JP2021184411A - Heat dissipation member - Google Patents

Heat dissipation member Download PDF

Info

Publication number
JP2021184411A
JP2021184411A JP2020088773A JP2020088773A JP2021184411A JP 2021184411 A JP2021184411 A JP 2021184411A JP 2020088773 A JP2020088773 A JP 2020088773A JP 2020088773 A JP2020088773 A JP 2020088773A JP 2021184411 A JP2021184411 A JP 2021184411A
Authority
JP
Japan
Prior art keywords
heat
particles
resin
resin layer
convex structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020088773A
Other languages
Japanese (ja)
Other versions
JP7425670B2 (en
Inventor
真紀 高橋
Masanori Takahashi
拓司 安藤
Takuji Ando
房郎 北條
Fusao Hojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020088773A priority Critical patent/JP7425670B2/en
Publication of JP2021184411A publication Critical patent/JP2021184411A/en
Application granted granted Critical
Publication of JP7425670B2 publication Critical patent/JP7425670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a heat dissipation member that suppress the effects of heat and dissipate heat effectively even when a heat-generating component that is about to dissipate heat is placed in an environment that receives heat.MEANS: A heat dissipation member according to the present invention that dissipates heat from a heat-generating component includes a base material composed of a base portion that adheres to the heat-generating component and a fine concavo-convex structure portion that selectively radiates predetermined infrared rays, and a resin layer that covers the fine concavo-convex structure and transmits the predetermined infrared rays, and the resin layer contains a group of particles having a lower apparent density than the resin.SELECTED DRAWING: Figure 1

Description

本発明は、発熱性部品から放熱する放熱部材の技術に関し、特に該発熱性部品の近傍に他の発熱体が存在する環境においても効果的に放熱する放熱部材に関するものである。 The present invention relates to a technique for a heat radiating member that dissipates heat from a heat-generating component, and more particularly to a heat-dissipating member that effectively dissipates heat even in an environment where another heating element is present in the vicinity of the heat-generating component.

近年、電子部品やモジュール部品を具備する電子機器において、高性能化と小型化が進展している。高性能化は電子部品やモジュール部品の発熱量の増加につながり、小型化は電子部品やモジュール部品の高密度実装につながるため、電子機器の単位面積あたりの発熱量(発熱密度)が増加傾向にある。 In recent years, the performance and miniaturization of electronic devices including electronic parts and module parts have been progressing. Higher performance leads to an increase in heat generation of electronic parts and module parts, and miniaturization leads to high-density mounting of electronic parts and module parts, so the heat generation amount (heat generation density) per unit area of electronic devices tends to increase. be.

発熱密度の増加は、電子機器内で局所的に熱が集中するヒートスポットの発生を誘発し、電子機器の故障(例えば、動作安定性の低下、信頼性の低下)の原因になる。このため、電子部品やモジュール部品で生じた熱を効果的に放熱させてヒートスポットの発生を抑制することが重要になっている。 The increase in heat generation density induces the generation of heat spots in which heat is locally concentrated in the electronic device, which causes a failure of the electronic device (for example, a decrease in operational stability and a decrease in reliability). Therefore, it is important to effectively dissipate the heat generated in the electronic parts and the module parts to suppress the generation of heat spots.

電子部品やモジュール部品の放熱対策として、従来から、金属板やヒートシンク等の放熱部材を電子部品やモジュール部品の発熱部近傍に取り付け、発熱部で生じた熱を放熱部材に熱伝導し、空気等の冷媒に熱伝達させて放熱することが行われてきた。一方、より効率的な放熱を実現するために熱放射を利用する技術が開発されている。 As a heat dissipation measure for electronic parts and module parts, heat dissipation members such as metal plates and heat sinks have been conventionally attached near the heat generation parts of electronic parts and module parts, and the heat generated in the heat generation parts is thermally conducted to the heat dissipation members, such as air. It has been carried out to dissipate heat by transferring heat to the refrigerant of. On the other hand, a technique using heat radiation has been developed to realize more efficient heat dissipation.

例えば、特許文献1(特開2004-304200)には、発熱性を有する素子を含む電子部品が実装された回路基板と、回路基板を保持する金属材料で形成されたカバーと、該カバーと組み合わせて前記回路基板を収容する金属材料で形成されたケースとを備えたエンジン制御用電子制御機器であって、前記ケースの外側及び内側表面には、赤外線吸収率を高めるための黒色の表面処理が形成されており、前記回路基板に実装された電子部品の熱を前記カバーに熱伝導させる熱伝導部材を備え、前記カバーの前記熱伝導部材と面接触する接触部は、熱伝導を高めるために表面処理を施さない金属表面とされていることを特徴とするエンジン制御用電子制御機器、が開示されている。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2004-304200), a circuit board on which an electronic component including a heat-generating element is mounted, a cover made of a metal material for holding the circuit board, and a combination of the cover. An electronic control device for engine control including a case made of a metal material for accommodating the circuit board, and the outer and inner surfaces of the case have a black surface treatment for increasing the infrared absorption rate. A heat conductive member which is formed and conducts heat of an electronic component mounted on the circuit board to the cover is provided, and a contact portion of the cover in surface contact with the heat conductive member is used to enhance heat conduction. An electronic control device for engine control, characterized in that it has a metal surface that is not surface-treated, is disclosed.

特許文献2(特開2010-027831)には、発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において、周期的な表面微細凹凸パターンを形成する多数のマイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料を、前記発熱源と前記樹脂部材との間に該発熱源を覆うように配置し、前記発熱源からの熱エネルギーを伝熱または熱放射により前記波長選択性熱放射材料へ投入し、そして前記波長選択性熱放射材料の熱放射面から前記樹脂部材へ向けて、前記樹脂部材の赤外線透過波長域に対応する熱放射光を選択的に放射させることにより、前記電子機器の放熱効率を向上させる方法、が開示されている。 Patent Document 2 (Japanese Patent Laid-Open No. 2010-027831) describes a large number of microcavities that form a periodic surface fine uneven pattern in an electronic device whose heat generation source is covered with a resin member having a specific infrared transmission wavelength range. A wavelength-selective heat-radiating material having a two-dimensionally arranged heat-radiating surface is arranged between the heat-generating source and the resin member so as to cover the heat-generating source, and heat energy from the heat-generating source is transferred or transferred. It is input to the wavelength-selective heat-radiating material by heat radiation, and the heat-radiated light corresponding to the infrared transmission wavelength range of the resin member is selected from the heat-radiating surface of the wavelength-selective heat-radiating material toward the resin member. Disclosed is a method of improving the heat dissipation efficiency of the electronic device by radiating the heat.

特開2004−304200号公報Japanese Unexamined Patent Publication No. 2004-304200 特許2010−027831号公報Japanese Patent No. 2010-027831

特許文献1によると、回路基板に実装される発熱性を有する電子部品は、カバー若しくはケースの内側表面の赤外線吸収率を高める表面状態によって、輻射熱による収容部材への熱の移動量を高めることができるので、発熱温度を低減することが可能となる、とされている。 According to Patent Document 1, the heat-generating electronic component mounted on the circuit board can increase the amount of heat transferred to the accommodating member by radiant heat by the surface state that increases the infrared absorption rate of the inner surface of the cover or the case. It is said that it is possible to reduce the heat generation temperature.

また、特許文献2によると、周期的な表面微細凹凸パターンを形成する多数のマイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料を適用することにより電子機器の放熱効率を向上させ、その結果、冷却ファンなどの特別な装置を用いることなく発熱源を有する電子機器を十分に放熱及び冷却することができる、とされている。 Further, according to Patent Document 2, by applying a wavelength-selective thermal radiation material having a thermal radiation surface in which a large number of microcavities forming a periodic surface fine unevenness pattern are two-dimensionally arranged, the heat dissipation efficiency of an electronic device can be improved. As a result, it is said that an electronic device having a heat generating source can be sufficiently radiated and cooled without using a special device such as a cooling fan.

最近では、電子機器における小型化が益々進展しており、発熱性部品同士が近接して配置される場合がある。その場合、一方の発熱性部品からの伝熱(以下、もらい熱と称する)によって他方の発熱性部品の放熱が阻害されることが危惧される。言い換えると、もらい熱が生じる環境においても効果的に放熱できる技術が必要である。一方、特許文献1〜2では、もらい熱に関する考察・思索は残念ながら特になされていない。 Recently, the miniaturization of electronic devices has been progressing more and more, and heat-generating components may be arranged close to each other. In that case, there is a concern that heat transfer from one heat-generating component (hereinafter referred to as heat transfer) may hinder heat dissipation from the other heat-generating component. In other words, there is a need for technology that can effectively dissipate heat even in an environment where heat is generated. On the other hand, in Patent Documents 1 and 2, unfortunately, no particular consideration or thought regarding fever is made.

本発明は、上記のような課題に鑑みてなされたものであり、放熱しようとする発熱性部品の近傍に他の発熱体が存在する環境(もらい熱が生じる環境)においても、もらい熱の影響を抑制して効果的に放熱できる放熱部材を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is affected by heat generation even in an environment in which another heating element exists in the vicinity of a heat-generating component to dissipate heat (environment in which heat generation is generated). It is an object of the present invention to provide a heat radiating member capable of effectively dissipating heat by suppressing the above.

本発明の一態様は、発熱性部品の熱を放熱する放熱部材であって、
前記発熱性部品に付着するベース部と所定の赤外線を選択的に放射する微細凹凸構造部とからなる基材と、
前記微細凹凸構造を覆い前記所定の赤外線を透過する樹脂の層とを具備し、
前記樹脂の層は、該樹脂よりも見掛け密度の低い粒子の群を含むことを特徴とする放熱部材、を提供するものである。
One aspect of the present invention is a heat radiating member that dissipates heat from heat-generating components.
A base material composed of a base portion that adheres to the heat-generating component and a fine concavo-convex structure portion that selectively radiates predetermined infrared rays.
It covers the fine concavo-convex structure and is provided with a resin layer that transmits the predetermined infrared rays.
The resin layer provides a heat radiating member, characterized in that it contains a group of particles having a lower apparent density than the resin.

本発明によれば、放熱しようとする発熱性部品がもらい熱を受ける環境に置かれても、もらい熱の影響を抑制して効果的に放熱する放熱部材を提供することができる。 According to the present invention, it is possible to provide a heat radiating member that effectively dissipates heat by suppressing the influence of the receiving heat even if the heat generating component to be radiated is placed in an environment receiving heat.

本発明に係る放熱部材の一例を示す断面模式図である。It is sectional drawing which shows an example of the heat dissipation member which concerns on this invention. 実験環境を示す模式図である。It is a schematic diagram which shows the experimental environment.

本発明は、上述した放熱部材において、以下のような改良や変更を加えることができる。
(i)前記微細凹凸構造部は金属材料からなり、前記見掛け密度の低い粒子の群は中空粒子および多孔質粒子の少なくとも一つを含む。
(ii)前記見掛け密度の低い粒子の群は、前記樹脂の層に対して3体積%以上30体積%以下で含まれている。
(iii)前記見掛け密度の低い粒子の群は、平均粒子径が1μm以上200μm以下である。
(iv)前記樹脂の層は、厚さが1μm以上300μm以下である。
(v)前記見掛け密度の低い粒子の群は、前記樹脂の層の表面領域に偏在する。
The present invention can make the following improvements and changes to the heat dissipation member described above.
(I) The fine concavo-convex structure portion is made of a metallic material, and the group of particles having a low apparent density includes at least one of hollow particles and porous particles.
(Ii) The group of particles having a low apparent density is contained in an amount of 3% by volume or more and 30% by volume or less with respect to the resin layer.
(Iii) The group of particles having a low apparent density has an average particle size of 1 μm or more and 200 μm or less.
(Iv) The thickness of the resin layer is 1 μm or more and 300 μm or less.
(V) The group of particles having a low apparent density is unevenly distributed in the surface region of the resin layer.

以下、本発明に係る実施形態について、図面を参照しながらより具体的に説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で、公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。また、同義の部材に同じ符号を付して、重複する説明を省略することがある。 Hereinafter, embodiments according to the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the embodiments taken up here, and can be appropriately combined with a known technique or improved based on the known technique without departing from the technical idea of the invention. .. Further, the same reference numerals may be given to members having the same meaning, and duplicate description may be omitted.

図1は、本発明に係る放熱部材の一例を示す断面模式図である。図1に示すように、放熱部材100は、発熱性部品1の熱を放熱するための部材であって、発熱性部品1に付着するベース部11と所定の赤外線を選択的に放射する微細凹凸構造部12とからなる基材10と、微細凹凸構造部12を覆い当該赤外線を透過する樹脂層20とを具備し、樹脂層20は当該樹脂21よりも見掛け密度の低い粒子22(以下、低密度粒子と略称する)の群を含んでいる。 FIG. 1 is a schematic cross-sectional view showing an example of a heat radiating member according to the present invention. As shown in FIG. 1, the heat radiating member 100 is a member for radiating the heat of the heat generating component 1, and has fine irregularities that selectively radiate a predetermined infrared ray and a base portion 11 adhering to the heat generating component 1. A base material 10 composed of a structural portion 12 and a resin layer 20 that covers the fine concavo-convex structural portion 12 and transmits the infrared rays are provided, and the resin layer 20 has particles 22 having an apparent density lower than that of the resin 21 (hereinafter, low). It contains a group of (abbreviated as density particles).

本発明の放熱部材100は、所定の赤外線を選択的に放射する微細凹凸構造部12と、微細凹凸構造部12を覆い当該赤外線を透過する樹脂層20とを有することから、発熱性部品1の熱を効果的に放熱することができる。また、樹脂層20に含まれる低密度粒子22の群は、樹脂層20の樹脂21よりも熱伝導性が低いことから、もらい熱の環境であっても、該もらい熱が発熱性部品1に伝導するのを抑制することができる。 Since the heat radiating member 100 of the present invention has a fine concavo-convex structure portion 12 that selectively radiates predetermined infrared rays and a resin layer 20 that covers the fine concavo-convex structure portion 12 and transmits the infrared rays, the heat-generating component 1 Heat can be effectively dissipated. Further, since the group of the low-density particles 22 contained in the resin layer 20 has lower thermal conductivity than the resin 21 of the resin layer 20, the heat generated by the resin layer 20 becomes the heat-generating component 1 even in a heat environment. It can suppress conduction.

放熱部材100の各構成について、より詳細に説明する。 Each configuration of the heat radiating member 100 will be described in more detail.

基材10は、上述したようにベース部11と微細凹凸構造部12とからなるが、ベース部11と微細凹凸構造部12とは、同一材料で構成されていてもよいし、別材料で構成されていてもよい。基材10の厚さに特段の限定はなく、例えば0.01 mm以上3 mm以下の範囲で適宜選定できる。 As described above, the base material 10 is composed of the base portion 11 and the fine concavo-convex structure portion 12, but the base portion 11 and the fine concavo-convex structure portion 12 may be made of the same material or may be made of different materials. It may have been done. The thickness of the base material 10 is not particularly limited and can be appropriately selected in the range of, for example, 0.01 mm or more and 3 mm or less.

ベース部11は、発熱性部品1からの熱を微細凹凸構造部12に伝え易いように、良好な熱伝導性(例えば、100 W/m・K以上の熱伝導率)を有する金属材料やセラミックス材料からなることが好ましい。例えば、アルミニウム(Al)、Al合金、銅(Cu)、Cu合金、炭化ケイ素(SiC)、窒化アルミニウム(AlN)などを好適に利用できる。 The base portion 11 is a metal material or ceramic having good thermal conductivity (for example, thermal conductivity of 100 W / m · K or more) so that the heat from the heat-generating component 1 can be easily transferred to the fine concavo-convex structure portion 12. It is preferably made of a material. For example, aluminum (Al), Al alloy, copper (Cu), Cu alloy, silicon carbide (SiC), aluminum nitride (AlN) and the like can be preferably used.

微細凹凸構造部12は、表面プラズモン共鳴を効率よく生じさせるため、良好な導電性(例えば、常温で1×10-7 Ωm未満の電気抵抗率)を有する金属材料からなることが好ましい。例えば、Al、Al合金、Cu、Cu合金、銀(Ag)、金(Au)、ニッケル(Ni)、コバルト(Co)などを好適に利用できる。 The fine concavo-convex structure portion 12 is preferably made of a metal material having good conductivity (for example, an electrical resistivity of less than 1 × 10 -7 Ωm at room temperature) in order to efficiently generate surface plasmon resonance. For example, Al, Al alloy, Cu, Cu alloy, silver (Ag), gold (Au), nickel (Ni), cobalt (Co) and the like can be preferably used.

また、微細凹凸構造部12は、表面プラズモン共鳴が最大となる波長(吸収率が最大となる波長、ピーク波長とも言う)が1μm以上8μm以下の範囲の赤外線となるように形成されることが好ましく、1μm以上6μm以下の範囲の赤外線となるように形成されることがより好ましい。具体的には、凹凸構造の面内方向のピッチが0.5μm以上10μm以下の範囲内に制御され、凹凸構造の厚さ方向のギャップが0.25μm以上10μm以下の範囲内に制御されることが好ましい。 Further, the fine concavo-convex structure portion 12 is preferably formed so that the wavelength at which the surface plasmon resonance is maximum (the wavelength at which the absorption rate is maximum, also referred to as the peak wavelength) is infrared rays in the range of 1 μm or more and 8 μm or less. , It is more preferable that the infrared rays are formed in the range of 1 μm or more and 6 μm or less. Specifically, it is preferable that the in-plane pitch of the uneven structure is controlled within the range of 0.5 μm or more and 10 μm or less, and the gap in the thickness direction of the uneven structure is controlled within the range of 0.25 μm or more and 10 μm or less. ..

微細凹凸構造部12の形成は、所望の構造が得られるかぎり方法に特段の限定はなく、従前の方法(例えば、フォトリソグラフィ法、気相成長法、めっき法など)を適宜利用できる。例えば、ベース部11と微細凹凸構造部12とが同一材料からなる場合、ベース部11の一方の主表面に、直接、微細凹凸構造部12を形成してもよい。ベース部11と微細凹凸構造部12とが別材料からなる場合、ベース部11の一方の主表面の上に、良好な導電性を有する金属材料からなる層を形成した後に、当該金属層に微細凹凸構造部12を形成してもよい。 The method for forming the fine concavo-convex structure portion 12 is not particularly limited as long as a desired structure can be obtained, and conventional methods (for example, photolithography method, vapor deposition method, plating method, etc.) can be appropriately used. For example, when the base portion 11 and the fine concavo-convex structure portion 12 are made of the same material, the fine concavo-convex structure portion 12 may be formed directly on one main surface of the base portion 11. When the base portion 11 and the fine concavo-convex structure portion 12 are made of different materials, after forming a layer made of a metal material having good conductivity on one main surface of the base portion 11, fine particles are formed on the metal layer. The uneven structure portion 12 may be formed.

また、放熱しようとする発熱性部品1の表面が良好な導電性を有する金属材料からなり、発熱性部品1の表面の加工が許容される場合には、発熱性部品1の表面に、直接、微細凹凸構造部12を形成してもよい。 Further, if the surface of the heat-generating component 1 to be dissipated is made of a metal material having good conductivity and processing of the surface of the heat-generating component 1 is permitted, the surface of the heat-generating component 1 is directly applied to the surface of the heat-generating component 1. The fine concavo-convex structure portion 12 may be formed.

微細凹凸構造部12を覆う樹脂層20の樹脂21としては、微細凹凸構造部12から放射される赤外線(特にピーク波長の赤外線)の透過率が高い樹脂であれば、熱硬化性樹脂や熱可塑性樹脂や紫外線硬化性樹脂を適宜利用できる。なお、本発明において、赤外線の透過率が高いとは、波長1μm以上8μm以下の帯域に透過率が50%以上となる帯域が含まれることを意味するものとする。 As the resin 21 of the resin layer 20 that covers the fine concavo-convex structure portion 12, if the resin has a high transmission rate of infrared rays (particularly infrared rays having a peak wavelength) emitted from the fine concavo-convex structure portion 12, it is a thermosetting resin or a thermoplastic. A resin or an ultraviolet curable resin can be used as appropriate. In the present invention, the high infrared transmittance means that the band having a wavelength of 1 μm or more and 8 μm or less includes a band having a transmittance of 50% or more.

具体的には、樹脂21としてフェノール樹脂、アルキド樹脂、アミノアルキド樹脂、ユリア樹脂、シリコン樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ゴム系樹脂、塩化ビニル樹脂、フッ素樹脂などを好適に利用できる。 Specifically, as the resin 21, phenol resin, alkyd resin, aminoalkido resin, urea resin, silicon resin, melamine urea resin, epoxy resin, polyurethane resin, vinyl acetate resin, acrylic resin, rubber chloride resin, vinyl chloride resin, A fluororesin or the like can be preferably used.

樹脂層20の厚さは、1μm以上300μm以下が好ましく、5μm以上200μm以下がより好ましく、10μm以上150μm以下が更に好ましい。樹脂層20の厚さが1μm未満になると、低密度粒子22の群による断熱効果が十分に発揮できない。一方、樹脂層20の厚さが300μm超になると、樹脂層20による保温作用が強くなって放熱性が低下する。 The thickness of the resin layer 20 is preferably 1 μm or more and 300 μm or less, more preferably 5 μm or more and 200 μm or less, and further preferably 10 μm or more and 150 μm or less. If the thickness of the resin layer 20 is less than 1 μm, the heat insulating effect of the group of low-density particles 22 cannot be sufficiently exhibited. On the other hand, when the thickness of the resin layer 20 exceeds 300 μm, the heat retaining action of the resin layer 20 becomes stronger and the heat dissipation property deteriorates.

樹脂層20に含ませる低密度粒子22としては、樹脂21よりも熱伝導性を低くするため、中空粒子および/または多孔質粒子を用いることが好ましい。言い換えると、中空粒子や多孔質粒子は、粒子内の気孔率/空隙率が高いことから、中実な樹脂材よりも熱伝導性を低くすることができる。低密度粒子22の材質は、赤外線の透過率が高ければ特段の限定はなく、酸化物(例えば、シリカ、アルミナ、ガラスなど)や有機物(例えば、フェノール樹脂、エポキシ樹脂、尿素樹脂など)を適宜利用できる。 As the low-density particles 22 contained in the resin layer 20, it is preferable to use hollow particles and / or porous particles in order to have lower thermal conductivity than the resin 21. In other words, since the hollow particles and the porous particles have a high porosity / porosity in the particles, the thermal conductivity can be made lower than that of the solid resin material. The material of the low-density particles 22 is not particularly limited as long as the transmittance of infrared rays is high, and oxides (for example, silica, alumina, glass, etc.) and organic substances (for example, phenol resin, epoxy resin, urea resin, etc.) are appropriately used. Available.

低密度粒子22の平均粒子径は、1μm以上200μm以下が好ましく、2μm以上150μm以下がより好ましく、5μm以上100μm以下が更に好ましい。低密度粒子22の平均粒子径が1μm未満になると、粒子内の気孔率/空隙率が低下することから熱伝導性の低下効果が不十分になる。一方、低密度粒子22の平均粒子径が200μm超になると、樹脂層20から脱落し易くなって熱伝導性の低下効果が不十分になる。 The average particle size of the low-density particles 22 is preferably 1 μm or more and 200 μm or less, more preferably 2 μm or more and 150 μm or less, and further preferably 5 μm or more and 100 μm or less. When the average particle size of the low-density particles 22 is less than 1 μm, the porosity / porosity in the particles decreases, so that the effect of reducing the thermal conductivity becomes insufficient. On the other hand, when the average particle size of the low-density particles 22 exceeds 200 μm, the low-density particles 22 tend to fall off from the resin layer 20 and the effect of lowering the thermal conductivity becomes insufficient.

樹脂層20における低密度粒子22の混合率は、樹脂21に対して3体積%以上30体積%以下が好ましく、4体積%以上25体積%以下がより好ましく、5体積%以上20体積%以下が更に好ましい。低密度粒子22の混合率が3体積%未満になると、熱伝導性の低下効果が不十分になる。一方、低密度粒子22の混合率が30体積%超になると、樹脂層20の形成が難しくなる。 The mixing ratio of the low-density particles 22 in the resin layer 20 is preferably 3% by volume or more and 30% by volume or less, more preferably 4% by volume or more and 25% by volume or less, and 5% by volume or more and 20% by volume or less with respect to the resin 21. More preferred. When the mixing ratio of the low-density particles 22 is less than 3% by volume, the effect of lowering the thermal conductivity becomes insufficient. On the other hand, when the mixing ratio of the low-density particles 22 exceeds 30% by volume, it becomes difficult to form the resin layer 20.

低密度粒子22の群は、熱伝導性の低下効果の観点から、樹脂層20を厚さ方向に投影/透視したときに基材10を一様に覆っていることが好ましい。また、樹脂層20を面内方向(厚さ方向に直交する方向)に見たときに樹脂層20の中に均等に分散していてもよいが、樹脂層20の表面領域に偏在していることがより好ましい。 From the viewpoint of the effect of lowering the thermal conductivity, the group of the low-density particles 22 preferably uniformly covers the base material 10 when the resin layer 20 is projected / seen through in the thickness direction. Further, the resin layer 20 may be evenly dispersed in the resin layer 20 when viewed in the in-plane direction (direction orthogonal to the thickness direction), but is unevenly distributed in the surface region of the resin layer 20. Is more preferable.

樹脂層20の形成は、所望の構造が得られるかぎり方法に特段の限定はなく、従前の方法を適宜利用できる。例えば、樹脂21と低密度粒子22とを混合した樹脂/粒子塗料を基材10に塗布する方法、低密度粒子22が混合された樹脂シートを基材10に貼り付ける方法、樹脂塗料を基材10に塗布した後に該樹脂塗料が硬化する前に低密度粒子22を埋め込む方法などを適宜利用できる。 The method for forming the resin layer 20 is not particularly limited as long as a desired structure can be obtained, and the conventional method can be appropriately used. For example, a method of applying a resin / particle paint in which a resin 21 and a low-density particle 22 are mixed to a base material 10, a method of attaching a resin sheet in which a low-density particle 22 is mixed to a base material 10, and a method of using a resin paint as a base material. A method of embedding low-density particles 22 after the resin paint is applied to 10 and before the resin paint is cured can be appropriately used.

樹脂層形成用の塗料や樹脂シートを調合する際、必要に応じて溶剤、造膜助剤、可塑剤、顔料、シランカップリング材、粘度調整剤などを添加・混合してもよい。 When preparing a paint or a resin sheet for forming a resin layer, a solvent, a film-forming auxiliary, a plasticizer, a pigment, a silane coupling material, a viscosity modifier, or the like may be added or mixed as needed.

以下、種々の実験により本発明をさらに具体的に説明する。ただし、本発明はこれらの実験に記載された構成・構造に限定されるものではない。 Hereinafter, the present invention will be described in more detail by various experiments. However, the present invention is not limited to the configurations and structures described in these experiments.

[実験1]
(実施例1の作製)
Al板(JIS A1100、縦30 mm×横30 mm×厚さ1 mm)の一方の主表面に対し、フォトリソグラフィ法を用いて微細凹凸構造部12(円柱状凹部:直径2μm×深さ2μm、円柱状凹部の面内方向ピッチ4.2μm)を形成して基材10を用意した。
[Experiment 1]
(Preparation of Example 1)
Fine concavo-convex structure 12 (cylindrical recess: diameter 2 μm × depth 2 μm, using photolithography) on one main surface of Al plate (JIS A1100, length 30 mm × width 30 mm × thickness 1 mm) The base material 10 was prepared by forming an in-plane pitch of the columnar recess (4.2 μm).

一方、アクリル系樹脂(東レ・ファインケミカル株式会社製、コータックス(登録商標)、LHシリーズ、密度1.1 g/cm3)に対して中空ガラス粒子(スリーエム株式会社製、ガラスバブルズ、S42XHS、見掛け密度0.42 g/cm3、平均粒子径22μm)が5体積%となるように混合し、該混合材100質量部に対して溶剤の酢酸ブチル30質量部を混合して樹脂層形成用の樹脂/粒子塗料を調合した。 On the other hand, hollow glass particles (manufactured by 3M Co., Ltd., Glass Bubbles, S42XHS, apparent density) are opposed to acrylic resin (manufactured by Toray Fine Chemical Co., Ltd., Coatax (registered trademark), LH series, density 1.1 g / cm 3). (0.42 g / cm 3 , average particle diameter 22 μm) is mixed so as to be 5% by volume, and 30 parts by mass of butyl acetate as a solvent is mixed with 100 parts by mass of the mixed material to form a resin / particle for forming a resin layer. The paint was mixed.

つぎに、基材10の微細凹凸構造部12を覆うように、吹付塗装装置を用いて樹脂/粒子塗料を吹付塗装した後、塗膜を乾燥させて実施例1の放熱部材(樹脂層20の厚さ100μm)を作製した。 Next, the resin / particle paint is spray-painted using a spray-coating device so as to cover the fine uneven structure portion 12 of the base material 10, and then the coating film is dried to dry the heat-dissipating member (resin layer 20 of the resin layer 20) of Example 1. A thickness of 100 μm) was prepared.

つぎに、放熱部材の放熱特性/断熱特性を調査するために、擬似的な発熱性部品として面状発熱体(シンワ測定株式会社製、ポリイミドヒーター、FLヒーター04_PI_20Ω、縦30 mm×横30 mm)を用意し、放熱部材のベース部11を面状発熱体の一方の主表面に貼り付けた。このとき、ベース部11と面状発熱体との間に測温用のK熱電対を挟み込んだ。また、面状発熱体の他方の主表面には、微細凹凸構造部12を形成していない平板のAl板(JIS A1100、縦30 mm×横30 mm×厚さ1 mm)を貼り付けた。以上により、実施例1のテスト試料を作製した。 Next, in order to investigate the heat dissipation characteristics / heat insulation characteristics of the heat dissipation member, a planar heating element (manufactured by Shinwa Rules Co., Ltd., polyimide heater, FL heater 04_PI_20Ω, length 30 mm x width 30 mm) is used as a pseudo heating element. Was prepared, and the base portion 11 of the heat radiating member was attached to one main surface of the planar heating element. At this time, a K thermocouple for temperature measurement was sandwiched between the base portion 11 and the planar heating element. Further, on the other main surface of the planar heating element, a flat plate Al plate (JIS A1100, length 30 mm × width 30 mm × thickness 1 mm) on which the fine concavo-convex structure portion 12 was not formed was attached. From the above, the test sample of Example 1 was prepared.

組織観察用に別途作製した実施例1の放熱部材の断面を観察したところ、図1に相当する構造を有していることが確認された。低密度粒子22の見掛け密度が樹脂21の密度に比して十分に小さいことから、塗膜の乾燥過程で浮上して樹脂層20の表面領域に偏在したと考えられた。 When the cross section of the heat radiating member of Example 1 separately prepared for tissue observation was observed, it was confirmed that the heat radiating member had a structure corresponding to FIG. Since the apparent density of the low-density particles 22 was sufficiently smaller than the density of the resin 21, it was considered that the low-density particles floated up during the drying process of the coating film and were unevenly distributed in the surface region of the resin layer 20.

また、微細凹凸構造部12の形成の有無による赤外線吸収の差異をフーリエ変換赤外分光光度計により計測した。その結果、微細凹凸構造部12における、波長1〜8μmの範囲の赤外線の吸収スペクトル積分量は、波長1〜20μmの範囲の赤外線の吸収スペクトル積分量に対して0.6以上であった。一方、微細凹凸構造部12を形成していないAl板においては、波長1〜8μmの赤外線の吸収スペクトル自体が実質的に観察されなかった。 In addition, the difference in infrared absorption depending on the presence or absence of the formation of the fine concavo-convex structure portion 12 was measured by a Fourier transform infrared spectrophotometer. As a result, the integrated infrared absorption spectrum in the wavelength range of 1 to 8 μm in the fine concavo-convex structure portion 12 was 0.6 or more with respect to the integrated infrared absorption spectrum in the wavelength range of 1 to 20 μm. On the other hand, in the Al plate on which the fine concavo-convex structure portion 12 was not formed, the absorption spectrum of infrared rays having a wavelength of 1 to 8 μm was not substantially observed.

(実施例2の作製)
実施例1で用いた樹脂/粒子塗料の低密度粒子22を5体積%のシラスバルーン(株式会社アクシーズケミカル製、ウインライト、MSB-3011S、見掛け密度0.5 g/cm3、平均粒子径30μm)に変更した以外は、実施例1と同様にして、実施例2の放熱部材とテスト試料とを作製した。
(Preparation of Example 2)
The low-density particles 22 of the resin / particle paint used in Example 1 were added to a 5% by volume silas balloon (Axies Chemical Co., Ltd., Winlight, MSB-3011S, apparent density 0.5 g / cm 3 , average particle diameter 30 μm). The heat radiating member and the test sample of Example 2 were prepared in the same manner as in Example 1 except that they were changed.

(実施例3の作製)
実施例1で用いた樹脂/粒子塗料の低密度粒子22を8体積%の中空ガラス粒子に変更した以外は、実施例1と同様にして、実施例3の放熱部材とテスト試料とを作製した。
(Preparation of Example 3)
The heat dissipation member and the test sample of Example 3 were prepared in the same manner as in Example 1 except that the low density particles 22 of the resin / particle paint used in Example 1 were changed to 8% by volume hollow glass particles. ..

(実施例4の作製)
実施例1で用いた樹脂/粒子塗料の低密度粒子22を5体積%の中空ポリマー粒子(積水化学株式会社製、アドバンセル、EML101、見掛け密度0.02 g/cm3、平均粒子径15μm)に変更した以外は、実施例1と同様にして、実施例4の放熱部材とテスト試料とを作製した。
(Preparation of Example 4)
The low-density particles 22 of the resin / particle paint used in Example 1 were changed to 5% by volume hollow polymer particles (Sekisui Chemical Co., Ltd., Advancel, EML101, apparent density 0.02 g / cm 3 , average particle diameter 15 μm). Except for the above, the heat radiating member and the test sample of Example 4 were prepared in the same manner as in Example 1.

(比較例1の作製)
低密度粒子22を混合しないこと以外は、実施例1と同様にして、樹脂塗料を用意した。つぎに、微細凹凸構造部12を形成していない平板のAl板(JIS A1100、縦30 mm×横30 mm×厚さ1 mm)を基材10とし、その一方の主表面を覆うように、吹付塗装装置を用いて樹脂塗料を吹付塗装した後、塗膜を乾燥させて比較例1の放熱部材(樹脂層20の厚さ100μm)を作製した。
(Preparation of Comparative Example 1)
A resin paint was prepared in the same manner as in Example 1 except that the low-density particles 22 were not mixed. Next, a flat plate Al plate (JIS A1100, length 30 mm x width 30 mm x thickness 1 mm) on which the fine concavo-convex structure portion 12 is not formed is used as the base material 10, and one of the main surfaces is covered. After spray-coating the resin paint using a spray-coating device, the coating film was dried to prepare a heat-dissipating member (thickness 100 μm of the resin layer 20) of Comparative Example 1.

その後、実施例1と同様にして、比較例1のテスト試料を作製した。比較例1は、基材10に微細凹凸構造部12が形成されていないことによる影響を観察することができる比較試料である。 Then, a test sample of Comparative Example 1 was prepared in the same manner as in Example 1. Comparative Example 1 is a comparative sample in which the influence of the fact that the fine concavo-convex structure portion 12 is not formed on the base material 10 can be observed.

(比較例2の作製)
比較例1で用いた基材10を実施例1と同じ基材(微細凹凸構造部12が形成された基材)に変更した以外は、比較例1と同様にして、比較例2の放熱部材とテスト試料とを作製した。比較例2は、樹脂層20が低密度粒子22を含んでいないことによる影響を観察することができる比較試料である。
(Preparation of Comparative Example 2)
The heat dissipation member of Comparative Example 2 is the same as that of Comparative Example 1 except that the base material 10 used in Comparative Example 1 is changed to the same base material as that of Example 1 (a base material on which the fine concavo-convex structure portion 12 is formed). And a test sample were prepared. Comparative Example 2 is a comparative sample in which the influence of the resin layer 20 not containing the low-density particles 22 can be observed.

(他の発熱性部品の用意)
実施例1と同様の面状発熱体の両主表面に、平板のAl板(JIS A1100、縦30 mm×横30 mm×厚さ1 mm)を貼り付けた。このとき、Al板と面状発熱体との間に測温用のK熱電対を挟み込んだ。これにより、もらい熱環境を構築するための他の発熱性部品を用意した。
(Preparation of other heat-generating parts)
A flat plate Al plate (JIS A1100, length 30 mm × width 30 mm × thickness 1 mm) was attached to both main surfaces of a planar heating element similar to that in Example 1. At this time, a K thermocouple for temperature measurement was sandwiched between the Al plate and the planar heating element. As a result, we prepared other heat-generating parts to build a thermal environment.

[実験2]
(もらい熱のない環境での放熱テスト)
図2は、実験環境を示す模式図である。図2に示したように、テスト試料の放熱部材に対面するように他の発熱性部品を2 cm離して配置し、風の影響を防止するためにそれらを密閉容器(実験開始時温度25℃)の中に静置した。図2の実験環境は、実験2〜4で共通とした。
[Experiment 2]
(Heat dissipation test in an environment without heat)
FIG. 2 is a schematic diagram showing an experimental environment. As shown in FIG. 2, other heat-generating components are placed 2 cm apart so as to face the heat-dissipating member of the test sample, and they are placed in a closed container (temperature at the start of the experiment, 25 ° C.) to prevent the influence of wind. ). The experimental environment in FIG. 2 was the same for Experiments 2 to 4.

実験2では、テスト試料の面状発熱体のみに定電力(5 W)を印加して、テスト試料の温度を測定した。面状発熱体に一定の電力を印加しているので、測定温度は放熱量とバランスしたところで安定する。すなわち、放熱性の高いテスト試料ほど低い温度を示すことが予想される。結果を表1に示す。 In Experiment 2, the temperature of the test sample was measured by applying a constant power (5 W) only to the planar heating element of the test sample. Since a constant power is applied to the planar heating element, the measured temperature stabilizes when it is balanced with the amount of heat released. That is, it is expected that the test sample having higher heat dissipation shows a lower temperature. The results are shown in Table 1.

Figure 2021184411
Figure 2021184411

表1に示したように、比較例1〜2を見ると、比較例2の方が約10℃低いことが判る。このことから、基材10に微細凹凸構造部12を形成すると、放熱性が向上することが確認される。また、実施例1〜4の温度は、比較例2の温度と同等である。このことから、樹脂層20に含まれる低密度粒子22の群は、放熱性を阻害しないことが確認される。 As shown in Table 1, looking at Comparative Examples 1 and 2, it can be seen that Comparative Example 2 is about 10 ° C. lower. From this, it is confirmed that the heat dissipation is improved by forming the fine concavo-convex structure portion 12 on the base material 10. Further, the temperatures of Examples 1 to 4 are equivalent to the temperatures of Comparative Example 2. From this, it is confirmed that the group of the low-density particles 22 contained in the resin layer 20 does not impair the heat dissipation.

[実験3]
(もらい熱環境での断熱テスト)
実験3では、他の発熱性部品の面状発熱体のみに定電力(4.5 W)を印加し、他の発熱性部品およびテスト試料の温度を測定した。実験3においては、断熱性の高いテスト試料ほど低い温度を示すことが予想される。結果を表2に示す。
[Experiment 3]
(Insulation test in a thermal environment)
In Experiment 3, constant power (4.5 W) was applied only to the planar heating element of other heating components, and the temperatures of the other heating components and the test sample were measured. In Experiment 3, it is expected that the test sample with higher heat insulation shows a lower temperature. The results are shown in Table 2.

Figure 2021184411
Figure 2021184411

表2に示したように、他の発熱性部品の温度は、比較例1〜2および実施例1〜4の全てで同等である。すなわち、もらい熱の条件は全テスト試料で同等と見なせる。比較例1〜2を見ると、比較例2の方が約5℃低いことが判る。これは、基材10の微細凹凸構造部12がもらい熱を再度放熱するためと考えられる。また、実施例1〜4の温度は、比較例2の温度よりも5℃以上低くなっていることが判る。このことから、樹脂層20に含まれる低密度粒子22の群は、もらい熱環境での断熱性を高めることが確認される。 As shown in Table 2, the temperatures of the other heat-generating components are the same in all of Comparative Examples 1 and 2 and Examples 1 to 4. That is, the conditions of heat reception can be regarded as equivalent for all test samples. Looking at Comparative Examples 1 and 2, it can be seen that Comparative Example 2 is about 5 ° C. lower. It is considered that this is because the fine concavo-convex structure portion 12 of the base material 10 receives and dissipates heat again. Further, it can be seen that the temperatures of Examples 1 to 4 are lower than the temperature of Comparative Example 2 by 5 ° C. or more. From this, it is confirmed that the group of the low-density particles 22 contained in the resin layer 20 enhances the heat insulating property in the heat environment.

[実験4]
(もらい熱環境での放熱および断熱テスト)
実験4では、他の発熱性部品の面状発熱体に定電力(4.5 W)を印加し、テスト試料の面状発熱体に定電力(2.5 W)を印加して、他の発熱性部品およびテスト試料の温度を測定した。実験4においては、断熱性の高いテスト試料ほど低い温度を示すことが予想される。結果を表3に示す。
[Experiment 4]
(Heat dissipation and heat insulation test in a thermal environment)
In Experiment 4, a constant power (4.5 W) was applied to the planar heating element of the other heat-generating component, and a constant power (2.5 W) was applied to the planar heating element of the test sample to apply the constant power (2.5 W) to the other heat-generating component and the planar heating element. The temperature of the test sample was measured. In Experiment 4, it is expected that the test sample with higher heat insulation shows a lower temperature. The results are shown in Table 3.

Figure 2021184411
Figure 2021184411

表3に示したように、他の発熱性部品の温度は、比較例1〜2および実施例1〜4の全てで同等である。すなわち、もらい熱の条件は全テスト試料で同等と見なせる。比較例1〜2を見ると、比較例2の方が約7℃低いことが判る。これは、基材10の微細凹凸構造部12がもらい熱を再度放熱するためと考えられる。また、実施例1〜4の温度は、比較例2の温度よりも8℃以上低くなっていることが判る。このことから、樹脂層20に含まれる低密度粒子22の群は、もらい熱環境での断熱性を高めることが確認される。 As shown in Table 3, the temperatures of the other heat-generating components are the same in all of Comparative Examples 1 and 2 and Examples 1 to 4. That is, the conditions of heat reception can be regarded as equivalent for all test samples. Looking at Comparative Examples 1 and 2, it can be seen that Comparative Example 2 is about 7 ° C. lower. It is considered that this is because the fine concavo-convex structure portion 12 of the base material 10 receives and dissipates heat again. Further, it can be seen that the temperatures of Examples 1 to 4 are lower than the temperature of Comparative Example 2 by 8 ° C. or more. From this, it is confirmed that the group of the low-density particles 22 contained in the resin layer 20 enhances the heat insulating property in the heat environment.

以上の実験2〜4の結果から、本発明に係る放熱部材は、放熱しようとする発熱性部品がもらい熱を受ける環境に置かれても、もらい熱の影響を抑制して効果的に放熱することができることが確認された。 From the results of the above experiments 2 to 4, the heat radiating member according to the present invention suppresses the influence of the heat received and effectively dissipates heat even if the heat generating component to be radiated is placed in an environment where it receives heat. It was confirmed that it can be done.

上述した実施形態や実験例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実験例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and experimental examples have been described for the purpose of assisting the understanding of the present invention, and the present invention is not limited to the specific configuration described. For example, it is possible to replace a part of the configuration of the embodiment with the configuration of the common general technical knowledge of those skilled in the art, and it is also possible to add the configuration of the common general technical knowledge of those skilled in the art to the configuration of the embodiment. That is, the present invention may delete, replace with another configuration, or add another configuration to a part of the configurations of the embodiments and experimental examples of the present specification without departing from the technical idea of the invention. It is possible.

1…発熱性部品、10…基材、11…ベース部、12…微細凹凸構造部、
20…樹脂層、21…樹脂、22…低密度粒子、100…放熱部材。
1 ... heat-generating parts, 10 ... base material, 11 ... base part, 12 ... fine uneven structure part,
20 ... resin layer, 21 ... resin, 22 ... low density particles, 100 ... heat dissipation member.

Claims (6)

発熱性部品の熱を放熱する放熱部材であって、
前記発熱性部品に付着するベース部と所定の赤外線を選択的に放射する微細凹凸構造部とからなる基材と、
前記微細凹凸構造部を覆い前記所定の赤外線を透過する樹脂の層とを具備し、
前記樹脂の層は、該樹脂よりも見掛け密度の低い粒子の群を含むことを特徴とする放熱部材。
It is a heat dissipation member that dissipates heat from heat-generating parts.
A base material composed of a base portion that adheres to the heat-generating component and a fine concavo-convex structure portion that selectively radiates predetermined infrared rays.
It covers the fine concavo-convex structure portion and is provided with a resin layer that transmits the predetermined infrared rays.
The resin layer is a heat radiating member containing a group of particles having a lower apparent density than the resin.
請求項1に記載の放熱部材において、
前記微細凹凸構造部は金属材料からなり、
前記見掛け密度の低い粒子の群は、中空粒子および多孔質粒子の少なくとも一つを含むことを特徴とする放熱部材。
In the heat dissipation member according to claim 1,
The fine concavo-convex structure is made of a metal material and is made of a metal material.
The heat-dissipating member, wherein the group of particles having a low apparent density contains at least one of hollow particles and porous particles.
請求項1または請求項2に記載の放熱部材において、
前記見掛け密度の低い粒子の群は、前記樹脂の層に対して3体積%以上30体積%以下で含まれていることを特徴とする放熱部材。
In the heat radiating member according to claim 1 or 2.
The heat-dissipating member, wherein the group of particles having a low apparent density is contained in an amount of 3% by volume or more and 30% by volume or less with respect to the resin layer.
請求項1乃至請求項3のいずれか一項に記載の放熱部材において、
前記見掛け密度の低い粒子の群は、平均粒子径が1μm以上200μm以下であることを特徴とする放熱部材。
The heat radiating member according to any one of claims 1 to 3.
The group of particles having a low apparent density is a heat dissipation member having an average particle diameter of 1 μm or more and 200 μm or less.
請求項1乃至請求項4のいずれか一項に記載の放熱部材において、
前記樹脂の層は、厚さが1μm以上300μm以下であることを特徴とする放熱部材。
In the heat radiating member according to any one of claims 1 to 4.
The resin layer is a heat radiating member having a thickness of 1 μm or more and 300 μm or less.
請求項1乃至請求項5のいずれか一項に記載の放熱部材において、
前記見掛け密度の低い粒子の群は、前記樹脂の層の表面領域に偏在することを特徴とする放熱部材。
In the heat radiating member according to any one of claims 1 to 5.
The heat-dissipating member, characterized in that the group of particles having a low apparent density is unevenly distributed in the surface region of the resin layer.
JP2020088773A 2020-05-21 2020-05-21 heat dissipation material Active JP7425670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020088773A JP7425670B2 (en) 2020-05-21 2020-05-21 heat dissipation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020088773A JP7425670B2 (en) 2020-05-21 2020-05-21 heat dissipation material

Publications (2)

Publication Number Publication Date
JP2021184411A true JP2021184411A (en) 2021-12-02
JP7425670B2 JP7425670B2 (en) 2024-01-31

Family

ID=78767522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020088773A Active JP7425670B2 (en) 2020-05-21 2020-05-21 heat dissipation material

Country Status (1)

Country Link
JP (1) JP7425670B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027831A (en) * 2008-07-18 2010-02-04 Tohoku Univ Method of improving heat radiation efficiency of electronic equipment whose heat generating source is covered with resin material, and wavelength selective heat radiation material and method of manufacturing the same
JP2010055642A (en) * 2009-12-07 2010-03-11 Fujitsu Ltd Electronic appliance
JP2016141174A (en) * 2015-01-30 2016-08-08 日立オートモティブシステムズ株式会社 On-vehicle control device
JP2017520110A (en) * 2014-05-19 2017-07-20 マイクロソフト テクノロジー ライセンシング,エルエルシー Computing device having a spectrally selective radiation emitting device
JP2019077586A (en) * 2017-10-24 2019-05-23 花王株式会社 Method for producing hollow silica particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027831A (en) * 2008-07-18 2010-02-04 Tohoku Univ Method of improving heat radiation efficiency of electronic equipment whose heat generating source is covered with resin material, and wavelength selective heat radiation material and method of manufacturing the same
JP2010055642A (en) * 2009-12-07 2010-03-11 Fujitsu Ltd Electronic appliance
JP2017520110A (en) * 2014-05-19 2017-07-20 マイクロソフト テクノロジー ライセンシング,エルエルシー Computing device having a spectrally selective radiation emitting device
JP2016141174A (en) * 2015-01-30 2016-08-08 日立オートモティブシステムズ株式会社 On-vehicle control device
JP2019077586A (en) * 2017-10-24 2019-05-23 花王株式会社 Method for producing hollow silica particles

Also Published As

Publication number Publication date
JP7425670B2 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
JP6349543B2 (en) COOLING STRUCTURE AND METHOD FOR MANUFACTURING COOLING STRUCTURE
JP2017208505A (en) Structure, and electronic component and electronic apparatus including the structure
WO2020071073A1 (en) Heat radiation material, method for producing heat radiation material, heat radiation material kit, and heat generator
US20110052871A1 (en) Heat dissipating material including carbon substrate with nanometer-order uneven structure and its manufacturing method
TW201803403A (en) Radiation device and processing device using same radiation device
TWI671002B (en) heat sink
JP2005150249A (en) Heat conductive member and heat radiating structure using the same
JP2009099753A (en) Heat sink
JP2008251950A (en) Wiring board
JP2005228855A (en) Radiator
JP2005144985A (en) Heat radiation sheet, heat radiation structure, heat radiation member, and heat radiation instrument
JP2021184411A (en) Heat dissipation member
JP2021044403A (en) Heat-dissipating material, manufacturing method of the same, and heat-generating body
KR20140004452A (en) Heat release devices using the heat release paint for led lamp
JP3216229U (en) Graphite radiator
JP2014036187A (en) Heat dissipation structure and heating element device provided with the same
JP2012174743A (en) Heat radiation material and semiconductor unit
JP2009123785A (en) Heat-transfer-emission material
JP2001237355A (en) Heat transmitting method, heat sink and manufacturing method therefor
TWM504439U (en) Heat dissipation assembly
CN109747232A (en) A kind of graphite heat radiation fin
WO2023095228A1 (en) Heat dissipation member, electronic device, and production method for heat dissipation member
JP2022013411A (en) Heat dissipation material and production method thereof, heat dissipation material kit, and composition for heat dissipation material formation
TWM363193U (en) Heat dissipating substrate capable of emitting far infrared and heat radiation
JP2021044404A (en) Heat-dissipating material, manufacturing method of the same, and heat-generating body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240119

R150 Certificate of patent or registration of utility model

Ref document number: 7425670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150