JP2021184985A - リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法 - Google Patents

リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法 Download PDF

Info

Publication number
JP2021184985A
JP2021184985A JP2020147310A JP2020147310A JP2021184985A JP 2021184985 A JP2021184985 A JP 2021184985A JP 2020147310 A JP2020147310 A JP 2020147310A JP 2020147310 A JP2020147310 A JP 2020147310A JP 2021184985 A JP2021184985 A JP 2021184985A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrogenation
ring
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020147310A
Other languages
English (en)
Inventor
敬人 満留
Takahito Mitsutome
渉 山口
Wataru Yamaguchi
周 藤田
Shu Fujita
晋司 上野
Shinji Ueno
庸介 今仲
Yosuke IMANAKA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Osaka University NUC
Original Assignee
NE Chemcat Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp, Osaka University NUC filed Critical NE Chemcat Corp
Publication of JP2021184985A publication Critical patent/JP2021184985A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】従来より有機化合物の水素化に用いられているスポンジ触媒の問題点を解決した、新たな触媒を提供する。【解決手段】リン化ニッケルのナノ粒子を有効成分とすることを特徴とする触媒。【選択図】図1

Description

本発明は、リン化ニッケルのナノ粒子を有効成分とする触媒およびこれを用いた水素化化合物製造方法と開環化合物製造方法に関する。
ニッケルやコバルトを触媒として使用する場合、ニッケルやコバルトをスポンジ状にした触媒を使用することが知られている。このようなスポンジ状の触媒はラネー触媒(商標登録番号第3214822号)としても知られている(特許文献1、非特許文献1)。
このスポンジ状の触媒(以下、「スポンジ触媒」という)は、ニッケルやコバルトとアルミニウムからなる合金(ラネー合金ともいう)から、水酸化ナトリウム水溶液でアルミニウムのみを溶解除去したものである。
このようなスポンジ触媒は、スポンジ状金属そのものを触媒として使用することもできるが、触媒の性能向上を目的として更にマンガン、銅、鉄、クロムおよびモリブデン等の他の元素を含有させることも知られている(特許文献2)。
具体的に、スポンジ触媒を使用する反応としては、二重結合または三重結合を有する不飽和化合物、アルデヒド化合物、カルボニル化合物、ニトリル化合物、ニトロ化合物等の水素化、芳香族、ヘテロ環の水素化、脱ハロゲン、ラクタム精製、水素化分解、還元アミノ化等の種々の有機化合物の水素化が知られている。
また、このような元素を使用したスポンジ触媒は大気中において非常に不安定で発火の危険性が知られている(特許文献3)。そのため、触媒の調製・溶媒の置換、および反応のすべての過程において嫌気雰囲気にて行う必要があり、保管にあたっても大気に触れることは厳に避け、水やアルコール中で保存する必要があり、産業的にはコバルト等の触媒活性を有する金属と、その金属が溶解しない酸やアルカリで溶解除去される金属との合金の状態で保存される。
特開平6−121929号公報 特開2015−143194号公報
Shigeo Nishimura, "Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis", pp. 261 - 263, John Wiley and Sons, New York, 2001
本発明は、従来より有機化合物の水素化に用いられているスポンジ触媒の問題点を解決した、新たな触媒を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意研究した結果、リン化ニッケルのナノ粒子を有効成分とした触媒を用いることにより、上記問題点を解決できることを見出し、本発明を完成させた。
すなわち、本発明は、リン化ニッケルのナノ粒子を有効成分とすることを特徴とする触媒である。
また、本発明は、有機化合物を、上記触媒を用いて水素化することを特徴とする水素化有機化合物の製造方法である。
更に、本発明は、環状ヘテロ化合物を、上記触媒を用いて開環することを特徴とする開環化合物の製造方法である。
また更に、本発明は、不飽和結合を持つ環状ヘテロ化合物を、上記触媒を用いて水素化と開環を1段階で行うことを特徴とする水素化開環化合物の製造方法である。
本発明の水素化触媒は、大気中においても非常に安定で発火の危険性がない。
また、本発明の水素化有機化合物の製造方法は、水素化有機化合物を、転化率や収率よく製造することができる。
更に、本発明の開環化合物の製造方法は、開環化合物を、転化率や収率よく製造することができる。
また更に、本発明の水素化開環化合物の製造方法は、水素化と開環を1段階で行うことができ、更に、転化率や収率よく製造することができる。
実施例触媒1のHAADF−STEM(High―Angle Annular Dark Field Scanning Transmission Electron Microscope;高角環状暗視野‐走査透過電子顕微鏡)画像である。 実施例触媒1のX線回折(XRD:X−Ray diffraction)の結果とJCPDS(Joint Committee of Powder Diffraction Standards)カード[NiP (03−953)]を共に表示した図である。 図1の一部にEDX(Energy dispersive X―ray spectrometry;エネルギー分散型X線分析)線分析によりニッケルとリンの存在位置を観察した画像を重ねている。 実施例触媒1をHAADF−STEMによりニッケル元素のマッピングを行った画像である。 実施例触媒1をHAADF−STEMによりリン元素のマッピングを行った画像である。 図4と図5の画像を重ね合わせた画像である。 実施例触媒1‘のHAADF−STEM画像である。 実施例触媒1‘に関するX線回折の結果とJCPDSカード[NiP (03−953)]を共に表示した図である。 実施例触媒1‘をHAADF−STEMによりニッケル元素のマッピングを行った画像である。 実施例触媒1‘をHAADF−STEMによりリン元素のマッピングを行った画像である。 実施例触媒1‘をHAADF−STEMによりニッケル元素とリン元素のマッピングを行った画像である。 実施例触媒1‘およびラネーニッケルを用いたHMFの水素化のアレニウスプロットである。
本発明の触媒(以下、「本発明触媒」という)は、リン化ニッケル(Ni)のナノ粒子を有効成分とするものである。また、本発明においてナノ粒子とは、平均粒子径がナノオーダーのものを言い、好ましくは1〜500nm、より好ましくは10〜300nmである。なお、本発明において平均粒子径は透過型電子顕微鏡等の電子顕微鏡で任意の数の粒子を観察し、それらの観察結果の平均値のことをいう。
上記ナノ粒子の形状は特に限定されないが、例えば、球状、長細い楕円のような形状、虫のようなワームライクナノ粒子(NW)等が挙げられる。
リン化ニッケル(Ni)のナノ粒子のニッケルとリンの比率は、1:0.3〜1、つまりリンのモル比がニッケルに対して1以下であることが好ましく、さらに0.8以下であることが好ましい。リン化ニッケル(Ni)としては、NiP、Ni、Ni12、NiP、Niなどが挙げられ、特にNiP、Niが好ましい。
上記のようなリン化ニッケルは、公知の方法、例えば、ニッケル化合物溶液とリン化合物溶液の混合溶液から沈殿物として得ることができる。
このような沈殿物を得る方法は、文献(Junfeng Liu and Andreu Cabot et al, J. Mater. Chem. A, 2018, 6, 11453-11462)にも詳しく記載されている。この方法は、ニッケル塩と、ニッケル塩を還元する際の粒子径の成長を抑制する成分と、溶媒と、前記溶媒に易溶解性なリン化合物とを、不活性ガス雰囲気中で加熱保持する方法である。
上記方法で用いられるニッケル塩は、特に限定されるものではないが、取り扱いが容易なものであることが好ましい。このようなニッケル塩としてはNiClやNi(acac)、Ni(NOが挙げられる。
上記方法で用いられるニッケル塩を還元する際の粒子径の成長を抑制する成分としては、例えば、金属ニッケルの成長を抑制する成分として知られている、プロピルアミン、ブチルアミン、オクチルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オレイルアミン等のアミン基を有する化合物からなる群より選ばれる1種または2種以上のキャッピング成分(特表2014−514451号公報)等が挙げられる。このような金属ニッケルの成長を抑制するキャッピング成分が、リン化ニッケルの粒子成長も抑制できることは、一見その作用が異なるように思われるが、後述するように、本発明者らの検証によればリン化ニッケルにおけるニッケルの電子状態は0価である金属ニッケルと同様であることが確認されており、前述の金属ニッケルの成長抑制と同様の作用により、生成中の粒子成長が抑制されるものと思われる。
上記方法で用いられる溶媒としては、特に限定されないが、例えば、高沸点な極性溶媒であることが好ましい。このような溶媒としては1−オクタデセン等が挙げられる。
上記方法で用いられる、上記溶媒に易溶解性なリン化合物は、特に限定されるものではないが、取り扱いが容易なものであることが好ましい。このようなリン化合物としてはトリフェニルホスファイト等の3級のホスファイト等やトリオクチルホスフィン、トリフェニルホスフィン等の3級のホスフィン等が挙げられる。なお、易溶解性とは、原料リン化合物と溶媒の組み合わせはNi沈殿の生成時の加熱温度以下で原料リン化合物が完全に溶解可能な溶解度であることが好ましく、例えば100℃において14g/L以上の原料リン化合物の溶解が可能である組み合わせが好ましい。
上記方法においては、溶媒中に、ニッケル塩と、ニッケル塩を還元する際の粒子径の成長を抑制する成分と、前記溶媒に易溶解性なリン化合物とを、それぞれのモル換算で、ニッケル塩を0.1〜10としたとき、また好ましくは1〜5としたき、前記抑制する成分は1〜100、好ましくは10〜50、リン化合物は1〜100、好ましくは10〜50使用し、アルゴン、窒素等の不活性ガス雰囲気中で250〜350℃、好ましくは280〜320℃で加熱し、これを2〜6時間程度保持して沈殿を得る。この沈殿は、洗浄・濾過してもよい。この洗浄・濾過後には、更に、乾燥等をしてもよい。
上記方法において、本発明触媒の作用の促進を目的として、ニッケル塩の一部に代えて、コバルト、マンガン、銅、鉄、クロム、モリブデン等の金属成分の塩を添加しても良い。
斯くして得られる本発明触媒は、従来のスポンジ触媒に代えて水素化等に利用することができる。その理由は定かではないが、リン化ニッケル中のニッケルがメタル(0価)と同じ状態であり、かつナノサイズであることが考えられる。本発明のリン化ニッケルを得る方法は特に限定されるものでは無いが、原料としてのリン化合物の仕込量を調整することによっても得ることができる。このようにリン化合物の仕込量を調整する場合、[リン化合物中のリンのモル数/ニッケル塩中のニッケルのモル数]は2〜50であることが好ましく、2.5〜30あることがより好ましい、さらに5〜25であることが好ましい。
また、本発明触媒は、水素化等だけでなく、環状ヘテロ環化合物の開環にも利用することができる。その理由は定かではないが、リン化ニッケル中の表面のリン酸点が水和反応を促進するためであると考えられる。
更に、本発明触媒は、不飽和結合を持つ環状ヘテロ環化合物であれば、水素化と同時に開環も行うことができる(これを「水素化および開環の1段階反応」ということもある)が、その理由も定かではない。
本発明触媒におけるニッケルの価数は、例えば、X線吸収微細構造(X-ray absorption fine structure:XAFS)により解析することができる。具体的には、金属原子に対し高強度X線、好適にはエネルギーを連続的に変化させた高強度X線を照射することにより、金属原子の内殻電子を非占有軌道以上のエネルギー準位に励起することにより、励起された金属原子は入射X線の励起エネルギーと内殻電子の結合エネルギーとの差に相当する運動エネルギーをもつ光電子を放出し、当該金属原子のX線吸収スペクトルにおける吸収端の近傍に微細構造が現れ、これを解析することによって、金属原子の電子状態を特定することができる。
このようなXAFSのエネルギー領域の内、吸収端近傍数10eV程度に現れる微細構造をX線吸収端近傍構造(XANES:X-ray absorption near edge structure)という。XANESは非占有軌道への励起に起因し、金属原子の酸化数や配位構造等に依存したスペクトル構造である。XANESスペクトルにおける吸収端のエネルギーは、金属原子の電子状態(価数)によって異なる。
本発明触媒をXANESにより解析したところ、Niナノ粒子(NiP、Ni、NiP、NiPのナノ粒子)の吸収端のエネルギーは金属としての0価のNiとNiOの間に位置しており、Niナノ粒子のNi種の平均酸化状態が0から2.18の範囲にあることを示している。特にNiPナノ粒子とNiナノ粒子の吸収端エネルギーは金属のNiに近く、空気中で金属のような状態を示していることが示唆された。
一方、XAFSのエネルギー領域の内、吸収端から約1000eV高エネルギー側まで続く変調構造を広域X線吸収微細構造(EXAFS:Extended X-ray absorption fine structure)という。EXAFSは、励起電子と近接原子からの散乱電子の相互作用に起因して得られる振動構造であり、フーリエ変換により得られる動径分布関数は、金属原子の局所構造(周囲の原子種、配位原子の数、原子間距離)に関する情報を含む。
本発明触媒をEXAFSにより解析したところ、NiPナノ粒子とNiナノ粒子はそれぞれNi−P結合とNi−Ni結合に対応する1.7Åと2.3Åの距離に2つのピークを示した。
本発明触媒の表面NiとPの電子状態をX線光電子分光法(XPS)で解析したところ、NiPナノ粒子のNi 2pスペクトルは主に853.1eVと870.1eVに位置するNi 2p3/2とNi 2p1/2の結合エネルギーピークを示し、金属NiのNi 2p3/2(852.8eV)とNi 2p1/2(870.0eV)に近いものであり、前述のXANESの結果と一致した。また、P 2pスペクトルは129.5eVと134.4eVの2つのピークを示し、NiPナノ粒子の表面に異なる電子状態のPが共存していることを示した。129.5eVはPのピーク(130.0eV)に近くPの0〜1価であると考えられ、134.4eVは表面酸化から生じる非還元リン酸種PO 3−と考えられる。
本発明触媒は、そのままでも水素化触媒として利用することができるが、反応系からの触媒の分離が容易になり、触媒の耐久性も向上する場合があり、産業的に有利となるため、担体に担持させることが好ましい。
本発明触媒を担持することのできる担体としては、特に限定されず、比表面積値の大きく、広く触媒の用途に使用される多様な担体が使用可能である。このような担体としては無機酸化物微粒子、活性炭等が挙げられる。これらの担体の中でも無機酸化物微粒子が好ましい。無機酸化物微粒子としては、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、酸化イットリウム、5酸化ニオブ、モルデナイトのような金属酸化物の微粒子の他、これら酸化物の組み合わせたものや、ハイドロキシアパタイト(HAP)、ゼオライト、ハイドロタルサイト(HT)のような複合酸化物等の微粒子であってもよい。なお、ここで微粒子とは、ナノサイズのリン化ニッケルよりも粒子径が大きな粒子であれば特に限定されるものではなく、例えば、粒子径が体積基準で10〜100μm程度の粉体や、0.5〜5mm程度の球状のもの等が挙げられる。
また、上記担体の比表面積値も特に限定されないが、例えば、10〜1000m/gであることが好ましく、100〜500m/gがさらに好ましい。
なお、上記した本発明触媒を担持することのできる担体の中でも反応によって担体効果があるものもある。例えば、開環反応に用いる場合には、ハイドロタルサイト等の塩基性担体が好ましく、カルボニル基の水素化に用いる場合はハイドロタルサイトが好ましい。
更に、本発明触媒を担体に担持させる方法も特に限定されず、例えば、リン化ニッケルを調製する際のニッケル塩やリン化合物を含有する溶液に、担体を投入して、ニッケル塩やリン化合物を担体に含侵させた後、還元や乾燥や焼成を加えてリン化ニッケルを担体へ担持させる方法、リン化ニッケルのナノ粒子が分散した溶液を担体に含侵させる方法、リン化ニッケルのナノ粒子が分散した溶液と担体を混合する方法等が挙げられる。
本発明触媒を用いれば、有機化合物を水素化して水素化有機化合物を製造することができる。水素化の条件は特に限定されず、従来のスポンジ触媒を用いた水素化において、本発明触媒を用いるだけでよく、従来の設備に大規模な修正を加える必要もなく、オートクレーブ等の汎用の合成装置を用いることもできる。また、本発明触媒はナノ粒子という小粒径であることにより、水素化による水素化有機化合物の収率が急激に向上する。
本発明触媒は従来のスポンジ触媒に代わる安全な触媒であり、従来のスポンジ触媒において促進可能な触媒反応全てにその有効性が期待できる。触媒反応としては、例えば、二重結合または三重結合を有する不飽和化合物、アルデヒドやケトンを含むカルボニル化合物、ニトリル化合物、ニトロ化合物等の水素化、芳香族、ヘテロ環の水素化、脱ハロゲン、ラクタム精製、水素化分解、還元アミノ化等の水素化等の種々の有機化合物の水素化反応等が挙げられる。
上記水素化反応に好ましい有機化合物と、水素化により製造される水素化有機化合物としては以下のものが挙げられる。
<有機化合物> <水素化有機化合物>
ニトリル化合物 第一級アミン化合物
ニトロ化合物 第一級アミン化合物
カルボニル化合物 アルコール化合物
不飽和化合物 飽和化合物
具体的に、本発明触媒を用いてアルデヒド化合物を水素化してアルコール化合物を製造する場合、加熱、加圧された水素含有雰囲気のもと、湿式でアルデヒド化合物を、本発明触媒を用いて水素化すればよい。
この反応においては、系内に本発明触媒を有機化合物の水素化に十分な量で存在させ、加熱条件は20〜200℃、好ましくは60〜180℃、より好ましくは100〜150℃である。加圧条件は0.1〜10MPa、好ましくは0.3〜5MPaである。水素含有雰囲気は、水素ガスまたは水素ガスとアルゴン等の不活性ガスとの混合ガスが挙げられ、水素ガスまたは水素ガスと不活性ガスとの混合ガスが好ましい。湿式条件の溶媒は特に限定されるものではなく、テトラヒドロフラン(THF)などの非プロトン性極性溶媒、トルエンなどの非極性溶媒、2−プロパノール等の各種アルコールや水に代表されるプロトン性極性溶媒等が使用できる。このような溶媒の中でもプロトン性極性溶媒が特に好ましい。
上記カルボニル化合物は、特に限定されず、種々のアルデヒド基やケトン基を含むカルボニル基を有する化合物を用いることができる。
また、本発明触媒を用いれば、環状ヘテロ化合物を加水分解して開環化合物を製造することができる。開環の条件は特に限定されず、本発明触媒を用いるだけでよく、従来の設備に大規模な修正を加える必要もなく、オートクレーブ等の汎用の合成装置を用いることもできる。また、本発明触媒はナノ粒子という小粒径であることにより、収率が急激に向上する。
上記開環反応に好ましい有機化合物としてはヘテロ環のα炭素に水和できるような構造を持っていればよく、例えば、5‐ヒドロキシメチルフルフラール(HMF)、5‐メチルフルフリルアルコール、グルコース、スクロース、ラクトース、トレハロース、マルトース、マンノース、ガラクトース、フルクトース、ソルボース、タガトース等のヘキソース、アラビノース、キシロース、リボース、キシルロース、リブロース等のペントース、ペントサン、キシラン、サッカロース、澱粉、セルロース等の単糖類や多糖類等が挙げられる。このうちHMF、メチルフルフリルアルコール、グルコース、スクロース、ラクトース、トレハロース、マルトースが好ましい。
この反応においては、系内に本発明触媒を有機化合物の開環化に十分な量で存在させ、加熱条件は20〜200℃、好ましくは60〜180℃、より好ましくは100〜150℃である。加圧条件は0.1〜10MPa、好ましくは0.3〜5MPaである。雰囲気は、窒素やアルゴン等の不活性ガスやこれらの混合ガスまたは空気が挙げられる。湿式条件の溶媒は特に限定されるものではなく、テトラヒドロフラン(THF)などの非プロトン性極性溶媒、トルエンなどの非極性溶媒、2−プロパノール等の各種アルコールや水に代表されるプロトン性極性溶媒等が使用できる。このような溶媒の中でもプロトン性極性溶媒が特に好ましい。
更に、本発明触媒を用いれば、例えば、上記環状ヘテロ化合物が不飽和結合を持っていれば、上述した水素化反応と開環反応を1段階で行うこともできる。その場合には、系内に水素化反応に必要な水素が存在していればよい。
なお、本発明の触媒を産業用途に使用することを想定した場合、使用する反応装置は特に限定されるものでは無く、産業用に使用される様々な装置に使用可能である。このような産業用反応装置は大きく分けて回分式(バッチ式ともいう)と連続式とに分類されることがある。回分式は基質や触媒の投入、反応、生成物の分離回収等の工程が一つずつ順番に行われるもので、実験施設で使用される事も多い。これに対して連続式と言われる反応器は、産業用設備として多く採用されている装置であり、各反応工程を連続的かつ同時に行う事が可能になるもので、大量生産に適した産業上有利な反応装置であるといえる。
連続式反応装置には大きく分けて流動床反応装置と固定床反応装置の二種類に分けられることがある。流動床反応装置中では基質を含む反応物中に触媒を浮遊させた状態で混合され、反応物分子と触媒活性点との接触し易さの点で優れているが、反応後は触媒と生成物の分離が必要になる。また、触媒を粒子として浮遊させる必要が有るため使用する触媒粒子は粒子径が小さなものになる。
一方で固定床反応装置では流体として反応装置中を移動するのは反応物のみで、触媒は装置中で固定され、反応物は固定された触媒床を通過する際に反応して生成物が得られる。得られた生成物は触媒と分離された状態で反応装置から排出される。このため、反応後に反応系からの触媒の除去が不要で連続運転に向いており、産業用途向きの装置であるともいえる。固定床反応装置では反応物は触媒床を適切な流速で通過する空隙が必要であり、固定床反応装置に使用される触媒は粒状やハニカム状に成型したり、粒状やハニカム状に成型された担体に本発明の触媒を担持あるいは含侵させたものを使用する事が多い。
また、このような装置を使用した反応では、液相反応物の状態で反応と気相反応に分けられる事がある。液相反応は反応物あるいは基質と溶媒の混合反応溶液を液体のまま触媒と接触させることにより反応を行うものである。液相反応では反応物や反応溶液を気化させる必要が無い分、反応に要するエネルギーを少なくすることができる。一方で、気相反応では反応物が気体であることから反応に必要な分子同士の衝突が容易であり反応速度に優れている。
このような反応装置、反応機構を踏まえると、本発明の触媒は固定床反応装置を使用した気相反応によって使用されることが好ましい。
以下、本発明を実施例を挙げて詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、特にことわりの無い限り、以下の実施例における収率は内部標準法ガスクロマトグラフィー(GC)定量分析によって求めたものである。
実施例触媒1
NiPナノ粒子の製造:
塩化ニッケル(NiCl)(1mmol)、ヘキサデシルアミン(10mmol)、1−オクタデセン(10mL)、トリフェニルフォスファイト(10mmol)をシュレンクフラスコに加えて真空中、120℃で1時間撹拌し、不純物・水分・酸素を除去した後アルゴン雰囲気下、300℃で2時間撹拌し黒色コロイド溶液を得た。その後、混合液をアセトンで沈殿、ろ過し、クロロホルムとアセトンの混合溶媒で数回洗浄し得られた粉末を真空下で一晩乾燥させてNiPナノ粒子を得た。本実施により調製されたNiPナノ粒子触媒は平均直径が5.4nmのサイズ分布が狭い(±1.4nm)規則的な粒子であった。実施例触媒1のHAADF−STEM画像を図1に示した。得られた実施例触媒1を大気中で一日放置して乾燥させたが、スポンジ触媒で懸念されるような発火は生じなかった。
実施例触媒2
Niナノ粒子の製造:
Ni(acac)(0.33mmol)とオレイルアミン(0.5mmol)をn−オクチルエーテル(4.7mL)に溶かし、トリオクチルホスフィン(11mmol)を加えて真空中、120℃で1時間撹拌し、不純物・水分・酸素を除去した後アルゴン雰囲気下、400℃で20時間撹拌し黒色コロイド溶液を得た。その後、混合液をアセトンで沈殿、ろ過し、クロロホルムとアセトンの混合溶媒で数回洗浄し得られた粉末を真空下で一晩乾燥させてNiナノ粒子を得た。
実施例触媒3
NiP/モルデナイトの調製:
上記の操作で得られた実施例触媒1を22mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのモルデナイト(1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒3を得た。
実施例触媒4
NiP/SiOの調製:
担体としてモルデナイトに替えSiOを使用した以外は実施例触媒3と同様にして本発明の実施例触媒4を得た。
実施例触媒5
NiP/ZSM−5の調製:
担体としてモルデナイトに替えZSM−5を使用した以外は実施例触媒3と同様にして本発明の実施例触媒5を得た。
実施例触媒6
NiPナノ粒子の製造:
Ni(acac)(0.33mmol)とオレイルアミン(0.5mmol)をn−オクチルエーテル(2.0mL)に溶かし、トリオクチルホスフィン(16mmol)を加えて真空中、120℃で1時間撹拌し、不純物・水分・酸素を除去した後アルゴン雰囲気下、400℃で20時間撹拌し黒色コロイド溶液を得た。その後、混合液をアセトンで沈殿、ろ過し、クロロホルムとアセトンの混合溶媒で数回洗浄し得られた粉末を真空下で一晩乾燥させてNiPナノ粒子を得た。
比較例触媒1
NiP:
市場から試薬のNiPを入手して比較例触媒1とした。
比較例触媒2
CoPナノ粒子:
塩化コバルト(CoCl)(1.0mmol)、ヘキサデシルアミン(10mmol)、トリフェニルホスファイト(10mmol)、1−オクタデセン(10.0mL)をシュレンクフラスコに加えて撹拌した。混合液をアルゴンフロー下で150℃1時間加熱した。続いて、温度を20分間で溶媒沸点(約290℃)まで上昇させ、その後2時間維持した後、200℃まで冷却し、水浴で急速に室温まで冷却し黒色生成物を得た。得られた黒色生成物をアセトンで洗浄し、沈殿させて回収し、更にクロロホルムとアセトンを用いて洗浄を行い、比較例触媒2を得た。
試験例1
水素化反応:
水素化反応はオートクレーブにて行った。オートクレーブに6mol%のNiP/モルデナイト触媒、10mlの水、0.1mmolの基質3‐ヘキセン‐2,5-ジオンを加え、その後、水素の加圧雰囲気2MPa、100℃の条件下で1時間、以下の反応を行ったところ収率は96%だった。
Figure 2021184985
上記の結果から、本発明の触媒は水素の圧力が低い条件でも高い収率で水素化化合物を得ることができることが確認できた。
試験例2
開環反応:
基質を0.25mmolの5‐メチルフルフリルアルコール、水素を窒素の1MPa雰囲気にかえた以外は試験例1と同様にして以下の反応を行ったところ収率は41%だった。
Figure 2021184985
試験例2の結果から、本発明の触媒は環状ヘテロ化合物の開環反応に有用であることができることが確認できた。
試験例3
水素化と開環の一段階反応:
窒素を水素の2MPa雰囲気にかえた以外は試験例2と同様にして以下の反応を行ったところ収率は79%だった。
Figure 2021184985
試験例3の結果から、本発明の触媒は、不飽和結合を持つ環状ヘテロ化合物の水素化と開環反応を一段階で効率的に行えることが分かった。
試験例4
基質多様性:
基質をHMF(5‐ヒドロキシメチルフルフラール)にかえた以外は試験例3と同様にして以下の反応を行ったところ収率は84%だった。
Figure 2021184985
試験例5
触媒・多様性担体:
基質を5‐メチルフルフラール、反応温度を130℃、表1に示す反応時間・触媒にかえた以外は試験例3と同様にして以下の反応を行った結果を表1に示す。
Figure 2021184985
Figure 2021184985
表1より粉状のNiPやCoPナノ粒子ではほとんど反応が進まなかったのと比べて、Niナノ粒子触媒およびNiナノ粒子を担体に担持した触媒は、反応が進み高い転化率と収率を示すことが分かった。また、Niナノ粒子中のリンのモル比がニッケルに対して1以下、好ましくは0.8以下であることにより触媒としての性能が高いことが分かった。
試験例6
触媒の耐久性:
本発明触媒の耐久性を評価するため、表1の例4の反応に使用した触媒を濾過した後、前記の触媒の比較時と同じ反応を繰り返し、本発明の触媒の耐久性を検証した。結果を表2に記す。
Figure 2021184985
表2の結果から、本発明触媒は優れた耐久性を有することが分かった。
また、本発明触媒について構造解析を行った。結果を図2に示す。図2は実施例触媒1に関するX線回折の結果とJCPDSカード[NiP (03−953)]を共に表示した図である。図2中の縦の棒グラフで示してあるのがJCPDSカードに記載のNiPピークである。本発明の実施例触媒1ではNiP粉末の特徴的なピークが確認された。これにより、実施例触媒1にはNiPが含まれている事が分かる。同様に実施例触媒2と6についてもX線回折の結果とJCPDSカードからその構造を特定しNiとNiPがそれぞれに含まれている事を確認した。
図3は図1の一部にEDX(Energy dispersive X―ray spectrometry;エネルギー分散型X線分析)線分析によりNiとPの存在位置を観察した画像を重ねた画像である。この結果から、実施例触媒1は一つのナノ粒子中でNi元素とP元素が均一に分布している事が分かった。
図4と図5はHAADF−STEMにより元素マッピングを行った画像である。図4はNi元素の分布を表した画像であり、図5はP元素の分布を表した画像であり、図6の右はNi元素分布とP元素分布を複合した画像である。この結果から、実施例触媒1ではNi元素とP元素が偏りなく粗均一に分布していることがわかった。
XRD、HAADF−STEMによる解析結果から、実施例触媒1の触媒は、NiPを構成要素としたナノサイズの整った形状の結晶構造を有する事が分かった。
実施例触媒1‘
NiP NW(ワームライクナノ粒子)の調製:
ニッケルアセチルアセトナート(Ni(acac))(1mmol)、ヘキサデシルアミン(10mmol)、トリフェニルフォスファイト(10mmol)をシュレンクフラスコに加えて真空中、120℃で1時間撹拌し、不純物・水分・酸素を除去した後アルゴン雰囲気下、315℃で2時間撹拌し黒色コロイド溶液を得た。その後、得られた混合液を室温に冷却し、アセトンを加えて生じた沈殿をろ過し、クロロホルムとアセトン(1:1)の混合溶媒で数回洗浄し得られた粉末を真空下で一晩乾燥させてNiP NWを得た。本実施により調製されたNiP NW触媒は長さが25nm、幅が3nmの独特の虫のようなナノ構造が規則的に形成されていた。実施例触媒1‘のHAADF−STEM画像を図7に示した。得られた実施例触媒1を大気中で一日放置して乾燥させたが、スポンジ触媒で懸念されるような発火は生じなかった。
また、実施例触媒1‘について構造解析を行った。結果を図8に示す。図8は実施例触媒1‘に関するX線回折の結果とJCPDSカード[NiP (03−953)]を共に表示した図である。図8中の縦の棒グラフで示してあるのがJCPDSカードに記載のNiPピークである。本発明の実施例触媒1‘ではNiP粉末の特徴的なピークが確認された。これにより、実施例触媒1‘にはNiPが含まれている事が分かる。
図9と図10と図11はHAADF−STEMにより元素マッピングを行った画像である。図9はNi元素の分布を表した画像であり、図10はP元素の分布を表した画像であり、図11はNi元素分布とP元素分布を複合した画像である。この結果から、実施例触媒1ではNi元素とP元素が偏りなく粗均一に分布していることがわかった。
HAADF−STEMによる解析結果から、実施例触媒1の触媒は、NiPを構成要素としたナノサイズの整った形状の結晶構造を有する事が分かった。
実施例触媒7
NiP/HTの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのハイドロタルサイト(富田製薬社製AD−500NS:1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒7を得た。
実施例触媒8
NiP/TiOの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのTiO(富士シリシア社製JRC TIO−4:1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒8を得た。
実施例触媒9
NiP/Yの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのY(和光純薬工業社製:1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒Xを得た。
実施例触媒10
NiP/ZrOの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのZrO(富士シリシア社製JRC ZRO−6:1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒10を得た。
実施例触媒11
NiP/Alの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのAl(住友化学社製AKP−G015:1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒11を得た。
実施例触媒12
NiP/Nbの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのNb(和光純薬工業社製:1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒12を得た。
実施例触媒13
NiP/SiOの調製:
上記の操作で得られた実施例触媒1‘を30mg、ヘキサン(50mL)に加え1時間超音波処理し、担体としてのSiO(1g)を加え、室温で6時間撹拌し、ろ過・洗浄後、真空乾燥することで本発明の実施例触媒13を得た。
試験例7
カルボニル基の水素化反応(担体効果):
カルボニル基の水素化反応はオートクレーブにて行った。50mLのステンレスオートクレーブに10mol%の各触媒、3mLの水、0.5mmolの基質を加え、その後、2MPaの水素の加圧雰囲気の下、100℃、1時間反応を行った結果を表3に示す。
Figure 2021184985
Figure 2021184985
試験例8
触媒の耐久性:
表3のNiP/HTの反応(収率93%)後、遠心分離により触媒を分離し、脱イオン水で洗浄し繰り返し反応を行ったところ、収率が1回目は93%、2回目は94%、3回目は92%、4回目は93%、5回目は90%となった。
試験例9
カルボニル基の水素化反応:
カルボニル基の水素化反応は実施例触媒7(NiP/HT触媒)を用い、オートクレーブにて行った。50mLのステンレスオートクレーブに1.5mol%(41.8mg)、6mol%(167mg)または12mol%(333mg)のNiP/HT触媒、3mLの水、0.1mmolの基質を加え、その後、水素の加圧雰囲気の下記表の各条件下で反応を行った結果を表4に示す。
Figure 2021184985
Figure 2021184985
また、例30のHMFの水素化(60℃、H5MPa、水1mL)における触媒回転頻度は実施例触媒7のNiP/HTは14.4、ラネーニッケル触媒は0.64と22倍となった。
また、上記HMFの水素化におけるアレニウスプロットを図12に示す。アレニウスプロットの傾きから活性化エネルギーは、NiP/HTは37.9 kJ/mol、ラネーニッケルは53.7 kJ/molと計算された。
試験例10
ニトリル基の水素化反応:
ニトリル基の水素化反応はオートクレーブにて行った。50mLのステンレスオートクレーブに5mol%(7.4mg)のNiP NW触媒、3mLのアンモニア水(NHaq.)、0.5mmolの基質を加え、その後、水素の加圧雰囲気の下記表の各条件下で反応を行った結果を表5に示す。
Figure 2021184985
Figure 2021184985
試験例11
ニトリル基の水素化反応:
ニトリル基の水素化反応はオートクレーブにて行った。50mLのステンレスオートクレーブに5mol%Niの各触媒、3mLの12.5%アンモニア水(NHaq.)、0.5mmolの基質を加え、その後、水素の4MPa加圧雰囲気、130℃、6時間の条件下で反応を行った結果を表6に示す。
Figure 2021184985
Figure 2021184985
試験例12
ニトロ基の水素化反応:
ニトロ基の水素化反応はオートクレーブにて行った。50mLのステンレスオートクレーブに5mol%Ni(7.4mg)の実施例触媒1‘(NiP NW触媒)、3mLの水、0.5mmolの基質を加え、その後、水素の加圧雰囲気の下記表の各条件下で反応を行った結果を表7に示す。
Figure 2021184985
Figure 2021184985
表7の結果から、本発明の触媒はハロゲン、メトキシ、アミノ、エステル、アミド、ヒドロキシ基を含む官能基は、水素化されずにニトロ基だけを選択的に水素化できた。
試験例13
単糖類(グルコース)の開環反応及び水素化反応:
単糖類の水素化反応はオートクレーブにて行った。50mLのステンレスオートクレーブに、D−グルコース0.5mmolの基質、有効成分(Ni換算)が6.6mol%(200mg)の表8に示す触媒と、水3mLとを加え、その後、水素の加圧雰囲気の下記表の各条件下で反応を行った結果を表8に示す。
Figure 2021184985
Figure 2021184985
表8の結果から、本発明の触媒はグルコース等の単糖類の開環反応(加水分解)及び水素化反応を優れた収率で生じさせ、副生物の生成量も極めて少ないことがわかった。
試験例14
触媒の耐久性:
表8の例84の条件で反応(収率99%)後、触媒を遠心分離し得られた触媒に基質と溶媒を追加し、繰り返し反応を行ったところ、収率が1回目は99%、2回目は99%、3回目は98%、4回目は98%、5回目は97%となった。
上記結果より、本発明の触媒は優れた耐久性を持つことがわかった。
試験例15
多糖類(マルトース)の開環反応及び水素化反応:
多糖類の水素化反応はオートクレーブにて行った。50mLのステンレスオートクレーブに、マルトース0.25mmolの基質、有効成分(Ni換算)が6.6mol%の表9に示す触媒と、水3mLとを加え、その後、水素の加圧雰囲気の下記表の各条件下で反応を行った結果を表9に示す。
Figure 2021184985
Figure 2021184985
表9の結果から、本発明の触媒はグルコース等の単糖類の開環反応(加水分解)及び水素化反応を優れた収率で生じさせることができることがわかった。
試験例16
触媒の耐久性:
表9の例94の条件で反応後、触媒を遠心分離し得られた触媒に基質と溶媒を追加し、繰り返し反応を行ったところ、収率が1回目は94%、2回目は94%、3回目は93%、4回目は93%、5回目は94%となった。
上記結果より、本発明の触媒は優れた耐久性を持つことがわかった。
本発明触媒は、従来の危険なスポンジ触媒に換えて使用するだけで、従来の設備に大規模な修正を加えることなく、有機化合物の水素化や開環反応に用いることができるため、産業利用が容易な価値ある技術である。

Claims (11)

  1. リン化ニッケルのナノ粒子を有効成分とすることを特徴とする触媒。
  2. リン化ニッケルのナノ粒子が、無機酸化物微粒子に担持されたものである請求項1記載の触媒。
  3. リン化ニッケルナノ粒子中のリンのモル比がニッケルに対して1以下である請求項1又は2に記載の触媒
  4. 有機化合物の水素化用である請求項1〜3の何れかに記載の触媒。
  5. 環状ヘテロ化合物の開環用である請求項1〜3の何れかに記載の触媒。
  6. 不飽和結合を持つ環状ヘテロ化合物の水素化および開環の1段階反応用である請求項1〜3の何れかに記載の触媒。
  7. 有機化合物を、請求項1〜3の何れかに記載の触媒を用いて水素化することを特徴とする水素化有機化合物の製造方法。
  8. 加熱、加圧された水素含有雰囲気のもと、請求項1〜3の何れかに記載の水素化触媒を用いて水素化することを特徴とする水素化有機化合物の製造方法。
  9. 水素含有雰囲気が水素ガスまたは水素と不活性ガスとの混合ガスであって、
    加熱条件が100〜150℃であって、
    加圧条件が0.3〜5MPaであって、
    湿式条件の溶媒がプロトン性極性溶媒である
    請求項8に記載の水素化有機化合物の製造方法。
  10. 環状ヘテロ化合物を、請求項1〜3の何れかに記載の触媒を用いて開環することを特徴とする開環化合物の製造方法。
  11. 不飽和結合を持つ環状ヘテロ化合物を、請求項1〜3の何れかに記載の触媒を用いて水素化と開環を1段階で行うことを特徴とする水素化開環化合物の製造方法。
JP2020147310A 2020-01-09 2020-09-02 リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法 Pending JP2021184985A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020001839 2020-01-09
JP2020001839 2020-01-09
JP2020095190 2020-06-01
JP2020095190 2020-06-01

Publications (1)

Publication Number Publication Date
JP2021184985A true JP2021184985A (ja) 2021-12-09

Family

ID=78815672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020147310A Pending JP2021184985A (ja) 2020-01-09 2020-09-02 リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法

Country Status (1)

Country Link
JP (1) JP2021184985A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115055195A (zh) * 2022-06-10 2022-09-16 清华大学 一种乙酰丙酸乙酯加氢反应的双功能催化剂
KR20230063636A (ko) * 2021-11-02 2023-05-09 한국과학기술연구원 2,5-퓨란다이카복실산 제조를 위한 금속-인 촉매 및 이를 이용한 2,5-퓨란다이카복실산 제조 공정

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230063636A (ko) * 2021-11-02 2023-05-09 한국과학기술연구원 2,5-퓨란다이카복실산 제조를 위한 금속-인 촉매 및 이를 이용한 2,5-퓨란다이카복실산 제조 공정
KR102543047B1 (ko) 2021-11-02 2023-06-14 한국과학기술연구원 2,5-퓨란다이카복실산 제조를 위한 금속-인 촉매 및 이를 이용한 2,5-퓨란다이카복실산 제조 공정
CN115055195A (zh) * 2022-06-10 2022-09-16 清华大学 一种乙酰丙酸乙酯加氢反应的双功能催化剂

Similar Documents

Publication Publication Date Title
Wang et al. Coupling MOF-based photocatalysis with Pd catalysis over Pd@ MIL-100 (Fe) for efficient N-alkylation of amines with alcohols under visible light
Zhou et al. Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO 2 in aqueous media
Zhang et al. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts
Li et al. Selective photocatalytic oxidation of aromatic alcohols to aldehydes with air by magnetic WO 3 ZnO/Fe 3 O 4. In situ photochemical synthesis of 2-substituted benzimidazoles
Li et al. MOF-derived Ni@ NC catalyst: synthesis, characterization, and application in one-pot hydrogenation and reductive amination
Keshipour et al. Pd (0) supported on N-doped graphene quantum dot modified cellulose as an efficient catalyst for the green reduction of nitroaromatics
US11141724B2 (en) Method for efficiently catalyzing furfural to prepare cyclopentanone, and catalyst and preparation method therefor
JP2021184985A (ja) リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法
Niu et al. Pt nanoparticles loaded on reduced graphene oxide as an effective catalyst for the direct oxidation of 5-hydroxymethylfurfural (HMF) to produce 2, 5-furandicarboxylic acid (FDCA) under mild conditions
CN110639567B (zh) 一种碳负载磷化二钌纳米团簇双功能催化剂及其制备方法和应用
Ergen et al. One-pot reductive amination of aldehydes with nitroarenes using formic acid as the hydrogen donor and mesoporous graphitic carbon nitride supported AgPd alloy nanoparticles as the heterogeneous catalyst
US20200016576A1 (en) Hydrogenation reaction catalyst used to hydrogenate amide compound and method for producing amine compound using same
Ashokraju et al. Formic acid assisted hydrogenation of levulinic acid to\upgamma γ-valerolactone over ordered mesoporous Cu/Fe _ 2 O _ 3 Cu/Fe 2 O 3 catalyst prepared by hard template method
Zhang et al. Experimental and theoretical investigation into visible-light-promoted selective hydrogenation of crotonaldehyde to crotonyl alcohol using Au–Co, Ni alloy nanoparticle supported layered double hydroxides
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
TW201107490A (en) Method for recovering molybdenum and cobalt
Patil et al. Chemoselective hydrogenation of cinnamaldehyde over a tailored oxygen-vacancy-rich Pd@ ZrO 2 catalyst
JP2021013923A (ja) 水素化触媒およびこれを用いた水素化有機化合物の製造方法
Pan et al. Size-tunable carbon-doped Ni nanoparticles for switchable reductive amination of biomass-derived carbonyl compounds to primary amines and secondary imines
Bhuyan et al. Preparation and characterization of WO 3 bonded imidazolium sulfonic acid chloride as a novel and green ionic liquid catalyst for the synthesis of adipic acid
CN110743595B (zh) 一种有效成分为碳氮包裹钴钼合金材料的催化剂及其应用
EP3932545A1 (en) Hydrogenation catalyst used in amide compound hydrogenation and method for producing amine compound using same
Zhang et al. Oxygen-implanted MoS 2 nanosheets promoting quinoline synthesis from nitroarenes and aliphatic alcohols via an integrated oxidation transfer hydrogenation–cyclization mechanism
Zhang et al. An efficient noble-metal-free supported copper catalyst for selective nitrocyclohexane hydrogenation to cyclohexanone oxime
CN114653403B (zh) 一种用于苯酚加氢制环己酮的双功能催化剂的制备方法及应用

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240412