WO2021106261A1 - Electrical heating-type carrier, and exhaust gas purification device - Google Patents

Electrical heating-type carrier, and exhaust gas purification device Download PDF

Info

Publication number
WO2021106261A1
WO2021106261A1 PCT/JP2020/026464 JP2020026464W WO2021106261A1 WO 2021106261 A1 WO2021106261 A1 WO 2021106261A1 JP 2020026464 W JP2020026464 W JP 2020026464W WO 2021106261 A1 WO2021106261 A1 WO 2021106261A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
honeycomb structure
base layer
antioxidant
Prior art date
Application number
PCT/JP2020/026464
Other languages
French (fr)
Japanese (ja)
Inventor
水野 航
尚哉 高瀬
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2021561152A priority Critical patent/JPWO2021106261A1/ja
Publication of WO2021106261A1 publication Critical patent/WO2021106261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters

Definitions

  • the present invention relates to an electrically heated carrier and an exhaust gas purifying device.
  • EHC electric heating catalyst
  • a metal electrode is connected to a columnar honeycomb structure made of conductive ceramics, and the honeycomb structure itself is heated by energization so that the temperature can be raised to the active temperature of the catalyst before starting the engine. Is.
  • EHC in order to obtain a sufficient catalytic effect, it is desired to reduce temperature unevenness in the honeycomb structure to obtain a uniform temperature distribution.
  • the joining method includes fixing by thermal spraying, laser welding, brazing and the like.
  • Patent Document 1 discloses a technique of applying thermal energy from the metal terminal (metal electrode) side to join the metal electrode on the electrode layer of the honeycomb structure by welding. Then, it is described that according to such a configuration, it is possible to provide a conductive honeycomb structure having improved bonding reliability with a metal electrode.
  • a stress relaxation layer (base layer) is provided in the electrode layer to reduce repeated fatigue of the ceramic honeycomb structure due to breakage during welding and thermal cycle.
  • EHC is usually used at a high temperature (800 to 1000 ° C.) in an exhaust gas atmosphere of an automobile or the like, its physical properties change depending on the energy at the time of joining at a joining part such as a welded part.
  • the oxidation resistance tends to decrease.
  • stress relaxation is possible by the base layer, but there is a possibility that the material strength due to oxidation is lowered and the joint portion is damaged.
  • the present invention has been created in view of the above circumstances, and provides an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing oxidation of a joint portion connecting a base layer and a metal electrode. Is the subject. Another object of the present invention is to provide an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing the oxidation of the fixed layer that fixes the metal electrode to the electrode layer.
  • the present inventor has found that the above problems can be solved by providing an antioxidant layer for protecting the joint portion connecting the base layer and the metal electrode from exhaust gas. That is, the present invention is specified as follows. (1) A columnar honeycomb made of ceramics having an outer peripheral wall and a partition wall which is disposed inside the outer peripheral wall and forms a plurality of cells which form a flow path from one end face to the other end face. Structure and An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure and A conductive base layer provided on the electrode layer and A metal electrode connected to the base layer by a joint site and An antioxidant layer for protecting the joint site from exhaust gas, An electroheated carrier equipped with.
  • an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing oxidation of a joint portion connecting a base layer and a metal electrode. Further, according to the present invention, it is possible to provide an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing oxidation of a fixed layer that fixes a metal electrode to an electrode layer.
  • FIG. 5 is a schematic cross-sectional view perpendicular to the stretching direction of the cell of the electrically heated carrier according to the embodiment of the present invention. It is a schematic appearance figure of the columnar honeycomb structure and the electrode layer in embodiment of this invention. It is a top view which shows the arrangement example of the base layer of the electric heating type carrier in embodiment of this invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a fixed layer, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of the electrically heated carrier 10 according to the embodiment of the present invention, which is perpendicular to the stretching direction of the cell 18.
  • the electrically heated carrier 10 includes a columnar honeycomb structure 11, electrode layers 13a and 13b arranged on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11, and a base layer 16 provided on the electrode layers 13a and 13b. And metal electrodes 14a and 14b connected to the base layer 16 by the joint portion 20, and an antioxidant layer 21 for protecting the joint portion 20 from exhaust gas.
  • the joining portion 20 and the antioxidant layer 21 for protecting the joining portion 20 from exhaust gas are simplified, but the electrically heated carrier 10 according to the embodiment of the present invention has various forms. In each embodiment described later, the details will be described together with the drawings.
  • FIG. 2 shows a schematic external view of the columnar honeycomb structure 11 and the electrode layers 13a and 13b according to the embodiment of the present invention.
  • the columnar honeycomb structure 11 includes an outer peripheral wall 12 and a partition wall 19 which is arranged inside the outer peripheral wall 12 and which partitions a plurality of cells 18 which penetrate from one end face to the other end face to form a flow path. Have.
  • the outer shape of the columnar honeycomb structure 11 is not particularly limited as long as it is columnar.
  • the bottom surface is a circular columnar shape (cylindrical shape), the bottom surface is an oval-shaped columnar shape, and the bottom surface is a polygonal shape (quadrangle, pentagon, hexagon, heptagon). , Octagon, etc.) can be shaped like a columnar shape.
  • the size of the columnar honeycomb structure 11 is preferably 2000 to 20000 mm 2 and preferably 5000 to 15000 mm for the reason of improving heat resistance (suppressing cracks entering the circumferential direction of the outer peripheral wall). it is more preferably 2.
  • the columnar honeycomb structure 11 is made of ceramics and has conductivity. As long as the conductive columnar honeycomb structure 11 is energized and can generate heat by Joule heat, the electrical resistivity of the ceramic is not particularly limited, but is preferably 1 to 200 ⁇ cm, and is preferably 10 to 100 ⁇ cm. Is more preferable. In the present invention, the electrical resistivity of the columnar honeycomb structure 11 is a value measured at 400 ° C. by the four-terminal method.
  • the material of the columnar honeycomb structure 11 is not limited, but includes a group consisting of oxide-based ceramics such as alumina, mullite, zirconia and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride and aluminum nitride. You can choose. Further, a silicon carbide-metal silicon composite material, a silicon carbide / graphite composite material, or the like can also be used. Among these, from the viewpoint of achieving both heat resistance and conductivity, the material of the columnar honeycomb structure 11 preferably contains a silicon-silicon carbide composite material or ceramics containing silicon carbide as a main component.
  • the columnar honeycomb structure 11 When the material of the columnar honeycomb structure 11 is mainly composed of a silicon-silicon carbide composite material, the columnar honeycomb structure 11 contains the silicon-silicon carbide composite material (total mass) for a total of 90 masses. It means that it contains% or more.
  • the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder for binding the silicon carbide particles, and a plurality of silicon carbide particles are formed between the silicon carbide particles. It is preferably bonded by silicon so as to form pores.
  • the material of the columnar honeycomb structure 11 is mainly composed of silicon carbide, it means that the columnar honeycomb structure 11 contains silicon carbide (total mass) in an amount of 90% by mass or more of the whole. means.
  • the “mass of silicon carbide particles as aggregate” contained in the columnar honeycomb structure 11 and the columnar honeycomb structure 11 are contained.
  • the ratio of the "mass of silicon as a binder" contained in the columnar honeycomb structure 11 to the total of the "mass of silicon as a composite” is preferably 10 to 40% by mass, preferably 15 to 35. It is more preferably mass%. When it is 10% by mass or more, the strength of the columnar honeycomb structure 11 is sufficiently maintained. When it is 40% by mass or less, it becomes easy to maintain the shape at the time of firing.
  • the shape of the cell in the cross section perpendicular to the extending direction of the cell 18 is not limited, but it is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Among these, a quadrangle and a hexagon are preferable. By making the shape of the cell in this way, the pressure loss when the exhaust gas is passed through the columnar honeycomb structure 11 is reduced, and the purification performance of the catalyst is excellent. A quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
  • the thickness of the partition wall 19 for partitioning the cell 18 is preferably 0.1 to 0.3 mm, more preferably 0.15 to 0.25 mm.
  • the thickness of the partition wall 19 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the honeycomb structure.
  • the thickness of the partition wall 19 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the honeycomb structure is used as a catalyst carrier and the catalyst is supported.
  • the thickness of the partition wall 19 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 18 that passes through the partition wall 19 in a cross section perpendicular to the extending direction of the cell 18.
  • the columnar honeycomb structure 11 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 70 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 18.
  • the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured.
  • the cell density is 150 cells / cm 2 or less, when the columnar honeycomb structure 11 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large.
  • the cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the columnar honeycomb structure 11 excluding the outer peripheral wall 12 portion.
  • the thickness of the outer peripheral wall 12 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more.
  • the thickness of the outer peripheral wall 12 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less.
  • the thickness of the outer peripheral wall 12 is the normal direction with respect to the tangent line of the outer peripheral wall 12 at the measurement location when the portion of the outer peripheral wall 12 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell. Defined as thickness.
  • the partition wall 19 can be made porous.
  • the porosity of the partition wall 19 is preferably 35 to 60%, more preferably 35 to 45%. When the porosity is 35% or more, it becomes easier to suppress deformation during firing. When the porosity is 60% or less, the strength of the honeycomb structure is sufficiently maintained. Porosity is a value measured by a mercury porosimeter.
  • the average pore diameter of the partition wall 19 of the columnar honeycomb structure 11 is preferably 2 to 15 ⁇ m, more preferably 4 to 8 ⁇ m. When the average pore diameter is 2 ⁇ m or more, it is suppressed that the electrical resistivity becomes too large. When the average pore diameter is 15 ⁇ m or less, it is suppressed that the electrical resistivity becomes too small.
  • the average pore diameter is a value measured by a mercury porosimeter.
  • Electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11.
  • the electrode layers 13a and 13b may be a pair of electrode layers 13a and 13b arranged so as to face each other with the central axis of the columnar honeycomb structure 11 interposed therebetween.
  • each of the electrode layers 13a and 13b is formed on the outer surface of the outer peripheral wall 12 of the outer peripheral wall 12. It is preferable to extend the cells in a strip shape in the circumferential direction and the extending direction of the cell. Specifically, each of the electrode layers 13a and 13b has a length of 80% or more, preferably a length of 90% or more, and more preferably a total length between both bottom surfaces of the columnar honeycomb structure 11. It is desirable that the current extends over the electrode layers 13a and 13b from the viewpoint that the current easily spreads in the axial direction.
  • the thickness of each of the electrode layers 13a and 13b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced. When the thickness of each of the electrode layers 13a and 13b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced.
  • the thickness of each of the electrode layers 13a and 13b is such that when the portion of the electrode layer 13a and 13b whose thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell, the measurement portion on the outer surface of each of the electrode layers 13a and 13b. Is defined as the thickness in the normal direction with respect to the tangent line in.
  • the electrical resistivity of the electrode layers 13a and 13b is preferably 1/10 or less, more preferably 1/20 or less, and preferably 1/30 or less of the electrical resistivity of the columnar honeycomb structure 11. Even more preferable. However, if the difference between the electrical resistivitys of the two becomes too large, the current is concentrated between the ends of the opposing electrode layers 13a and 13b, and the heat generation of the columnar honeycomb structure is biased.
  • the electrical resistivity of the electrode layers 13a and 13b The ratio is preferably 1/200 or more, more preferably 1/150 or more, and even more preferably 1/100 or more of the electrical resistivity of the columnar honeycomb structure 11.
  • the electrical resistivity of the electrode layers 13a and 13b is a value measured at 400 ° C. by the four-terminal method.
  • a metal, a conductive ceramic, or a composite material (cermet) of the metal and the conductive ceramic can be used.
  • the metal include elemental metals of Cr, Fe, Co, Ni, Si and Ti, and alloys containing at least one metal selected from the group consisting of these metals.
  • the conductive ceramics include, but are not limited to, silicon carbide (SiC), and examples thereof include metal compounds such as metal siliceates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2).
  • the composite material (cermet) of metal and conductive ceramics include a composite material of metallic silicon and silicon carbide, a composite material of metal siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further described above. From the viewpoint of reducing thermal expansion, a composite material obtained by adding one or more kinds of insulating ceramics such as alumina, mulite, zirconia, cordierite, silicon nitride and aluminum nitride to one or more kinds of metals can be mentioned.
  • the material of the electrode layers 13a and 13b is a columnar honeycomb that is a combination of a metal siliceate such as tantalum silicate or chromium silicate and a composite material of metallic silicon and silicon carbide. It is preferable because it can be fired at the same time as the structural part, which contributes to simplification of the manufacturing process.
  • the base layer 16 is provided on the electrode layers 13a and 13b.
  • the base layer 16 can be formed on the surfaces of the electrode layers 13a and 13b, and is formed in a substantially flat plate shape (specifically, a curved shape along the outer surface of the electrode layers 13a and 13b).
  • the base layer 16 has conductivity.
  • the base layer 16 has the coefficient of thermal expansion of the electrode layers 13a and 13b (the coefficient of linear expansion of the electrode layers 13a and 13b is relatively small) and the coefficient of thermal expansion of the metal electrodes 14a and 14b (the coefficient of linear expansion of the metal electrodes 14a and 14b). May have a coefficient of thermal expansion between the two, and in this case, it has a function of absorbing the difference in thermal expansion that occurs between the electrode layers 13a and 13b and the metal electrodes 14a and 14b. There is.
  • the base layer 16 can be made of conductive ceramics.
  • the ceramics constituting the base layer 16 include, but are not limited to, silicon carbide (SiC), and metal compounds such as metal silicates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2).
  • a composite material (cermet) composed of a combination of one or more ceramics and one or more metals can be mentioned.
  • Specific examples of the cermet include a composite material of metallic silicon and silicon carbide, a composite material of metallic siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further, thermal expansion to the above-mentioned one or more kinds of metals.
  • a composite material to which one or more kinds of insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon carbide and aluminum nitride are added can be mentioned.
  • the number and arrangement of the base layers 16 are not limited, and can be appropriately set within the range necessary for fixing the metal electrodes 14a and 14b. Further, the shape of the base layer 16 can be formed into any shape such as a circular shape, an elliptical shape, and a polygonal shape in a plan view. The shape of the base layer 16 is preferably circular or rectangular from the viewpoint of productivity and practicality.
  • the metal electrodes 14a and 14b are connected to the base layer 16 by a joining portion 20.
  • the metal electrodes 14a and 14b may be a pair of metal electrodes in which one metal electrode 14a is arranged so as to face the other metal electrode 14b with the central axis of the columnar honeycomb structure 11 interposed therebetween.
  • Good. When a voltage is applied to the metal electrodes 14a and 14b via the electrode layers 13a and 13b, the metal electrodes 14a and 14b are energized and the columnar honeycomb structure 11 can be heated by Joule heat. Therefore, the electrically heated carrier 10 can be suitably used as a heater.
  • the applied voltage is preferably 12 to 900 V, more preferably 64 to 600 V, but the applied voltage can be changed as appropriate.
  • the material of the metal electrodes 14a and 14b there are no particular restrictions as long as it is a metal, and a single metal, an alloy, or the like can be adopted.
  • a metal for example, Cr, Fe. , Co, Ni and Ti are preferably used as alloys containing at least one selected from the group, and stainless steel and Fe—Ni alloys are more preferable.
  • the shapes and sizes of the metal electrodes 14a and 14b are not particularly limited, and can be appropriately designed according to the size of the electrically heated carrier 10 and the energization performance.
  • the metal electrodes 14a and 14b may have two or more electrode portions 15. Each electrode portion 15 may be fixed to the outer surface of the base layer 16. Here, the electrode portion 15 may be fixed to the base layer 16 by welding, or may be fixed to the electrode layers 13a and 13b by a fixing layer formed by thermal spraying.
  • the metal electrodes 14a and 14b each have three comb-shaped electrode portions 15, and each of the electrode portions 15 is fixed to two base layers 16.
  • the electrical connection between the comb-shaped electrode portion 15 and the electrode layers 13a and 13b may be realized by two or more base layers 16 that are separated from each other.
  • the electrode portion 15 is formed in a comb shape in FIG. 3, it is fixed to the electrode layers 13a and 13b as long as it is fixed to the base layer 16 and can be electrically connected to the electrode layers 13a and 13b, or by spraying. Any shape can be adopted as long as it is possible.
  • the electroheated carrier 10 includes an antioxidant layer 21 for protecting the joint portion 20 from exhaust gas.
  • the structure of the joint portion 20 and the antioxidant layer 21 that protects the joint portion 20 has various forms. Hereinafter, each embodiment will be described in detail together with the drawings.
  • FIG. 4 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20, the metal electrodes 14a and 14b, and the antioxidant layer 21a according to the first embodiment of the present invention.
  • a second base layer or a second electrode layer 17 is provided between the electrode layers 13a and 13b and the base layer 16 for further relaxation of thermal stress.
  • the second base layer or the second electrode layer 17 may not be provided, or a third layer for further relaxation of thermal stress may be provided on the second base layer or the second electrode layer 17. , Further may be provided.
  • the joint portion 20 connecting the base layer 16 and the metal electrodes 14a and 14b is, for example, when the metal electrodes 14a and 14b are provided on the base layer 16 and laser welding or the like is performed from the metal electrodes 14a and 14b. In addition, it is a joint portion formed between the base layer 16 and the metal electrodes 14a and 14b by melting a part of the metal electrodes 14a and 14b. In the example shown in FIG. 4, a configuration in which columnar bonding portions 20 are provided at three positions apart from each other between the base layer 16 and the metal electrodes 14a and 14b is schematically shown.
  • the joint portion 20 having such a shape is formed by, for example, spot welding at three locations from the metal electrodes 14a and 14b side by laser welding with the metal electrodes 14a and 14b provided on the base layer 16. be able to.
  • the size, shape, number, and the like of the joint portion 20 are not particularly limited.
  • the antioxidant layer 21a of the columnar honeycomb structure 11 seals the gap 22 from the side surface of the metal electrodes 14a and 14b and extends over the base layer 16 as in the example of FIG.
  • the layers 13a and 13b are continuously provided up to the surface.
  • the antioxidant layer 21a is not limited to this, and as shown in FIG. 5, the antioxidant layer 21a may be provided from the side surface of the metal electrodes 14a and 14b to the middle of the side surface of the base layer 16 by sealing the gap 22. ..
  • the antioxidant layer 21a may have any form as long as it is provided so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b.
  • the figure is shown in the figure.
  • a bonding portion 20a is formed over the entire surface between the base layer 16 and the metal electrodes 14a and 14b.
  • the antioxidant layer 21a is provided so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b.
  • the portion of the antioxidant layer 21a that seals the gap 22 between the base layer 16 and the metal electrodes 14a and 14b is particularly likely to be loaded due to thermal expansion of the metal electrodes 14a and 14b. Therefore, in order to increase the strength and suppress the occurrence of cracks, it is preferable to form the antioxidant layer 21a with a thickness of 10 ⁇ m or more. Further, the thickness of the antioxidant layer 21a is more preferably 10 to 100 ⁇ m.
  • the antioxidant layer 21a of the columnar honeycomb structure 11 is formed from the outer surface of the electrode layers 13a and 13b so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b.
  • 14b is provided over the outer surface.
  • the gap 22 between the base layer 16 and the metal electrodes 14a and 14b is a gap of, for example, about several tens of ⁇ m between the base layer 16 and the metal electrodes 14a and 14b.
  • the joint portions 20 and 20a may be oxidized by being exposed to the exhaust gas diffused from the gap 22 between the base layer 16 and the metal electrodes 14a and 14b.
  • the antioxidant layer 21a is outside the electrode layers 13a and 13b so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b. It is provided from the surface to the outer surface of the metal electrodes 14a and 14b. Therefore, the intrusion of the exhaust gas from the gap 22 can be suppressed, and as a result, the oxidation of the joint portions 20 and 20a can be satisfactorily suppressed.
  • the material of the antioxidant layer 21a ceramics, glass, or a composite material of ceramics and glass can be used.
  • the composite material for example, a material containing 50% by volume or more of glass, more preferably 60% by volume or more, and even more preferably 70% by volume or more can be used.
  • the ceramics constituting the antioxidant layer 21a include SiO 2 system, Al 2 O 3 system, SiO 2- Al 2 O 3 system, SiO 2- ZrO 2 system, and SiO 2- Al 2 O 3- ZrO 2 system. Ceramics such as.
  • glass constituting the oxidation preventing layer 21a for example, lead-free of B 2 O 3 -Bi 2 O 3 system, B 2 O 3 -ZnO-Bi 2 O 3 system, B 2 O 3 -ZnO system, V 2 O 5 -P 2 O 5 series, SnO-P 2 O 5 series, SnO-ZnO-P 2 O 5 series, SiO 2- B 2 O 3- Bi 2 O 3 series, SiO 2- Bi 2 O 3
  • glass include -Na 2 O type and SiO 2- Al 2 O 3-MgO type.
  • FIG. 7 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20, the metal electrodes 14a and 14b, and the antioxidant layer 21b according to the second embodiment of the present invention.
  • the antioxidant layer 21b of the columnar honeycomb structure 11 according to the second embodiment of the present invention is provided on the surface of the joint portion 20.
  • the antioxidant layer 21b is provided on the surface of the joint portion 20 in this way, it is possible to suppress the exposure of the joint portion 20 to the exhaust gas. As a result, the oxidation of the joint portion 20 can be satisfactorily suppressed.
  • the antioxidant layer 21b is provided on the surface of the joint portion 20, the thermal stress on the antioxidant layer 21b due to thermal expansion of the metal electrodes 14a and 14b can be reduced. As a result, the occurrence of cracks can be suppressed more satisfactorily.
  • the antioxidant layer 21b is provided so as to fill the space from the surface of the joint portion 20 to the ends of the metal electrodes 14a and 14b, but the present invention is not limited to this.
  • the antioxidant layer 21b may be provided so as to fill the space from the surface of the joint portion 20 to the middle of the ends of the metal electrodes 14a and 14b.
  • the antioxidant layer 21b can be formed by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention.
  • the bonding portion 20 may be a bonding portion 20a formed by ultrasonic welding as shown in FIG.
  • FIG. 9 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20, the metal electrodes 14a and 14b, and the antioxidant layer 21c according to the third embodiment of the present invention.
  • the antioxidant layer 21c of the columnar honeycomb structure 11 according to the third embodiment of the present invention is provided between the base layer 16 and the metal electrodes 14a and 14b apart from the joint portion 20.
  • the antioxidant layer 21c is provided between the base layer 16 and the metal electrodes 14a and 14b apart from the joint portion 20.
  • the antioxidant layer 21c is provided between the base layer 16 and the metal electrodes 14a and 14b, thermal stress on the antioxidant layer 21c due to thermal expansion of the metal electrodes 14a and 14b or the like is performed. Can be reduced. As a result, the occurrence of cracks can be satisfactorily suppressed.
  • the antioxidant layer 21c can be formed by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention. Further, the bonding portion 20 may be a bonding portion 20a formed by ultrasonic welding as shown in FIG.
  • FIG. 10 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20b, the metal electrodes 14a and 14b, and the antioxidant layer 21d according to the fourth embodiment of the present invention.
  • the antioxidant layer 21d of the columnar honeycomb structure 11 according to the fourth embodiment of the present invention is filled between the base layer 16 and the metal electrodes 14a and 14b.
  • the antioxidant layer 21d is filled between the base layer 16 and the metal electrodes 14a and 14b.
  • FIG. 11 shows a schematic view showing a state in which the base layer 16 of the columnar honeycomb structure 11 and the metal electrodes 14a and 14b according to the fourth embodiment of the present invention are joined by laser welding or the like.
  • a coat layer 23 made of an antioxidant layer forming material is provided on the base layer 16.
  • the metal electrodes 14a and 14b are arranged on the coat layer 23.
  • spot welding is performed from above the metal electrodes 14a and 14b by laser welding or the like.
  • the metal electrodes 14a and 14b are melted to form a mixture with the antioxidant layer forming material of the lower coat layer 23.
  • the mixture becomes the joint site 20b.
  • the antioxidant layer forming material constituting the coat layer 23 can be formed by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention. Therefore, the joint portion 20b is a mixture of metal and an inorganic substance such as glass.
  • the joint portion 20b as shown in FIG. 11, even if there are minute pores between the joint portions 20b, the pores are filled with the antioxidant layer forming material, so that the acid resistance of the joint portion 20b is formed. It is possible to further improve the chemistry.
  • FIG. 12 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the fixed layer 24, the metal electrodes 14a and 14b and the antioxidant layer 21e according to the fifth embodiment of the present invention.
  • the electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall of the columnar honeycomb structure 11 shown in the first embodiment, and the metal electrodes 14a are arranged on the electrode layers 13a and 13b. , 14b are provided. Further, the fixing layer 24 is provided so as to cover the metal electrodes 14a and 14b, and the antioxidant layer 21e is provided so as to cover the fixing layer 24. The fixing layer 24 fixes the metal electrodes 14a and 14b to the electrode layers 13a and 13b.
  • the fixed layer 24 which is a joint portion becomes exhaust gas. Exposure can be suppressed. As a result, the oxidation of the fixed layer 24 can be satisfactorily suppressed. Further, in such a configuration, since the antioxidant layer 21e is provided on the fixed layer 24 covering the metal electrodes 14a and 14b, thermal stress on the antioxidant layer 21e due to thermal expansion of the metal electrodes 14a and 14b is applied. Can be reduced. As a result, the occurrence of cracks can be satisfactorily suppressed.
  • the fixed layer 24 in the fifth embodiment can be formed by thermal spraying, for example. After the metal electrodes 14a and 14b are provided on the electrode layers 13a and 13b, the fixed layer 24 is provided by spraying a material composed of a mixed spraying material of NiCrAlY and mullite so as to cover the metal electrodes 14a and 14b. Can be formed. Further, the antioxidant layer 21e can be formed so as to cover the fixed layer 24 by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention.
  • FIG. 6 shows the columnar honeycomb structure 11, electrode layers 13a and 13b of the electrically heated carrier according to the sixth embodiment of the present invention.
  • 2 shows a schematic cross-sectional view of the base layer or electrode layer 17, the base layer 16, the joint portion 20d, the metal electrodes 14a and 14b, and the antioxidant layers 21f, 21g, 21h and 21i.
  • the electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall of the columnar honeycomb structure 11 shown in the first embodiment, and the second electrode layers 13a and 13b are covered with the second electrode layers 13a and 13b.
  • An underlayer or an electrode layer 17 and an underlayer 16 are provided.
  • the base layer 16 is joined to the metal electrodes 14a and 14b at the joining portion 20d by brazing the metal electrodes 14a and 14b.
  • the antioxidant layer 21f is continuously provided from the side surface of the metal electrodes 14a and 14b to the outer surface of the electrode layers 13a and 13b, and the base layer 16 and the metal electrode 14a are provided. , 14b is configured to seal the gap.
  • the antioxidant layer 21g is continuously provided from the bottom surface of the metal electrodes 14a and 14b to the outer surface of the electrode layers 13a and 13b, and the base layer 16 and the metal electrode 14a are provided.
  • 14b is configured to seal the gap.
  • a gap having no joint portion 20d is provided between the metal electrodes 14a and 14b and the base layer 16, and the gap is oxidized so as to be in contact with the joint portion 20d.
  • the prevention layer 21h is provided.
  • a gap having no joint portion 20d is provided between the metal electrodes 14a and 14b and the base layer 16, and the gap is oxidized at a distance from the joint portion 20d.
  • the prevention layer 21i is provided.
  • the bonding portion 20d is formed by providing the antioxidant layers 21f, 21g, 21h and 21i. Exposure to exhaust gas can be suppressed. As a result, the oxidation of the joint portion 20d can be satisfactorily suppressed.
  • the electrically heated carrier 10 can be used as a catalyst.
  • a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 18.
  • the catalyst include noble metal-based catalysts and catalysts other than these.
  • a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali.
  • An example is a NO x storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NO x).
  • catalysts that do not use noble metals include NO x selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used.
  • the method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure.
  • the method for producing the electroheating carrier 10 of the present invention is, in one embodiment, a step A1 for obtaining an unfired honeycomb structure portion with an electrode layer forming paste and a columnar honeycomb structure by firing the unfired honeycomb structure portion with an electrode layer forming paste.
  • the step A2 for obtaining the body and the step A3 for welding the metal electrode to the columnar honeycomb structure are included.
  • Step A1 is a step of producing a honeycomb molded body which is a precursor of the honeycomb structure portion, applying an electrode layer forming paste to the side surface of the honeycomb molded portion, and obtaining an unfired honeycomb structure portion with the electrode layer forming paste.
  • the honeycomb molded body can be produced according to the method for producing a honeycomb molded body in the known method for producing a honeycomb structure portion. For example, first, a metal silicon powder (metal silicon), a binder, a surfactant, a pore-forming material, water, or the like is added to silicon carbide powder (silicon carbide) to prepare a molding raw material.
  • the mass of the metallic silicon is 10 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metallic silicon.
  • the average particle size of the silicon carbide particles in the silicon carbide powder is preferably 3 to 50 ⁇ m, more preferably 3 to 40 ⁇ m.
  • the average particle size of metallic silicon (metallic silicon powder) is preferably 2 to 35 ⁇ m.
  • the average particle size of silicon carbide particles and metallic silicon (metal silicon particles) refers to the arithmetic mean diameter based on the volume when the frequency distribution of particle size is measured by the laser diffraction method.
  • the silicon carbide particles are fine particles of silicon carbide constituting the silicon carbide powder, and the metallic silicon particles are fine particles of metallic silicon constituting the metallic silicon powder. This is a blending of molding raw materials when the material of the honeycomb structure is silicon-silicon carbide-based composite material, and when the material of the honeycomb structure is silicon carbide, metallic silicon is not added.
  • binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
  • the binder content is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the water content is preferably 20 to 60 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel.
  • the content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
  • the average particle size of the pore-forming material is preferably 10 to 30 ⁇ m. If it is smaller than 10 ⁇ m, pores may not be sufficiently formed. If it is larger than 30 ⁇ m, it may clog the base during molding.
  • the average particle size of the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • the average particle size of the pore-forming material is the average particle size after water absorption.
  • the clay is extruded to produce a honeycomb molded body.
  • a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used.
  • both bottom portions of the honeycomb molded body can be cut to obtain the desired length.
  • the dried honeycomb molded body is called a honeycomb dried body.
  • the electrode layer forming paste for forming the electrode layer is prepared.
  • the electrode layer forming paste can be formed by appropriately adding various additives to the raw material powder (metal powder, ceramic powder, etc.) blended according to the required characteristics of the electrode layer and kneading.
  • the average particle size of the metal powder in the paste for the second electrode layer is made larger than the average particle size of the metal powder in the paste for the first electrode layer.
  • the bonding strength between the metal terminal and the electrode layer tends to improve.
  • the average particle size of the metal powder refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • the obtained electrode layer forming paste is applied to the side surface of the honeycomb molded body (typically, the honeycomb dried body) to obtain an unfired honeycomb structure portion with the electrode layer forming paste.
  • the method of preparing the electrode layer forming paste and the method of applying the electrode layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure, but the electrode layer is compared with the honeycomb structure portion. In order to obtain a low electrical resistance, the metal content ratio can be increased or the particle size of the metal particles can be reduced as compared with the honeycomb structure portion.
  • the honeycomb molded body may be fired once before applying the electrode layer forming paste. That is, in this modified example, the honeycomb molded body is fired to produce a honeycomb fired body, and the electrode layer forming paste is applied to the honeycomb fired body.
  • the unfired honeycomb structure portion with the electrode layer forming paste is fired to obtain a columnar honeycomb structure.
  • the unfired honeycomb structure with the electrode layer forming paste may be dried.
  • degreasing may be performed in order to remove the binder and the like.
  • the firing conditions it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon.
  • an oxidation treatment at 1200 to 1350 ° C. for 1 to 10 hours in order to improve durability.
  • the method of degreasing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.
  • a paste of a conductive material for forming a base layer is applied to the surface of the electrode layer on the columnar honeycomb structure.
  • the paste of the conductive material thus prepared is applied by a curved surface printing machine or the like so as to have a predetermined arrangement, dried, and then fired to form an underlayer.
  • a paste of a conductive material first of all, a metal powder (NiCr-based material, a metal powder such as stainless steel) and an oxide powder (an oxide powder such as Cd, alumina, mullite) are mixed in a volume ratio of 20 to 85.
  • a ceramic raw material is prepared by mixing 15 to 80% by volume of oxide powder.
  • a base layer forming paste can be prepared by adding 1% by mass of a binder, 1% by mass of a surfactant, and 20 to 40% by mass of water to the ceramic raw material. Further, the base layer may be formed by spraying a conductive material so as to have a predetermined arrangement and shape.
  • the metal electrode is fixed on the base layer by welding.
  • the welding method will be described in detail below.
  • a comb-shaped electrode is arranged on the honeycomb structure on which the base layer is formed, and laser welding or ultrasonic welding is performed on the portion where each comb-shaped electrode and the base layer overlap.
  • the laser spot diameter when performing laser welding includes a range of 0.5 to 3.0 mm.
  • the vibration frequency when ultrasonic welding is performed is 20 kHz to 40 kHz, and the pressing force is in the range of 10 N to 30 N.
  • the joint portion 20 as shown in FIG. 4 can be formed by performing a plurality of spot welds by laser welding. Further, by performing ultrasonic welding, a bonding portion 20a as shown in FIG. 6 can be formed.
  • the antioxidant layer 21a as shown in FIGS. 4 to 6 is provided by providing an antioxidant layer from the outer surface of the base layer to the outer surface of the metal electrode so as to seal the gap between the base layer and the metal electrode. Can be formed.
  • an antioxidant is sprayed by spraying or the like, and the antioxidant layer 21a is formed by firing at 800 to 1100 ° C. for 4 to 8 hours, preferably in a vacuum atmosphere. be able to.
  • antioxidant layers 21b and 21c as shown in FIGS. 7 to 9 after forming the joint portion 20 as shown in FIGS. 7 to 9. .
  • an antioxidant is applied to a portion of the base layer other than the joint portion, and the metal electrodes are bonded by a method such as laser welding, and then preferably in a vacuum atmosphere, 800 to 1100 ° C., 4 to 8
  • Antioxidant layers 21b and 21c can be formed by firing for a long time.
  • a coat layer made of an antioxidant layer forming material is provided between the base layer and the metal electrode, and laser welding is performed from the metal electrode side, as shown in FIG.
  • Such an antioxidant layer 21d can be formed.
  • the electrically heated carrier according to the embodiment of the present invention described above can be used in an exhaust gas purification device.
  • the exhaust gas purifying device has an electrically heated carrier and a can body that holds the electrically heated carrier.
  • the electrically heated carrier is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine.
  • a metal tubular member or the like accommodating an electrically heated carrier can be used.
  • Example 1 (1. Preparation of columnar clay) Silicon carbide (SiC) powder and metallic silicon (Si) powder were mixed at a mass ratio of 80:20 to prepare a ceramic raw material. Then, hydroxypropyl methylcellulose as a binder and a water-absorbent resin as a pore-forming material were added to the ceramic raw material, and water was added to prepare a molding raw material. Then, the molding raw material was kneaded with a vacuum soil kneader to prepare a columnar clay. The binder content was 7 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the content of the pore-forming material was 3 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the water content was 42 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass.
  • the average particle size of the silicon carbide powder was 20 ⁇ m, and the average particle size of the metallic silicon powder was 6 ⁇ m.
  • the average particle size of the pore-forming material was 20 ⁇ m.
  • the average particle size of the silicon carbide powder, the metallic silicon powder, and the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
  • Electrode layer forming paste Metallic silicon (Si) powder, silicon carbide (SiC) powder, methyl cellulose, glycerin, and water were mixed with a rotating and revolving stirrer to prepare an electrode layer forming paste.
  • the average particle size of the metallic silicon powder was 6 ⁇ m.
  • the average particle size of the silicon carbide powder was 35 ⁇ m.
  • this electrode layer forming paste is applied to the honeycomb dried body with an appropriate area and film thickness by a curved surface printing machine, further dried at 120 ° C. for 30 minutes with a hot air dryer, and then Ar atmosphere together with the honeycomb dried body. Was fired at 1400 ° C. for 3 hours to obtain a columnar honeycomb structure.
  • a ceramic raw material was prepared.
  • a paste raw material was prepared by adding 1% by mass of a binder, 1% by mass of a surfactant, and 20 to 40% by mass of water to the ceramic raw material.
  • the average particle size of the metal powder measured by the laser diffraction method was 10 ⁇ m, and the average particle size of the oxide powder was 5 ⁇ m.
  • the above base layer forming paste was applied to the electrode layer of the columnar honeycomb structure by a curved surface printing machine. Subsequently, it was dried at 120 ° C. for 30 minutes in a hot air dryer, and then fired at 1100 ° C. for 1 hour in an Ar atmosphere.
  • the bottom surface of the honeycomb structure was circular with a diameter of 100 mm, and the height (length in the flow path direction of the cell) was 100 mm.
  • the cell density was 93 cells / cm 2
  • the thickness of the partition was 101.6 ⁇ m
  • the porosity of the partition was 45%
  • the average pore diameter of the partition was 8.6 ⁇ m.
  • the thickness of the electrode layer was 0.3 mm
  • the thickness of the base layer was 0.2 mm.
  • the antioxidant layers of Examples 12 to 14 were provided as shown in FIG. 13 (a).
  • the antioxidant layers of Examples 4 and 10 were provided as shown in FIG. 7 (Embodiment 2), and the antioxidant layers of Example 15 were provided as shown in FIG. 13 (b).
  • the antioxidant layers of Examples 5 and 11 were provided as shown in FIG. 9 (Embodiment 3), and the antioxidant layers of Example 16 were provided as shown in FIG. 13 (d).
  • the antioxidant layer of Example 6 was provided as shown in FIG. 10 (Embodiment 4).
  • SiO 2- Al 2 O 3- MgO was used as the material of the antioxidant layer used in Examples 1 to 16
  • the thickness of each antioxidant layer is shown in Table 1 below.
  • Oxidation resistance evaluation test An oxidation resistance evaluation test was performed on a honeycomb structure in which a pair of metal electrodes were fixed by the above method.
  • a disk-shaped base layer having a diameter of 5 mm and a thickness of 0.3 mm was provided in a heating furnace with a sample arranged in 5 ⁇ 4 rows with the distance between the centers of adjacent base layers set to 5 mm. Heating was carried out at 1000 ° C. for 50 hours in an air atmosphere.
  • the rate of increase in resistance with respect to the initial resistance value of the sample was used as an index of the oxidation state, and it was judged that the smaller the rate of increase in resistance, the greater the effect of suppressing oxidation of the present invention.
  • the resistance value the resistance between the two points of the base layer was measured at a total of 12 points by the 4-wire resistance measurement method using the Kelvin probe, and the average value of these was calculated.
  • the conduction path of the sample was (1) the surface of the base layer, (2) the base layer, (3) the electrode layer, (4) the base layer, and (5) the surface of the base layer.
  • the evaluation results are shown in Table 1.
  • the reason is that the antioxidant layer is cracked due to the difference in thermal expansion between the base layer and the metal electrode due to the thick thickness of the prevention layer.
  • the cracks were smaller in Examples 1 and 12 in which the thickness of the antioxidant layer was 10 ⁇ m than in Examples 2 and 13 in which the thickness of the antioxidant layer was 100 ⁇ m. Therefore, it is considered that the difference in the antioxidant effect depending on the thickness of the antioxidant layer is due to cracks.
  • the antioxidant effect is as follows: The form of the antioxidant layer shown in Example 3 of Example 5 ⁇ Example 4
  • the result was that the form of the antioxidant layer shown in the second embodiment ⁇ the form of the antioxidant layer shown in the fourth embodiment of the sixth embodiment.
  • the second embodiment of the fourth embodiment is provided with an antioxidant layer as shown in FIG. 7, and the third embodiment of the fifth embodiment is provided with an antioxidant layer as shown in FIG. Therefore, it is considered that the amount of the antioxidant film filled between the metal electrode and the base layer affected the oxygen blocking ability.
  • the antioxidant layer is provided as shown in FIG.
  • the antioxidant layer completely covers the periphery of the joint portion, so that cracks or the like may occur. Even when oxygen invades from a part of the antioxidant layer, the oxidation-suppressing effect can be maintained, so that the oxidation-suppressing effect is considered to be the largest.

Abstract

An electrical heating-type carrier, provided with: a columnar honeycomb structure made of a ceramic, the columnar honeycomb structure having an outer peripheral wall, and partition walls provided on the inner side of the outer peripheral wall, the partition walls defining and forming a plurality of cells which penetrate from one end surface to the other end surface and form channels; an electrode layer provided on the surface of the outer peripheral wall of the columnar honeycomb structure; an electroconductive base layer provided on the electrode layer; a metal electrode connected on the base layer by a joint portion; and an anti-oxidation layer for protecting the joint portion from exhaust gas.

Description

電気加熱式担体及び排気ガス浄化装置Electric heating type carrier and exhaust gas purification device
 本発明は、電気加熱式担体及び排気ガス浄化装置に関する。 The present invention relates to an electrically heated carrier and an exhaust gas purifying device.
 近年、エンジン始動直後の排気ガス浄化性能の低下を改善するため、電気加熱触媒(EHC)が提案されている。EHCは、例えば、導電性セラミックスからなる柱状のハニカム構造体に金属電極を接続し、通電によりハニカム構造体自体を発熱させることで、エンジン始動前に触媒の活性温度まで昇温できるようにしたものである。EHCにおいては、触媒効果を十分に得られるようにするために、ハニカム構造体内での温度ムラを少なくして均一な温度分布にすることが望まれている。 In recent years, an electric heating catalyst (EHC) has been proposed in order to improve the deterioration of exhaust gas purification performance immediately after starting the engine. In EHC, for example, a metal electrode is connected to a columnar honeycomb structure made of conductive ceramics, and the honeycomb structure itself is heated by energization so that the temperature can be raised to the active temperature of the catalyst before starting the engine. Is. In EHC, in order to obtain a sufficient catalytic effect, it is desired to reduce temperature unevenness in the honeycomb structure to obtain a uniform temperature distribution.
 EHCに電流を流すためには、外部配線に接続された金属電極をEHCに接合させる必要がある。その接合方法としては、溶射による固定、レーザー溶接、またはロウ付け等がある。 In order to pass an electric current through the EHC, it is necessary to join the metal electrode connected to the external wiring to the EHC. The joining method includes fixing by thermal spraying, laser welding, brazing and the like.
 また、特許文献1には、金属端子(金属電極)側から熱エネルギーを加えて、ハニカム構造体の電極層上に、溶接によって金属電極を接合する技術が開示されている。そして、このような構成によれば、金属電極との接合信頼性を向上させた導電性ハニカム構造体を提供することができると記載されている。 Further, Patent Document 1 discloses a technique of applying thermal energy from the metal terminal (metal electrode) side to join the metal electrode on the electrode layer of the honeycomb structure by welding. Then, it is described that according to such a configuration, it is possible to provide a conductive honeycomb structure having improved bonding reliability with a metal electrode.
特開2018-172258号公報Japanese Unexamined Patent Publication No. 2018-172258
 特許文献1では、電極層に応力緩和層(下地層)を設けて、溶接時の破損や熱サイクルによるセラミックス製ハニカム構造部への繰り返し疲労を軽減している。しかしながら、EHCは、通常、自動車等の排気ガス雰囲気中の高温下(800~1000℃)で使用されるため、溶接部位などの接合部位では接合時のエネルギーによって物性が変化しているため、この接合部位が自動車等の排気ガスに曝されると耐酸化性が低下しやすい。その結果、下地層によって応力緩和は可能であるが、酸化による材料強度が低下してしまい、接合部位が破損してしまう問題が生じる可能性がある。 In Patent Document 1, a stress relaxation layer (base layer) is provided in the electrode layer to reduce repeated fatigue of the ceramic honeycomb structure due to breakage during welding and thermal cycle. However, since EHC is usually used at a high temperature (800 to 1000 ° C.) in an exhaust gas atmosphere of an automobile or the like, its physical properties change depending on the energy at the time of joining at a joining part such as a welded part. When the joint part is exposed to the exhaust gas of an automobile or the like, the oxidation resistance tends to decrease. As a result, stress relaxation is possible by the base layer, but there is a possibility that the material strength due to oxidation is lowered and the joint portion is damaged.
 本発明は上記事情に鑑みて創作されたものであり、下地層と金属電極とを接続する接合部位の酸化を良好に抑制することが可能な電気加熱式担体及び排気ガス浄化装置を提供することを課題とする。また、本発明は、金属電極を電極層に固定する固定層の酸化を良好に抑制することが可能な電気加熱式担体及び排気ガス浄化装置を提供することを別の課題とする。 The present invention has been created in view of the above circumstances, and provides an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing oxidation of a joint portion connecting a base layer and a metal electrode. Is the subject. Another object of the present invention is to provide an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing the oxidation of the fixed layer that fixes the metal electrode to the electrode layer.
 本発明者は鋭意検討したところ、下地層と金属電極とを接続する接合部位を排気ガスから保護するための酸化防止層を設けることで、上記課題が解決されることを見出した。すなわち、本発明は以下のように特定される。
 (1)外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
 前記柱状ハニカム構造体の外周壁の表面に配設されている電極層と、
 前記電極層上に設けられている導電性の下地層と、
 前記下地層上に接合部位により接続されている金属電極と、
 前記接合部位を排気ガスから保護するための酸化防止層と、
を備えた電気加熱式担体。
 (2)外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
 前記柱状ハニカム構造体の外周壁の表面に配設されている電極層と、
 前記電極層上に設けられている金属電極と、
 前記金属電極を覆うように設けられ、前記金属電極を前記電極層に固定する固定層と、
 前記固定層を覆うように設けられている酸化防止層と、
を備えた電気加熱式担体。
 (3)(1)または(2)に記載の電気加熱式担体と、
 前記電気加熱式担体を保持するための金属製の筒状部材と、
を有する排気ガス浄化装置。
As a result of diligent studies, the present inventor has found that the above problems can be solved by providing an antioxidant layer for protecting the joint portion connecting the base layer and the metal electrode from exhaust gas. That is, the present invention is specified as follows.
(1) A columnar honeycomb made of ceramics having an outer peripheral wall and a partition wall which is disposed inside the outer peripheral wall and forms a plurality of cells which form a flow path from one end face to the other end face. Structure and
An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure and
A conductive base layer provided on the electrode layer and
A metal electrode connected to the base layer by a joint site and
An antioxidant layer for protecting the joint site from exhaust gas,
An electroheated carrier equipped with.
(2) A columnar honeycomb made of ceramics having an outer peripheral wall and a partition wall which is disposed inside the outer peripheral wall and forms a plurality of cells which form a flow path from one end face to the other end face. Structure and
An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure and
A metal electrode provided on the electrode layer and
A fixed layer provided so as to cover the metal electrode and fixing the metal electrode to the electrode layer,
An antioxidant layer provided so as to cover the fixed layer and
An electroheated carrier equipped with.
(3) With the electrically heated carrier according to (1) or (2),
A metal tubular member for holding the electrically heated carrier, and
Exhaust gas purification device with.
 本発明によれば、下地層と金属電極とを接続する接合部位の酸化を良好に抑制することが可能な電気加熱式担体及び排気ガス浄化装置を提供することができる。また、本発明によれば、金属電極を電極層に固定する固定層の酸化を良好に抑制することが可能な電気加熱式担体及び排気ガス浄化装置を提供することができる。 According to the present invention, it is possible to provide an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing oxidation of a joint portion connecting a base layer and a metal electrode. Further, according to the present invention, it is possible to provide an electrically heated carrier and an exhaust gas purifying device capable of satisfactorily suppressing oxidation of a fixed layer that fixes a metal electrode to an electrode layer.
本発明の実施形態における電気加熱式担体のセルの延伸方向に垂直な断面模式図である。FIG. 5 is a schematic cross-sectional view perpendicular to the stretching direction of the cell of the electrically heated carrier according to the embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体及び電極層の外観模式図である。It is a schematic appearance figure of the columnar honeycomb structure and the electrode layer in embodiment of this invention. 本発明の実施形態における電気加熱式担体の下地層の配置例を示す平面模式図である。It is a top view which shows the arrangement example of the base layer of the electric heating type carrier in embodiment of this invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体の下地層と金属電極とをレーザー溶接等によって接合する様子を表す模式図である。It is a schematic diagram which shows the state of joining the base layer of the columnar honeycomb structure and the metal electrode in the embodiment of this invention by laser welding or the like. 本発明の実施形態における柱状ハニカム構造体、電極層、固定層、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a fixed layer, a metal electrode, and an antioxidant layer according to an embodiment of the present invention. 本発明の実施形態における柱状ハニカム構造体、電極層、下地層、接合部位、金属電極及び酸化防止層の断面模式図である。FIG. 5 is a schematic cross-sectional view of a columnar honeycomb structure, an electrode layer, a base layer, a joint portion, a metal electrode, and an antioxidant layer according to an embodiment of the present invention.
 次に本発明を実施するための形態を、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Next, a mode for carrying out the present invention will be described in detail with reference to the drawings. It is understood that the present invention is not limited to the following embodiments, and design changes, improvements, etc. may be appropriately made based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.
(1.電気加熱式担体)
 図1は、本発明の実施形態における電気加熱式担体10のセル18の延伸方向に垂直な断面模式図である。電気加熱式担体10は、柱状ハニカム構造体11と、柱状ハニカム構造体11の外周壁12の表面に配設された電極層13a、13bと、電極層13a、13b上に設けられた下地層16と、下地層16と接合部位20により接続されている金属電極14a、14bと、接合部位20を排気ガスから保護するための酸化防止層21とを備えている。図1では、接合部位20と、接合部位20を排気ガスから保護するための酸化防止層21とが簡略化されているが、本発明の実施形態における電気加熱式担体10では種々の形態を有しており、後述の各実施形態において図面と共に詳述する。
(1. Electric heating type carrier)
FIG. 1 is a schematic cross-sectional view of the electrically heated carrier 10 according to the embodiment of the present invention, which is perpendicular to the stretching direction of the cell 18. The electrically heated carrier 10 includes a columnar honeycomb structure 11, electrode layers 13a and 13b arranged on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11, and a base layer 16 provided on the electrode layers 13a and 13b. And metal electrodes 14a and 14b connected to the base layer 16 by the joint portion 20, and an antioxidant layer 21 for protecting the joint portion 20 from exhaust gas. In FIG. 1, the joining portion 20 and the antioxidant layer 21 for protecting the joining portion 20 from exhaust gas are simplified, but the electrically heated carrier 10 according to the embodiment of the present invention has various forms. In each embodiment described later, the details will be described together with the drawings.
(1-1.柱状ハニカム構造体)
 図2は本発明の実施形態における柱状ハニカム構造体11及び電極層13a、13bの外観模式図を示すものである。柱状ハニカム構造体11は、外周壁12と、外周壁12の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセル18を区画形成する隔壁19とを有する。
(1-1. Columnar honeycomb structure)
FIG. 2 shows a schematic external view of the columnar honeycomb structure 11 and the electrode layers 13a and 13b according to the embodiment of the present invention. The columnar honeycomb structure 11 includes an outer peripheral wall 12 and a partition wall 19 which is arranged inside the outer peripheral wall 12 and which partitions a plurality of cells 18 which penetrate from one end face to the other end face to form a flow path. Have.
 柱状ハニカム構造体11の外形は柱状である限り特に限定されず、例えば、底面が円形の柱状(円柱形状)、底面がオーバル形状の柱状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の柱状等の形状とすることができる。また、柱状ハニカム構造体11の大きさは、耐熱性を高める(外周壁の周方向に入るクラックを抑制する)という理由により、底面の面積が2000~20000mm2であることが好ましく、5000~15000mm2であることが更に好ましい。 The outer shape of the columnar honeycomb structure 11 is not particularly limited as long as it is columnar. For example, the bottom surface is a circular columnar shape (cylindrical shape), the bottom surface is an oval-shaped columnar shape, and the bottom surface is a polygonal shape (quadrangle, pentagon, hexagon, heptagon). , Octagon, etc.) can be shaped like a columnar shape. Further, the size of the columnar honeycomb structure 11 is preferably 2000 to 20000 mm 2 and preferably 5000 to 15000 mm for the reason of improving heat resistance (suppressing cracks entering the circumferential direction of the outer peripheral wall). it is more preferably 2.
 柱状ハニカム構造体11は、セラミックス製であり、導電性を有する。導電性の柱状ハニカム構造体11が通電してジュール熱により発熱可能である限り、当該セラミックスの電気抵抗率については特に制限はないが、1~200Ωcmであることが好ましく、10~100Ωcmであることが更に好ましい。本発明において、柱状ハニカム構造体11の電気抵抗率は、四端子法により400℃で測定した値とする。 The columnar honeycomb structure 11 is made of ceramics and has conductivity. As long as the conductive columnar honeycomb structure 11 is energized and can generate heat by Joule heat, the electrical resistivity of the ceramic is not particularly limited, but is preferably 1 to 200 Ωcm, and is preferably 10 to 100 Ωcm. Is more preferable. In the present invention, the electrical resistivity of the columnar honeycomb structure 11 is a value measured at 400 ° C. by the four-terminal method.
 柱状ハニカム構造体11の材質としては、限定的ではないが、アルミナ、ムライト、ジルコニア及びコージェライト等の酸化物系セラミックス、炭化珪素、窒化珪素及び窒化アルミ等の非酸化物系セラミックスからなる群から選択することができる。また、炭化珪素-金属珪素複合材や炭化珪素/グラファイト複合材等を用いることもできる。これらの中でも、耐熱性と導電性の両立の観点から、柱状ハニカム構造体11の材質は、珪素-炭化珪素複合材又は炭化珪素を主成分とするセラミックスを含有していることが好ましい。柱状ハニカム構造体11の材質が、珪素-炭化珪素複合材を主成分とするものであるというときは、柱状ハニカム構造体11が、珪素-炭化珪素複合材(合計質量)を、全体の90質量%以上含有していることを意味する。ここで、珪素-炭化珪素複合材は、骨材としての炭化珪素粒子、及び炭化珪素粒子を結合させる結合材としての珪素を含有するものであり、複数の炭化珪素粒子が、炭化珪素粒子間に細孔を形成するようにして、珪素によって結合されていることが好ましい。柱状ハニカム構造体11の材質が、炭化珪素を主成分とするものであるというときは、柱状ハニカム構造体11が、炭化珪素(合計質量)を、全体の90質量%以上含有していることを意味する。 The material of the columnar honeycomb structure 11 is not limited, but includes a group consisting of oxide-based ceramics such as alumina, mullite, zirconia and cordierite, and non-oxide ceramics such as silicon carbide, silicon nitride and aluminum nitride. You can choose. Further, a silicon carbide-metal silicon composite material, a silicon carbide / graphite composite material, or the like can also be used. Among these, from the viewpoint of achieving both heat resistance and conductivity, the material of the columnar honeycomb structure 11 preferably contains a silicon-silicon carbide composite material or ceramics containing silicon carbide as a main component. When the material of the columnar honeycomb structure 11 is mainly composed of a silicon-silicon carbide composite material, the columnar honeycomb structure 11 contains the silicon-silicon carbide composite material (total mass) for a total of 90 masses. It means that it contains% or more. Here, the silicon-silicon carbide composite material contains silicon carbide particles as an aggregate and silicon as a binder for binding the silicon carbide particles, and a plurality of silicon carbide particles are formed between the silicon carbide particles. It is preferably bonded by silicon so as to form pores. When the material of the columnar honeycomb structure 11 is mainly composed of silicon carbide, it means that the columnar honeycomb structure 11 contains silicon carbide (total mass) in an amount of 90% by mass or more of the whole. means.
 柱状ハニカム構造体11が、珪素-炭化珪素複合材を含んでいる場合、柱状ハニカム構造体11に含有される「骨材としての炭化珪素粒子の質量」と、柱状ハニカム構造体11に含有される「結合材としての珪素の質量」との合計に対する、柱状ハニカム構造体11に含有される「結合材としての珪素の質量」の比率が、10~40質量%であることが好ましく、15~35質量%であることが更に好ましい。10質量%以上であると、柱状ハニカム構造体11の強度が十分に維持される。40質量%以下であると、焼成時に形状を保持しやすくなる。 When the columnar honeycomb structure 11 contains a silicon-silicon carbide composite material, the “mass of silicon carbide particles as aggregate” contained in the columnar honeycomb structure 11 and the columnar honeycomb structure 11 are contained. The ratio of the "mass of silicon as a binder" contained in the columnar honeycomb structure 11 to the total of the "mass of silicon as a composite" is preferably 10 to 40% by mass, preferably 15 to 35. It is more preferably mass%. When it is 10% by mass or more, the strength of the columnar honeycomb structure 11 is sufficiently maintained. When it is 40% by mass or less, it becomes easy to maintain the shape at the time of firing.
 セル18の延伸方向に垂直な断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせであることが好ましい。これらのなかでも、四角形及び六角形が好ましい。セルの形状をこのようにすることにより、柱状ハニカム構造体11に排気ガスを流したときの圧力損失が小さくなり、触媒の浄化性能が優れたものとなる。構造強度及び加熱均一性を両立させやすいという観点からは、四角形が特に好ましい。 The shape of the cell in the cross section perpendicular to the extending direction of the cell 18 is not limited, but it is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Among these, a quadrangle and a hexagon are preferable. By making the shape of the cell in this way, the pressure loss when the exhaust gas is passed through the columnar honeycomb structure 11 is reduced, and the purification performance of the catalyst is excellent. A quadrangle is particularly preferable from the viewpoint of easily achieving both structural strength and heating uniformity.
 セル18を区画形成する隔壁19の厚みは、0.1~0.3mmであることが好ましく、0.15~0.25mmであることがより好ましい。隔壁19の厚みが0.1mm以上であることで、ハニカム構造体の強度が低下するのを抑制可能である。隔壁19の厚みが0.3mm以下であることで、ハニカム構造体を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなるのを抑制できる。本発明において、隔壁19の厚みは、セル18の延伸方向に垂直な断面において、隣接するセル18の重心同士を結ぶ線分のうち、隔壁19を通過する部分の長さとして定義される。 The thickness of the partition wall 19 for partitioning the cell 18 is preferably 0.1 to 0.3 mm, more preferably 0.15 to 0.25 mm. When the thickness of the partition wall 19 is 0.1 mm or more, it is possible to suppress a decrease in the strength of the honeycomb structure. When the thickness of the partition wall 19 is 0.3 mm or less, it is possible to suppress an increase in pressure loss when exhaust gas is flowed when the honeycomb structure is used as a catalyst carrier and the catalyst is supported. In the present invention, the thickness of the partition wall 19 is defined as the length of a portion of a line segment connecting the centers of gravity of adjacent cells 18 that passes through the partition wall 19 in a cross section perpendicular to the extending direction of the cell 18.
 柱状ハニカム構造体11は、セル18の流路方向に垂直な断面において、セル密度が40~150セル/cm2であることが好ましく、70~100セル/cm2であることが更に好ましい。セル密度をこのような範囲にすることにより、排気ガスを流したときの圧力損失を小さくした状態で、触媒の浄化性能を高くすることができる。セル密度が40セル/cm2以上であると、触媒担持面積が十分に確保される。セル密度が150セル/cm2以下であると柱状ハニカム構造体11を触媒担体として用いて、触媒を担持した場合に、排気ガスを流したときの圧力損失が大きくなりすぎることが抑制される。セル密度は、外周壁12部分を除く柱状ハニカム構造体11の一つの底面部分の面積でセル数を除して得られる値である。 The columnar honeycomb structure 11 preferably has a cell density of 40 to 150 cells / cm 2 , and more preferably 70 to 100 cells / cm 2 in a cross section perpendicular to the flow path direction of the cells 18. By setting the cell density in such a range, the purification performance of the catalyst can be improved while the pressure loss when the exhaust gas is passed is reduced. When the cell density is 40 cells / cm 2 or more, a sufficient catalyst-supporting area is secured. When the cell density is 150 cells / cm 2 or less, when the columnar honeycomb structure 11 is used as a catalyst carrier and the catalyst is supported, it is possible to prevent the pressure loss when the exhaust gas is flowed from becoming too large. The cell density is a value obtained by dividing the number of cells by the area of one bottom surface portion of the columnar honeycomb structure 11 excluding the outer peripheral wall 12 portion.
 柱状ハニカム構造体11の外周壁12を設けることは、柱状ハニカム構造体11の構造強度を確保し、また、セル18を流れる流体が外周壁12から漏洩するのを抑制する観点で有用である。具体的には、外周壁12の厚みは好ましくは0.1mm以上であり、より好ましくは0.15mm以上、更により好ましくは0.2mm以上である。但し、外周壁12を厚くしすぎると高強度になりすぎてしまい、隔壁19との強度バランスが崩れて耐熱衝撃性が低下することから、外周壁12の厚みは好ましくは1.0mm以下であり、より好ましくは0.7mm以下であり、更により好ましくは0.5mm以下である。ここで、外周壁12の厚みは、厚みを測定しようとする外周壁12の箇所をセルの延伸方向に垂直な断面で観察したときに、当該測定箇所における外周壁12の接線に対する法線方向の厚みとして定義される。 Providing the outer peripheral wall 12 of the columnar honeycomb structure 11 is useful from the viewpoint of ensuring the structural strength of the columnar honeycomb structure 11 and suppressing the fluid flowing through the cell 18 from leaking from the outer peripheral wall 12. Specifically, the thickness of the outer peripheral wall 12 is preferably 0.1 mm or more, more preferably 0.15 mm or more, and even more preferably 0.2 mm or more. However, if the outer peripheral wall 12 is made too thick, the strength becomes too high, the strength balance with the partition wall 19 is lost, and the heat impact resistance is lowered. Therefore, the thickness of the outer peripheral wall 12 is preferably 1.0 mm or less. , More preferably 0.7 mm or less, and even more preferably 0.5 mm or less. Here, the thickness of the outer peripheral wall 12 is the normal direction with respect to the tangent line of the outer peripheral wall 12 at the measurement location when the portion of the outer peripheral wall 12 whose thickness is to be measured is observed in a cross section perpendicular to the extending direction of the cell. Defined as thickness.
 隔壁19は多孔質とすることができる。隔壁19の気孔率は、35~60%であることが好ましく、35~45%であることが更に好ましい。気孔率が35%以上であると、焼成時の変形をより抑制しやすくなる。気孔率が60%以下であるとハニカム構造体の強度が十分に維持される。気孔率は、水銀ポロシメータにより測定した値である。 The partition wall 19 can be made porous. The porosity of the partition wall 19 is preferably 35 to 60%, more preferably 35 to 45%. When the porosity is 35% or more, it becomes easier to suppress deformation during firing. When the porosity is 60% or less, the strength of the honeycomb structure is sufficiently maintained. Porosity is a value measured by a mercury porosimeter.
 柱状ハニカム構造体11の隔壁19の平均細孔径は、2~15μmであることが好ましく、4~8μmであることが更に好ましい。平均細孔径が2μm以上であると、電気抵抗率が大きくなりすぎることが抑制される。平均細孔径が15μm以下であると、電気抵抗率が小さくなりすぎることが抑制される。平均細孔径は、水銀ポロシメータにより測定した値である。 The average pore diameter of the partition wall 19 of the columnar honeycomb structure 11 is preferably 2 to 15 μm, more preferably 4 to 8 μm. When the average pore diameter is 2 μm or more, it is suppressed that the electrical resistivity becomes too large. When the average pore diameter is 15 μm or less, it is suppressed that the electrical resistivity becomes too small. The average pore diameter is a value measured by a mercury porosimeter.
(1-2.電極層)
 柱状ハニカム構造体11の外周壁12の表面に、電極層13a、13bが配設されている。電極層13a、13bは、柱状ハニカム構造体11の中心軸を挟んで対向するように配設された一対の電極層13a、13bであってもよい。
(1-2. Electrode layer)
Electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall 12 of the columnar honeycomb structure 11. The electrode layers 13a and 13b may be a pair of electrode layers 13a and 13b arranged so as to face each other with the central axis of the columnar honeycomb structure 11 interposed therebetween.
 電極層13a、13bの形成領域に特段の制約はないが、柱状ハニカム構造体11の均一発熱性を高めるという観点からは、各電極層13a、13bは外周壁12の外面上で外周壁12の周方向及びセルの延伸方向に帯状に延設することが好ましい。具体的には、各電極層13a、13bは、柱状ハニカム構造体11の両底面間の80%以上の長さに亘って、好ましくは90%以上の長さに亘って、より好ましくは全長に亘って延びていることが、電極層13a、13bの軸方向へ電流が広がりやすいという観点から望ましい。 There are no particular restrictions on the formation regions of the electrode layers 13a and 13b, but from the viewpoint of enhancing the uniform heat generation of the columnar honeycomb structure 11, each of the electrode layers 13a and 13b is formed on the outer surface of the outer peripheral wall 12 of the outer peripheral wall 12. It is preferable to extend the cells in a strip shape in the circumferential direction and the extending direction of the cell. Specifically, each of the electrode layers 13a and 13b has a length of 80% or more, preferably a length of 90% or more, and more preferably a total length between both bottom surfaces of the columnar honeycomb structure 11. It is desirable that the current extends over the electrode layers 13a and 13b from the viewpoint that the current easily spreads in the axial direction.
 各電極層13a、13bの厚みは、0.01~5mmであることが好ましく、0.01~3mmであることが更に好ましい。このような範囲とすることにより均一発熱性を高めることができる。各電極層13a、13bの厚みが0.01mm以上であると、電気抵抗が適切に制御され、より均一に発熱することができる。5mm以下であると、キャニング時に破損する恐れが低減される。各電極層13a、13bの厚みは、厚みを測定しようとする電極層13a、13bの箇所をセルの延伸方向に垂直な断面で観察したときに、各電極層13a、13bの外面の当該測定箇所における接線に対する法線方向の厚みとして定義される。 The thickness of each of the electrode layers 13a and 13b is preferably 0.01 to 5 mm, more preferably 0.01 to 3 mm. By setting it in such a range, uniform heat generation can be enhanced. When the thickness of each of the electrode layers 13a and 13b is 0.01 mm or more, the electric resistance is appropriately controlled and heat can be generated more uniformly. If it is 5 mm or less, the risk of damage during canning is reduced. The thickness of each of the electrode layers 13a and 13b is such that when the portion of the electrode layer 13a and 13b whose thickness is to be measured is observed in a cross section perpendicular to the stretching direction of the cell, the measurement portion on the outer surface of each of the electrode layers 13a and 13b. Is defined as the thickness in the normal direction with respect to the tangent line in.
 各電極層13a、13bの電気抵抗率を柱状ハニカム構造体11の電気抵抗率より低くすることにより、電極層13a、13bに優先的に電気が流れやすくなり、通電時に電気がセルの流路方向及び周方向に広がりやすくなる。電極層13a、13bの電気抵抗率は、柱状ハニカム構造体11の電気抵抗率の1/10以下であることが好ましく、1/20以下であることがより好ましく、1/30以下であることが更により好ましい。但し、両者の電気抵抗率の差が大きくなりすぎると対向する電極層13a、13bの端部間に電流が集中して柱状ハニカム構造部の発熱が偏ることから、電極層13a、13bの電気抵抗率は、柱状ハニカム構造体11の電気抵抗率の1/200以上であることが好ましく、1/150以上であることがより好ましく、1/100以上であることが更により好ましい。本発明において、電極層13a、13bの電気抵抗率は、四端子法により400℃で測定した値とする。 By making the electrical resistivity of each of the electrode layers 13a and 13b lower than the electrical resistivity of the columnar honeycomb structure 11, electricity can easily flow to the electrode layers 13a and 13b preferentially, and electricity flows in the cell flow path direction when energized. And it becomes easy to spread in the circumferential direction. The electrical resistivity of the electrode layers 13a and 13b is preferably 1/10 or less, more preferably 1/20 or less, and preferably 1/30 or less of the electrical resistivity of the columnar honeycomb structure 11. Even more preferable. However, if the difference between the electrical resistivitys of the two becomes too large, the current is concentrated between the ends of the opposing electrode layers 13a and 13b, and the heat generation of the columnar honeycomb structure is biased. Therefore, the electrical resistivity of the electrode layers 13a and 13b The ratio is preferably 1/200 or more, more preferably 1/150 or more, and even more preferably 1/100 or more of the electrical resistivity of the columnar honeycomb structure 11. In the present invention, the electrical resistivity of the electrode layers 13a and 13b is a value measured at 400 ° C. by the four-terminal method.
 各電極層13a、13bの材質は、金属、導電性セラミックス、又は金属及び導電性セラミックスとの複合材(サーメット)を使用することができる。金属としては、例えばCr、Fe、Co、Ni、Si又はTiの単体金属又はこれらの金属よりなる群から選択される少なくとも一種の金属を含有する合金が挙げられる。導電性セラミックスとしては、限定的ではないが、炭化珪素(SiC)が挙げられ、珪化タンタル(TaSi2)及び珪化クロム(CrSi2)等の金属珪化物等の金属化合物が挙げられる。金属及び導電性セラミックスとの複合材(サーメット)の具体例としては、金属珪素と炭化珪素の複合材、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材、更には上記の一種又は二種以上の金属に熱膨張低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素及び窒化アルミ等の絶縁性セラミックスを一種又は二種以上添加した複合材が挙げられる。電極層13a、13bの材質としては、上記の各種金属及び導電性セラミックスの中でも、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材との組合せとすることが、柱状ハニカム構造部と同時に焼成できるので製造工程の簡素化に資するという理由により好ましい。 As the material of each of the electrode layers 13a and 13b, a metal, a conductive ceramic, or a composite material (cermet) of the metal and the conductive ceramic can be used. Examples of the metal include elemental metals of Cr, Fe, Co, Ni, Si and Ti, and alloys containing at least one metal selected from the group consisting of these metals. Examples of the conductive ceramics include, but are not limited to, silicon carbide (SiC), and examples thereof include metal compounds such as metal siliceates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2). Specific examples of the composite material (cermet) of metal and conductive ceramics include a composite material of metallic silicon and silicon carbide, a composite material of metal siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further described above. From the viewpoint of reducing thermal expansion, a composite material obtained by adding one or more kinds of insulating ceramics such as alumina, mulite, zirconia, cordierite, silicon nitride and aluminum nitride to one or more kinds of metals can be mentioned. Among the various metals and conductive ceramics described above, the material of the electrode layers 13a and 13b is a columnar honeycomb that is a combination of a metal siliceate such as tantalum silicate or chromium silicate and a composite material of metallic silicon and silicon carbide. It is preferable because it can be fired at the same time as the structural part, which contributes to simplification of the manufacturing process.
(1-3.下地層)
 本発明の実施形態における電気加熱式担体10は、電極層13a、13b上に、下地層16が設けられている。下地層16は、電極層13a、13bの表面上に形成でき、略平板状(具体的には、電極層13a、13bの外側表面に沿うように湾曲状)に形成されている。下地層16は、導電性を有する。下地層16は、電極層13a、13bの熱膨張率(電極層13a、13bの線膨張係数は比較的小さい。)と金属電極14a、14bの熱膨張率(金属電極14a、14bの線膨張係数は比較的大きい。)との間の熱膨張率を有してもよく、この場合、電極層13a、13bと金属電極14a、14bとの間に生じる熱膨張差を吸収する機能を有している。
(1-3. Base layer)
In the electroheating carrier 10 according to the embodiment of the present invention, the base layer 16 is provided on the electrode layers 13a and 13b. The base layer 16 can be formed on the surfaces of the electrode layers 13a and 13b, and is formed in a substantially flat plate shape (specifically, a curved shape along the outer surface of the electrode layers 13a and 13b). The base layer 16 has conductivity. The base layer 16 has the coefficient of thermal expansion of the electrode layers 13a and 13b (the coefficient of linear expansion of the electrode layers 13a and 13b is relatively small) and the coefficient of thermal expansion of the metal electrodes 14a and 14b (the coefficient of linear expansion of the metal electrodes 14a and 14b). May have a coefficient of thermal expansion between the two, and in this case, it has a function of absorbing the difference in thermal expansion that occurs between the electrode layers 13a and 13b and the metal electrodes 14a and 14b. There is.
 下地層16は、導電性のセラミックスで構成することができる。下地層16を構成するセラミックスとしては、限定的ではないが、炭化珪素(SiC)が挙げられ、珪化タンタル(TaSi2)及び珪化クロム(CrSi2)等の金属珪化物等の金属化合物が挙げられ、更には、セラミックスの一種以上と金属の一種以上の組み合わせからなる複合材(サーメット)を挙げることができる。サーメットの具体例としては、金属珪素と炭化珪素の複合材、珪化タンタルや珪化クロム等の金属珪化物と金属珪素と炭化珪素の複合材、更には上記の一種又は二種以上の金属に熱膨張低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素及び窒化アルミ等の絶縁性セラミックスを一種又は二種以上添加した複合材が挙げられる。 The base layer 16 can be made of conductive ceramics. Examples of the ceramics constituting the base layer 16 include, but are not limited to, silicon carbide (SiC), and metal compounds such as metal silicates such as tantalum silicate (TaSi 2 ) and chromium silicate (CrSi 2). Further, a composite material (cermet) composed of a combination of one or more ceramics and one or more metals can be mentioned. Specific examples of the cermet include a composite material of metallic silicon and silicon carbide, a composite material of metallic siliceous material such as tantalum silicate and chromium silicate, and a composite material of metallic silicon and silicon carbide, and further, thermal expansion to the above-mentioned one or more kinds of metals. From the viewpoint of reduction, a composite material to which one or more kinds of insulating ceramics such as alumina, mullite, zirconia, cordierite, silicon carbide and aluminum nitride are added can be mentioned.
 下地層16の数及び配置の仕方は制限されず、金属電極14a、14bを固定するのに必要な範囲内で適宜設定できる。また、下地層16の形状は、平面視で円形状、楕円形状、多角形状など、任意の形状に形成することができる。なお、下地層16の形状は、生産性及び実用性の観点から、円形又は矩形であることが好ましい。 The number and arrangement of the base layers 16 are not limited, and can be appropriately set within the range necessary for fixing the metal electrodes 14a and 14b. Further, the shape of the base layer 16 can be formed into any shape such as a circular shape, an elliptical shape, and a polygonal shape in a plan view. The shape of the base layer 16 is preferably circular or rectangular from the viewpoint of productivity and practicality.
(1-4.金属電極)
 金属電極14a、14bは、下地層16上に接合部位20により接続されている。金属電極14a、14bは、一方の金属電極14aが、他方の金属電極14bに対して、柱状ハニカム構造体11の中心軸を挟んで対向するように配設される一対の金属電極であってもよい。金属電極14a、14bは、電極層13a、13bを介して電圧を印加すると通電してジュール熱により柱状ハニカム構造体11を発熱させることが可能である。このため、電気加熱式担体10はヒーターとしても好適に用いることができる。印加する電圧は12~900Vが好ましく、64~600Vが更に好ましいが、印加する電圧は適宜変更可能である。
(1-4. Metal electrode)
The metal electrodes 14a and 14b are connected to the base layer 16 by a joining portion 20. The metal electrodes 14a and 14b may be a pair of metal electrodes in which one metal electrode 14a is arranged so as to face the other metal electrode 14b with the central axis of the columnar honeycomb structure 11 interposed therebetween. Good. When a voltage is applied to the metal electrodes 14a and 14b via the electrode layers 13a and 13b, the metal electrodes 14a and 14b are energized and the columnar honeycomb structure 11 can be heated by Joule heat. Therefore, the electrically heated carrier 10 can be suitably used as a heater. The applied voltage is preferably 12 to 900 V, more preferably 64 to 600 V, but the applied voltage can be changed as appropriate.
 金属電極14a、14bの材質としては、金属であれば特段の制約はなく、単体金属及び合金等を採用することもできるが、耐食性、電気抵抗率及び線膨張率の観点から例えば、Cr、Fe、Co、Ni及びTiよりなる群から選択される少なくとも一種を含む合金とすることが好ましく、ステンレス鋼及びFe-Ni合金がより好ましい。金属電極14a、14bの形状及び大きさは、特に限定されず、電気加熱式担体10の大きさや通電性能等に応じて、適宜設計することができる。 As the material of the metal electrodes 14a and 14b, there are no particular restrictions as long as it is a metal, and a single metal, an alloy, or the like can be adopted. However, from the viewpoint of corrosion resistance, electrical resistance, and linear expansion rate, for example, Cr, Fe. , Co, Ni and Ti are preferably used as alloys containing at least one selected from the group, and stainless steel and Fe—Ni alloys are more preferable. The shapes and sizes of the metal electrodes 14a and 14b are not particularly limited, and can be appropriately designed according to the size of the electrically heated carrier 10 and the energization performance.
 金属電極14a、14bは2つ以上の電極部15を有していてもよい。各電極部15は、下地層16の外表面に固定されてもよい。ここで、電極部15は、溶接により下地層16に固定されてもよく、溶射により形成される固定層で電極層13a、13bに固定されてもよい。 The metal electrodes 14a and 14b may have two or more electrode portions 15. Each electrode portion 15 may be fixed to the outer surface of the base layer 16. Here, the electrode portion 15 may be fixed to the base layer 16 by welding, or may be fixed to the electrode layers 13a and 13b by a fixing layer formed by thermal spraying.
 図3に示される実施形態では、金属電極14a、14bはそれぞれ3つの櫛状の電極部15を有し、それぞれの電極部15は2つの下地層16に固定されている。このように、櫛状の電極部15と電極層13a、13bとの電気的接続は、互いに離間した2つ以上の下地層16により実現されていてもよい。 In the embodiment shown in FIG. 3, the metal electrodes 14a and 14b each have three comb-shaped electrode portions 15, and each of the electrode portions 15 is fixed to two base layers 16. As described above, the electrical connection between the comb-shaped electrode portion 15 and the electrode layers 13a and 13b may be realized by two or more base layers 16 that are separated from each other.
 なお、電極部15は、図3では櫛状に成形されているが、下地層16に固定され電極層13a、13bと電気的に接続し得る限り、または、溶射により電極層13a、13bに固定され得る限り、いかなる形状も採用できる。 Although the electrode portion 15 is formed in a comb shape in FIG. 3, it is fixed to the electrode layers 13a and 13b as long as it is fixed to the base layer 16 and can be electrically connected to the electrode layers 13a and 13b, or by spraying. Any shape can be adopted as long as it is possible.
(1-5.酸化防止層)
 本発明の実施形態における電気加熱式担体10は、接合部位20を排気ガスから保護するための酸化防止層21を備えている。本発明では、接合部位20と、接合部位20を保護する酸化防止層21との構成について、種々の形態を有している。以下、各実施形態において図面と共に詳述する。
(1-5. Antioxidant layer)
The electroheated carrier 10 according to the embodiment of the present invention includes an antioxidant layer 21 for protecting the joint portion 20 from exhaust gas. In the present invention, the structure of the joint portion 20 and the antioxidant layer 21 that protects the joint portion 20 has various forms. Hereinafter, each embodiment will be described in detail together with the drawings.
 [実施形態1]
 図4に、本発明の実施形態1における柱状ハニカム構造体11、電極層13a、13b、下地層16、接合部位20、金属電極14a、14b及び酸化防止層21aの断面模式図を示す。図4に示す実施形態1では、電極層13a、13bと下地層16との間に、熱応力の更なる緩和のための第2の下地層または第2の電極層17を設けている。第2の下地層または第2の電極層17は設けなくてもよく、或いは、第2の下地層または第2の電極層17上に、熱応力の更なる緩和のための第3の層を、更に設けてもよい。
[Embodiment 1]
FIG. 4 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20, the metal electrodes 14a and 14b, and the antioxidant layer 21a according to the first embodiment of the present invention. In the first embodiment shown in FIG. 4, a second base layer or a second electrode layer 17 is provided between the electrode layers 13a and 13b and the base layer 16 for further relaxation of thermal stress. The second base layer or the second electrode layer 17 may not be provided, or a third layer for further relaxation of thermal stress may be provided on the second base layer or the second electrode layer 17. , Further may be provided.
 下地層16と金属電極14a、14bとを接続する接合部位20は、例えば、下地層16上に金属電極14a、14bを設けた状態で、金属電極14a、14b側からレーザー溶接等を行ったときに、金属電極14a、14bの一部が溶融することで、下地層16と金属電極14a、14bとの間に生じる接合部位である。図4に示す例では、下地層16と金属電極14a、14bとの間において、柱状の接合部位20が、それぞれ離間して3箇所に設けられた構成を模式的に示している。このような形態の接合部位20は、例えば、下地層16上に金属電極14a、14bを設けた状態で、金属電極14a、14b側からレーザー溶接により、3箇所のスポット溶接を行うことで形成することができる。接合部位20の大きさ、形状、及び、数等は、特に限定されない。 The joint portion 20 connecting the base layer 16 and the metal electrodes 14a and 14b is, for example, when the metal electrodes 14a and 14b are provided on the base layer 16 and laser welding or the like is performed from the metal electrodes 14a and 14b. In addition, it is a joint portion formed between the base layer 16 and the metal electrodes 14a and 14b by melting a part of the metal electrodes 14a and 14b. In the example shown in FIG. 4, a configuration in which columnar bonding portions 20 are provided at three positions apart from each other between the base layer 16 and the metal electrodes 14a and 14b is schematically shown. The joint portion 20 having such a shape is formed by, for example, spot welding at three locations from the metal electrodes 14a and 14b side by laser welding with the metal electrodes 14a and 14b provided on the base layer 16. be able to. The size, shape, number, and the like of the joint portion 20 are not particularly limited.
 本発明の実施形態1における柱状ハニカム構造体11の酸化防止層21aは、図4の例のように、金属電極14a、14bの側面から、間隙22をシールして下地層16に亘り、さらに電極層13a、13bの表面まで連続して設けられている。酸化防止層21aは、これに限らず、図5に示すように、金属電極14a、14bの側面から、間隙22をシールして下地層16の側面の途中までに亘って設けられていてもよい。このように、酸化防止層21aは、下地層16と金属電極14a、14bとの間隙22をシールするように設けられていれば、どのような形態であってもよい。 The antioxidant layer 21a of the columnar honeycomb structure 11 according to the first embodiment of the present invention seals the gap 22 from the side surface of the metal electrodes 14a and 14b and extends over the base layer 16 as in the example of FIG. The layers 13a and 13b are continuously provided up to the surface. The antioxidant layer 21a is not limited to this, and as shown in FIG. 5, the antioxidant layer 21a may be provided from the side surface of the metal electrodes 14a and 14b to the middle of the side surface of the base layer 16 by sealing the gap 22. .. As described above, the antioxidant layer 21a may have any form as long as it is provided so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b.
 また、下地層16上に金属電極14a、14bを設けた状態で、金属電極14a、14b側から超音波溶接を行うことで、下地層16と金属電極14a、14bとを接続する場合は、図6に示すように、下地層16と金属電極14a、14bとの間の全面に亘って接合部位20aが生じる。この場合も同様に、酸化防止層21aは、下地層16と金属電極14a、14bとの間隙22をシールするように設けられている。 Further, when the metal electrodes 14a and 14b are provided on the base layer 16 and the base layer 16 and the metal electrodes 14a and 14b are connected by ultrasonic welding from the metal electrodes 14a and 14b side, the figure is shown in the figure. As shown in 6, a bonding portion 20a is formed over the entire surface between the base layer 16 and the metal electrodes 14a and 14b. Similarly in this case, the antioxidant layer 21a is provided so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b.
 酸化防止層21aの、下地層16と金属電極14a、14bとの間隙22をシールする部位は、特に金属電極14a、14bの熱膨張などによって荷重がかかりやすい。このため、強度を上げてクラックの発生を抑制するために、酸化防止層21aの厚みを10μm以上に形成することが好ましい。また、酸化防止層21aの厚みは、10~100μmであるのがより好ましい。 The portion of the antioxidant layer 21a that seals the gap 22 between the base layer 16 and the metal electrodes 14a and 14b is particularly likely to be loaded due to thermal expansion of the metal electrodes 14a and 14b. Therefore, in order to increase the strength and suppress the occurrence of cracks, it is preferable to form the antioxidant layer 21a with a thickness of 10 μm or more. Further, the thickness of the antioxidant layer 21a is more preferably 10 to 100 μm.
 本発明の実施形態1における柱状ハニカム構造体11の酸化防止層21aは、下地層16と金属電極14a、14bとの間隙22をシールするように、電極層13a、13bの外表面から金属電極14a、14bの外表面に亘って設けられている。ここで、下地層16と金属電極14a、14bとの間隙22とは、下地層16と金属電極14a、14bとの間の、例えば、数十μm程度の隙間である。一般に、接合部位20、20aは、下地層16と金属電極14a、14bとの間隙22から拡散する排気ガスに曝されることで、酸化するおそれがある。これに対し、本発明の実施形態1における柱状ハニカム構造体11では、酸化防止層21aが、下地層16と金属電極14a、14bとの間隙22をシールするように、電極層13a、13bの外表面から金属電極14a、14bの外表面に亘って設けられている。従って、間隙22からの排気ガスの侵入を抑制し、その結果、接合部位20、20aの酸化を良好に抑制することができる。 The antioxidant layer 21a of the columnar honeycomb structure 11 according to the first embodiment of the present invention is formed from the outer surface of the electrode layers 13a and 13b so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b. , 14b is provided over the outer surface. Here, the gap 22 between the base layer 16 and the metal electrodes 14a and 14b is a gap of, for example, about several tens of μm between the base layer 16 and the metal electrodes 14a and 14b. Generally, the joint portions 20 and 20a may be oxidized by being exposed to the exhaust gas diffused from the gap 22 between the base layer 16 and the metal electrodes 14a and 14b. On the other hand, in the columnar honeycomb structure 11 according to the first embodiment of the present invention, the antioxidant layer 21a is outside the electrode layers 13a and 13b so as to seal the gap 22 between the base layer 16 and the metal electrodes 14a and 14b. It is provided from the surface to the outer surface of the metal electrodes 14a and 14b. Therefore, the intrusion of the exhaust gas from the gap 22 can be suppressed, and as a result, the oxidation of the joint portions 20 and 20a can be satisfactorily suppressed.
 酸化防止層21aの材料は、セラミックス、ガラス、またはセラミックスとガラスとの複合材料を用いることができる。複合材料は、例えば、ガラスを50体積%以上、より好ましくは60体積%以上、更により好ましくは70体積%以上含有した材料を用いることができる。酸化防止層21aを構成するセラミックスとしては、例えば、SiO2系、Al23系、SiO2-Al23系、SiO2-ZrO2系、SiO2-Al23-ZrO2系等のセラミックスを挙げることができる。また、酸化防止層21aを構成するガラスとしては、例えば、無鉛系のB23-Bi23系、B23-ZnO-Bi23系、B23-ZnO系、V25-P25系、SnO-P25系、SnO-ZnO-P25系、SiO2-B23-Bi23系、SiO2-Bi23-Na2O系、SiO2-Al23-MgO系等のガラスを挙げることができる。 As the material of the antioxidant layer 21a, ceramics, glass, or a composite material of ceramics and glass can be used. As the composite material, for example, a material containing 50% by volume or more of glass, more preferably 60% by volume or more, and even more preferably 70% by volume or more can be used. Examples of the ceramics constituting the antioxidant layer 21a include SiO 2 system, Al 2 O 3 system, SiO 2- Al 2 O 3 system, SiO 2- ZrO 2 system, and SiO 2- Al 2 O 3- ZrO 2 system. Ceramics such as. As the glass constituting the oxidation preventing layer 21a, for example, lead-free of B 2 O 3 -Bi 2 O 3 system, B 2 O 3 -ZnO-Bi 2 O 3 system, B 2 O 3 -ZnO system, V 2 O 5 -P 2 O 5 series, SnO-P 2 O 5 series, SnO-ZnO-P 2 O 5 series, SiO 2- B 2 O 3- Bi 2 O 3 series, SiO 2- Bi 2 O 3 Examples of glass include -Na 2 O type and SiO 2- Al 2 O 3-MgO type.
 [実施形態2]
 図7に、本発明の実施形態2における柱状ハニカム構造体11、電極層13a、13b、下地層16、接合部位20、金属電極14a、14b及び酸化防止層21bの断面模式図を示す。
[Embodiment 2]
FIG. 7 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20, the metal electrodes 14a and 14b, and the antioxidant layer 21b according to the second embodiment of the present invention.
 本発明の実施形態2における柱状ハニカム構造体11の酸化防止層21bは、接合部位20の表面に設けられている。このように、酸化防止層21bを、接合部位20の表面に設けることで、接合部位20が排気ガスに曝されることを抑制することができる。その結果、接合部位20の酸化を良好に抑制することができる。また、このような構成であれば、酸化防止層21bを、接合部位20の表面に設けるため、金属電極14a、14bの熱膨張などによる酸化防止層21bへの熱応力を低減することができる。その結果、クラックの発生をより良好に抑制することができる。 The antioxidant layer 21b of the columnar honeycomb structure 11 according to the second embodiment of the present invention is provided on the surface of the joint portion 20. By providing the antioxidant layer 21b on the surface of the joint portion 20 in this way, it is possible to suppress the exposure of the joint portion 20 to the exhaust gas. As a result, the oxidation of the joint portion 20 can be satisfactorily suppressed. Further, with such a configuration, since the antioxidant layer 21b is provided on the surface of the joint portion 20, the thermal stress on the antioxidant layer 21b due to thermal expansion of the metal electrodes 14a and 14b can be reduced. As a result, the occurrence of cracks can be suppressed more satisfactorily.
 図7に示す例では、酸化防止層21bは、接合部位20の表面から、金属電極14a、14bの端部までの空間を埋めるように設けられているが、これに限られない。例えば、酸化防止層21bは、図8に示すように、接合部位20の表面から、金属電極14a、14bの端部の途中までの空間を埋めるように設けられていてもよい。酸化防止層21bは、本発明の実施形態1で示した酸化防止層21aと同様の材料を用いて形成することができる。また、接合部位20は、図6に示すような、超音波溶接によって形成された接合部位20aであってもよい。 In the example shown in FIG. 7, the antioxidant layer 21b is provided so as to fill the space from the surface of the joint portion 20 to the ends of the metal electrodes 14a and 14b, but the present invention is not limited to this. For example, as shown in FIG. 8, the antioxidant layer 21b may be provided so as to fill the space from the surface of the joint portion 20 to the middle of the ends of the metal electrodes 14a and 14b. The antioxidant layer 21b can be formed by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention. Further, the bonding portion 20 may be a bonding portion 20a formed by ultrasonic welding as shown in FIG.
 [実施形態3]
 図9に、本発明の実施形態3における柱状ハニカム構造体11、電極層13a、13b、下地層16、接合部位20、金属電極14a、14b及び酸化防止層21cの断面模式図を示す。
[Embodiment 3]
FIG. 9 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20, the metal electrodes 14a and 14b, and the antioxidant layer 21c according to the third embodiment of the present invention.
 本発明の実施形態3における柱状ハニカム構造体11の酸化防止層21cは、下地層16と金属電極14a、14bとの間において、接合部位20から離間して設けられている。このように、酸化防止層21cを、下地層16と金属電極14a、14bとの間において、接合部位20から離間して設けることで、接合部位20が排気ガスに曝されることを抑制することができる。その結果、接合部位20の酸化を良好に抑制することができる。また、このような構成であれば、酸化防止層21cが下地層16と金属電極14a、14bとの間に設けられるため、金属電極14a、14bの熱膨張などによる酸化防止層21cへの熱応力を低減することができる。その結果、クラックの発生を良好に抑制することができる。 The antioxidant layer 21c of the columnar honeycomb structure 11 according to the third embodiment of the present invention is provided between the base layer 16 and the metal electrodes 14a and 14b apart from the joint portion 20. In this way, by providing the antioxidant layer 21c between the base layer 16 and the metal electrodes 14a and 14b at a distance from the joint portion 20, it is possible to suppress the exposure of the joint portion 20 to the exhaust gas. Can be done. As a result, the oxidation of the joint portion 20 can be satisfactorily suppressed. Further, in such a configuration, since the antioxidant layer 21c is provided between the base layer 16 and the metal electrodes 14a and 14b, thermal stress on the antioxidant layer 21c due to thermal expansion of the metal electrodes 14a and 14b or the like is performed. Can be reduced. As a result, the occurrence of cracks can be satisfactorily suppressed.
 酸化防止層21cは、本発明の実施形態1で示した酸化防止層21aと同様の材料を用いて形成することができる。また、接合部位20は、図6に示すような、超音波溶接によって形成された接合部位20aであってもよい。 The antioxidant layer 21c can be formed by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention. Further, the bonding portion 20 may be a bonding portion 20a formed by ultrasonic welding as shown in FIG.
 [実施形態4]
 図10に、本発明の実施形態4における柱状ハニカム構造体11、電極層13a、13b、下地層16、接合部位20b、金属電極14a、14b及び酸化防止層21dの断面模式図を示す。
[Embodiment 4]
FIG. 10 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the base layer 16, the joint portion 20b, the metal electrodes 14a and 14b, and the antioxidant layer 21d according to the fourth embodiment of the present invention.
 本発明の実施形態4における柱状ハニカム構造体11の酸化防止層21dは、下地層16と金属電極14a、14bとの間に充填されている。このように、酸化防止層21dを、下地層16と金属電極14a、14bとの間に充填することで、接合部位20bが排気ガスに曝されることを抑制することができる。その結果、接合部位20bの酸化を良好に抑制することができる。また、このような構成であれば、酸化防止層21dが下地層16と金属電極14a、14bとの間に設けられるため、金属電極14a、14bの熱膨張などによる酸化防止層21dへの熱応力を低減することができる。その結果、クラックの発生を良好に抑制することができる。 The antioxidant layer 21d of the columnar honeycomb structure 11 according to the fourth embodiment of the present invention is filled between the base layer 16 and the metal electrodes 14a and 14b. By filling the antioxidant layer 21d between the base layer 16 and the metal electrodes 14a and 14b in this way, it is possible to prevent the joint portion 20b from being exposed to the exhaust gas. As a result, the oxidation of the joint portion 20b can be satisfactorily suppressed. Further, in such a configuration, since the antioxidant layer 21d is provided between the base layer 16 and the metal electrodes 14a and 14b, thermal stress on the antioxidant layer 21d due to thermal expansion of the metal electrodes 14a and 14b and the like is performed. Can be reduced. As a result, the occurrence of cracks can be satisfactorily suppressed.
 図11に、本発明の実施形態4における柱状ハニカム構造体11の下地層16と金属電極14a、14bとをレーザー溶接等によって接合する様子を表す模式図を示す。図11の上図に示すように、まず、下地層16上に、酸化防止層形成材料で構成されたコート層23を設ける。次に、当該コート層23上に金属電極14a、14bを配置する。次に、金属電極14a、14bの上から、レーザー溶接などによってスポット溶接を行う。このとき、レーザー溶接などによってエネルギーを加えることで、金属電極14a、14bが溶融し、下層のコート層23の酸化防止層形成材料との混合体を形成する。当該混合体が接合部位20bとなる。コート層23を構成する酸化防止層形成材料は、本発明の実施形態1で示した酸化防止層21aと同様の材料を用いて形成することができる。このため、接合部位20bは、金属とガラス等の無機物との混合体となっている。 FIG. 11 shows a schematic view showing a state in which the base layer 16 of the columnar honeycomb structure 11 and the metal electrodes 14a and 14b according to the fourth embodiment of the present invention are joined by laser welding or the like. As shown in the upper part of FIG. 11, first, a coat layer 23 made of an antioxidant layer forming material is provided on the base layer 16. Next, the metal electrodes 14a and 14b are arranged on the coat layer 23. Next, spot welding is performed from above the metal electrodes 14a and 14b by laser welding or the like. At this time, by applying energy by laser welding or the like, the metal electrodes 14a and 14b are melted to form a mixture with the antioxidant layer forming material of the lower coat layer 23. The mixture becomes the joint site 20b. The antioxidant layer forming material constituting the coat layer 23 can be formed by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention. Therefore, the joint portion 20b is a mixture of metal and an inorganic substance such as glass.
 また、図11に示すように接合部位20bを形成することで、接合部位20b間に微小な気孔があったとしても、当該気孔に酸化防止層形成材料が充填されるため、接合部位20bの耐酸化性をより向上させることができる。 Further, by forming the joint portion 20b as shown in FIG. 11, even if there are minute pores between the joint portions 20b, the pores are filled with the antioxidant layer forming material, so that the acid resistance of the joint portion 20b is formed. It is possible to further improve the chemistry.
 [実施形態5]
 図12に、本発明の実施形態5における電気加熱式担体の柱状ハニカム構造体11、電極層13a、13b、固定層24、金属電極14a、14b及び酸化防止層21eの断面模式図を示す。
[Embodiment 5]
FIG. 12 shows a schematic cross-sectional view of the columnar honeycomb structure 11, the electrode layers 13a and 13b, the fixed layer 24, the metal electrodes 14a and 14b and the antioxidant layer 21e according to the fifth embodiment of the present invention.
 本発明の実施形態5における電気加熱式担体では、実施形態1で示した柱状ハニカム構造体11の外周壁の表面に電極層13a、13bが配設され、電極層13a、13b上に金属電極14a、14bが設けられている。また、金属電極14a、14bを覆うように固定層24が設けられており、固定層24を覆うように、酸化防止層21eが設けられている。固定層24は、金属電極14a、14bを電極層13a、13bに固定している。 In the electroheating carrier according to the fifth embodiment of the present invention, the electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall of the columnar honeycomb structure 11 shown in the first embodiment, and the metal electrodes 14a are arranged on the electrode layers 13a and 13b. , 14b are provided. Further, the fixing layer 24 is provided so as to cover the metal electrodes 14a and 14b, and the antioxidant layer 21e is provided so as to cover the fixing layer 24. The fixing layer 24 fixes the metal electrodes 14a and 14b to the electrode layers 13a and 13b.
 このように、金属電極14a、14bを覆うように固定層24を設け、更に固定層24を覆うように、酸化防止層21eを設けることで、接合部位となっている固定層24が排気ガスに曝されることを抑制することができる。その結果、固定層24の酸化を良好に抑制することができる。また、このような構成であれば、酸化防止層21eが金属電極14a、14bを覆う固定層24上に設けられるため、金属電極14a、14bの熱膨張などによる酸化防止層21eへの熱応力を低減することができる。その結果、クラックの発生を良好に抑制することができる。 In this way, by providing the fixed layer 24 so as to cover the metal electrodes 14a and 14b and further providing the antioxidant layer 21e so as to cover the fixed layer 24, the fixed layer 24 which is a joint portion becomes exhaust gas. Exposure can be suppressed. As a result, the oxidation of the fixed layer 24 can be satisfactorily suppressed. Further, in such a configuration, since the antioxidant layer 21e is provided on the fixed layer 24 covering the metal electrodes 14a and 14b, thermal stress on the antioxidant layer 21e due to thermal expansion of the metal electrodes 14a and 14b is applied. Can be reduced. As a result, the occurrence of cracks can be satisfactorily suppressed.
 実施形態5における固定層24は、例えば、溶射によって形成することができる。電極層13a、13b上に金属電極14a、14bを設けた後、金属電極14a、14bを覆うように、溶射によって、NiCrAlYとムライトの混合溶射材等で構成された材料を設けることで固定層24を形成することができる。また、本発明の実施形態1で示した酸化防止層21aと同様の材料を用いて、固定層24を覆うように酸化防止層21eを形成することができる。 The fixed layer 24 in the fifth embodiment can be formed by thermal spraying, for example. After the metal electrodes 14a and 14b are provided on the electrode layers 13a and 13b, the fixed layer 24 is provided by spraying a material composed of a mixed spraying material of NiCrAlY and mullite so as to cover the metal electrodes 14a and 14b. Can be formed. Further, the antioxidant layer 21e can be formed so as to cover the fixed layer 24 by using the same material as the antioxidant layer 21a shown in the first embodiment of the present invention.
 [実施形態6]
 図13(a)、図13(b)、図13(c)及び図13(d)に、本発明の実施形態6における電気加熱式担体の柱状ハニカム構造体11、電極層13a、13b、第2の下地層または電極層17、下地層16、接合部位20d、金属電極14a、14b及び酸化防止層21f、21g、21h、21iの断面模式図を示す。
[Embodiment 6]
13 (a), 13 (b), 13 (c) and 13 (d) show the columnar honeycomb structure 11, electrode layers 13a and 13b of the electrically heated carrier according to the sixth embodiment of the present invention. 2 shows a schematic cross-sectional view of the base layer or electrode layer 17, the base layer 16, the joint portion 20d, the metal electrodes 14a and 14b, and the antioxidant layers 21f, 21g, 21h and 21i.
 本発明の実施形態5における電気加熱式担体では、実施形態1で示した柱状ハニカム構造体11の外周壁の表面に電極層13a、13bが配設され、電極層13a、13b上に第2の下地層または電極層17、及び、下地層16が設けられている。下地層16は、金属電極14a、14bがロウ付けされることで、金属電極14a、14bと接合部位20dで接合している。 In the electroheating carrier according to the fifth embodiment of the present invention, the electrode layers 13a and 13b are arranged on the surface of the outer peripheral wall of the columnar honeycomb structure 11 shown in the first embodiment, and the second electrode layers 13a and 13b are covered with the second electrode layers 13a and 13b. An underlayer or an electrode layer 17 and an underlayer 16 are provided. The base layer 16 is joined to the metal electrodes 14a and 14b at the joining portion 20d by brazing the metal electrodes 14a and 14b.
 図13(a)に示す実施形態では、酸化防止層21fが、金属電極14a、14bの側面から、電極層13a、13bの外表面に亘って連続して設けられ、下地層16と金属電極14a、14bとの間隙をシールするように構成されている。図13(b)に示す実施形態では、酸化防止層21gが、金属電極14a、14bの底面から、電極層13a、13bの外表面に亘って連続して設けられ、下地層16と金属電極14a、14bとの間隙をシールするように構成されている。図13(c)に示す実施形態では、金属電極14a、14bと下地層16との間に接合部位20dを有さない間隙が設けられており、当該間隙に、接合部位20dと接するように酸化防止層21hが設けられている。図13(d)に示す実施形態では、金属電極14a、14bと下地層16との間に接合部位20dを有さない間隙が設けられており、当該間隙に、接合部位20dと離間して酸化防止層21iが設けられている。 In the embodiment shown in FIG. 13A, the antioxidant layer 21f is continuously provided from the side surface of the metal electrodes 14a and 14b to the outer surface of the electrode layers 13a and 13b, and the base layer 16 and the metal electrode 14a are provided. , 14b is configured to seal the gap. In the embodiment shown in FIG. 13B, the antioxidant layer 21g is continuously provided from the bottom surface of the metal electrodes 14a and 14b to the outer surface of the electrode layers 13a and 13b, and the base layer 16 and the metal electrode 14a are provided. , 14b is configured to seal the gap. In the embodiment shown in FIG. 13 (c), a gap having no joint portion 20d is provided between the metal electrodes 14a and 14b and the base layer 16, and the gap is oxidized so as to be in contact with the joint portion 20d. The prevention layer 21h is provided. In the embodiment shown in FIG. 13 (d), a gap having no joint portion 20d is provided between the metal electrodes 14a and 14b and the base layer 16, and the gap is oxidized at a distance from the joint portion 20d. The prevention layer 21i is provided.
 図13(a)、図13(b)、図13(c)及び図13(d)に示す実施形態によれば、酸化防止層21f、21g、21h、21iを設けることで、接合部位20dが排気ガスに曝されることを抑制することができる。その結果、接合部位20dの酸化を良好に抑制することができる。 According to the embodiments shown in FIGS. 13 (a), 13 (b), 13 (c) and 13 (d), the bonding portion 20d is formed by providing the antioxidant layers 21f, 21g, 21h and 21i. Exposure to exhaust gas can be suppressed. As a result, the oxidation of the joint portion 20d can be satisfactorily suppressed.
 電気加熱式担体10に触媒を担持することにより、電気加熱式担体10を触媒体として使用することができる。複数のセル18の流路には、例えば、自動車排気ガス等の流体を流すことができる。触媒としては、例えば、貴金属系触媒又はこれら以外の触媒が挙げられる。貴金属系触媒としては、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)といった貴金属をアルミナ細孔表面に担持し、セリア、ジルコニア等の助触媒を含む三元触媒や酸化触媒、又は、アルカリ土類金属と白金を窒素酸化物(NOx)の吸蔵成分として含むNOx吸蔵還元触媒(LNT触媒)が例示される。貴金属を用いない触媒として、銅置換又は鉄置換ゼオライトを含むNOx選択還元触媒(SCR触媒)等が例示される。また、これらの触媒からなる群から選択される2種以上の触媒を用いてもよい。なお、触媒の担持方法についても特に制限はなく、従来、ハニカム構造体に触媒を担持する担持方法に準じて行うことができる。 By supporting the catalyst on the electrically heated carrier 10, the electrically heated carrier 10 can be used as a catalyst. For example, a fluid such as automobile exhaust gas can flow through the flow paths of the plurality of cells 18. Examples of the catalyst include noble metal-based catalysts and catalysts other than these. As the noble metal catalyst, a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) is supported on the surface of the alumina pores, and a three-way catalyst containing a co-catalyst such as ceria or zirconia, an oxidation catalyst, or an alkali. An example is a NO x storage reduction catalyst (LNT catalyst) containing earth metal and platinum as storage components of nitrogen oxide (NO x). Examples of catalysts that do not use noble metals include NO x selective reduction catalysts (SCR catalysts) containing copper-substituted or iron-substituted zeolites. Further, two or more kinds of catalysts selected from the group consisting of these catalysts may be used. The method of supporting the catalyst is also not particularly limited, and can be carried out according to the conventional method of supporting the catalyst on the honeycomb structure.
(2.電気加熱式担体の製造方法)
 次に、本発明に係る電気加熱式担体10を製造する方法について例示的に説明する。本発明の電気加熱式担体10の製造方法は一実施形態において、電極層形成ペースト付き未焼成ハニカム構造部を得る工程A1と、電極層形成ペースト付き未焼成ハニカム構造部を焼成して柱状ハニカム構造体を得る工程A2と、柱状ハニカム構造体に金属電極を溶接する工程A3とを含む。
(2. Method for manufacturing electrically heated carrier)
Next, a method for producing the electrically heated carrier 10 according to the present invention will be exemplified. The method for producing the electroheating carrier 10 of the present invention is, in one embodiment, a step A1 for obtaining an unfired honeycomb structure portion with an electrode layer forming paste and a columnar honeycomb structure by firing the unfired honeycomb structure portion with an electrode layer forming paste. The step A2 for obtaining the body and the step A3 for welding the metal electrode to the columnar honeycomb structure are included.
 工程A1は、ハニカム構造部の前駆体であるハニカム成形体を作製し、ハニカム成形部の側面に電極層形成ペーストを塗布して、電極層形成ペースト付き未焼成ハニカム構造部を得る工程である。ハニカム成形体の作製は、公知のハニカム構造部の製造方法におけるハニカム成形体の作製方法に準じて行うことができる。例えば、まず、炭化珪素粉末(炭化珪素)に、金属珪素粉末(金属珪素)、バインダ、界面活性剤、造孔材、水等を添加して成形原料を作製する。炭化珪素粉末の質量と金属珪素の質量との合計に対して、金属珪素の質量が10~40質量%となるようにすることが好ましい。炭化珪素粉末における炭化珪素粒子の平均粒子径は、3~50μmが好ましく、3~40μmが更に好ましい。金属珪素(金属珪素粉末)の平均粒子径は、2~35μmであることが好ましい。炭化珪素粒子及び金属珪素(金属珪素粒子)の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。炭化珪素粒子は、炭化珪素粉末を構成する炭化珪素の微粒子であり、金属珪素粒子は、金属珪素粉末を構成する金属珪素の微粒子である。なお、これは、ハニカム構造部の材質を、珪素-炭化珪素系複合材とする場合の成形原料の配合であり、ハニカム構造部の材質を炭化珪素とする場合には、金属珪素は添加しない。 Step A1 is a step of producing a honeycomb molded body which is a precursor of the honeycomb structure portion, applying an electrode layer forming paste to the side surface of the honeycomb molded portion, and obtaining an unfired honeycomb structure portion with the electrode layer forming paste. The honeycomb molded body can be produced according to the method for producing a honeycomb molded body in the known method for producing a honeycomb structure portion. For example, first, a metal silicon powder (metal silicon), a binder, a surfactant, a pore-forming material, water, or the like is added to silicon carbide powder (silicon carbide) to prepare a molding raw material. It is preferable that the mass of the metallic silicon is 10 to 40% by mass with respect to the total of the mass of the silicon carbide powder and the mass of the metallic silicon. The average particle size of the silicon carbide particles in the silicon carbide powder is preferably 3 to 50 μm, more preferably 3 to 40 μm. The average particle size of metallic silicon (metallic silicon powder) is preferably 2 to 35 μm. The average particle size of silicon carbide particles and metallic silicon (metal silicon particles) refers to the arithmetic mean diameter based on the volume when the frequency distribution of particle size is measured by the laser diffraction method. The silicon carbide particles are fine particles of silicon carbide constituting the silicon carbide powder, and the metallic silicon particles are fine particles of metallic silicon constituting the metallic silicon powder. This is a blending of molding raw materials when the material of the honeycomb structure is silicon-silicon carbide-based composite material, and when the material of the honeycomb structure is silicon carbide, metallic silicon is not added.
 バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、2.0~10.0質量部であることが好ましい。 Examples of the binder include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination. The binder content is preferably 2.0 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
 水の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~60質量部であることが好ましい。 The water content is preferably 20 to 60 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
 界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。 As the surfactant, ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass.
 造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。造孔材の含有量は、炭化珪素粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.5~10.0質量部であることが好ましい。造孔材の平均粒子径は、10~30μmであることが好ましい。10μmより小さいと、気孔を十分形成できないことがある。30μmより大きいと、成形時に口金に詰まることがある。造孔材の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。造孔材が吸水性樹脂の場合には、造孔材の平均粒子径は吸水後の平均粒子径のことである。 The pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel. The content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the silicon carbide powder and the metallic silicon powder is 100 parts by mass. The average particle size of the pore-forming material is preferably 10 to 30 μm. If it is smaller than 10 μm, pores may not be sufficiently formed. If it is larger than 30 μm, it may clog the base during molding. The average particle size of the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method. When the pore-forming material is a water-absorbent resin, the average particle size of the pore-forming material is the average particle size after water absorption.
 次に、得られた成形原料を混練して坏土を形成した後、坏土を押出成形してハニカム成形体を作製する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度等を有する口金を用いることができる。次に、得られたハニカム成形体について、乾燥を行うことが好ましい。ハニカム成形体の中心軸方向長さが、所望の長さではない場合は、ハニカム成形体の両底部を切断して所望の長さとすることができる。乾燥後のハニカム成形体をハニカム乾燥体と呼ぶ。 Next, after kneading the obtained molding raw materials to form a clay, the clay is extruded to produce a honeycomb molded body. In extrusion molding, a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used. Next, it is preferable to dry the obtained honeycomb molded product. When the length in the central axis direction of the honeycomb molded body is not the desired length, both bottom portions of the honeycomb molded body can be cut to obtain the desired length. The dried honeycomb molded body is called a honeycomb dried body.
 次に、電極層を形成するための電極層形成ペーストを調合する。電極層形成ペーストは、電極層の要求特性に応じて配合した原料粉(金属粉末、及び、セラミックス粉末等)に各種添加剤を適宜添加して混練することで形成することができる。電極層を積層構造とする場合、第一の電極層用のペースト中の金属粉末の平均粒子径に比べて、第二の電極層用のペースト中の金属粉末の平均粒子径を大きくすることにより、金属端子と電極層の接合強度が向上する傾向にある。金属粉末の平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。 Next, the electrode layer forming paste for forming the electrode layer is prepared. The electrode layer forming paste can be formed by appropriately adding various additives to the raw material powder (metal powder, ceramic powder, etc.) blended according to the required characteristics of the electrode layer and kneading. When the electrode layer has a laminated structure, the average particle size of the metal powder in the paste for the second electrode layer is made larger than the average particle size of the metal powder in the paste for the first electrode layer. , The bonding strength between the metal terminal and the electrode layer tends to improve. The average particle size of the metal powder refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
 次に、得られた電極層形成ペーストを、ハニカム成形体(典型的にはハニカム乾燥体)の側面に塗布し、電極層形成ペースト付き未焼成ハニカム構造部を得る。電極層形成ペーストを調合する方法、及び電極層形成ペーストをハニカム成形体に塗布する方法については、公知のハニカム構造体の製造方法に準じて行うことができるが、電極層をハニカム構造部に比べて低い電気抵抗率にするために、ハニカム構造部よりも金属の含有比率を高めたり、金属粒子の粒径を小さくしたりすることができる。 Next, the obtained electrode layer forming paste is applied to the side surface of the honeycomb molded body (typically, the honeycomb dried body) to obtain an unfired honeycomb structure portion with the electrode layer forming paste. The method of preparing the electrode layer forming paste and the method of applying the electrode layer forming paste to the honeycomb molded body can be performed according to a known method for producing a honeycomb structure, but the electrode layer is compared with the honeycomb structure portion. In order to obtain a low electrical resistance, the metal content ratio can be increased or the particle size of the metal particles can be reduced as compared with the honeycomb structure portion.
 柱状ハニカム構造体の製造方法の変更例として、工程A1において、電極層形成ペーストを塗布する前に、ハニカム成形体を一旦焼成してもよい。すなわち、この変更例では、ハニカム成形体を焼成してハニカム焼成体を作製し、当該ハニカム焼成体に、電極層形成ペーストを塗布する。 As an example of changing the manufacturing method of the columnar honeycomb structure, in step A1, the honeycomb molded body may be fired once before applying the electrode layer forming paste. That is, in this modified example, the honeycomb molded body is fired to produce a honeycomb fired body, and the electrode layer forming paste is applied to the honeycomb fired body.
 工程A2では、電極層形成ペースト付き未焼成ハニカム構造部を焼成して、柱状ハニカム構造体を得る。焼成を行う前に、電極層形成ペースト付き未焼成ハニカム構造部を乾燥してもよい。また、焼成の前に、バインダ等を除去するため、脱脂を行ってもよい。焼成条件としては、窒素、アルゴン等の不活性雰囲気において、1400~1500℃で、1~20時間加熱することが好ましい。また、焼成後、耐久性向上のために、1200~1350℃で、1~10時間、酸化処理を行うことが好ましい。脱脂及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。 In step A2, the unfired honeycomb structure portion with the electrode layer forming paste is fired to obtain a columnar honeycomb structure. Before firing, the unfired honeycomb structure with the electrode layer forming paste may be dried. Further, before firing, degreasing may be performed in order to remove the binder and the like. As the firing conditions, it is preferable to heat at 1400 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon. Further, after firing, it is preferable to carry out an oxidation treatment at 1200 to 1350 ° C. for 1 to 10 hours in order to improve durability. The method of degreasing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.
 工程A3では、柱状ハニカム構造体上の電極層の表面に、下地層を形成するための導電性材料のペーストを塗布する。このように調製した導電性材料のペーストを曲面印刷機などで所定の配置となるように塗布し、これを乾燥した後、焼成することで、下地層を形成する。導電性材料のペーストとしては、まず始めに、金属粉(NiCr系材料、ステンレス等の金属粉)と酸化物粉(Cd、アルミナ、ムライト等の酸化物粉)を体積割合で金属比率20~85体積%、酸化物粉を15~80体積%で混合し、セラミックス原料を調製する。次いで、このセラミックス原料に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えることにより、下地層形成ペーストを調製することができる。また、下地層は、導電性材料を溶射によって、所定の配置、形状となるように形成してもよい。 In step A3, a paste of a conductive material for forming a base layer is applied to the surface of the electrode layer on the columnar honeycomb structure. The paste of the conductive material thus prepared is applied by a curved surface printing machine or the like so as to have a predetermined arrangement, dried, and then fired to form an underlayer. As a paste of a conductive material, first of all, a metal powder (NiCr-based material, a metal powder such as stainless steel) and an oxide powder (an oxide powder such as Cd, alumina, mullite) are mixed in a volume ratio of 20 to 85. A ceramic raw material is prepared by mixing 15 to 80% by volume of oxide powder. Next, a base layer forming paste can be prepared by adding 1% by mass of a binder, 1% by mass of a surfactant, and 20 to 40% by mass of water to the ceramic raw material. Further, the base layer may be formed by spraying a conductive material so as to have a predetermined arrangement and shape.
 次に、下地層上に、金属電極を溶接により固定する。溶接の方法について、以下に詳細に説明する。まず、下地層が形成されたハニカム構造体上に櫛状の電極を配置し、各櫛状の電極と下地層が重なった部分について、レーザー溶接または超音波溶接を行う。レーザー溶接を行う際のレーザースポット径としては、0.5~3.0mmの範囲が挙げられる。超音波溶接を行う際の振動周波数としては20kHz~40kHzとし、加圧力としては10N~30Nの範囲が挙げられる。 Next, the metal electrode is fixed on the base layer by welding. The welding method will be described in detail below. First, a comb-shaped electrode is arranged on the honeycomb structure on which the base layer is formed, and laser welding or ultrasonic welding is performed on the portion where each comb-shaped electrode and the base layer overlap. The laser spot diameter when performing laser welding includes a range of 0.5 to 3.0 mm. The vibration frequency when ultrasonic welding is performed is 20 kHz to 40 kHz, and the pressing force is in the range of 10 N to 30 N.
 このとき、レーザー溶接によって複数のスポット溶接を行うことで、図4に示すような接合部位20を形成することができる。また、超音波溶接を行うことで、図6に示すような接合部位20aを形成することができる。 At this time, the joint portion 20 as shown in FIG. 4 can be formed by performing a plurality of spot welds by laser welding. Further, by performing ultrasonic welding, a bonding portion 20a as shown in FIG. 6 can be formed.
 次に、下地層と金属電極との間隙をシールするように下地層の外表面から金属電極の外表面に亘って酸化防止層を設けることで、図4~6に示すような酸化防止層21aを形成することができる。このとき、下地層と金属電極とを接合後、スプレー等で酸化防止剤を吹き付け、好ましくは真空雰囲気下で、800~1100℃、4~8時間焼成することで、酸化防止層21aを形成することができる。 Next, the antioxidant layer 21a as shown in FIGS. 4 to 6 is provided by providing an antioxidant layer from the outer surface of the base layer to the outer surface of the metal electrode so as to seal the gap between the base layer and the metal electrode. Can be formed. At this time, after joining the base layer and the metal electrode, an antioxidant is sprayed by spraying or the like, and the antioxidant layer 21a is formed by firing at 800 to 1100 ° C. for 4 to 8 hours, preferably in a vacuum atmosphere. be able to.
 また、レーザー溶接によって複数のスポット溶接を行うことで、図7~9に示すような接合部位20を形成した後、図7~9に示すような酸化防止層21b、21cを形成することができる。このとき、下地層の接合部位以外の部分に酸化防止剤を塗布しておき、レーザー溶接等の方法にて金属電極を接合した後、好ましくは真空雰囲気下で、800~1100℃、4~8時間焼成することで、酸化防止層21b、21cを形成することができる。 Further, by performing a plurality of spot welds by laser welding, it is possible to form the antioxidant layers 21b and 21c as shown in FIGS. 7 to 9 after forming the joint portion 20 as shown in FIGS. 7 to 9. .. At this time, an antioxidant is applied to a portion of the base layer other than the joint portion, and the metal electrodes are bonded by a method such as laser welding, and then preferably in a vacuum atmosphere, 800 to 1100 ° C., 4 to 8 Antioxidant layers 21b and 21c can be formed by firing for a long time.
 また、図11に示すように、下地層と金属電極との間に、酸化防止層形成材料で構成されるコート層を設けた状態で、金属電極側からレーザー溶接することで、図10に示すような酸化防止層21dを形成することができる。 Further, as shown in FIG. 11, a coat layer made of an antioxidant layer forming material is provided between the base layer and the metal electrode, and laser welding is performed from the metal electrode side, as shown in FIG. Such an antioxidant layer 21d can be formed.
(3.排気ガス浄化装置)
 上述した本発明の実施形態に係る電気加熱式担体は、排気ガス浄化装置に用いることができる。当該排気ガス浄化装置は、電気加熱式担体と、当該電気加熱式担体を保持する缶体とを有する。排気ガス浄化装置において、電気加熱式担体は、エンジンからの排気ガスを流すための排気ガス流路の途中に設置される。缶体としては、電気加熱式担体を収容する金属製の筒状部材等を用いることができる。
(3. Exhaust gas purification device)
The electrically heated carrier according to the embodiment of the present invention described above can be used in an exhaust gas purification device. The exhaust gas purifying device has an electrically heated carrier and a can body that holds the electrically heated carrier. In the exhaust gas purification device, the electrically heated carrier is installed in the middle of the exhaust gas flow path for flowing the exhaust gas from the engine. As the can body, a metal tubular member or the like accommodating an electrically heated carrier can be used.
 以下、本発明及びその利点をより良く理解するための実施例を例示するが、本発明は実施例に限定されるものではない。 Hereinafter, examples for better understanding the present invention and its advantages will be illustrated, but the present invention is not limited to the examples.
<実施例1>
(1.円柱状の坏土の作製)
 炭化珪素(SiC)粉末と金属珪素(Si)粉末とを80:20の質量割合で混合してセラミックス原料を調製した。そして、セラミックス原料に、バインダとしてヒドロキシプロピルメチルセルロース、造孔材として吸水性樹脂を添加すると共に、水を添加して成形原料とした。そして、成形原料を真空土練機により混練し、円柱状の坏土を作製した。バインダの含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに7質量部とした。造孔材の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに3質量部とした。水の含有量は炭化珪素(SiC)粉末と金属珪素(Si)粉末の合計を100質量部としたときに42質量部とした。炭化珪素粉末の平均粒子径は20μmであり、金属珪素粉末の平均粒子径は6μmであった。また、造孔材の平均粒子径は20μmであった。炭化珪素粉末、金属珪素粉末及び造孔材の平均粒子径は、レーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
<Example 1>
(1. Preparation of columnar clay)
Silicon carbide (SiC) powder and metallic silicon (Si) powder were mixed at a mass ratio of 80:20 to prepare a ceramic raw material. Then, hydroxypropyl methylcellulose as a binder and a water-absorbent resin as a pore-forming material were added to the ceramic raw material, and water was added to prepare a molding raw material. Then, the molding raw material was kneaded with a vacuum soil kneader to prepare a columnar clay. The binder content was 7 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass. The content of the pore-forming material was 3 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass. The water content was 42 parts by mass when the total of the silicon carbide (SiC) powder and the metallic silicon (Si) powder was 100 parts by mass. The average particle size of the silicon carbide powder was 20 μm, and the average particle size of the metallic silicon powder was 6 μm. The average particle size of the pore-forming material was 20 μm. The average particle size of the silicon carbide powder, the metallic silicon powder, and the pore-forming material refers to the arithmetic mean diameter based on the volume when the frequency distribution of the particle size is measured by the laser diffraction method.
(2.ハニカム乾燥体の作製)
 得られた円柱状の坏土を碁盤目状の口金構造を有する押出成形機を用いて成形し、セルの流路方向に垂直な断面における各セル形状が正方形である円柱状ハニカム成形体を得た。このハニカム成形体を高周波誘電加熱乾燥した後、熱風乾燥機を用いて120℃で2時間乾燥し、両底面を所定量切断して、ハニカム乾燥体を作製した。
(2. Preparation of dried honeycomb)
The obtained columnar clay was molded using an extrusion molding machine having a grid-like base structure to obtain a columnar honeycomb molded body in which each cell shape is square in a cross section perpendicular to the cell flow path direction. It was. This honeycomb molded body was dried by high frequency dielectric heating and then dried at 120 ° C. for 2 hours using a hot air dryer, and both bottom surfaces were cut by a predetermined amount to prepare a honeycomb dried body.
(3.電極層形成ペーストの調製)
 金属珪素(Si)粉末、炭化珪素(SiC)粉末、メチルセルロース、グリセリン、及び水を、自転公転攪拌機で混合して、電極層形成ペーストを調製した。Si粉末、及びSiC粉末は体積比で、Si粉末:SiC粉末=40:60となるように配合した。また、Si粉末、及びSiC粉末の合計を100質量部としたときに、メチルセルロースは0.5質量部であり、グリセリンは10質量部であり、水は38質量部であった。金属珪素粉末の平均粒子径は6μmであった。炭化珪素粉末の平均粒子径は35μmであった。これらの平均粒子径はレーザー回折法で粒度の頻度分布を測定したときの、体積基準による算術平均径を指す。
(3. Preparation of electrode layer forming paste)
Metallic silicon (Si) powder, silicon carbide (SiC) powder, methyl cellulose, glycerin, and water were mixed with a rotating and revolving stirrer to prepare an electrode layer forming paste. The Si powder and the SiC powder were blended so that the volume ratio was Si powder: SiC powder = 40:60. Further, when the total of Si powder and SiC powder was 100 parts by mass, methyl cellulose was 0.5 parts by mass, glycerin was 10 parts by mass, and water was 38 parts by mass. The average particle size of the metallic silicon powder was 6 μm. The average particle size of the silicon carbide powder was 35 μm. These average particle diameters refer to the arithmetic mean diameters based on the volume when the frequency distribution of particle size is measured by the laser diffraction method.
(4.電極層形成ペーストの塗布及び焼成)
 次に、この電極層形成ペーストを曲面印刷機によって、ハニカム乾燥体に対して適切な面積及び膜厚で塗布し、さらに熱風乾燥機で120℃、30分乾燥した後、ハニカム乾燥体と共にAr雰囲気にて1400℃で3時間焼成し、柱状ハニカム構造体とした。
(4. Application and firing of electrode layer forming paste)
Next, this electrode layer forming paste is applied to the honeycomb dried body with an appropriate area and film thickness by a curved surface printing machine, further dried at 120 ° C. for 30 minutes with a hot air dryer, and then Ar atmosphere together with the honeycomb dried body. Was fired at 1400 ° C. for 3 hours to obtain a columnar honeycomb structure.
(5.下地層形成ペーストの調製)
 金属粉(NiCr系材料、ステンレス等の金属粉)と酸化物粉(Cd、アルミナ、ムライト等の酸化物粉)を体積割合で金属比率20~85%、酸化物粉を15~80%で混合し、セラミックス原料を作製した。このセラミックス原料に対してバインダを1質量%、界面活性剤を1質量%、水を20~40質量%加えてペースト原料を作製した。レーザー回折法で測定した金属粉の平均粒子径は10μmであり、酸化物粉の平均粒子径は5μmであった。
(5. Preparation of base layer forming paste)
Metal powder (NiCr-based material, metal powder such as stainless steel) and oxide powder (oxide powder such as Cd, alumina, mulite) are mixed in a volume ratio of 20 to 85%, and oxide powder is mixed in a volume ratio of 15 to 80%. Then, a ceramic raw material was prepared. A paste raw material was prepared by adding 1% by mass of a binder, 1% by mass of a surfactant, and 20 to 40% by mass of water to the ceramic raw material. The average particle size of the metal powder measured by the laser diffraction method was 10 μm, and the average particle size of the oxide powder was 5 μm.
(6.下地層形成ペーストの塗布及び焼成)
 上記の下地層形成ペーストを、曲面印刷機によって、柱状ハニカム構造体の電極層に対して塗布した。続いて、熱風乾燥機で120℃、30分乾燥した後、Ar雰囲気にて1100℃で1時間焼成した。
(6. Application and firing of base layer forming paste)
The above base layer forming paste was applied to the electrode layer of the columnar honeycomb structure by a curved surface printing machine. Subsequently, it was dried at 120 ° C. for 30 minutes in a hot air dryer, and then fired at 1100 ° C. for 1 hour in an Ar atmosphere.
 ハニカム構造体は、底面が直径100mmの円形であり、高さ(セルの流路方向における長さ)が100mmであった。セル密度は93セル/cm2であり、隔壁の厚みは101.6μmであり、隔壁の気孔率は45%であり、隔壁の平均細孔径は8.6μmであった。電極層の厚みは0.3mmであり、下地層の厚みは0.2mmであった。ハニカム構造体、電極層及び下地層と同一材質の試験片を用いて400℃における電気抵抗率を四端子法により測定したところ、それぞれ5Ωcm、0.01Ωcm、0.001Ωcmであった。 The bottom surface of the honeycomb structure was circular with a diameter of 100 mm, and the height (length in the flow path direction of the cell) was 100 mm. The cell density was 93 cells / cm 2 , the thickness of the partition was 101.6 μm, the porosity of the partition was 45%, and the average pore diameter of the partition was 8.6 μm. The thickness of the electrode layer was 0.3 mm, and the thickness of the base layer was 0.2 mm. When the electrical resistivity at 400 ° C. was measured by the four-terminal method using a test piece made of the same material as the honeycomb structure, the electrode layer and the base layer, it was 5 Ωcm, 0.01 Ω cm and 0.001 Ω cm, respectively.
(7.電極の固定)
 下地層が形成されたハニカム構造体上に櫛状の電極を配置し、各櫛状の電極と下地層が重なった部分について、実施例1~6、比較例1ではφ0.5mmの径でレーザー溶接した。また、実施例7~11、比較例2では超音波溶接を行った。また、実施例12~16、比較例3では、ロウ付けによる接合を行った。
 次に、実施例1~16について、以下の形態で酸化防止層を形成した。
 実施例1~3の酸化防止層については図4(実施形態1)に示すように設け、実施例7~9の酸化防止層については、図6(実施形態1)に示すように設け、実施例12~14の酸化防止層については、図13(a)に示すように設けた。
 実施例4、10の酸化防止層については、図7(実施形態2)に示すように設け、実施例15の酸化防止層については、図13(b)に示すように設けた。
 実施例5、11の酸化防止層については、図9(実施形態3)に示すように設け、実施例16の酸化防止層については、図13(d)に示すように設けた。
 実施例6の酸化防止層については、図10(実施形態4)に示すように設けた。
 実施例1~16で用いた酸化防止層の材料としては、いずれもSiO2-Al23-MgOを用いた。また、各酸化防止層の厚みを後述の表1に示す。
(7. Fixing electrodes)
Comb-shaped electrodes are arranged on the honeycomb structure on which the base layer is formed, and the lasers have a diameter of φ0.5 mm in Examples 1 to 6 and Comparative Example 1 for the portion where each comb-shaped electrode and the base layer overlap. Welded. Further, in Examples 7 to 11 and Comparative Example 2, ultrasonic welding was performed. Further, in Examples 12 to 16 and Comparative Example 3, joining was performed by brazing.
Next, for Examples 1 to 16, an antioxidant layer was formed in the following form.
The antioxidant layers of Examples 1 to 3 are provided as shown in FIG. 4 (Embodiment 1), and the antioxidant layers of Examples 7 to 9 are provided as shown in FIG. 6 (Embodiment 1). The antioxidant layers of Examples 12 to 14 were provided as shown in FIG. 13 (a).
The antioxidant layers of Examples 4 and 10 were provided as shown in FIG. 7 (Embodiment 2), and the antioxidant layers of Example 15 were provided as shown in FIG. 13 (b).
The antioxidant layers of Examples 5 and 11 were provided as shown in FIG. 9 (Embodiment 3), and the antioxidant layers of Example 16 were provided as shown in FIG. 13 (d).
The antioxidant layer of Example 6 was provided as shown in FIG. 10 (Embodiment 4).
As the material of the antioxidant layer used in Examples 1 to 16, SiO 2- Al 2 O 3- MgO was used. The thickness of each antioxidant layer is shown in Table 1 below.
(8.耐酸化性評価試験)
 上記の方法にて1対の金属電極を固定したハニカム構造体に対して耐酸化性評価試験を行った。耐酸化性評価試験は、5mm径で厚み0.3mmの円盤状の下地層を、隣接する下地層の中心間距離を5mmに設定して5×4列配置した試料を加熱炉内に設け、大気雰囲気下、1000℃で50時間での加熱を実施した。酸化状態の指標としては試料の初期抵抗値に対する抵抗上昇率を使用し、抵抗上昇率が小さいほど本発明の酸化抑制効果が大きいものと判断した。抵抗値としては、下地層2点間の抵抗を、ケルビンプローブを用いた4線抵抗測定法にて合計12点測定し、これらの平均値を算出した。試料の導通経路としては、(1)下地層表面、(2)下地層、(3)電極層、(4)下地層、(5)下地層表面という順序の経路とした。評価結果を表1に示す。
(8. Oxidation resistance evaluation test)
An oxidation resistance evaluation test was performed on a honeycomb structure in which a pair of metal electrodes were fixed by the above method. In the oxidation resistance evaluation test, a disk-shaped base layer having a diameter of 5 mm and a thickness of 0.3 mm was provided in a heating furnace with a sample arranged in 5 × 4 rows with the distance between the centers of adjacent base layers set to 5 mm. Heating was carried out at 1000 ° C. for 50 hours in an air atmosphere. The rate of increase in resistance with respect to the initial resistance value of the sample was used as an index of the oxidation state, and it was judged that the smaller the rate of increase in resistance, the greater the effect of suppressing oxidation of the present invention. As the resistance value, the resistance between the two points of the base layer was measured at a total of 12 points by the 4-wire resistance measurement method using the Kelvin probe, and the average value of these was calculated. The conduction path of the sample was (1) the surface of the base layer, (2) the base layer, (3) the electrode layer, (4) the base layer, and (5) the surface of the base layer. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(9.考察)
 接合方法に関わらず、実施例1~16の全てにおいて、下地層と金属電極とを接続する接合部位の酸化抑制効果を得ることができた。その中でも、酸化防止層の形態によって酸化抑制効果の大きさは異なり、さらに実施形態1で示す酸化防止層の形態(実施例1~3、7~9、12~14)の中でも、酸化抑制効果は互いに異なる結果となった。
 実施形態1で示す酸化防止層の形態(実施例1~3、7~9、12~14)において、酸化防止層の厚みが200μmである実施例3、14が最も酸化抑制効果が小さく、酸化防止層の厚みが厚いことにより、下地層や金属電極との熱膨張差によって、酸化防止層にクラックが入ったことが要因と考えられる。同様の理由で、クラック状態を確認すると、酸化防止層の厚みが100μmである実施例2、13よりも酸化防止層の厚みが10μmである実施例1、12のほうが、クラックが小さかった。このため、酸化防止層の厚みによる酸化抑制効果の違いは、クラックに起因するものと考えられる。
 次に、実施例4~6において、実施形態2~4で示す酸化防止層の形態を比較すると、酸化抑制効果は、実施例5の実施形態3で示す酸化防止層の形態<実施例4の実施形態2で示す酸化防止層の形態<実施例6の実施形態4で示す酸化防止層の形態、という結果となった。これは、上述のように、実施例4の実施形態2は図7に示すように酸化防止層が設けられており、実施例5の実施形態3は図9に示すように酸化防止層が設けられているため、金属電極と下地層の間に充填されている酸化防止膜の量が酸素の遮断能力に影響した結果と考えられる。
 また、上述のように、実施例6の実施形態4では図10に示すように酸化防止層が設けられており、接合部位の周辺を、全て酸化防止層が覆っていることで、クラック等により、酸化防止層の一部から酸素が侵入した場合においても、酸化抑制効果を維持できるため、最も酸化抑制効果が大きいものと考えられる。
(9. Consideration)
Regardless of the bonding method, in all of Examples 1 to 16, the effect of suppressing oxidation of the bonding portion connecting the base layer and the metal electrode could be obtained. Among them, the magnitude of the oxidation-suppressing effect differs depending on the form of the antioxidant layer, and further, among the forms of the antioxidant layer shown in the first embodiment (Examples 1 to 3, 7 to 9, 12 to 14), the oxidation-suppressing effect The results were different from each other.
In the form of the antioxidant layer shown in the first embodiment (Examples 1 to 3, 7 to 9, 12 to 14), Examples 3 and 14 having a thickness of the antioxidant layer of 200 μm have the smallest antioxidant effect and are oxidized. It is considered that the reason is that the antioxidant layer is cracked due to the difference in thermal expansion between the base layer and the metal electrode due to the thick thickness of the prevention layer. For the same reason, when the crack state was confirmed, the cracks were smaller in Examples 1 and 12 in which the thickness of the antioxidant layer was 10 μm than in Examples 2 and 13 in which the thickness of the antioxidant layer was 100 μm. Therefore, it is considered that the difference in the antioxidant effect depending on the thickness of the antioxidant layer is due to cracks.
Next, when the forms of the antioxidant layer shown in Examples 2 to 4 are compared in Examples 4 to 6, the antioxidant effect is as follows: The form of the antioxidant layer shown in Example 3 of Example 5 <Example 4 The result was that the form of the antioxidant layer shown in the second embodiment <the form of the antioxidant layer shown in the fourth embodiment of the sixth embodiment. As described above, the second embodiment of the fourth embodiment is provided with an antioxidant layer as shown in FIG. 7, and the third embodiment of the fifth embodiment is provided with an antioxidant layer as shown in FIG. Therefore, it is considered that the amount of the antioxidant film filled between the metal electrode and the base layer affected the oxygen blocking ability.
Further, as described above, in the fourth embodiment of the sixth embodiment, the antioxidant layer is provided as shown in FIG. 10, and the antioxidant layer completely covers the periphery of the joint portion, so that cracks or the like may occur. Even when oxygen invades from a part of the antioxidant layer, the oxidation-suppressing effect can be maintained, so that the oxidation-suppressing effect is considered to be the largest.
10 電気加熱式担体
11 柱状ハニカム構造体
12 外周壁
13a、13b 電極層
14a、14b 金属電極
15 電極部
16 下地層
17 第2の下地層または電極層
18 セル
19 隔壁
20、20a、20b、20c、20d 接合部位
21、21a、21b、21c、21d、21e、21f、21g、21h、21i 酸化防止層
22 間隙
23 コート層
24 固定層
10 Electric heating type carrier 11 Columnar honeycomb structure 12 Outer wall 13a, 13b Electrode layer 14a, 14b Metal electrode 15 Electrode part 16 Base layer 17 Second base layer or electrode layer 18 Cell 19 Partitions 20, 20a, 20b, 20c, 20d Joint site 21, 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i Antioxidant layer 22 Gap 23 Coat layer 24 Fixed layer

Claims (9)

  1.  外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
     前記柱状ハニカム構造体の外周壁の表面に配設されている電極層と、
     前記電極層上に設けられている導電性の下地層と、
     前記下地層上に接合部位により接続されている金属電極と、
     前記接合部位を排気ガスから保護するための酸化防止層と、
    を備えた電気加熱式担体。
    A ceramic columnar honeycomb structure having an outer peripheral wall and a partition wall that is disposed inside the outer peripheral wall and partitions a plurality of cells that form a flow path from one end face to the other end face. ,
    An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure and
    A conductive base layer provided on the electrode layer and
    A metal electrode connected to the base layer by a joint site and
    An antioxidant layer for protecting the joint site from exhaust gas,
    An electroheated carrier equipped with.
  2.  前記酸化防止層が、前記下地層と前記金属電極との間隙をシールするように前記電極層の外表面から前記金属電極の外表面に亘って設けられている請求項1に記載の電気加熱式担体。 The electroheating type according to claim 1, wherein the antioxidant layer is provided from the outer surface of the electrode layer to the outer surface of the metal electrode so as to seal the gap between the base layer and the metal electrode. Carrier.
  3.  前記酸化防止層が、前記下地層と前記金属電極との間に設けられている請求項1に記載の電気加熱式担体。 The electrically heated carrier according to claim 1, wherein the antioxidant layer is provided between the base layer and the metal electrode.
  4.  前記酸化防止層が、前記接合部位の表面に設けられている請求項3に記載の電気加熱式担体。 The electroheated carrier according to claim 3, wherein the antioxidant layer is provided on the surface of the joint portion.
  5.  前記酸化防止層が、前記下地層と前記金属電極との間において、前記接合部位から離間して設けられている請求項3に記載の電気加熱式担体。 The electroheated carrier according to claim 3, wherein the antioxidant layer is provided between the base layer and the metal electrode so as to be separated from the joint portion.
  6.  前記酸化防止層が、前記下地層と前記金属電極との間に充填されている請求項3に記載の電気加熱式担体。 The electroheated carrier according to claim 3, wherein the antioxidant layer is filled between the base layer and the metal electrode.
  7.  外周壁と、前記外周壁の内側に配設され、一方の端面から他方の端面まで貫通して流路を形成する複数のセルを区画形成する隔壁と、を有するセラミックス製の柱状ハニカム構造体と、
     前記柱状ハニカム構造体の外周壁の表面に配設されている電極層と、
     前記電極層上に設けられている金属電極と、
     前記金属電極を覆うように設けられ、前記金属電極を前記電極層に固定する固定層と、
     前記固定層を覆うように設けられている酸化防止層と、
    を備えた電気加熱式担体。
    A ceramic columnar honeycomb structure having an outer peripheral wall and a partition wall that is disposed inside the outer peripheral wall and partitions a plurality of cells that form a flow path from one end face to the other end face. ,
    An electrode layer arranged on the surface of the outer peripheral wall of the columnar honeycomb structure and
    A metal electrode provided on the electrode layer and
    A fixed layer provided so as to cover the metal electrode and fixing the metal electrode to the electrode layer,
    An antioxidant layer provided so as to cover the fixed layer and
    An electroheated carrier equipped with.
  8.  前記柱状ハニカム構造体の外周壁の表面に配設された電極層が、前記柱状ハニカム構造体の外周壁の表面に、前記柱状ハニカム構造体の中心軸を挟んで対向するように配設されている一対の電極層である請求項1~7のいずれか1項に記載の電気加熱式担体。 The electrode layer disposed on the surface of the outer peripheral wall of the columnar honeycomb structure is disposed so as to face the surface of the outer peripheral wall of the columnar honeycomb structure with the central axis of the columnar honeycomb structure interposed therebetween. The electrically heated carrier according to any one of claims 1 to 7, which is a pair of electrode layers.
  9.  請求項1~8のいずれか一項に記載の電気加熱式担体と、
     前記電気加熱式担体を保持するための金属製の筒状部材と、
    を有する排気ガス浄化装置。
    The electrically heated carrier according to any one of claims 1 to 8.
    A metal tubular member for holding the electrically heated carrier, and
    Exhaust gas purification device with.
PCT/JP2020/026464 2019-11-28 2020-07-06 Electrical heating-type carrier, and exhaust gas purification device WO2021106261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021561152A JPWO2021106261A1 (en) 2019-11-28 2020-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-215777 2019-11-28
JP2019215777 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021106261A1 true WO2021106261A1 (en) 2021-06-03

Family

ID=76128840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026464 WO2021106261A1 (en) 2019-11-28 2020-07-06 Electrical heating-type carrier, and exhaust gas purification device

Country Status (2)

Country Link
JP (1) JPWO2021106261A1 (en)
WO (1) WO2021106261A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347012A (en) * 2002-05-23 2003-12-05 Kyocera Corp Ceramic heater and its manufacturing method
JP2016074589A (en) * 2014-10-03 2016-05-12 日本碍子株式会社 Honeycomb structure and manufacturing method therefor
JP2018172258A (en) * 2017-03-31 2018-11-08 日本碍子株式会社 Conductive honeycomb structure
JP2019171345A (en) * 2018-03-29 2019-10-10 日本碍子株式会社 Electric heating-type catalyst carrier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347012A (en) * 2002-05-23 2003-12-05 Kyocera Corp Ceramic heater and its manufacturing method
JP2016074589A (en) * 2014-10-03 2016-05-12 日本碍子株式会社 Honeycomb structure and manufacturing method therefor
JP2018172258A (en) * 2017-03-31 2018-11-08 日本碍子株式会社 Conductive honeycomb structure
JP2019171345A (en) * 2018-03-29 2019-10-10 日本碍子株式会社 Electric heating-type catalyst carrier

Also Published As

Publication number Publication date
JPWO2021106261A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US11092052B2 (en) Electric heating type support, exhaust gas purifying device, and method for producing electric heating type support
JP7186643B2 (en) ELECTRICALLY HEATED CARRIER, EXHAUST GAS PURIFICATION DEVICE, METHOD FOR MANUFACTURING ELECTRICALLY HEATED CARRIER, JOINTED BODY, AND METHOD FOR MANUFACTURING JOINTED BODY
US11118493B2 (en) Electric heating type support and exhaust gas purifying device
JP7155054B2 (en) Electrically heated carrier and exhaust gas purification device
WO2021176928A1 (en) Electrically heated converter and production method for electrically heated converter
WO2021166309A1 (en) Electrically heated carrier and exhaust gas purification device
US20220287154A1 (en) Honeycomb structure, electrically heating support and exhaust gas purifying device
JP7335836B2 (en) Electrically heated carrier, exhaust gas purifier, and method for producing electrically heated carrier
WO2021106261A1 (en) Electrical heating-type carrier, and exhaust gas purification device
CN112443377B (en) Electrically heated carrier, exhaust gas purification device, and method for manufacturing exhaust gas purification device
WO2021065059A1 (en) Electrically heated carrier, exhaust gas purification device, and ceramics-metal joint
WO2021187281A1 (en) Electrically heated carrier and exhaust gas purification device
WO2021192383A1 (en) Electrically heated carrier and exhaust gas purification device
WO2021176785A1 (en) Electric heating-type carrier, exhaust gas purification device, and metal electrode
US11725557B2 (en) Electric heating type carrier and exhaust gas purification device
JP7448632B2 (en) Electrically heated converters and electrically heated carriers
US20230313721A1 (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
JP2021156185A (en) Exhaust gas purification device and electric heating carrier with conductive material
JP2022111744A (en) Honeycomb structure, electric heating type carrier, and exhaust emission control system
JP2022135885A (en) Honeycomb structure, electrically heated carrier, and exhaust gas purification device
JP2022095384A (en) Electric heating type carrier and exhaust gas control device
JP2022099151A (en) Electrically-heated carrier and exhaust gas purification device
JP2022142542A (en) Manufacturing method of honey-comb structure and manufacturing method of electric heating carrier
JP2022158927A (en) Electric heating carrier and exhaust gas purification device
JP2022093013A (en) Electric heating type carrier and exhaust emission control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893041

Country of ref document: EP

Kind code of ref document: A1