CN115055195A - 一种乙酰丙酸乙酯加氢反应的双功能催化剂 - Google Patents

一种乙酰丙酸乙酯加氢反应的双功能催化剂 Download PDF

Info

Publication number
CN115055195A
CN115055195A CN202210657383.4A CN202210657383A CN115055195A CN 115055195 A CN115055195 A CN 115055195A CN 202210657383 A CN202210657383 A CN 202210657383A CN 115055195 A CN115055195 A CN 115055195A
Authority
CN
China
Prior art keywords
metal
catalyst
bifunctional catalyst
gamma
ethyl levulinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210657383.4A
Other languages
English (en)
Inventor
王铁峰
李亚飞
蓝晓程
刘伯阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202210657383.4A priority Critical patent/CN115055195A/zh
Publication of CN115055195A publication Critical patent/CN115055195A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1856Phosphorus; Compounds thereof with iron group metals or platinum group metals with platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于乙酰丙酸乙酯转化为γ‑戊内酯的高活性负载型双功能催化剂,含有Ni3P或第二金属改性的M‑Ni3P加氢活性位点和酸性位点。本发明还公开了上述负载型双功能催化剂的制备方法,将镍源、第二金属盐和三苯基膦混合于乙醇溶液中,并将溶液滴加至载体表面,经搅拌、超声处理和干燥后于氢气/氮气混合气氛下还原,获得所述的负载型双功能催化剂。本发明还公开了上述负载型双功能催化剂在乙酰丙酸乙酯加氢反应中的应用。本发明中的催化剂载体提供酸位点,以Ni3P晶相(PDF#34‑0501和/或PDF#74‑1384)为加氢活性位点,并通过第二金属来调控表面Ni原子的电子结构,与纯Ni晶相催化剂相比,乙酰丙酸乙酯加氢活性大幅提高。

Description

一种乙酰丙酸乙酯加氢反应的双功能催化剂
技术领域
本发明涉及一种用于催化加氢乙酰丙酸乙酯制备γ-戊内酯的双功能催化剂。
背景技术
随着传统化石能源储备逐渐减少,及环境污染和气候变暖等环境问题日益突出,利用可再生能源的策略引起人们的重视。生物质能源是可再生碳源,其作为分布广泛、绿色环保的实用性能源,具有良好的产业化基础,能作为化石能源良好的替代品,为缓解能源和环境问题提供可行性方案。在众多生物质衍生的化学品中,γ-戊内酯是最具有应用前景的生物质基高附加值平台化合物质之一,可作为催化过程的绿色溶剂,用于制备液体燃料或者作为汽油、柴油和生物柴油的添加剂,又或者用于合成其他碳基化学品(如:1,4-戊二醇,甲基四氢呋喃)、聚合材料等。乙酰丙酸乙酯可由廉价糠醇制备合成,且不具有酸性,不会对设备及催化剂造成不良影响。因此由乙酰丙酸乙酯合成γ-戊内酯的催化工艺具有应用优势,其关键是高效催化剂的研发。
目前该反应广泛使用的固体催化剂包括贵金属催化剂和非贵金属催化剂。以Ru、Pt和Pd为活性组分的贵金属催化剂具有较高的催化活性,但是存在贵金属成本高的缺点。以Cu、Ni等为活性组分的非贵金属催化剂虽然有大量的报导,但是普遍存在时空产率低的问题,难以满足工业需求。比如:专利CN107398301B公布了一种双功能的Ru/SO3H-MOF催化剂用于乙酰丙酸乙酯加氢合成γ-戊内酯的方法,但该催化剂制备方法较为复杂,贵金属Ru成本较高。专利CN109485621A公布了一种负载型铜铁双金属催化剂用于乙酰丙酸酯类加氢的方法,专利CN109529836A公布了一种Cu/SiO2催化剂用于乙酰丙酸乙酯加氢的方法,这一类催化剂采用了廉价的非贵金属,但是时空产率仍然较低。
综上所述,开发一种制备方法简单、活性高的非贵金属催化剂用于乙酰丙酸乙酯加氢反应具有重要意义和价值。
发明内容
乙酰丙酸乙酯加氢为γ-戊内酯为两步反应,先发生C=O双键加氢得到中间产物4-羟基戊酸乙酯,随后脱醇内酯化得到γ-戊内酯,需要金属加氢位点和酸催化位点。为解决现有乙酰丙酸乙酯加氢反应中非贵金属催化剂时空产率低的问题,提出了本发明。
根据本发明的一个方面,提供了一种负载型双功能催化剂,含有Ni3P加氢活性位点和酸性位点,以Ni3P或者M-Ni3P表示。过渡金属M是Fe、Co、Cu、Zn、Ga、Ru、Pt、Pd中的一种或组合,掺杂金属M与Ni金属的摩尔比例为0~1。Ni3P是具有四方晶系,I-4(82)空间群的特定晶体结构,其X射线衍射光谱(XRD)标准卡片为PDF#34-0501或PDF#74-1384。
优选地,所述载体为SiO2、Al2O3、CeO2、TiO2、ZrO2氧化物和HZSM-5、Hβ、HY、MCM、SAPO、SBA-15分子筛中的一种或其组合。
优选地,金属Ni负载量为0.1~50wt%,掺杂金属M与Ni金属的摩尔比例为0~0.8。
优选地,金属Ni负载量为0.1~35wt%,掺杂金属M与Ni金属的摩尔比例为0.2~0.7。
更优选地,金属Ni负载量为0.1~25wt%,掺杂金属为Cu,Cu与Ni摩尔比例为0.2~0.7,载体为Al2O3
根据本发明的另一方面,提供了一种催化剂制备方法,包括如下步骤:
S1.将三苯基膦溶解于乙醇中,随后加入镍盐、过渡金属盐;
S2.将混合溶液加至载体中,得到催化剂前驱体溶液,并在常温下搅拌和超声处理;
S3.将步骤S2获得的催化剂前驱体水浴加热搅拌,随后干燥处理,干燥过程中辅以搅拌;
S4.将干燥后的样品,在氢气和氮气混合气氛下还原,获得所述的负载型双功能催化剂。
优选地,所述的镍源包括硝酸镍、氯化镍、硫酸镍、羰基镍中的任一种或其组合。
优选地,所述过渡金属盐为需要添加的金属氯化物、硝酸盐、碳酸盐中的任一种或其组合。
根据本发明的另一方面,还提供了一种使用所述的负载型双功能催化剂用于乙酰丙酸乙酯合成γ-戊内酯的方法,其特征在于:在H2气氛中,使含有乙酰丙酸乙酯、所述负载型双功能催化剂、溶剂的混合体系于80~250℃下发生加氢反应,生成γ-戊内酯。
优选地,所述乙酰丙酸乙酯加氢反应的条件控制在反应温度80~250℃,H2压力1~10MPa,所述溶剂为水、甲醇、乙醇、丙醇、丁醇、甲苯、正己烷、γ-戊内酯、γ-丁内酯、环氧己烷中的任意一种或其组合。更优选地,反应温度140℃、H2压力2.5MPa,选用正己烷作为溶剂,以提高γ-戊内酯选择性。
本发明催化剂的活性测试方法如下:
在高压反应釜中,将乙酰丙酸乙酯、催化剂加入有机溶剂中,充入H2,在800rpm搅拌条件下反应。反应温度为140℃,反应压力为2.5MPa,反应时间3h。
技术效果
1.利用含有Ni3P晶相、表示式为M-Ni3P的Ni基金属无机磷化物,作为乙酰丙酸乙酯加氢反应的双功能催化剂,同时含有金属加氢活性位和酸性位,对所述乙酰丙酸乙酯加氢反应有明显的活性提升作用,时空产率高;
2.提出的催化剂制备过程简单,还原温度适中;
3.在使用所述催化剂的反应过程中,催化剂和反应物易于分离,不产生含磷废水;
4.通过本发明提供的以Ni3P为活性相、Al2O3为载体的负载型双功能催化剂,在乙酰丙酸乙酯加氢反应中具有较高的活性,其中Ni3P/Al2O3比传统的Ni/Al2O3催化剂反应速率常数提高9.8倍;引入第二金属Cu制备得到的Cu-Ni3P/Al2O3比传统的Ni/Al2O3催化剂反应速率常数提高13.0倍。此外,Al2O3载体具有丰富的酸位点,因此Ni3P/Al2O3催化剂能有效催化中间产物4-羟基戊酸乙酯脱醇内酯化反应,γ-戊内酯选择性达95%以上,明显优于Ni3P/SiO2催化剂。该催化剂为负载型非贵金属催化剂,避免了均相催化剂难分离以及贵金属成本高的缺陷。该催化剂制备过程简单,成本较低,易于投入工业应用。该催化剂具有双功能催化位点,单位位点活性较高,整体时空产率满足工业生产要求。
具体实施方式
下面结合附表详细描述本发明多个优选实施案例的实施方式,对本发明的上述内容再作进一步的详细说明。下列实施例仅用于说明,而不应视为限定本发明的范围。对比例和实施例中催化剂的Ni负载量均为10wt%。
1.催化剂的制备方法
对比例1
催化剂为负载在SiO2表面的Ni纳米颗粒,制备方法为:将硝酸镍溶于水溶液,浸渍在SiO2表面,超声处理1h,并于60℃干燥,通过450℃煅烧、550℃还原,得到Ni/SiO2。Ni的负载量为10wt%。
对比例2
催化剂为负载在Al2O3表面的Ni纳米颗粒,制备方法为:将硝酸镍溶于水溶液,浸渍在Al2O3表面,超声处理1h,并于60℃干燥,通过450℃煅烧、550℃还原,得到Ni/Al2O3。Ni的负载量为10wt%。
对比例3
催化剂为负载在SiO2表面的Ni12P5纳米颗粒(Ni12P5/SiO2),制备方法为:将适量的硝酸镍和三苯基膦溶于乙醇溶液中,浸渍在SiO2表面,并在常温下搅拌10min,超声处理1h,并于60℃干燥后,在550℃下还原,得到Ni12P5/SiO2。通过催化剂表征手段,证明其结构为Ni12P5。Ni的负载量为10wt%。
对比例4
催化剂为负载在SiO2表面的Ni2P纳米颗粒(Ni2P/SiO2),制备方法为:在对比例3的基础上改变镍源和P源的比例,将硝酸镍和三苯基膦溶于乙醇溶液中,浸渍在SiO2表面,并在常温下搅拌10min,超声处理1h,并于60℃干燥后,在550℃下还原,得到Ni2P/SiO2。通过催化剂表征手段,证明其结构为Ni2P。Ni的负载量为10wt%。
对比例5
催化剂为负载在SiO2表面的Ni3P纳米颗粒(Ni3P/SiO2),制备方法为:将适量的硝酸镍和三苯基膦(控制Ni:P摩尔比为3:1)溶于乙醇溶液中,浸渍在SiO2表面,并在常温下搅拌10min,超声处理1h,并于60℃干燥后,在550℃下还原,得到Ni3P/SiO2。通过催化剂表征手段,证明其结构为Ni3P。Ni的负载量为10wt%。
实施例1
催化剂为负载在Al2O3表面的Ni3P纳米颗粒(Ni3P/Al2O3),制备方法为:将适量的硝酸镍和三苯基膦溶于乙醇溶液中,浸渍在Al2O3表面,并在常温下搅拌10min,超声处理1h,并于60℃干燥后,在550℃下还原,得到Ni3P/Al2O3,通过透射电子显微镜和X射线光电子能谱的表征,证明其结构为Ni3P。Ni的负载量为10wt%。
实施例2
首先将硝酸镍、硝酸铜和三苯基膦在乙醇溶液中混和,并将这些液体与Al2O3载体混合,干燥处理得到催化剂前驱体,通过程序升温的方法进行还原(本例使用20mLH2/30mLN2混合气还原,温度为550℃)。其中Ni的负载量控制为10wt%,Cu负载量为3.3wt%,产物中镍金属含量与磷的摩尔比接近3:1。
2.不同催化剂在乙酰丙酸乙酯合成γ-戊内酯的反应中的性能对比
(1)不同载体负载的Ni、Ni12P5、Ni2P或Ni3P催化剂反应性能对比
在所有催化剂反应评价实施例和对比例中,使用间歇工艺评价乙酰丙酸乙酯加氢反应的性能,将装有30mL正己烷溶剂、1.5g乙酰丙酸乙酯和80mg催化剂的反应釜密封,充入2.5MPa的氢气,置于恒温油浴中,间隔一段时间后取出少量溶液,并通过气相色谱GC测量对应组成。表1显示了一些按照如上方法制备的催化剂在实际反应中的性能。
对比例6
使用对比例1制备Ni/SiO2,在相同的反应条件下进行实验。相对于对比例3而言,3h转化率为38.7%,产物中γ-戊内酯的选择性为58.5%,表观速率常数为2.9×10-3min-1
对比例7
使用对比例2中制备的Ni/Al2O3,在反应条件下,3h内可以将27.7%的乙酰丙酸乙酯转化,表观速率常数为2.4×10-3min-1。产物中γ-戊内酯的选择性可以提高到91.9%,具有更高的γ-戊内酯产率。
对比例8
使用对比例3中制备的Ni12P5/SiO2,在反应条件下,3h内可以将12.0%的乙酰丙酸乙酯转化,表观速率常数为0.8×10-3min-1。产物中γ-戊内酯的选择性为91.7%。
对比例9
使用对比例4中制备的Ni2P/SiO2,在反应条件下,3h内乙酰丙酸乙酯没有发生转化。
对比例10
使用对比例5制备的Ni3P/SiO2催化剂,3h乙酰丙酸乙酯转化率可以提高到99.1%,基于乙酰丙酸乙酯转化率计算的表观速率常数为31.6×10-3min-1,然而产物中γ-戊内酯的选择性仅为45.0%。
实施例3
实施例3使用实施例1制备的Ni3P/Al2O3催化剂,3h转化率进一步提高到94.9%,表观速率常数为23.4×10-3min-1,产物中γ-戊内酯的选择性为97.5%。相较于对比例6中的Ni3P/SiO2,Ni3P/Al2O3催化剂对中间产物4-羟基戊酸乙酯内酯化反应有明显的促进作用。
表1中第6栏“表观速率常数”用一级动力学模型“-In(1-X)~t”拟合得到,X为乙酰丙酸乙酯转化率,t为反应时间,直接反映了催化剂的乙酰丙酸乙酯加氢活性。根据对比例6、对比例8、对比例9、对比例10的实验结果可以发现,对比例10中Ni3P/SiO2具有比对比例6的Ni/SiO2、对比例8的Ni12P5/SiO2和对比例9的Ni2P/SiO2更高的表观速率常数,表明Ni3P比Ni、Ni12P5和Ni2P更高的乙酰丙酸乙酯加氢活性。
表1中第5栏“γ-戊内酯选择性”直接反映了目标产物产率。根据对比例6、对比例7、对比例9和实施例3的实验结果可以发现,对比例7中的Ni/Al2O3和实施例3中的Ni3P/Al2O3催化剂具有比对比例6的Ni/SiO2和对比例10中Ni3P/SiO2具有更高的γ-戊内酯选择性,表明酸性Al2O3载体能获得更高的γ-戊内酯选择性。
实施例3中的Ni3P/Al2O3催化剂以Ni3P为活性相,Al2O3为载体,因此其乙酰丙酸乙酯加氢活性高,表观速率常数为23.4×10-3min-1,γ-戊内酯选择性高,为97.5%。
(2)引入过渡金属后催化剂的反应性能对比
实施例4
实施例4在实施例3的基础上引入了过渡金属Cu,制备方法如实施例2,制备得到Cu-Ni3P/Al2O3。3h转化率进一步提高到99.3%,产物中γ-戊内酯的选择性为98.9%,表观速率常数提高到31.1×10-3min-1。这一催化剂单位位点单位时间转化产物速率(TOF)达到833h-1,对应单位质量催化剂(含载体质量)转化产物质量(STY)为4.25g产物/(g催化剂·h)。类似反应条件下的46%CuCr催化剂(Fuel,2016,175,232-239)的STY为14.6g产物/(g催化剂·h),高于本实施例,但是其金属负载量高,因此TOF低于本实施例为101h-1,且其反应温度较高(250℃),使用了有害的Cr元素。
实施例5
实施例5将实施例4的掺杂金属从Cu变为Fe,制备方法与实施例2类似,仅将硝酸铜替换为硝酸铁。3h转化率降为80.7%,产物中γ-戊内酯的选择性为97.4%,表观速率常数为11.5×10-3min-1
实施例6
实施例6将实施例4的掺杂金属从Cu变为Co,制备方法与实施例2类似,仅将硝酸铜替换为硝酸钴。3h转化率降为93.2%,产物中γ-戊内酯的选择性为98.0%,表观速率常数为16.5×10-3min-1
实施例7
实施例7将实施例4的掺杂金属从Cu变为Zn,制备方法与实施例2类似,仅将硝酸铜替换为硝酸锌。3h转化率降为98.0%,产物中γ-戊内酯的选择性为98.5%,表观速率常数为24.9×10-3min-1
实施例8
实施例8将实施例4的掺杂金属从Cu变为Ga,制备方法与实施例2类似,仅将硝酸铜替换为硝酸镓。3h转化率降为93.3%,产物中γ-戊内酯的选择性为98.0%,表观速率常数为17.2×10-3min-1
实施例4~8在Ni3P/Al2O3催化剂的基础上,掺杂第二金属Cu、Fe、Co、Zn和Ga,对比表1第6栏“表观速率常数”数据可以发现,掺杂第二金属Cu后表观速率常数可以提高至31.1×10-3min-1,表明掺杂第二Cu可以进一步提高乙酰丙酸乙酯加氢活性。
表1不同Ni磷化物催化剂和Ni催化剂性能对比
Figure BDA0003688700670000071
Figure BDA0003688700670000081
反应条件:乙酰丙酸乙酯1.5g,催化剂80mg,正己烷30mL,反应温度140℃,H2压力2.5MPa。表观反应速率常数用一级动力学模型“-In(1-X)~t”拟合得到,X为乙酰丙酸乙酯转化率,t为反应时间。

Claims (8)

1.一种用于乙酰丙酸乙酯转化为γ-戊内酯的高活性负载型双功能催化剂,其特征在于:该催化剂含有金属活性位点和酸性位点,所述金属活性位点为Ni3P,具有四方晶系,I-4(82)空间群的特定晶体结构,其X射线衍射光谱(XRD)标准卡片为PDF#34-0501或PDF#74-1384;所述酸性位点来自于载体。
2.根据权利要求1所述的负载型双功能催化剂,其特征在于,所述金属活性位点通过第二金属M掺杂改性,所述掺杂金属M是Fe、Co、Cu、Zn、Ga、Ru、Pt、Pd中的一种或组合,掺杂金属M与Ni金属的摩尔比例为0~1;
所述第二金属M掺杂的方式为,
第二金属部分替代Ni3P晶体结构中的Ni原子,形成具有NixM3-xP晶体结构的活性位点;
和/或,
第二金属不改变活性位点中Ni3P的晶体结构,形成M-Ni3P组成的活性位点。
3.根据权利要求1所述的负载型双功能催化剂,其特征在于:载体为SiO2、Al2O3、CeO2、TiO2、ZrO2氧化物和HZSM-5、Hβ、HY、MCM、SAPO、SBA-15分子筛中的一种或其组合。
4.根据权利要求1-3任一项所述的负载型双功能催化剂,其特征在于,所述金属活性位点为Ni3P,掺杂金属为Cu,载体为Al2O3,掺杂金属Cu与Ni金属的摩尔比例为0.2~0.7。
5.一种权利要求1-4中任一项所述的负载型双功能催化剂的制备方法,其特征在于,所述制备方法包括以下步骤:
S1.将三苯基膦溶解于乙醇中,随后加入镍盐、过渡金属盐;
S2.将混合溶液加至载体中,得到催化剂前驱体溶液,并在常温下搅拌和超声处理;
S3.将步骤S2获得的催化剂前驱体水浴加热搅拌,随后干燥处理,干燥过程中辅以搅拌;
S4.将干燥后的样品,在氢气和氮气混合气氛下还原,获得所述的负载型双功能催化剂。
6.根据权利要求5所述的制备方法,其特征在于:所述的镍源包括硝酸镍、氯化镍、硫酸镍、羰基镍中的任一种或其组合;
和/或,所述过渡金属盐为需要添加的金属氯化物、硝酸盐、碳酸盐中的任一种或其组合。
7.一种权利要求1所述的负载型双功能催化剂在乙酰丙酸乙酯加氢生成γ-戊内酯的反应中的应用,其特征在于:在H2气氛中,使含有乙酰丙酸乙酯、所述负载型双功能催化剂、溶剂的混合体系于80~250℃下发生加氢反应,生成γ-戊内酯。
8.根据权利要求7所述的应用,其特征在于,所述乙酰丙酸乙酯加氢反应的条件控制在反应温度80~250℃,H2总压力1~10MPa,所述溶剂为水、甲醇、乙醇、丙醇、丁醇、甲苯、正己烷、γ-戊内酯、γ-丁内酯、环氧己烷中的任意一种或其组合。
CN202210657383.4A 2022-06-10 2022-06-10 一种乙酰丙酸乙酯加氢反应的双功能催化剂 Pending CN115055195A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210657383.4A CN115055195A (zh) 2022-06-10 2022-06-10 一种乙酰丙酸乙酯加氢反应的双功能催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210657383.4A CN115055195A (zh) 2022-06-10 2022-06-10 一种乙酰丙酸乙酯加氢反应的双功能催化剂

Publications (1)

Publication Number Publication Date
CN115055195A true CN115055195A (zh) 2022-09-16

Family

ID=83199909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210657383.4A Pending CN115055195A (zh) 2022-06-10 2022-06-10 一种乙酰丙酸乙酯加氢反应的双功能催化剂

Country Status (1)

Country Link
CN (1) CN115055195A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695665A (zh) * 2009-11-04 2010-04-21 天津大学 负载型颗粒均匀分布磷化镍催化剂的制备方法
CN102585876A (zh) * 2012-03-07 2012-07-18 天津大学 以金属磷化物催化剂由高级脂肪酸酯制烃的方法
CN103223348A (zh) * 2013-04-18 2013-07-31 青岛科技大学 一种α-氧化铝负载型磷化镍催化剂的制备方法
CN106902854A (zh) * 2017-02-24 2017-06-30 大连理工大学 Ni3P基催化剂在苯酚及其衍生物加氢脱氧反应中的应用
CN107684919A (zh) * 2017-08-03 2018-02-13 大连理工大学 负载型Ni3P催化剂及其制备方法和应用
WO2019017490A1 (ja) * 2017-07-21 2019-01-24 宇部興産株式会社 ペンテン酸エステル誘導体の製造方法
CN110215927A (zh) * 2019-05-24 2019-09-10 大连理工大学 一种高分散的负载型磷化镍催化剂的制备方法
CN113145144A (zh) * 2020-01-22 2021-07-23 华东师范大学 一种Ni3P/SiO2催化剂及其制备方法和应用
CN113372191A (zh) * 2021-05-17 2021-09-10 江苏馨瑞香料有限公司 叔丁基环己醇的制备方法
JP2021184985A (ja) * 2020-01-09 2021-12-09 国立大学法人大阪大学 リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法
CN114308085A (zh) * 2021-12-13 2022-04-12 西安近代化学研究所 临氢脱氯催化合成三氟氯乙烯或三氟乙烯用催化剂及制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695665A (zh) * 2009-11-04 2010-04-21 天津大学 负载型颗粒均匀分布磷化镍催化剂的制备方法
CN102585876A (zh) * 2012-03-07 2012-07-18 天津大学 以金属磷化物催化剂由高级脂肪酸酯制烃的方法
CN103223348A (zh) * 2013-04-18 2013-07-31 青岛科技大学 一种α-氧化铝负载型磷化镍催化剂的制备方法
CN106902854A (zh) * 2017-02-24 2017-06-30 大连理工大学 Ni3P基催化剂在苯酚及其衍生物加氢脱氧反应中的应用
WO2019017490A1 (ja) * 2017-07-21 2019-01-24 宇部興産株式会社 ペンテン酸エステル誘導体の製造方法
CN107684919A (zh) * 2017-08-03 2018-02-13 大连理工大学 负载型Ni3P催化剂及其制备方法和应用
CN110215927A (zh) * 2019-05-24 2019-09-10 大连理工大学 一种高分散的负载型磷化镍催化剂的制备方法
JP2021184985A (ja) * 2020-01-09 2021-12-09 国立大学法人大阪大学 リン化ニッケル触媒およびこれを用いた水素化有機化合物の製造方法
CN113145144A (zh) * 2020-01-22 2021-07-23 华东师范大学 一种Ni3P/SiO2催化剂及其制备方法和应用
CN113372191A (zh) * 2021-05-17 2021-09-10 江苏馨瑞香料有限公司 叔丁基环己醇的制备方法
CN114308085A (zh) * 2021-12-13 2022-04-12 西安近代化学研究所 临氢脱氯催化合成三氟氯乙烯或三氟乙烯用催化剂及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE TIAN ET AL.: ""Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol"", 《CATALYSIS LETTERS》, vol. 152, pages 883 - 894, XP037691773, DOI: 10.1007/s10562-021-03680-y *

Similar Documents

Publication Publication Date Title
Sun et al. Raney Ni as a versatile catalyst for biomass conversion
US20200230578A1 (en) Transition metal(s) catalyst supported on nitrogen-doped mesoporous carbon and its use in catalytic transfer hydrogenation reactions
Qu et al. Hydrogenation of carboxylic acids, esters, and related compounds over heterogeneous catalysts: A step toward sustainable and carbon-neutral processes
CN113145155B (zh) 一种应用于组装生物乙醇合成高碳醇的氮掺杂碳包覆镍催化剂及其制备方法
CN111389456B (zh) 一种负载型双功能催化剂、其制备方法和应用
CN109796428B (zh) 一种铜基催化剂在5-羟甲基糠醛加氢中的应用
Yang et al. Hydrogenolysis of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran under mild conditions without any additive
CN107398276B (zh) 一种催化5-羟甲基糠醛选择性加氢脱氧制备2,5-二甲基呋喃的催化剂及制备方法
CN111514893A (zh) 一种具有亚纳米复合结构的催化剂及其制备方法
CN109569589B (zh) 一种乙酰丙酸加氢制γ-戊内酯M-B@Al2O3催化剂及其制备方法和应用
CN1974006A (zh) 一种浆状催化剂及其制备方法
Tang et al. Bimetallic Ni-Zn@ OMC catalyst for selective hydrogenation of levulinic acid to γ-valerolactone in water
Weerathunga et al. Oxidative esterification of 5-hydroxymethylfurfural into dimethyl 2, 5-furandicarboxylate using gamma alumina-supported gold nanoparticles
Wang et al. One-step encapsulation of bimetallic Pd–Co nanoparticles within UiO-66 for selective conversion of furfural to cyclopentanone
CN113385205B (zh) 一种非均相氢甲酰化反应的金属磷化物催化剂
CN108409692A (zh) 一种硫掺杂碳材料负载钌催化剂催化乙酰丙酸加氢制取γ-戊内酯的方法
Shao et al. Importance of oxyphilic FeNi alloy in NiFeAl catalysts for selective conversion of biomass-derived 5-hydroxymethylfurfural to 2, 5-dimethylfuran
Zhang et al. PtFeCoNiCu High-Entropy Alloy Catalyst for Aqueous-Phase Hydrogenation of Maleic Anhydride
Yu et al. Recent applications of nickel and nickel-based bimetallic catalysts for hydrodeoxygenation of biomass-derived oxygenates to fuels
Gundeboina et al. Influence of surface Lewis acid sites for the selective hydrogenation of levulinic acid to γ-valerolactone over Ni–Cu–Al mixed oxide catalyst
Wang et al. Facile synthesis of Ni/Fe3O4 derived from layered double hydroxides with high performance in the selective hydrogenation of benzaldehyde and furfural
CN115055195A (zh) 一种乙酰丙酸乙酯加氢反应的双功能催化剂
CN110420665B (zh) 金原子簇制备方法以及催化co2反应用途
CN110721671B (zh) 一种无定形SiO2-Al2O3负载金属型催化剂及其制备方法和应用
CN111253230B (zh) 一种水相催化5-羟甲基糠醛加氢制备3-羟甲基环戊酮的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination