JP2021187349A - 移動体の制御装置 - Google Patents

移動体の制御装置 Download PDF

Info

Publication number
JP2021187349A
JP2021187349A JP2020095847A JP2020095847A JP2021187349A JP 2021187349 A JP2021187349 A JP 2021187349A JP 2020095847 A JP2020095847 A JP 2020095847A JP 2020095847 A JP2020095847 A JP 2020095847A JP 2021187349 A JP2021187349 A JP 2021187349A
Authority
JP
Japan
Prior art keywords
force
moving body
external force
moving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020095847A
Other languages
English (en)
Other versions
JP7332536B2 (ja
Inventor
司昌 尾▲崎▼
Kazumasa Ozaki
信也 城倉
Shinya Jokura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020095847A priority Critical patent/JP7332536B2/ja
Priority to US17/335,067 priority patent/US11873053B2/en
Publication of JP2021187349A publication Critical patent/JP2021187349A/ja
Application granted granted Critical
Publication of JP7332536B2 publication Critical patent/JP7332536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G5/00Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs
    • A61G5/04Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven
    • A61G5/041Chairs or personal conveyances specially adapted for patients or disabled persons, e.g. wheelchairs motor-driven having a specific drive-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/16Single-axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/34Wheel chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】移動動作部と乗員の搭乗部とを有する移動体の、外力による旋回動作を円滑に行うことを可能とする制御装置を提供する。【解決手段】移動体1の移動動作部3L,3Rの移動制御を行う制御装置30は、移動体1の運動に応じたヨー方向の運動回転力と、アクチュエータ21aL,21bL,21aR,21bRの駆動力に応じたヨー方向の回転駆動力とを推定し、これらの推定値から移動体1に付与される外力によるヨー方向の回転力である外力回転力を推定する。外力回転力の推定値と移動体1の操縦操作とに応じて移動体1の旋回動作が行われる。【選択図】図1

Description

本発明は、移動体の制御装置に関する。
従来、例えば、特許文献1、2に見られるように、床面上を移動可能な車輪等の移動動作部が組付けられた基体に、乗員の搭乗部が傾動可能に組付けられた構造の倒立振子型の移動体が知られている。この種の倒立振子型移動体では、全体重心のバランスを倒立振子の如く保つようにして、乗員の搭乗部の姿勢を安定化しつつ、乗員の上体の動き等の操縦操作(移動要求)に応じて移動動作部の移動制御が電動モータ等のアクチュエータを介して行われる。
また、乗員がリモコン等により操縦操作を行い得る電動車椅子等の移動体も従来より一般に知られている。
国際公開第2010/061498号公報 特開2015−093651号公報
上記移動体では、移動動作部の移動制御は、乗員による操縦操作に応じて行われる。また、特に倒立振子型の移動体では、乗員が意識的に操縦操作を行っていなくても、搭乗部の姿勢を安定化するように、移動動作部の移動制御が行われる。
一方、例えば移動体の乗員が移動体の操縦操作をうまく行うことができないような状況等では、移動体の乗員の付添者等が、乗員の操縦操作によらずに、移動体の旋回(方向転換を含む)を行わせるための外力を移動体に付与する場合もある。あるいは、乗員が通常の操縦操作を行わずに、手摺につかまりながら、移動体を旋回させようとしたり、あるいは、乗員がその足で床面を蹴ることで、移動体を旋回させようとする場合もある。
しかしながら、従来の移動体では、移動動作部の移動制御は、乗員による通常的な操縦操作に応じて行われるので、上記の如く外力によって移動体を旋回させようとしても、移動動作部の駆動用のアクチュエータは、移動動作部が通常的な操縦操作に応じた状態や乗員の搭乗部の姿勢に応じた状態で作動するように制御される。このため、移動体に付与する外力によって、該移動体を旋回させようとしても、該移動体を円滑に旋回させることが困難になりやすい。
本発明はかかる背景に鑑みてなされたものであり、移動動作部と乗員の搭乗部とを有する移動体の、外力による旋回動作を円滑に行うことを可能とする制御装置を提供することを目的とする。
本発明の移動体の制御装置は、床面上を移動可能な移動動作部と、該移動動作部を駆動するアクチュエータと、乗員の搭乗部と、前記移動動作部、前記アクチュエータ及び前記搭乗部が組み付けられた基体とを備える移動体の前記移動動作部の移動制御を、少なくとも前記搭乗部に搭乗した乗員による操縦操作に応じて前記アクチュエータを介して実行する制御装置であって、
前記移動体の運動状態の観測データを取得し、該観測データに基づいて、該移動体の運動によって発生するヨー方向の慣性力に釣り合う回転力である運動回転力を推定する運動回転力推定部と、
前記アクチュエータが出力する駆動力又は該駆動力に関連する状態量の観測データを取得し、該観測データに基づいて、前記アクチュエータから前記移動動作部に付与されるヨー方向の回転駆動力を推定する回転駆動力推定部と、
前記移動体に付与された外力による回転力である外力回転力を、前記運動回転力推定部により推定された運動回転力と前記回転駆動力推定部により推定された回転駆動力とを用いて推定する外力回転力推定部と、
該外力回転力推定部で推定された外力回転力と前記乗員による操縦操作とに応じて前記移動動作部の旋回動作を行わせるように前記アクチュエータを介して該移動動作部の移動制御を行う移動制御部とを備えることを特徴とする(第1発明)。
なお、本発明において、「ヨー方向」は、上下方向(鉛直方向もしくはほぼ鉛直な方向)の軸心周り方向を意味する。また、「観測データ」は、観測対象の任意の状態量を適宜のセンサにより検出してなる検出値、あるいは、該状態量と一定の相関関係を有する他の1つ以上の状態量の検出値から該相関関係に基づいて推定してなる推定値、あるいは、該状態量の実際の値に一致もしくはほぼ一致するとみなし得る疑似的な推定値を意味する。この場合、「疑似的な推定値」としては、該状態量の目標値を使用することも可能である。
上記第1発明によれば、移動体のヨー方向の運動回転力と回転駆動力とを推定した上で、これらの推定値を用いてヨー方向の外力回転力を推定するので、該外力回転力を高い信頼性で推定することが可能である。
従って、かかる外力回転力と乗員による操縦操作とに応じて移動動作部の旋回動作を行わせるように、アクチュエータを介して該移動動作部の移動制御を行うことで、乗員による操縦操作に応じた移動体の旋回動作だけでなく、外力による移動体の旋回動作を円滑に行うことが可能となる。すなわち、移動体の乗員の付添者等が、移動体を旋回させようとして該移動体に外力を付与すれば、それに応じて移動体の旋回動作が行われるように移動体動作部の移動制御を行うことを適切に実行し得る。よって、本発明によれば、外力による移動体の旋回動作を円滑に行うことが可能となる。
上記第1発明では、前記外力回転力推定部は、前記運動回転力推定部により推定された運動回転力と前記回転駆動力推定部により推定された回転駆動力との差、又は該差にローパス特性のフィルタリング処理を施してなる値を、前記外力回転力の基本値として求める処理と、該基本値が所定の不感帯内の値であるときには、前記外力回転力の推定値をゼロとし、該基本値が該不感帯を逸脱した値であるときには、その逸脱量に応じて決定した値を前記外力回転力の推定値とする不感帯処理とにより前記外力回転力の推定値を求めるように構成されていることが好ましい(第2発明)。
ここで、前記運動回転力推定部により推定された運動回転力と前記回転駆動力推定部により推定された回転駆動力との差、又は該差にローパス特性のフィルタリング処理を施してなる値としての前記基本値は、外力回転力の実際の値に概ね近い値になるものの、該基本値には、ノイズ成分も含まれやすい。
そこで、第2発明では、前記基本値に対して上記の不感帯処理を実行して、外力回転力を決定する。これにより、前記基本値に含まれるノイズ成分が大きいとみなし得る状況(該基本値が不感帯内の値となる状況)で、該基本値に含まれるノイズ成分に応じて移動動作部の不適切な移動制御がなされてしまうのを防止できる。
上記第2発明では、前記外力回転力推定部は、前記不感帯を、前記移動体のヨーレートの観測データに応じて可変的に設定する機能をさらに有するように構成されていることが好ましい(第3発明)。
これによれば、移動体のヨーレートに応じて移動動作部と床面との間に発生する摩擦力の影響を補償し、信頼性の高い外力回転力を推定することが可能となる。ひいては、外力回転力を適切に反映させて移動動作部の移動制御を行うことが可能となる。
上記第1〜第3発明では、前記移動制御部は、前記外力回転力推定部により推定された前記外力回転力がゼロである状態、又は該外力回転力の大きさが所定値よりも小さい状態である外力無し状態では、前記乗員による操縦操作に応じて決定した前記移動体の目標旋回速度に応じて前記アクチュエータの作動制御を実行し、前記外力回転力推定部により推定された前記外力回転力がゼロでない状態、又は該外力回転力の大きさが所定値よりも大きい状態である外力有り状態では、該外力回転力に応じて決定した前記移動体の目標旋回速度に応じて前記アクチュエータの作動制御を実行するように構成されていることが好ましい(第4発明)。
これによれば、前記外力無し状態では、乗員による操縦操作に応じて決定した目標旋回速度に応じてアクチュエータの作動制御が実行されるので、該操縦操作に応じた移動動作部の移動制御を適切に実行できる。また、前記外力有り状態では、外力回転力に応じて決定した目標旋回速度に応じてアクチュエータの作動制御が実行されるので、該外力回転力に応じて移動動作部の移動制御を適切に実行できる。
上記第4発明では、前記移動制御部は、前記外力回転力推定部により推定された前記外力回転力の状態が前記外力無し状態及び前記外力有り状態の一方の状態から他方の状態に変化したときには、前記移動体の目標旋回速度を徐々に変化させるように決定しつつ、該目標旋回速度に応じて前記アクチュエータの作動制御を実行するように構成されていることが好ましい(第5発明)。
これによれば、外力回転力の状態が外力無し状態及び外力有り状態の一方の状態から他方の状態に変化するときに、移動動作部の挙動を円滑に変化させることができる。
上記第1〜第5発明は、前記移動体は、床面上を全方向に移動可能な複数の前記移動動作部と、鉛直方向に対して傾動可能に前記基体に組付けられた前記搭乗部とを備える倒立振子型の移動体である場合に好適である(第6発明)。
これによれば、複数の移動動作部を床面に接地させる倒立振子型の移動体を、外力によって旋回させることを円滑に実現できる。
本発明の実施形態の移動体の概略構成を示す斜視図。 実施形態の移動体に備えた移動動作部の要部構成を示す側面図。 実施形態の移動体の動作制御に係る構成を示すブロック図。 図4A及び図4Bは、実施形態の移動体の動作制御に係る倒立振子モデルを示す図。 図3に示す目標並進速度決定部の処理を示すブロック線図。 図5に示す重心ずれ推定部の処理を示すブロック線図。 図3に示す目標旋回速度決定部の処理を示すブロック線図。 図7に示す外力回転力推定部の処理で使用する不感帯の設定例を示すグラフ。 図3に示す個別目標並進速度決定部の処理を示すブロック線図。
本発明の一実施形態を図1〜図9を参照して以下に説明する。図1を参照して、本実施形態の移動体1は、例えば倒立振子型の移動体である。この移動体1は、基体2と、床面上を全方向に移動可能な左右一対の移動動作部3L,3Rと、移動体1の乗員が搭乗する搭乗部4とを備える。
ここで、本実施形態の説明では、「L」を付加した参照符号は移動体1の前方に向かって左側の構成要素又はそれに係る状態量を表し、「R」を付加した参照符号は移動体1の前方に向かって右側の構成要素又はそれに係る状態量を表す。ただし、左右の区別をする必要がないときは、「L」、「R」の付加を省略することがある。また、「床面」は通常の意味での床面に限らず、地面、路面等であってもよい。
移動動作部3L,3Rは同一構造のものである。本実施形態では、各移動動作部3は、例えば前記特許文献2等に見られる如き車輪状の移動動作部である。各移動動作部3は、その構成を概略的に説明すると、図2に示すように、円環状の芯体6と、この芯体6の円周方向に等角度間隔で並ぶようにして該芯体6に装着された複数の円環状のローラ7とを備え、ローラ7を介して床面上に接地される。
そして、各移動動作部3は、芯体6の回転駆動と、ローラ7の回転駆動との両方又は一方を行うことで、床面上を全方向に移動することが可能である。かかる移動動作部3の詳細な構成は、前記特許文献2等にて詳細に説明されているので、本明細書での詳細な説明は省略する。
本実施形態の移動体1は、かかる構成の移動動作部3L,3Rを移動体1の左右方向に間隔を存して備えている。この場合、左側の移動動作部3Lと右側の移動動作部3Rとはそれぞれの芯体6の軸心(回転軸線)が移動体1の左右方向に同軸に延在するように配置されている。
以降の説明では、図1に示す如く、移動体1の前後方向をX軸方向、移動体1の左右方向をY軸方向、上下方向(鉛直方向もしくはほぼ鉛直な方向)をZ軸方向とする3軸直交座標系Csを想定し、X軸方向、Y軸方向、Z軸方向は、特に記載のない限り、当該座標系Csの各座標軸方向を意味する。
この場合、X軸方向(移動体1の前後方向)は、床面上で起立させた状態の移動動作部3L,3Rのそれぞれの芯体6を等速度で回転駆動したときに該移動動作部3L,3Rが転動する方向、Y軸方向(移動体1の左右方向)は、起立状態の移動動作部3L,3Rの芯体6の軸心方向である。なお、本実施形態の説明では、X軸の正方向は、移動体1の前方向、Y軸の正方向は移動体1の左方向、Z軸の正方向は上方向である。また、X軸周りの方向、Y軸周りの方向、Z軸周りの方向をそれぞれ、ロール方向、ピッチ方向、ヨー方向と称する。
基体2は、床面に接地させた移動動作部3L,3Rのそれぞれの上部を覆うカバー部10L,10Rと、カバー部10L,10Rの間に配置された本体部11とを有し、本体部11の左右の端部に、カバー部10L,10Rのそれぞれが固定(又は一体に形成)されている。そして、移動動作部3L,3Rのそれぞれの円環状の芯体6が、その軸心周りに基体2に対して回転し得るようにカバー部10L,10Rのそれぞれに軸支されている。従って、移動動作部3L,3Rを床面に接地させた状態では、基体2は、床面に対して、移動動作部3L,3Rのそれぞれの芯体6の軸心周りにピッチ方向に揺動することが可能である。
また、基体2は、本体部11に対して前後方向(X軸方向)の軸線C1の周りに揺動し得るように該本体部11に軸支された台座12を有し、この台座12に搭乗部4が取り付けられている。
搭乗部4は、本実施形態では、腰掛部4a、背もたれ部4b及び左右の肘掛け部4cL,4cRを有する椅子型の搭乗部であり、その腰掛部4aが台座12の上端に固定されている。従って、搭乗部4は、台座12と共に、基体2の本体部11に対して軸線C1の周りにロール方向に傾動可能である。
また、搭乗部4は、腰掛部4aに着座した乗員がその両足を載せる足載せ部4dを有する。該足載せ部4dは、例えば、腰掛部4aの下面の前端部から下方に延設された左右一対のリンク4eL,4eRの下端部に左右方向に延在して取り付けられている。
なお、足載せ部4dは、乗員の左足用の足載せ部と右足用の足載せ部とに分割されていてもよい。また、腰掛部4aと足載せ部4dとの間の上下方向距離を調整するための機構がリンク4eL,4eRに備えられていてもよい。
本実施形態では、搭乗部4は、上記のように台座12を介して基体2に組付けられている。このため、移動動作部3L,3Rを床面に接地させた状態では、搭乗部4は、床面に対して、移動動作部3L,3Rのそれぞれの芯体6の軸心周りにピッチ方向に、基体2と共に傾動し得るようになっていると共に、前後方向の軸線C1の周りにロール方向に台座12と共に傾動し得るようになっている。
補足すると、搭乗部4は、椅子型のものに限らず、例えば、背もたれ部4bや、肘掛け部4cL,4cRを備えない構造のもの、あるいは、サドル型のシートの如く、乗員が跨るように着座し得るように構成されたもの等であってもよい。また、搭乗部4は、例えば基体2に対して昇降し得るように台座12に取り付けられていてもよい。また、搭乗部4が所定量以上傾いたときに、さらなる傾きを防止するように床面に接地する補助輪等が腰掛部4aの周囲に取り付けられていてもよい。
移動体1は、さらに図3に示すように、移動動作部3Lを駆動するアクチュエータとしての2つの電動モータ21aL,21bLと、右側の移動動作部3Rを駆動するアクチュエータとしての2つの電動モータ21aR,21bRと、各電動モータ21aL,21bL,21aR,21bRの動作状態を検出するために各電動モータ21aL,21bL,21aR,21bR毎に備えられた動作状態センサ22aL,22bL,22aR,22bRと、搭乗部4の傾斜角度(=台座12の傾斜角度)を検出する傾斜センサ23と、移動体1のヨーレート(ヨー方向の角速度)を検出するヨーレートセンサ24と、移動動作部3L,3Rの作動制御を行う機能を有する制御装置30とを備えている。
以降の説明では、各移動動作部3の駆動用の電動モータ21a,21bを区別する必要がないときは、電動モータ21a,21bのそれぞれを、単に電動モータ21と表記する。同様に、各移動動作部3の駆動用の電動モータ21a,21bのそれぞれに対応する動作状態センサ22a,22bを区別する必要がないときは、動作状態センサ22a,22bのそれぞれを、単に動作状態センサ22と表記する。
各移動動作部3の駆動用の電動モータ21a,21bは、図示しない動力伝達機構を介して該移動動作部3の芯体6と各ローラ7とに回転駆動力を伝達し得るように、基体2に搭載されている。該動力伝達機構としては、前記特許文献2等に記載されたものを採用し得る。
この場合、各移動動作部3の芯体6の回転速度(ひいては、該移動動作部3のX軸方向の移動速度)が該移動動作部3に対応する電動モータ21a,21bのそれぞれの出力軸の回転速度の和に比例した速度になると共に、各移動動作部3の各ローラ7の回転速度(ひいては、該移動動作部3のY軸方向の移動速度)が該移動動作部3に対応する電動モータ21a,21bのそれぞれの出力軸の回転速度の差に比例した速度になるように、電動モータ21a,21bから移動動作部3への動力伝達が行われる。
各電動モータ21に対応する動作状態センサ22は、例えば、該電動モータ21の通電電流を検出する電流センサ(図示省略)と、該電動モータ21の出力軸の回転角もしくは回転速度(角速度)を検出するための回転センサ(図示省略)とを含む。この場合、回転センサは、例えばレゾルバ、ロータリエンコーダ、ポテンショメータ等により構成され得る。
傾斜センサ23は、例えば、3軸の(3次元の)加速度と3軸の(3次元の)角速度とを検出可能な公知の慣性計測ユニット(IMU)により構成され、搭乗部4あるいは基体2の台座12に搭載されている。この場合、傾斜センサ23は、加速度及び角速度の検出データから、ストラップダウン方式等の公知の計測演算処理を図示しないプロセッサ等を含む電子回路により実行することで、搭乗部4のロール方向(X軸周りの方向)及びピッチ方向(Y軸周りの方向)の傾斜角度を計測(推定)し、その計測データを出力する。なお、上記計測演算処理は、制御装置30で実行することも可能である。
ヨーレートセンサ24は、公知の角速度センサにより構成され、移動体1の旋回動作時に発生するヨーレートを検出し得るように基体2の本体部11等に搭載されている。なお、前記傾斜センサ23が慣性計測ユニットにより構成される場合、該傾斜センサ23は、加速度及び角速度の検出データからストラップダウン方式等の計測演算処理によりヨーレートを計測することも可能である。この場合には、傾斜センサ23と別に、ヨーレートセンサ24を備える必要はない。
制御装置30は、マイクロコンピュータ、メモリ、インターフェース回路などを含む電子回路ユニットにより構成され、基体2等、移動体1の任意の適所に搭載される。この制御装置30には、各動作状態センサ22、傾斜センサ23及びヨーレートセンサ24の計測データ(検出データ)が入力される。また、制御装置30は、乗員等が所持する操作端末70と通信(無線通信又は有線通信)を行うことが可能である。
上記操作端末70は、例えばスマートフォン、タブレット端末、フィーチャーフォン等により構成され、あらかじめインストールされた操縦用アプリケーションを起動することで、移動体1の操縦操作を行うことが可能である。この場合、操作端末70の操作によって、移動体1の移動速度(並進速度)の指令値としての速度指令を操作端末70から制御装置30に送信することが可能である。該速度指令は、詳しくは、移動体1の前後方向(X軸方向)の速度指令と左右方向(Y軸方向)の速度指令とから構成される。
なお、操作端末70は、ジョイスティック等、移動体1の操縦操作用の操作部を含むリモコン型の操作端末であってもよい。また、操作端末70は、例えば搭乗部4の肘掛け部4cL又は4cRに装着された端末であってもよい。
制御装置30は、実装されたハードウェア構成及びプログラム(ソフトウェア構成)の両方又は一方により実現される機能として、各移動動作部3の移動制御を該移動動作部3に対応する電動モータ21a,21bを介して実行する移動制御部31としての機能を有する。該移動制御部31は、移動体1の並進速度(より詳しくは、移動動作部3L,3Rの全体の並進速度)の目標値である目標並進速度を逐次決定する目標並進速度決定部40としての機能と、移動体1のヨー方向の角速度(ヨーレート)の目標値である目標旋回速度を逐次決定する目標旋回速度決定部50としての機能と、移動動作部3L,3Rのそれぞれの目標並進速度を決定する個別目標並進速度決定部60としての機能とを含む。
次に、制御装置30のより具体的な処理と移動体1の作動とを説明する。制御装置30は、搭乗部4の腰掛部4aに着座した乗員による操作端末70の所定の操作等に応じて移動制御部31の処理を開始する。このとき、移動制御部31は、移動体1の全体重心(搭乗部4に搭乗した乗員を含めた全体重心)を倒立振子の質点の如くバランスさせるように搭乗部4の姿勢を安定化しつつ、乗員の操縦操作等に応じて移動体1を移動させるように移動動作部3L,3Rの移動制御を行う。
なお、移動体1の全体重心をバランスさせるというのは、該全体重心に作用する重力と、該全体重心の運動によって発生する慣性力との合力を、移動体1が床面から受ける床反力に釣り合わせることを意味する。
かかる移動制御部31の制御処理を具体的に説明する前に、移動体1の全体重心の動力学的な挙動について図4A及び図4Bを参照して説明しておく。移動体1の全体重心の動力学的な挙動(詳しくは、Y軸方向から見た挙動と、X軸方向から見た挙動)は、近似的に、図4A及び図4Bに示すような倒立振子モデルの挙動により表現される。
なお、本実施形態の説明では、添え字“_x”は移動体1をY軸方向(左右方向)から見た場合の変数等の参照符号を意味し、添え字“_y”は移動体1をX軸方向(前後方向)から見た場合の変数等の参照符号を意味する。図4AはY軸方向から移動体1を見た場合(移動体1を側面視で見た場合)の倒立振子モデルを表しており、図4BはX軸方向から移動体1を見た場合(移動体1をその前方から正面視で見た場合)の倒立振子モデルを表している。
Y軸方向から見た移動体1の全体重心の挙動を表す倒立振子モデルは、図4Aに示すように、Y軸方向と平行な回転軸心を有して床面上をX軸方向に転動自在な車輪61_xと、該車輪61_xの回転中心から延設されて、該車輪61_xの回転軸周りに(ピッチ方向に)揺動自在なロッド62_xと、このロッド62_xの先端部(上端部)である基準部Ps_xに連結された質点Ga_xとを備える。
車輪61_xは、X軸方向に転動する移動動作部3L,3Rを統合的にモデル化して表した車輪である。そして、車輪61_xの半径r_xは、各移動動作部3の芯体6の軸心方向から見た該移動動作部3の半径に一致もしくはほぼ一致する値に設定される。また、基準部Ps_x及び質点Ga_xの床面からの高さh_xは、あらかじめ設定された既定値(一定値)とされる。
この倒立振子モデルでは、質点Ga_xの運動が、Y軸方向から見た移動体1の全体重心の運動に相当し、鉛直方向に対するロッド62_xの傾斜角度θb_xが、搭乗部4(又は基体2)のピッチ方向の傾斜角度に一致する。また、移動動作部3L,3RのX軸方向の並進運動が、車輪61_xの転動によるX軸方向の並進運動に相当する。
また、X軸方向から見た移動体1の全体重心の挙動を表す倒立振子モデルは、X軸方向と平行な回転軸心を有して床面上をY軸方向に転動自在な左右一対の車輪61L_y,61R_yと、該車輪61L_y,61R_yを連結する連結部63_yと、連結部63_yから延設されたロッド62_yと、このロッド62_yの先端部(上端部)である基準部Ps_yに連結された質点Ga_yとを備える。
この場合、ロッド62_yは、車輪61L_y,61R_yの間の中間位置でX軸方向の軸心周りにロール方向に揺動可能に連結部63_yに軸支されている。車輪61L_y,61R_yは、それぞれ、Y軸方向に移動する移動動作部3L,3Rのそれぞれをモデル化して表した車輪である。また、基準部Ps_y及び質点Ga_yの、ロッド62_yの揺動支点からの高さh_yは、あらかじめ設定された既定値(一定値)とされる。
この倒立振子モデルでは、質点Ga_yの運動が、X軸方向から見た移動体1の全体重心の運動に相当し、鉛直方向に対するロッド62_yの傾斜角度θb_yが、搭乗部4(又は台座12)のロール方向の傾斜角度に一致する。また、移動動作部3L,3RのY軸方向の並進運動が、車輪61R_y,61L_yの転動によるY軸方向の並進運動に相当する。
ここで、図4Aを参照して、Y軸方向から見た場合の上記基準部Ps_xと質点Ga_xとの位置関係について補足すると、基準部Ps_xの位置は、搭乗部4に搭乗した乗員(腰掛部4aに着座した乗員)が、該搭乗部4に対して予め定められた中立姿勢のまま不動であると仮定した場合における移動体1の全体重心の位置に相当している。したがって、この場合には、質点Ga_xの位置は、基準部Ps_xの位置に一致する。このことは、X軸方向から見た場合の上記基準部Ps_yと質点Ga_yとの位置関係ついても同様である。
ただし、実際には、搭乗部4に搭乗した乗員が、その上体等を搭乗部4に対して動かすことで、実際の全体重心のX軸方向の位置及びY軸方向の位置は、一般には、それぞれ基準部Ps_x,Ps_yの位置から水平方向にずれることとなる。このため、図4A、図4Bでは、質点Ga_x,Ga_yの位置をそれぞれ基準部Ps_x,Ps_yの位置からずらした状態で示している。
上記のような倒立振子モデルで表現される移動体1の全体重心の挙動は、次式(1a),(1b),(2a),(2b)により表現される。この場合、式(1a),(1b)は、Y軸方向で見た挙動、式(2a),(2b)は、X軸方向で見た挙動を表している。
Vb_x=Vw_x+h_x・ωb_x ……(1a)
dVb_x/dt=(g/h_x)・(θb_x・(h_x−r_x)+Ofst_x)+ωz・Vb_y
……(1b)
Vb_y=Vw_y+h_y・ωb_y ……(2a)
dVb_y/dt=(g/h_y)・(θb_y・h_y+Ofst_y)−ωz・Vb_x
……(2b)
ここで、Vb_xは、移動体1の全体重心のX軸方向の並進速度、θb_xは搭乗部4のY軸周りの方向(ピッチ方向)の傾斜角度、Vw_xは、車輪61_xのX軸方向の並進速度、ωb_xはθb_xの時間的変化率(=dθb_x/dt)を表す角速度、Ofst_xは移動体1の全体重心のX軸方向の位置(質点Ga_xのX軸方向の位置)の、前記基準部Ps_xの位置からのX軸方向のずれ量、Vb_yは、移動体1の全体重心のY軸方向の並進速度、Vw_yは、車輪61L_y,61R_yのY軸方向の並進速度、θb_yは搭乗部4のX軸周りの方向(ロール方向)の傾斜角度、ωb_yはθb_yの時間的変化率(=dθb_y/dt)を表す角速度、Ofst_yは移動体1の全体重心のY軸方向の位置(質点Ga_yのY軸方向の位置)の、前記基準部Ps_yの位置からのY軸方向のずれ量である。また、ωzは移動体1の旋回速度(ヨー方向の角速度)、gは重力加速度定数である。
なお、式(1a),(1b),(2a),(2b)では、θb_x、ωb_xの正方向は、移動体1の全体重心がX軸の正方向(前向き)に傾く方向、θb_y、ωb_yの正方向は、移動体1の全体重心がY軸の正方向(左向き)に傾く方向である。また、ωzの正方向は、移動体1を上方から見た場合に、反時計回りの方向である。
本実施形態では、移動制御部31の処理のアルゴリズムは、上記のように移動体1の全体重心の基準部Ps_x,Ps_yからのずれ量(以降、重心ずれ量という)と、遠心力とを考慮した倒立振子モデルに基づいて構築されている。以下に移動制御部31の処理を具体的に説明する。なお、以降の説明では、速度、加速度等の状態量の参照符号に関し、添え字“_xy”を付加した参照符号は、X軸方向の成分とY軸方向の成分との組を意味する。
移動制御部31は、目標並進速度決定部40の処理と、目標旋回速度決定部50の処理と、個別目標並進速度決定部60の処理とを所定の演算処理周期で逐次実行しつつ、移動動作部3L,3Rの移動制御を行う。
目標並進速度決定部40は、図5に示すように、移動体1の全体重心の並進速度の目標値である重心目標速度を決定する重心目標速度決定部41と、移動体1の全体重心の実際の並進速度である重心速度を推定する重心速度推定部42と、実際の重心速度を重心目標速度に追従させつつ、搭乗部4の姿勢を安定化する(全体重心をバランスさせる)ように移動動作部3L,3Rの全体の目標並進速度を決定する姿勢制御演算部43と、移動体1の全体重心の後述する重心ずれ量を推定する重心ずれ推定部44と、該重心ずれ量に起因する後述する重心ずれ影響量を算出する重心ずれ影響量算出部45とを備える。
そして、目標並進速度決定部40は、各演算処理周期において、まず、重心速度推定部42の処理を実行する。重心速度推定部42は、前記式(1a),(2a)により表される運動学的な関係式に基づいて、移動体1の実際の重心速度の推定値Vb_estm_xyを算出する。具体的には、図5に示す如く、移動動作部3L,3Rの実際の並進速度Vw_act_xyの値と、搭乗部4の傾斜角度θb_xyの実際の時間的変化率(傾斜角速度)ωb_act_xyと、全体重心の高さh_xy(既定の設定値)とから、次式(3a),(3b)により重心速度の推定値Vb_estm_xyが算出される。
Vb_estm_x=Vw_act_x+h_x・ωb_act_x ……(3a)
Vb_estm_y=Vw_act_y+h_y・ωb_act_y ……(3b)
この場合、上記演算におけるVw_act_x,Vw_act_yの値としては、本実施形態では、前回の演算処理周期で姿勢制御演算部43により決定された移動動作部3L,3Rの全体の目標並進速度Vw_cmd_xy(前回値)が用いられる。ただし、例えば、電動モータ21aL,21bL,21aR,21bRのそれぞれの出力軸の回転速度を検出し、それらの検出値から推定したVw_act_x,Vw_act_yの最新値を式(3a),(3b)の演算に用いてもよい。
また、ωb_act_x,ωb_act_yの値としては、本実施形態では、傾斜センサ23により計測された搭乗部4の傾斜角度θb_x,θb_yの計測値の時間的変化率の最新値、あるいは、ωb_act_x,ωb_act_yの計測値の最新値が用いられる。
目標並進速度決定部40は、次に、重心ずれ推定部44の処理を実行することで、前記重心ずれ量Ofst_xyの推定値である重心ずれ量推定値Ofst_estm_xyを決定する。なお、重心ずれ推定部44に関する以降の説明では、重心速度推定部42により算出された重心速度の推定値Vb_estm_x,Vb_estm_yをそれぞれ第1重心速度推定値Vb_estm_x,Vb_estm_yと称する。
重心ずれ推定部44の処理は、例えば図6のブロック線図で示す如く実行される。なお、図6では、重心ずれ量推定値Ofst_estm_xyのうちのX軸方向の重心ずれ量推定値Ofst_estm_xの決定処理に関する状態量の参照符号を括弧無しで表記し、Y軸方向の重心ずれ量推定値Ofst_estm_yの決定処理に関する状態量の参照符号を括弧付きで表記している。また、算術記号(“+”、“−”については、X軸方向の重心ずれ量推定値Ofst_estm_xの決定処理とY軸方向の重心ずれ量推定値Ofst_estm_yの決定処理との両方に共通の算術記号を括弧無しの記号で表記し、Y軸方向の重心ずれ量推定値Ofst_estm_yの決定処理にのみ係る算術記号を括弧付きの記号で表記している。
図6の処理を具体的に説明すると、重心ずれ推定部44は、傾斜センサ23により計測された傾斜角度θb_act_xyの計測値(最新値)と、ヨーレートセンサ24により計測されたヨーレートωz_actの計測値(最新値)と、重心速度推定部42により算出された第1重心速度推定値Vb_estm_xy(最新値)と、前回の演算処理周期で決定した重心ずれ量推定値Ofst_estm_xy(前回値)とを用いて、前記式(1b)、(2b)の右辺の演算処理を演算部44aで実行することにより、移動体1の全体重心の並進加速度の推定値DVb_estm_xyを算出する。
さらに重心ずれ推定部44は、並進加速度の推定値DVb_estm_xyの各成分(X軸方向成分及びY軸方向成分)を積分する処理を演算部44bで実行することにより、移動体1の全体重心の速度の第2推定値である第2重心速度推定値Vb_estm2_xyを算出する。
次いで、重心ずれ推定部44は、第2重心速度推定値Vb_estm2_xy(最新値)と、第1重心速度推定値Vb_estm_xy(最新値)との各成分の偏差を算出する処理を演算部44cで実行する。さらに、重心ずれ推定部44は、この偏差の各成分に所定値のゲイン(−Kp)を乗じる処理を演算部44dで実行することにより、重心ずれ量推定値Ofst_estm_xyの最新値を決定する。
目標並進速度決定部40は、次に、図5に示す重心ずれ影響量算出部45の処理を実行することによって、重心ずれ影響量Vofs_xyを算出する。重心ずれ影響量Vofs_xyは、後述する姿勢制御演算部43において、移動体1の全体重心の位置が倒立振子モデルにおける前記基準部Ps_xyの位置からずれることを考慮せずにフィードバック制御を行った場合の全体重心の目標速度に対する実際の速度のずれを表す。
この重心ずれ影響量算出部45は、新たに決定されたX軸方向の重心ずれ量推定値Ofst_estm_xに、(Kth_x/(h_x-r_x))/Kvb_xという値を乗じることにより、X軸方向の重心ずれ影響量Vofs_xyを算出する。また、重心ずれ影響量算出部45は、新たに決定されたY軸方向の重心ずれ量推定値Ofst_estm_yに、(Kth_y/h_y)/Kvb_yという値を乗じることにより、Y軸方向の重心ずれ影響量Vofs_yを算出する。なお、Kth_x,Kth_y,Kvb_x,Kvb_yは、後述する姿勢制御演算部43の処理において使用する所定値のゲインである。
目標並進速度決定部40は、次に、図5に示す重心目標速度決定部41の処理を実行することによって、各演算処理周期毎の重心目標速度Vb_cmd_xyを決定する。この場合、重心目標速度決定部41は、まず、操作端末70の操作に応じて該操作端末70から与えられた速度指令Vs_xy(最新値)と、重心ずれ影響量算出部45により決定された重心ずれ影響量Vofs_xy(最新値)とから、重心目標速度Vb_cmd_xyの基本値V1_xyを決定する。該基本値V1_xyは、操作端末70の操作と、乗員の上体の動きに伴う重心ずれ量推定値Ofst_estm_xyとに応じた重心速度の要求値に相当するものである。以降、上記基本値V1_xyを重心速度基本要求値V1_xyという。
具体的には、重心目標速度決定部41は、重心ずれ影響量Vofs_xyに対する不感帯処理とリミット処理とを処理部41aで実行することで、重心速度基本要求値V1_xyのうちの重心ずれ量推定値Ofst_estm_xyに応じた成分としての重心速度加算量Vb_cmd_by_ofs_xyを決定する。
この場合、重心目標速度決定部41は、X軸方向の重心ずれ影響量Vofs_xの大きさがゼロ近辺の所定の範囲である不感帯内の値(比較的ゼロに近い値)である場合には、X軸方向の重心速度加算量Vb_cmd_by_ofs_xをゼロにする。
また、重心目標速度決定部41は、X軸方向の重心ずれ影響量Vofs_xの大きさが不感帯域から逸脱した値である場合には、X軸方向の重心速度加算量Vb_cmd_by_ofs_xを、Vofs_xと同極性で、その大きさ(絶対値)が、不感帯からのVofs_xの逸脱量の大きさの増加に伴い大きくなるように決定する。ただし、重心速度加算量Vb_cmd_by_ofs_xの値は、所定の上限値(>0)と下限値(≦0)との間の範囲内に制限される。Y軸方向の重心速度加算量Vb_cmd_by_ofs_yの決定処理も上記と同様である。
次いで、重心目標速度決定部41は、操作端末70から与えられた速度指令Vs_xyの各成分に重心速度加算量Vb_cmd_by_ofs_xyの各成分を加え合わせる処理を処理部41bで実行することで、重心速度基本要求値V1_xyを算出する。すなわち、V1_x=Vs_x+Vb_cmd_by_ofs_x、V1_y=Vs_y+Vb_cmd_by_ofs_yという演算処理によって、重心速度基本要求値V1_xy(V1_x,V1_yの組)を決定する。
重心目標速度決定部41はさらに、処理部41cの処理を実行する。この処理部41cでは、各移動動作部3の駆動用の電動モータ21a,21bのそれぞれの出力軸の回転速度を、所定の許容範囲から逸脱させることのないようにするために、重心速度基本要求値V1_x,V1_yの組み合わせを制限してなる重心目標速度Vb_cmd_xy(Vb_cmd_x,Vb_cmd_yの組)を決定するリミット処理が実行される。
この場合、処理部41bで求められた重心速度基本要求値V1_x,V1_yの組が、V1_xの値を縦軸、V1_yの値を横軸とする座標系上で所定の領域内に在る場合には、その重心速度基本要求値V1_x,V1_yの組がそのまま重心目標速度Vb_cmd_xyとして決定される。
また、処理部41bで求められた重心速度基本要求値V1_x,V1_yの組が、上記座標系上の所定の領域から逸脱している場合には、該所定の領域の境界上の組に制限したものが、重心目標速度Vb_cmd_xyとして決定される。
本実施形態では、上記の如く、操作端末70の操作に応じた速度指令Vs_xyと、重心ずれ影響量Vofs_xy(または、重心ずれ量Ofst_xy)とに応じて重心目標速度Vb_cmd_xyが決定される。このため、操作端末70の操作と、乗員の上体等の動き(体重移動)に伴う重心ずれ量Ofst_xyの変化とのそれぞれが、移動体1の移動に関する操縦操作として機能する。
補足すると、操作端末70の操作による速度指令Vs_xyを省略して、目標重心速度加算量Vb_cmd_by_ofs_xyをそのまま重心速度基本要求値V1_xyとして決定してもよい。あるいは、操作端末70の操作による速度指令Vs_xyをそのまま重心速度基本要求値V1_xyとして決定してもよい。
以上の如く重心目標速度決定部41の処理を実行した後、目標並進速度決定部40は、次に、姿勢制御演算部43の処理を実行する。この姿勢制御演算部43は、図5のブロック線図で示す処理によって、搭乗部4の姿勢を安定化するように(移動体1の全体重心をバランスさせるように)、移動動作部3L,3Rの全体の目標並進速度Vw_cmd_xyを決定する。
より詳しくは、姿勢制御演算部43は、まず、重心目標速度Vb_cmd_xyの各成分から、重心ずれ影響量Vofs_xyの各成分を減じる処理を演算部43aで実行することにより重心ずれ補償後目標速度Vb_cmpn_cmd_xyを決定する。
次いで、姿勢制御演算部43は、上記演算部43aと、積分演算を行う演算部43bとを除く演算部の処理によって、移動動作部3L,3Rの全体の並進加速度の目標値である目標並進加速度DVw_cmd_xyのうちのX軸方向の目標並進加速度DVw_cmd_xと、Y軸方向の目標並進加速度DVw_cmd_yとをそれぞれ次式(4a),(4b)の演算により算出する。
DVw_cmd_x=Kvb_x・(Vb_cmpn_cmd_x−Vb_estm_x)
−Kth_x・θb_act_x−Kw_x・ωb_act_x ……(4a)
DVw_cmd_y=Kvb_y・(Vb_cmpn_cmd_y−Vb_estm_y)
−Kth_y・θb_act_y−Kw_y・ωb_act_y ……(4b)
式(4a),(4b)におけるKvb_xy、Kth_xy、Kw_xyはあらかじめ設定された所定値のゲインである。また、式(4a)の右辺の第1項は、移動体1の全体重心のX軸方向の重心ずれ補償後目標速度Vb_cmpn_cmd_x最新値)と重心速度推定部42により算出されたX軸方向の重心速度推定値Vb_estm_x(最新値)との偏差に応じたフィードバック操作量成分、第2項は、搭乗部4のピッチ方向(Y軸周りの方向)の実際の傾斜角度θb_act_xの計測値(最新値)に応じたフィードバック操作量成分、第3項は、搭乗部4のピッチ方向の実際の傾斜角速度ωb_act_xの計測値(最新値)応じたフィードバック操作量成分である。そして、X軸方向の目標並進加速度DVw1_cmd_xは、これらのフィードバック操作量成分の合成操作量として算出される。
同様に、式(4b)の右辺の第1項は、移動体1の全体重心のY軸方向の重心ずれ補償後目標速度Vb_cmpn_cmd_y(最新値)と重心速度推定部42により算出されたY軸方向の重心速度推定値Vb_estm_y(最新値)との偏差に応じたフィードバック操作量成分、第2項は、搭乗部4のロール方向(X軸周りの方向)の実際の傾斜角度θb_act_yの計測値(最新値)に応じたフィードバック操作量成分、第3項は、搭乗部4のロール方向の実際の傾斜角速度ωb_act_yの計測値(最新値)に応じたフィードバック操作量成分である。そして、Y軸方向の目標並進加速度DVw1_cmd_yは、これらのフィードバック操作量成分の合成操作量として算出される。
なお、前記式(4a),(4b)はそれぞれ、次式(4a)’、(4b)’に書き換えることができる。
DVw_cmd_x=Kvb_x・(Vb_cmd_x−Vb_estm_x)
−Kth_x・(Ofst_estm_x/(h_x−r_x)+θb_act_x)
−Kw_x・ωb_act_x ……(4a)’
DVw_cmd_y=Kvb_y・(Vb_cmd_y−Vb_estm_y)
−Kth_y・(Ofst_estm_y/h_y+θb_act_y)
−Kw_y・ωb_act_y ……(4b)’
この場合、式(4a)’の右辺第2項は、移動体1をY軸方向から見た場合に、X軸方向における移動体1の全体重心の実際の位置が、移動動作部3L,3Rの接地部の直上の位置になるようにするためのフィードバック操作量成分としての意味を持つ。
また、式(4b)’の右辺第2項は、移動体1をX軸方向から見た場合に、Y軸方向における移動体1の全体重心の実際の位置が、搭乗部4の揺動支点(基体2の本体部11に対する台座12の軸支部分)の直上の位置になるようにするためのフィードバック操作量成分としての意味を持つ。
次いで、姿勢制御演算部43は、演算部43bによって、目標並進加速度DVw_cmd_xyの各成分を積分することによって、移動動作部3L,3Rの全体の目標並進速度Vw_cmd_xy(最新値)を決定する。
目標並進速度決定部40の処理は、各演算処理周期において、以上の如く実行される。この処理によって、移動体1の搭乗部4の姿勢を安定に保ちつつ、移動体1の実際の重心速度を目標重心速度Vb_cmd_xyに追従させることを実現し得るように移動動作部3L,3Rの全体の目標並進速度Vw_cmd_xyが逐次決定される。
次に、目標旋回速度決定部50の処理を図7及び図8を参照して説明する。目標旋回速度決定部50は、所定の演算処理周期で図7のブロック線図に示す処理を実行する。具体的には、目標旋回速度決定部50は、各演算処理周期において、まず、移動体1の乗員の操縦操作に基づく移動体1の旋回速度の要求値である操縦要求旋回速度ωz_req1を決定する操縦要求旋回速度決定部51の処理と、乗員を含めた移動体1に作用する外力(詳しくは、移動体1を旋回させようとする外力)に基づく移動体1の旋回速度の要求値である外力要求旋回速度を決定する外力要求旋回速度決定部52の処理とを実行する。
操縦要求旋回速度決定部51の処理に関しては、本実施形態では、乗員が、移動体1の全体重心をY軸方向に動かすように上体等を動かす動作が、移動体1の旋回動作を行うための操縦操作である。
例えば、移動体1を右側に(上方から見て時計回り方向に)旋回させようとするときには、乗員は、その上体を右側に傾ける等の体重移動動作を行うことにより、移動体1の全体重心を右側に移動させる。また、移動体1を左側に(上方から見て反時計回り方向に)旋回させようとするときには、乗員は、その上体を左側に傾ける等の体重移動動作を行うことにより、移動体1の全体重心を左側に移動させる。
そこで、本実施形態では、操縦要求旋回速度決定部51の処理では、前記重心速度推定部42で算出されたY軸方向の重心速度推定値Vb_estm_yを移動体1を旋回させるための操縦操作を表す指標値とみなす。そして、操縦要求旋回速度決定部51のY軸方向の重心速度推定値Vbestm_y(最新値)に応じて操縦要求旋回速度ωz_req1を決定する。
具体的には、操縦要求旋回速度決定部51は、入力されたY軸方向の重心速度推定値Vb_estm_yに対して不感帯処理を処理部51aで実行する。該不感帯処理では、処理部51aは、Y軸方向の重心速度推定値Vbestm_yがゼロ近辺の所定の不感帯内の値である場合には、処理部51aの出力値をゼロにする。
また、処理部51aは、Y軸方向の重心速度推定値Vb_estm_yが不感帯内から逸脱した値である場合には、処理部51aの出力値を、Vb_estm_yと同極性で、その大きさ(絶対値)が、不感帯からのVb_estm_yの逸脱量の大きさの増加に伴い大きくなるように決定する。例えば、Vb_estm_yが、不感帯の上限値(>0)よりも大きい場合には、処理部51aの出力値は、(Vb_estm_y−不感帯の上限値)に比例した値に決定され、Vb_estm_yが、不感帯の下限値(<0)よりも小さい場合には、処理部51aの出力値は、(Vb_estm_y−不感帯の下限値)に比例した値に決定される。
操縦要求旋回速度決定部51は、さらに、処理部51aの出力値にローパス特性のフィルタリング処理を施すことを処理部51bで実行する。なお、処理部51bとしては、例えば、1/(Ta・s+1)という伝達関数(Ta:時定数)により表されるローパスフィルタを使用し得る。
操縦要求旋回速度決定部51は、さらに、処理部51bの出力値をあらかじめ設定された所定値の回転半径Lで除算する処理を処理部51cで実行することにより、操縦要求旋回速度ωz_req1を決定する。これにより、乗員の操縦操作に基づく操縦要求旋回速度ωz_req1が決定される。
補足すると、操作端末70の操作によって旋回速度を設定できるようにしてもよい。この場合には、操作端末70で設定された旋回速度を操縦要求旋回速度ωz_req1として設定してもよい。あるいは、例えば、操作端末70で設定された旋回速度と、Y軸方向の重心速度推定値Vb_estm_yに応じて設定した旋回速度とを合成した旋回速度を操縦要求旋回速度ωz_req1として設定してもよい。
外力要求旋回速度決定部52の処理では、外力要求旋回速度決定部52は、まず、移動体1の運動によって発生するヨー方向の慣性力(慣性回転力)に釣り合う回転力(換言すれば、慣性回転力との和がゼロになる回転力)である運動回転力Tq1zを推定する運動回転力推定部521の処理と、電動モータ21a,21bから移動動作部3に付与されるヨー方向の回転駆動力を推定する回転駆動力推定部522の処理とを実行する。
運動回転力推定部521は、ヨーレートセンサ24による移動体1のヨーレートωz_actの計測値から次式(5)により、運動回転力Tq1zの推定値を算出する。
Tq1z=(dωz_act/dt)・Iz ……(5)

ここで、Izは、移動体1のヨー方向の慣性モーメント(イナーシャ)の設定値である。なお、例えば目標旋回速度決定部50の各演算処理周期において、目標旋回速度ωz_cmdの微分値dωz_act/dtを逐次算出し、前回の演算処理周期で求めたdωz_act/dtの値を、dωz_act/dtの代わりに用いて、運動回転力Tq1zの推定値を算出してもよい。
また、回転駆動力推定部522の処理に関しては、本実施形態の移動体1では、各移動動作部3をX軸方向に転動させるように、該移動動作部3の駆動用の電動モータ21a,21bから該移動動作部3に伝達される回転駆動力(該移動動作部3の芯体6の軸心周りのトルク)は、電動モータ21a,21bの出力トルクの総和にほぼ比例する。そして、電動モータ21a,21bのそれぞれの出力トルクは、電動モータ21a,21bのそれぞれの通電電流のうちのq軸電流に比例する。
また、電動モータ21a,21bから移動動作部3に伝達される回転駆動力(芯体6の軸心周りのトルク)によって該移動動作部3に付与されるX軸方向の並進駆動力は、該回転駆動力を芯体6の軸心周りでの移動動作部3の回転半径r_x(=図4Aに示した車輪61_xの半径)で除算した値になる。
従って、左側の移動動作部3LのX軸方向の並進駆動力Fd_L_xと、該移動動作部3Lの電動モータ21aL,21bLのそれぞれのq軸電流iq_a_L,iq_b_Lとの間には、次式(6a)の関係が成立する。同様に、右側の移動動作部3RのX軸方向の並進駆動力Fd_R_xと、該移動動作部3Rの電動モータ21aR,21bRのそれぞれのq軸電流iq_a_R,iq_b_Rとの間には、次式(6b)の関係が成立する。
Fd_L_x=(iq_a_L・Km+iq_b_L・Km)・Kc/r_x ……(6a)
Fd_R_x=(iq_a_R・Km+iq_b_R・Km)・Kc/r_x ……(6b)
式(6a),(6b)におけるKmは、各電動モータ21のq軸電流と出力トルクとの関係を規定する所定値の係数、Kcは、各移動動作部3の回転駆動力(芯体6の軸心周りの回転駆動力)と、該移動動作部3の駆動用の各電動モータ21の出力トルクとの関係を規定する所定値の係数である。なお、係数Kmは、各電動モータ21で異なっていてもよい。また、係数Kmは、各移動動作部3で異なっていてもよい。
また、左右の移動動作部3L,3Rのそれぞれに付与されるX軸方向の並進駆動力Fd_L_x,Fd_R_xと、移動体1のヨー方向の回転駆動力Tq2zとの間には、次式(7)の関係が成立する。
Tq2z=Fd_R_x・(Tread/2)−Fd_L_x・(Tread/2) ……(7)

式(7)におけるTreadは、Y軸方向における移動動作部3L,3Rの間隔(トレッド)である。
そこで、回転駆動力推定部522は、電動モータ21aL,21bL,21aR,21bRのq軸電流iq_a_L,iq_b_L,iq_a_R,iq_b_Rの推定値から、上記式(6a),(6b),(7)の関係式に従って、移動体1のヨー方向の回転駆動力Tq2zを推定する。
外力要求旋回速度決定部52は、次に、移動体1に付与された外力によるヨー方向の回転力である外力回転力Tq5zを推定する処理を外力回転力推定部523で実行する。ここで、上記「外力」は、詳しくは、電動モータ21a,21bによる各移動動作部3の駆動に起因して該移動動作部3に床面から作用する床反力以外で、移動体1を旋回させるように該移動体1に外部から作用する力である。
例えば、乗員が移動体1を旋回させようとして、外部の物体(手摺、壁、床面等)に接触することによって、該外部の物体から受ける接触反力、あるいは、乗員の付添い者が移動体1を旋回させようとして、移動体1に付与する力等が、上記「外力」に相当する。
そして、運動回転力推定部521が上記の如く推定する運動回転力Tq1zには回転駆動力推定部522により推定される回転駆動力Tq2zと上記外力に起因する外力回転力Tq5zとが含まれる。
そこで、外力回転力推定部523は、外力回転力Tq5zを推定するために、運動回転力推定部521による運動回転力Tq1zの推定値から、回転駆動力推定部522による回転駆動力Tq2zの推定値を差し引く処理を演算部523aで実行する。
この演算部523aの出力値Tq3z(=Tq1z−Tq2z)は、概ね外力回転力Tq5zに近い値になるが、高周波のノイズ成分等も含まれやすい。そこで、外力回転力推定部523は、さらに、演算部523aの出力値Tq3zに、さらにローパス特性のフィルタリング処理を施すことを処理部523bで実行する。なお、処理部523bとしては、例えば、図示の如く、1/(Tc・s+1)という伝達関数(Tc:時定数)により表されるローパスフィルタを使用し得る。
また、移動体1の旋回動作時には、外力の有無によらずに、移動体1のヨーレートに応じた摩擦力(動摩擦力)が該移動体1の旋回動作の制動力として、床面から移動動作部3L,3Rを介して移動体1に作用する。従って、演算部523aの出力値Tq3zには、上記摩擦力に応じたヨー方向の回転制動力も含まれる。そして、該回転制動力は、その向き及び大きさが移動体1のヨーレートの向き(極性)及び大きさに応じて変化する。
そこで、外力回転力推定部523は、処理部523bの出力値Tq4zに対して不感帯処理を処理部523cで実行する。該不感帯処理では、処理部523cは、図8のグラフで例示する如く、ヨーレートセンサ24による移動体1のヨーレートωz_actの計測値に応じて不感帯を変化させるように、該不感帯の上限値及び下限値を決定する。
この場合、ヨーレートωz_actが負極性の値から正極性の値に増加するに伴い、上限値(>0)及び下限値(<0)が減少していくとともに、不感帯の中心値(=(上限値+下限値)/2)が正極性の値から負極性の値に変化していくように、ヨーレートωz_actの計測値に応じて不感帯の上限値及び下限値が設定される。そして、不感帯の幅(=上限値−下限値)は、一定に維持される。なお、ヨーレートωz_actの計測値の代わりに、前回の演算処理周期で決定された目標旋回速度ωz_cmdに応じて不感帯を設定してもよい。
そして、処理部523cは、上記のように設定した不感帯を用いて、処理部523bの出力値Tq4zに対する不感帯処理を実行する。該不感帯処理では、処理部523cは、処理部523bの出力値Tq4zが設定した不感帯域内の値である場合には、処理部523cの出力値Tq5zをゼロにする。
また、処理部523cは、処理部523bの出力値Tq4zが設定した不感帯域から逸脱した値である場合には、処理部523cの出力値Tq5zを、Tq4zと同極性で、その大きさ(絶対値)が、不感帯からのTq4zの逸脱量の大きさ(絶対値)の増加に伴い大きくなるように決定する。
例えば、Tq4zが、不感帯の上限値よりも大きい場合には、処理部523cの出力値Tq5zは、(Tq4z−不感帯の上限値)に比例した値に決定され、Tq4zが、不感帯の下限値よりも小さい場合には、処理部523cの出力値Tq5zは、(Tq4z−不感帯の下限値)に比例した値に決定される。
本実施形態では、外力回転力推定部523は、上記の如く不感帯処理を実行する処理部523cの出力値Tq5zを外力回転力の推定値として出力する。補足すると、本実施形態では、処理部523bのフィルタリング処理により得られる値Tq4zが本発明における該外力回転力の基本値に相当する。なお、例えば、処理部523bの処理を省略し、演算部523aの出力値Tq3zをTq4zの代わりに、処理部523cに入力して外力回転力Tq5zの推定値を求めることも可能である。
外力要求目標旋回速度決定部52は、次に、上記の如く求めた外力回転力Tq5zの推定値から、処理部524,525の処理を経て、外力要求目標旋回速度ωz_req2を決定する。処理部524では、外力回転力の推定値Tq5zに所定値のゲインKtを乗算してなる値と、処理部524の出力値(角速度)に所定値のゲインKwを乗算してなる値(フィードバック値)との偏差を、移動体1のヨー方向の慣性モーメントIzで除算することより、移動体1のヨー方向の目標角加速度が求められる。さらに、この目標角加速度を積分することで、外力回転力Tq5zの推定値によって要求される移動体1の旋回速度(ヨー方向の角速度)ωz_req20が求られる。
さらに、処理部525では、処理部524で求められた旋回速度ωz_req20に、所定の上限値及び下限値の間の許容範囲内の値に制限するリミット処理を施すことで、外力要求目標旋回速度ωz_req2が決定される。
この場合、ωz_req20が許容範囲内に収まっている場合には、ωz_req20がそのまま外力要求旋回速度ωz_req2として決定される。また、ωz_req20が許容範囲の上限値よりも大きく、あるいは、下限値よりも小さい場合には、それぞれ、許容範囲の上限値、下限値が、外力要求旋回速度ωz_req2として決定される。
目標旋回速度決定部50は、次に、切換処理部53の処理を実行する。本実施形態では、基本的には、外力回転力Tq5zの推定値がゼロである状態では、操縦要求旋回速度ωz_req1を目標旋回速度ωz_cmdとして決定し、外力回転力Tq5zの推定値がゼロでない状態では、外力要求旋回速度ωz_req2を目標旋回速度ωz_cmdとして決定する。ただし、目標旋回速度ωz_cmdを操縦要求旋回速度ωz_req1及び外力要求旋回速度ωz_req2の一方から他方に切り換える際には、目標旋回速度ωz_cmdを滑らかに変化させることが好ましい。
そこで、切換処理部53は、以下に説明する処理を実行する。切換処理部53は、外力回転力Tq5zの推定値が、ゼロであるか否かによって、係数k1の値を決定する処理を処理部53aで実行する。この場合、Tq5z=0のとき、k1=1、Tq5z≠0のとき、k1=0とされる。
そして、切換処理部53は、この係数k1に、ローパス特性のフィルタリング処理を施すことを処理部53bで実行することで、係数k2を生成する。なお、処理部53bとしては、例えば、1/(Tb・s+1)という伝達関数(Tb:時定数)により表されるローパスフィルタを使用し得る。
次いで切換処理部53は、係数k2を操縦要求旋回速度ωz_req1に乗算する処理を演算部53cで実行することで、補正後操縦要求旋回速度ωz_req1cを算出する。このように算出される補正後操縦要求旋回速度ωz_req1cは、外力回転力Tq5zがゼロに維持されている状態では、k2=1であるので、操縦要求旋回速度ωz_req1に一致する。そして、外力回転力Tq5zがゼロでない値に変化すると、補正後操縦要求旋回速度ωz_req1cは、操縦要求旋回速度ωz_req1に一致する値から徐々にゼロに変化し、続いて、ゼロに維持される。その後、外力回転力Tq5zが再びゼロになると、補正後操縦要求旋回速度ωz_req1cは、ゼロから操縦要求旋回速度ωz_req1に一致する値に徐々に変化し、続いて、操縦要求旋回速度ωz_req1に一致する値に維持される。
補足すると、本実施形態では、外力回転力Tq5zの推定値がゼロとなる状態が本発明における外力無し状態に相当し、外力回転力Tq5zの推定値がゼロでない状態が本発明における外力有り状態に相当する。なお、外力回転力Tq5zの推定値の大きさ(絶対値)がゼロ近辺の所定値よりも小さい状態を外力無し状態とみなし、この状態で、前記係数k1を“1”に設定してもよい。そして、外力回転力Tq5zの推定値の大きさ(絶対値)が該所定値よりも大きい状態を外力有り状態とみなし、この状態で、前記係数k1を“0”に設定してもよい。
目標旋回速度決定部50は、次に、上記の如く決定された補正後操縦要求旋回速度ωz_req1cと、外力要求旋回速度ωz_req2とを加え合わせる処理を演算部54で実行し、さらに、その演算結果の値(=ωz_req1c+ωz_req2)を所定の許容範囲内に制限するリミット処理を処理部55で実行することで、目標旋回速度ωz_cmdを決定する。
該リミット処理では、(ωz_req1c+ωz_req2)が所定の許容範囲内の値である場合は、その値が目標旋回速度ωz_cmdとして決定される。また、(ωz_req1c+ωz_req2)が所定の許容範囲の上限値よりも大きく、あるいは、下限値よりも小さい場合には、それぞれ、該許容範囲の上限値、下限値が目標旋回速度ωz_cmdとして決定される。
目標旋回速度決定部50の処理は以上説明した如く実行される。この場合、外力回転力Tq5zがゼロに維持されている状態(外力無し状態)では、操縦要求旋回速度ωz_req1が目標旋回速度ωz_cmdとして決定される。
また、移動体1に外力が付与されることによって、外力回転力Tq5zがゼロでない状態(外力有り状態)に変化すると、目標旋回速度ωz_cmdは、操縦要求旋回速度ωz_req1から外力要求旋回速度ωz_req2に徐々に近づいていくように変化し、最終的に外力要求旋回速度ωz_req2が目標旋回速度ωz_cmdとして決定される。
また、移動体1への外力の付与が解除され、外力回転力Tq5zがゼロに復帰する(外力無し状態に復帰する)と、目標旋回速度ωz_cmdは、操縦要求旋回速度ωz_req1に徐々に近づいていくように変化し、最終的に操縦要求旋回速度ωz_req1が目標旋回速度ωz_cmdとして決定される。
移動制御部31は、以上の如く目標並進速度決定部40及び目標旋回速度決定部50の処理を実行した後、次に、移動動作部3L,3Rのそれぞれの目標並進速度VwL_cmd_xy,VwR_cmd_xyを決定する処理を個別目標並進速度決定部60により実行する。
該個別目標並進速度決定部60は、移動動作部3L,3Rの全体の目標並進速度Vw_cmd_xyと、移動体1の目標旋回速度ωz_cmdとから、図9のブロック線図で示す処理により移動動作部3L,3Rのそれぞれの目標並進速度VwL_cmd_xy,VwR_cmd_xyを決定する。
すなわち、個別目標並進速度決定部60は、次式(8a),(8b)により左側の移動動作部3Lの目標並進速度VwL_cmd_xyを決定し、次式(8c),(8d)により右側の移動動作部3Rの目標並進速度VwR_cmd_xyを決定する。
VwL_cmd_x=Vw_cmd_x−ωz_cmd・(Tread/2) ……(8a)
VwL_cmd_y=Vw_cmd_y ……(8b)
VwR_cmd_x=Vw_cmd_x+ωz_cmd・(Tread/2) ……(8c)
VwR_cmd_y=Vw_cmd_y ……(8d)
上記式(8a),(8c)におけるTreadは、前記した如く、Y軸方向における移動動作部3L,3Rの間隔である。上記式(8a)〜(8d)により目標並進速度VwL_cmd_xy,VwR_cmd_xyを決定することで、移動動作部3L,3RのそれぞれのX軸方向の目標並進速度VwL_cmd_x,VwR_cmd_xの差(=VwR_cmd_x−VwL_cmd_x)によって生じるヨー方向の角速度が、目標旋回速度ωz_cmdに一致し、且つ移動動作部3L,3RのそれぞれのX軸方向の目標並進速度VwL_cmd_x,VwR_cmd_xの平均値が移動動作部3L,3Rの全体のX軸方向の目標並進速度Vw_cmd_xに一致するように移動動作部3L,3RのそれぞれのX軸方向の目標並進速度VwL_cmd_x,VwR_cmd_xが決定される。
また、移動動作部3L,3RのそれぞれのY軸方向の目標並進速度VwL_cmd_y,VwR_cmd_yは、移動動作部3L,3Rの全体のY軸方向の目標並進速度Vw_cmd_yに一致する速度に決定される。
移動制御部31は、上記の如く決定した目標並進速度VwL_cmd_xy,VwR_cmd_xyのうちの目標並進速度VwL_cmd_xyに応じて左側の移動動作部3Lの電動モータ21aL,21bLの作動制御を行い、目標並進速度VwR_cmd_xyに応じて右側の移動動作部3Rの電動モータ21aR,21bRの作動制御を行う。
この場合、移動制御部31は、左側の移動動作部3Lについては、該移動動作部3LのX軸方向及びY軸方向の並進速度と、電動モータ21aL,21bLのそれぞれの出力軸の回転速度との関係を規定するものとしたあらかじめ作成された相関データ(マップ、演算式等)に基づいて、目標並進速度VwL_cmd_xyに対応する電動モータ21aL,21bLのそれぞれの出力軸の目標回転速度を決定する。
そして、電動モータ21aL,21bLのそれぞれに対して目標回転速度に応じて公知の速度制御を実行することで、電動モータ21aL,21bLのそれぞれの出力軸の回転速度を目標回転速度に制御する。これにより、目標並進速度VwL_cmd_xyを実現するように、左側の移動動作部3Lの移動制御が行われる。右側の移動動作部3Rの移動制御についても上記と同様である。
以上説明した本実施形態の移動体1では、乗員の付添者、あるいは、乗員が通常の操縦操作(本実施形態では、Y軸方向への乗員の体重移動)によらずに、移動体1を外力によって旋回させようとしたときには、基本的には、外力回転力Tq5zに応じて決定される目標旋回速度ωz_cmd(=ωz_req2)に応じて移動動作部3L,3Rの旋回動作が行われる。このため、移動体1を外力によって旋回させることを円滑に行うことができる。
また、外力無し状態及び外力有り状態の一方から他方への変化時には、目標旋回速度ωz_cmdが操縦要求旋回速度ωz_req1及び外力要求旋回速度ωz_req2の一方側から他方側に徐々に変化するので、移動動作部3L,3Rの挙動を滑らかに変化させることができる。
また、外力回転力Tq5zを、ヨー方向の運動回転力Tq1zの推定値と、ヨー方向の回転駆動力Tq2zの推定値とから前記した外力回転力推定部523の処理により推定するので、信頼性の高い外力回転力Tq5zの推定値を得ることができる。ひいては、外力に応じた移動体1の旋回動作を適切に行うことができる。
なお、以上説明した実施形態の移動体1の移動動作部3L,3Rは、前記特許文献2に記載された構造の移動動作部であるが、移動動作部3L,3Rのそれぞれは、特許文献2に記載された構造のものには限られない。例えば、各移動動作部3及びその駆動系の構造として、例えば、PCT国際公開公報WO/2008/132778、あるいは、PCT国際公開公報WO/2008/132779、あるいは、特開2019−166863号公報に記載された構造のものを採用してもよい。あるいは、移動動作部3L,3Rのそれぞれは、例えば、車輪状のものであってもよい。また、移動体1に備える移動動作部の個数は、1つ、あるいは、3つ以上であってもよい。また、本発明における移動体は、倒立振子型の移動体に限らず、搭乗部の姿勢がほぼ一定に保持される構造の移動体であってもよい。
また、前記実施形態では、各移動動作部3の駆動用のアクチュエータとして電動モータ21a,21bを用いたが、該アクチュエータは、例えば油圧アクチュエータであってもよい。さらに、各アクチュエータの動作状態を検出するセンサとして、該アクチエータの出力トルクを、ひずみゲージ等を用いて検出し得るセンサを採用してもよい。
1…移動体、2…基体、3L,3R…移動動作部、4…搭乗部、21aL,21bL,21aR,21bR…電動モータ(アクチュエータ)、30…制御装置、31…移動制御部、521…運動回転力推定部、522…回転駆動力推定部、523…外力回転力推定部。

Claims (6)

  1. 床面上を移動可能な移動動作部と、該移動動作部を駆動するアクチュエータと、乗員の搭乗部と、前記移動動作部、前記アクチュエータ及び前記搭乗部が組み付けられた基体基体とを備える移動体の前記移動動作部の移動制御を、少なくとも前記搭乗部に搭乗した乗員による操縦操作に応じて前記アクチュエータを介して実行する制御装置であって、
    前記移動体の運動状態の観測データを取得し、該観測データに基づいて、該移動体の運動によって発生するヨー方向の慣性力に釣り合う回転力である運動回転力を推定する運動回転力推定部と、
    前記アクチュエータが出力する駆動力又は該駆動力に関連する状態量の観測データを取得し、該観測データに基づいて、前記アクチュエータから前記移動動作部に付与されるヨー方向の回転駆動力を推定する回転駆動力推定部と、
    前記移動体に付与された外力による回転力である外力回転力を、前記運動回転力推定部により推定された運動回転力と前記回転駆動力推定部により推定された回転駆動力とを用いて推定する外力回転力推定部と、
    該外力回転力推定部で推定された外力回転力と前記乗員による操縦操作とに応じて前記移動動作部の旋回動作を行わせるように前記アクチュエータを介して該移動動作部の移動制御を行う移動制御部とを備えることを特徴とする移動体の制御装置。
  2. 請求項1記載の移動体の制御装置において、
    前記外力回転力推定部は、前記運動回転力推定部により推定された運動回転力と前記回転駆動力推定部により推定された回転駆動力との差、又は該差にローパス特性のフィルタリング処理を施してなる値を、前記外力回転力の基本値として求める処理と、該基本値が所定の不感帯内の値であるときには、前記外力回転力の推定値をゼロとし、該基本値が該不感帯を逸脱した値であるときには、その逸脱量に応じて決定した値を前記外力回転力の推定値とする不感帯処理とにより前記外力回転力の推定値を求めるように構成されていることを特徴とする移動体の制御装置。
  3. 請求項2記載の移動体の制御装置において、
    前記外力回転力推定部は、前記不感帯を、前記移動体のヨーレートの観測データに応じて可変的に設定する機能をさらに有するように構成されていることを特徴とする移動体の制御装置。
  4. 請求項1〜3のいずれか1項に記載の移動体の制御装置において、
    前記移動制御部は、前記外力回転力推定部により推定された前記外力回転力がゼロである状態、又は該外力回転力の大きさが所定値よりも小さい状態である外力無し状態では、前記乗員による操縦操作に応じて決定した前記移動体の目標旋回速度に応じて前記アクチュエータの作動制御を実行し、前記外力回転力推定部により推定された前記外力回転力がゼロでない状態、又は該外力回転力の大きさが所定値よりも大きい状態である外力有り状態では、該外力回転力に応じて決定した前記移動体の目標旋回速度に応じて前記アクチュエータの作動制御を実行するように構成されていることを特徴とする移動体の制御装置。
  5. 請求項4記載の移動体の制御装置において、
    前記移動制御部は、前記外力回転力推定部により推定された前記外力回転力の状態が前記外力無し状態及び前記外力有り状態の一方の状態から他方の状態に変化したときには、前記移動体の目標旋回速度を徐々に変化させるように決定しつつ、該目標旋回速度に応じて前記アクチュエータの作動制御を実行するように構成されていることを特徴とする移動体の制御装置。
  6. 請求項1〜5のいずれか1項に記載の移動体の制御装置において、
    前記移動体は、床面上を全方向に移動可能な複数の前記移動動作部と、鉛直方向に対して傾動可能に前記基体に組付けられた前記搭乗部とを備える倒立振子型の移動体であることを特徴とする移動体の制御装置。
JP2020095847A 2020-06-02 2020-06-02 移動体の制御装置 Active JP7332536B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020095847A JP7332536B2 (ja) 2020-06-02 2020-06-02 移動体の制御装置
US17/335,067 US11873053B2 (en) 2020-06-02 2021-05-31 Control device for mobile body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020095847A JP7332536B2 (ja) 2020-06-02 2020-06-02 移動体の制御装置

Publications (2)

Publication Number Publication Date
JP2021187349A true JP2021187349A (ja) 2021-12-13
JP7332536B2 JP7332536B2 (ja) 2023-08-23

Family

ID=78706842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020095847A Active JP7332536B2 (ja) 2020-06-02 2020-06-02 移動体の制御装置

Country Status (2)

Country Link
US (1) US11873053B2 (ja)
JP (1) JP7332536B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7307706B2 (ja) * 2020-06-24 2023-07-12 本田技研工業株式会社 移動体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636662B2 (ja) 2000-09-11 2011-02-23 ナブテスコ株式会社 電動車椅子
EP2138378B1 (en) 2007-04-20 2018-08-01 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it
JP5358432B2 (ja) 2007-04-20 2013-12-04 本田技研工業株式会社 全方向駆動装置及びそれを用いた全方向移動車
US8249773B2 (en) 2008-11-27 2012-08-21 Toyota Jidosha Kabushiki Kaisha Vehicle and its control method
JP5959928B2 (ja) * 2012-05-14 2016-08-02 本田技研工業株式会社 倒立振子型車両
JP6081081B2 (ja) 2012-05-14 2017-02-15 本田技研工業株式会社 倒立振子型車両
JP5921950B2 (ja) * 2012-05-14 2016-05-24 本田技研工業株式会社 倒立振子型車両
JP6111119B2 (ja) * 2013-03-29 2017-04-05 本田技研工業株式会社 倒立振子型車両
JP5988952B2 (ja) 2013-11-14 2016-09-07 本田技研工業株式会社 車輪及び車輪装置及び倒立振子型車両
JP6920871B2 (ja) * 2017-04-24 2021-08-18 本田技研工業株式会社 倒立振子型車両
JP6698116B2 (ja) 2018-03-22 2020-05-27 本田技研工業株式会社 移動体
JP7065069B2 (ja) * 2019-12-25 2022-05-11 本田技研工業株式会社 移動体の制御装置

Also Published As

Publication number Publication date
US20210371037A1 (en) 2021-12-02
JP7332536B2 (ja) 2023-08-23
US11873053B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5921950B2 (ja) 倒立振子型車両
JP6081081B2 (ja) 倒立振子型車両
JP6111119B2 (ja) 倒立振子型車両
US8843271B2 (en) Inverted pendulum type vehicle
JP6081271B2 (ja) 倒立振子型車両
CN113031585A (zh) 移动体的控制装置
JP6062785B2 (ja) 倒立振子型車両
CN108725666B (zh) 倒立摆车
EP2783958B1 (en) Inverted pendulum type vehicle
JP7332536B2 (ja) 移動体の制御装置
JP6095436B2 (ja) 倒立振子型車両
KR101478599B1 (ko) 도립진자형 차량
JP6081270B2 (ja) 倒立振子型車両
JP5959927B2 (ja) 倒立振子型車両
JP5927031B2 (ja) 倒立振子型車両
JP5808289B2 (ja) 倒立振子型車両
WO2019167729A1 (ja) 搭乗型移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150