from the neck of the tongue piece to reach the minimum width.
  9.  前記舌片の頭部は、前記舌片の首部から幅が徐々に縮小して最小幅に至る線形テーパー形状を有している請求項8に記載の電気加熱式担体。 The electroheated carrier according to claim 8, wherein the head of the tongue piece has a linear tapered shape in which the width gradually decreases from the neck of the tongue piece to the minimum width.
  10.  前記舌片の頭部は、前記舌片の首部から幅が徐々に縮小して最小幅に至る放物線テーパー形状を有している請求項8に記載の電気加熱式担体。 The electroheated carrier according to claim 8, wherein the head of the tongue piece has a parabolic taper shape in which the width gradually decreases from the neck of the tongue piece to the minimum width.
  11.  前記舌片の首部が2つ以上の折曲部を有する請求項1~10のいずれか一項に記載の電気加熱式担体。 The electroheated carrier according to any one of claims 1 to 10, wherein the neck of the tongue piece has two or more bent portions.
  12.  前記舌片の首部における、前記舌片の頭部に最も近い前記折曲部から前記頭部までの長さが10mm以上である請求項11に記載の電気加熱式担体。 The electrically heated carrier according to claim 11, wherein the length from the bent portion closest to the head of the tongue piece to the head of the neck of the tongue piece is 10 mm or more.
  13.  前記金属電極が櫛歯状である請求項1~12のいずれか一項に記載の電気加熱式担体。 The electrically heated carrier according to any one of claims 1 to 12, wherein the metal electrode has a comb-like shape.
  14.  前記柱状ハニカム構造体の外周壁の表面に配設された電極層が、前記柱状ハニカム構造体の外周壁の表面に、前記柱状ハニカム構造体の中心軸を挟んで対向するように配設された一対の電極層である請求項1~13のいずれか一項に記載の電気加熱式担体。 The electrode layer disposed on the surface of the outer peripheral wall of the columnar honeycomb structure is arranged so as to face the surface of the outer peripheral wall of the columnar honeycomb structure with the central axis of the columnar honeycomb structure interposed therebetween. The electrically heated carrier according to any one of claims 1 to 13, which is a pair of electrode layers.
  15.  請求項1~14のいずれか一項に記載の電気加熱式担体と、
     前記電気加熱式担体を保持する缶体と、
    を有する排気ガス浄化装置。
    The electrically heated carrier according to any one of claims 1 to 14,
    A can body holding the electrically heated carrier and
    Exhaust gas purification device with.
  16.  外周壁と隔壁とを有するセラミックス製の柱状ハニカム構造体の前記外周壁の表面に配設可能に構成された金属電極であって、
     前記金属電極は、本体部分と、前記本体部分から伸びる複数の舌片とを備えており、
     前記金属電極の前記舌片は首部と頭部とを有し、
     前記舌片の前記本体部分から伸びる起点である前記首部の末端から、前記首部の先端までの長さAと、前記首部の幅の最小値Bとが、10<A/B≦160の関係を満たす金属電極。
    A metal electrode configured to be disposable on the surface of the outer peripheral wall of a ceramic columnar honeycomb structure having an outer peripheral wall and a partition wall.
    The metal electrode includes a main body portion and a plurality of tongue pieces extending from the main body portion.
    The tongue piece of the metal electrode has a neck and a head.
    The length A from the end of the neck, which is the starting point extending from the main body of the tongue piece, to the tip of the neck and the minimum width B of the neck have a relationship of 10 <A / B ≦ 160. A metal electrode that meets.
PCT/JP2020/044882 2020-03-06 2020-12-02 Electric heating-type carrier, exhaust gas purification device, and metal electrode WO2021176785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022504975A JPWO2021176785A1 (en) 2020-03-06 2020-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020039073 2020-03-06
JP2020-039073 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021176785A1 true WO2021176785A1 (en) 2021-09-10

Family

ID=77613271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044882 WO2021176785A1 (en) 2020-03-06 2020-12-02 Electric heating-type carrier, exhaust gas purification device, and metal electrode

Country Status (2)

Country Link
JP (1) JPWO2021176785A1 (en)
WO (1) WO2021176785A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106164A (en) * 2010-11-16 2012-06-07 Toyota Motor Corp Electrical heating type catalyst
JP2017201147A (en) * 2016-05-02 2017-11-09 トヨタ自動車株式会社 Electrical heating type catalyst converter and method for producing the same
JP2019199515A (en) * 2018-05-15 2019-11-21 トヨタ自動車株式会社 Coat material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106164A (en) * 2010-11-16 2012-06-07 Toyota Motor Corp Electrical heating type catalyst
JP2017201147A (en) * 2016-05-02 2017-11-09 トヨタ自動車株式会社 Electrical heating type catalyst converter and method for producing the same
JP2019199515A (en) * 2018-05-15 2019-11-21 トヨタ自動車株式会社 Coat material

Also Published As

Publication number Publication date
JPWO2021176785A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
CN110314709B (en) Electrically heated catalyst support
JP6956038B2 (en) Carrier for electrically heated catalyst
JP7186643B2 (en) ELECTRICALLY HEATED CARRIER, EXHAUST GAS PURIFICATION DEVICE, METHOD FOR MANUFACTURING ELECTRICALLY HEATED CARRIER, JOINTED BODY, AND METHOD FOR MANUFACTURING JOINTED BODY
CN112627944B (en) Electric heating type carrier and exhaust gas purification device
CN111195533A (en) Carrier for electrically heated catalyst and exhaust gas purification device
JP7155054B2 (en) Electrically heated carrier and exhaust gas purification device
JP7042671B2 (en) Conductive honeycomb structure
WO2021176785A1 (en) Electric heating-type carrier, exhaust gas purification device, and metal electrode
WO2021166309A1 (en) Electrically heated carrier and exhaust gas purification device
US20220287154A1 (en) Honeycomb structure, electrically heating support and exhaust gas purifying device
JP2020040023A (en) Carrier for electrical heating type catalyst and exhaust gas purification device
JP7335836B2 (en) Electrically heated carrier, exhaust gas purifier, and method for producing electrically heated carrier
CN112443377B (en) Electrically heated carrier, exhaust gas purification device, and method for manufacturing exhaust gas purification device
CN115126576A (en) Honeycomb structure, and electrically heated carrier and exhaust gas treatment device using the honeycomb structure
WO2021192383A1 (en) Electrically heated carrier and exhaust gas purification device
WO2021187281A1 (en) Electrically heated carrier and exhaust gas purification device
WO2021065059A1 (en) Electrically heated carrier, exhaust gas purification device, and ceramics-metal joint
WO2021106261A1 (en) Electrical heating-type carrier, and exhaust gas purification device
US11725557B2 (en) Electric heating type carrier and exhaust gas purification device
JP2022111744A (en) Honeycomb structure, electric heating type carrier, and exhaust emission control system
JP2022144219A (en) Honeycomb structure, electrically heated carrier and exhaust emission control device
JP2022145121A (en) Honey-comb structure, electric heating carrier and waste gas purifier
JP2022158927A (en) Electric heating carrier and exhaust gas purification device
JP2021156185A (en) Exhaust gas purification device and electric heating carrier with conductive material
JP2022142542A (en) Manufacturing method of honey-comb structure and manufacturing method of electric heating carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922581

Country of ref document: EP

Kind code of ref document: A1