WO2023095228A1 - Heat dissipation member, electronic device, and production method for heat dissipation member - Google Patents

Heat dissipation member, electronic device, and production method for heat dissipation member Download PDF

Info

Publication number
WO2023095228A1
WO2023095228A1 PCT/JP2021/043118 JP2021043118W WO2023095228A1 WO 2023095228 A1 WO2023095228 A1 WO 2023095228A1 JP 2021043118 W JP2021043118 W JP 2021043118W WO 2023095228 A1 WO2023095228 A1 WO 2023095228A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
heat
ceramic particles
heat dissipation
base material
Prior art date
Application number
PCT/JP2021/043118
Other languages
French (fr)
Japanese (ja)
Inventor
昌哉 三田村
勝也 神野
元基 正木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/043118 priority Critical patent/WO2023095228A1/en
Publication of WO2023095228A1 publication Critical patent/WO2023095228A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present disclosure relates to a heat dissipation member, an electronic device, and a method for manufacturing a heat dissipation member.
  • the heat dissipation sheet disclosed in Patent Document 1 includes a heat transfer layer and a heat radiation layer.
  • the heat transfer layer has a role of transferring heat generated from the heat source to the heat radiation layer.
  • the heat radiation layer has a role of radiating the heat transferred from the heat transfer layer as infrared rays.
  • the thermal radiation layer contains a binder and a thermally conductive inorganic filler.
  • the inorganic filler is provided in the binder.
  • heat radiation from the inorganic filler is blocked by the binder.
  • heat dissipation sheet disclosed in Patent Literature 1 there is a possibility that heat dissipation may be deteriorated.
  • the present disclosure has been made to solve the above problems, and provides a heat dissipation member, an electronic device, and a method for manufacturing the heat dissipation member in which heat dissipation from sources other than the binder is not blocked by the binder. It is an object.
  • a heat dissipating member according to the present disclosure is provided on the surface of a base material and includes a heat emitting layer containing ceramic particles and a binder, the surface of the ceramic particles protruding from the surface of the binder.
  • heat radiation from sources other than the binder is not blocked by the binder.
  • FIG. 2 is a vertical cross-sectional view of a heat radiating member according to Embodiment 1;
  • FIG. FIG. 2 is an enlarged view of a main portion of FIG. 1;
  • 2 is a plan view of the heat radiating member according to Embodiment 1;
  • FIG. FIG. 4 is a vertical cross-sectional view of a heat dissipation member provided with a heat source;
  • 4 is a flow chart showing a method for manufacturing a heat radiating member according to Embodiment 1;
  • 4A and 4B are diagrams showing configurations of examples when the heat radiating member according to the first embodiment is implemented;
  • FIG. 1 is a vertical cross-sectional view of an electronic device to which the heat dissipation member according to Embodiment 1 is applied;
  • FIG. 8 is a longitudinal sectional view of a heat radiating member according to Embodiment 2;
  • FIG. 11 is a vertical cross-sectional view of a heat radiating member according to Embodiment 3
  • Embodiment 1 A heat radiating member 10 according to Embodiment 1 will be described with reference to FIGS. 1 to 6. FIG.
  • FIG. 1 is a vertical cross-sectional view of a heat radiating member 10 according to Embodiment 1.
  • FIG. 2 is an enlarged view of a main part of FIG. 1.
  • FIG. FIG. 3 is a plan view of the heat dissipation member 10 according to Embodiment 1.
  • FIG. 4 is a vertical cross-sectional view of the heat dissipation member 10 including the heat source 40. As shown in FIG.
  • the heat dissipation member 10 according to Embodiment 1 includes a base material 11A and a heat emission layer 12A.
  • the base material 11A has a role of absorbing heat emitted from a heat source such as a semiconductor element and transmitting the absorbed heat to the thermal radiation layer 12A.
  • the thermal radiation layer 12A has a role of radiating the heat transferred from the substrate 11A as infrared rays from its surface.
  • the thermal radiation layer 12A has a plurality of ceramic particles 21 and a binder 22.
  • a plurality of ceramic particles 21 are provided inside the binder 22 .
  • the binder 22 is provided on the surface of the substrate 11A. Both the ceramic particles 21 and the binder 22 radiate the heat transferred from the substrate 11A as infrared rays.
  • the ceramic particles 21 provided inside the binder 22 are the ceramic particles 21 that are in contact with the surface of the base material 11A, the ceramic particles 21 that have a part of the surface (spherical surface) protruding from the surface 22a of the binder 22, and , ceramic particles 21, etc. whose surfaces are in contact with each other.
  • the surface of the thermal emission layer 12A includes the surface 22a of the binder 22 and the surfaces of the portions of the ceramic particles 21 protruding from the surface 22a.
  • the ceramic particles 21 having a part of the surface protruding from the surface 22a of the binder 22 are projected on the surface 22a of the binder 22 in the direction perpendicular to the surface 22a of the binder 22.
  • a ceramic particle 21 having a portion protruding from the surface 22a is meant.
  • the ceramic particles 21 are made of a material having an infrared emissivity higher than that of the binder 22 .
  • the radiation member 10 as a whole has a higher infrared emissivity than a radiation member in which the ceramic particles 21 do not protrude from the surface 22 a of the binder 22 .
  • the heat radiation performance of the heat radiation member 10 is improved.
  • the ceramic particles 21 are formed by appropriately selecting a material having an infrared emissivity higher than that of the binder 22 .
  • the ceramic particles 21 are, for example, aluminum nitride, silicon nitride, boron nitride, zinc oxide, aluminum oxide, crystalline silica, titanium oxide, manganese ferrite ((FeMn)2O3), and ferric oxide (Fe2O3). It is made of at least one of these materials.
  • the particle size of the ceramic particles 21 is preferably 10 ⁇ m or more and 100 ⁇ m or less, for example.
  • the particle size of the ceramic particles 21 is the cumulative mass 50% particle size. If the particle size of the ceramic particles 21 is less than 10 ⁇ m, the ceramic particles 21 tend to settle inside the binder 22 and may not protrude from the surface 22 a of the binder 22 . In addition, when the particle size of the ceramic particles 21 exceeds 100 ⁇ m, the thickness of the heat emitting layer 12A increases to bind the ceramic particles 21, and the heat conduction from the substrate 11A to the heat emitting layer 12A decreases. There is a risk of
  • the binder 22 may be any material as long as it can bind the ceramic particles 21 to the surface of the substrate 11A.
  • This binder 22 is formed by appropriately selecting either one of an organic binder and an inorganic binder.
  • the binder 22 may contain an inorganic filler.
  • the inorganic filler should be made of a material having a thermal conductivity higher than that of the binder 22 .
  • Inorganic fillers include, for example, metal powder, aluminum nitride powder, aluminum oxide powder, zinc oxide powder, magnesium oxide powder, silicon oxide powder, silicate powder, silicon nitride powder, silicon carbide powder, tungsten carbide powder, boron nitride powder, Any one or more of aluminum hydroxide powder, magnesium hydroxide powder, aluminum oxynitride powder, cordierite powder, mullite powder, graphite powder, carbon nanotube, diamond powder, carbon fiber, fullerene, etc. formed.
  • the organic binder 22 is formed of at least one of epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, silicone resin, polyimide resin, and the like. It is
  • epoxy resins are most preferable because of their excellent adhesiveness.
  • examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, orthocresol novolac type epoxy resins, phenol novolac type epoxy resins, alicyclic aliphatic epoxy resins, and glycidyl-aminophenol type epoxy resins. be done.
  • Epoxy resin is made of one or more of these resins.
  • the curing agent applied to the epoxy resin is, for example, an alicyclic acid such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride.
  • Anhydrides aliphatic acid anhydrides such as dodecenyl succinic anhydride; aromatic acid anhydrides such as phthalic anhydride and trimellitic anhydride; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; ) phenol; dimethylbenzylamine; 1,8-diazabicyclo(5,4,0)undecene and its derivatives; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole etc.
  • Curing agents for epoxy resins are formed from one or more of these curing agents.
  • the blending amount of the curing agent must be appropriately set according to the type of thermosetting resin and curing agent used. In general, it is preferable to use 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
  • the inorganic binder includes, for example, sol-gel glass, organic-inorganic hybrid glass, water glass, one-liquid inorganic adhesive, and two-liquid inorganic adhesive. It is made of one or more materials.
  • the material of the base material 11A is not particularly limited as long as it does not interfere with the formation of the thermal emission layer 12A.
  • 11 A of base materials are formed with any one material, for example among metals, such as aluminum and iron, resin, and ceramics.
  • metals such as aluminum and iron, resin, and ceramics.
  • the base material 11A can laterally spread the heat transferred from the heat source 40 . Therefore, the heat radiating member 10 can improve the heat radiating performance with respect to the heat source 40 and cool the heat source 40 .
  • the shape of the substrate 11A is not particularly limited as long as it does not interfere with the formation of the thermal radiation layer 12A. This point will be described in detail in the second and third embodiments.
  • the radiation member 10 can improve the infrared emissivity.
  • the occupation ratio of the surfaces of the ceramic particles 21 on the surface of the heat emitting layer 12A is preferably 20 to 70%.
  • the occupancy rate of the surface of the ceramic particles 21 on the surface of the heat radiation layer 12A is, as shown in FIG. It shows the ratio of the projected area occupied by the surfaces of the ceramic particles 21 protruding from 22a. This occupancy can be obtained, for example, using the following formula (1).
  • Occupancy (Projected area of surface of protruding ceramic particles)/(Projected area of surface of thermal emission layer) x 100 (1)
  • the heat emission layer 12A is provided on the surface opposite to the surface with which the heat source 40 contacts.
  • the heat radiation layer 12A does not need to cover the entire surface opposite to the surface in contact with the heat source 40, and may be appropriately provided within a range in which the heat radiation property can be exhibited.
  • FIG. 5 is a flow chart showing a method for manufacturing the heat radiating member 10 according to the first embodiment.
  • the binder 22 is diluted with a solvent.
  • step ST12 a thermally conductive filler different from the ceramic particles 21 is dispersed and mixed with the diluted binder 22.
  • Methods for mixing and dispersing the thermally conductive filler in the binder 22 include, for example, methods using a kneader, ball mill, planetary ball mill, kneading mixer, bead mill, and the like. Note that step ST12 may be omitted in the manufacturing method of the heat dissipation member 10 .
  • the binder 22 is applied to the surface of the base material 11A.
  • the method of applying the binder 22 to the base material 11A include methods using a spray method, a dipping method, a brush coating method, a screen printing method, a transfer method, and the like.
  • the thickness when the binder 22 is applied is calculated backward from the drying shrinkage rate and cure shrinkage rate of the binder 22, and is appropriately adjusted so that the thickness of the binder 22 after drying and curing becomes a desired thickness.
  • step ST14 the ceramic particles 21 are sprinkled on the applied binder 22.
  • the method of sprinkling the ceramic particles 21 on the binder 22 include a method of putting the ceramic particles 21 in a mesh sieve and sprinkling from above, and a method of powder coating using a spray nozzle.
  • the amount of the ceramic particles 21 to be sprinkled is appropriately adjusted according to the thickness of the applied binder 22 and the particle size of the ceramic particles 21 so that the surface occupancy of the protruding ceramic particles 21 becomes a desired occupancy. be done.
  • the ceramic particles 21 not bound to the binder 22 are removed.
  • Methods for removing the unbound ceramic particles 21 from the binder 22 include, for example, a method of blowing off the ceramic particles 21 with an air blow, a method of sucking the ceramic particles 21 with a vacuum, and the like.
  • this step ST15 (the step of removing the ceramic particles 21 not bound to the binder 22) is performed immediately after the ceramic particles 21 are sprinkled, after the solvent is dried, or after the binder 22 is cured. It should be implemented at one time.
  • step ST16 the solvent contained in the applied binder 22 is dried at a desired temperature.
  • the heat treatment method for removing the solvent from the binder 22 include methods using a drying oven, a hot plate, a hot air blower, an electric furnace, a high-frequency heating furnace, and the like.
  • the heat treatment temperature for solvent removal from the binder 22 is appropriately adjusted with reference to the boiling point of the solvent used.
  • the heat treatment is preferably performed at a temperature several tens of degrees lower than the boiling point of the solvent.
  • the solvent rapidly evaporates, crater-like holes are generated on the surface 22a of the binder 22, and the thickness of the binder 22 tends to become uneven.
  • the binder 22 is heated at a desired temperature and hardened.
  • the thermal emission layer 12A is formed.
  • the heat treatment method for curing the binder 22 include methods using a drying oven, a hot plate, a hot air blower, an electric furnace, a high-frequency heating furnace, and the like. Further, the heat treatment temperature for curing the binder 22 is appropriately adjusted with reference to the curing temperature of the binder 22 used. Then, the manufacturing method of the heat radiating member 10 ends.
  • FIG. 6 is a diagram showing the configuration of each example when the heat radiating member 10 according to Embodiment 1 is implemented.
  • FIG. 6 shows the specific configuration of the samples of Examples 1-5 to which the configuration of the heat dissipation member 10 is applied, and the specific configurations of the samples of Comparative Examples 1 and 2 to which the configuration of the heat dissipation member 10 is not applied. is shown.
  • Example 1 In Example 1, a mixture of an epoxy resin and a solvent was applied to the surface of a 5 cm ⁇ 5 cm aluminum substrate 11A so as to have a thickness of 100 ⁇ m. Next, in Example 1, 0.751 g of alumina particles were sprinkled on the surface of the epoxy resin using a sieve so that the occupancy of the alumina particles was 15%. Next, in Example 1, after drying the solvent in a drying oven, the epoxy resin was cured. Thus, the heat dissipation member 10 of Example 1 is a sample in which the heat emission layer 12A is formed on the surface of the substrate 11A.
  • Example 2 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.766 g and the occupancy rate was 20%.
  • Example 3 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.798 g so that the occupancy rate was 30%.
  • Example 4 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.925 g so that the occupancy was 70%.
  • Example 5 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.956 g so that the occupancy rate was 80%.
  • Comparative Example 1 is a sample in which the thermal emitting layer 12A is not formed on the surface of the aluminum substrate 11A measuring 5 cm ⁇ 5 cm.
  • Comparative Example 2 is a sample obtained in the same manner as in Example 1, except that the surface of the epoxy resin was not sprinkled with alumina particles so that the occupancy rate was 0%.
  • the cooling performance was evaluated as follows for the samples of Examples 1-5 and Comparative Examples 1 and 2 described above.
  • a ceramic heater (heat source 40) is attached to the surface of the substrate 11A opposite to the surface on which the heat radiation layer 12A is provided.
  • Each sample is left for several hours with power applied to the ceramic heater until the temperature of each sample and the temperature of the ceramic heater reach the saturation temperature. After that, the surface temperature of the ceramic heater is measured using a thermocouple or the like.
  • the evaluation results of the cooling performance are based on the saturation temperature obtained in the sample of Example 1, and the saturation temperature obtained in each sample of Examples 2-5 and Comparative Examples 1 and 2 is the saturation temperature of Example 1.
  • is lower than , ⁇ is equal, and x is higher.
  • the occupancy of the alumina particles was 20%, which improved the cooling performance and lowered the saturation temperature.
  • the occupancy of the alumina particles was 30%, so that the cooling performance was improved and the saturation temperature was lowered.
  • the occupancy of the alumina particles was 70%, so that the cooling performance was improved and the saturation temperature was lowered.
  • the binding of the alumina particles was insufficient, and it was judged that the sample was not suitable for the evaluation of the occupancy rate of the alumina particles.
  • FIG. 7 is a longitudinal sectional view of electronic device 100 to which heat dissipation member 10 according to Embodiment 1 is applied.
  • the electronic device 100 is, for example, a high frequency module.
  • This electronic device 100 includes a heat dissipation member 10 , a ceramic substrate 51 , a circuit pattern 52 , a high frequency circuit 53 , a circuit 54 , bonding wires 55 and a case 60 .
  • the ceramic substrate 51 is, for example, a multilayer dielectric substrate.
  • the ceramic substrate 51 is attached to the surface of the substrate 11A opposite to the surface provided with the thermal emission layer 12A.
  • a method for attaching the ceramic substrate 51 to the base material 11A for example, bonding by soldering, bonding by sintered metal, or the like can be used.
  • the electronic device 100 may form a metal layer such as a metallized layer in advance on the surface of the base material 11A to improve bonding.
  • the circuit pattern 52 is provided on the surface of the ceramic substrate 51 .
  • the surface of the ceramic substrate 51 is the surface located opposite to the surface of the ceramic substrate 51 in contact with the substrate 11A.
  • the high frequency circuit 53 is provided on the surface of the circuit pattern 52 .
  • a semiconductor bare chip that serves as a heat source for example, is mounted on the high-frequency circuit 53 .
  • the circuit 54 is provided on the surface of the circuit pattern 52 .
  • This circuit 54 is mounted with, for example, a semiconductor bare chip that serves as a heat source.
  • the high frequency circuit 53 and the circuit 54 are electrically connected to the circuit pattern 52 via bonding wires 55 .
  • the case 60 is provided on the ceramic substrate 51 so as to cover the ceramic substrate 51 , the circuit pattern 52 , the high frequency circuit 53 , the circuit 54 and the bonding wires 55 .
  • This case 60 has a case body 61 and a cover 62 .
  • the case 60 is made of, for example, a metal material or a resin material.
  • the case body 61 constitutes a vertical wall of the case 60 surrounding the ceramic substrate 51 .
  • One end of the case body 61 is attached to the surface of the ceramic substrate 51 or the surface of the circuit pattern 52 .
  • the cover 62 is provided at the other end of the case body 61 so as to cover the circuit pattern 52 , the high frequency circuit 53 , the circuit 54 and the bonding wires 55 .
  • the base material 11A absorbs heat emitted from the semiconductor bare chips of the high-frequency circuit 53 and the semiconductor bare chips of the circuit 54, and the absorbed heat can be transferred to the thermal radiation layer 12A. Then, the electronic device 100 can radiate the heat transferred to the heat radiation layer 12A from the surfaces of the ceramic particles 21 and the surface 22a of the binder 22 as infrared rays. As a result, the electronic device 100 can cool the semiconductor bare chip.
  • the electronic device 100 can employ heat dissipating members 20 and 30 described later instead of the heat dissipating member 10 described above.
  • the heat dissipation member 10 is provided on the surface of the substrate 11A and includes the heat emission layer 12A containing the ceramic particles 21 and the binder 22.
  • the surface of the ceramic particles 21 extends from the surface 22a of the binder 22. protrude. Therefore, in the heat dissipation member 10 , heat dissipation from the ceramic particles 21 is not blocked by the binder 22 .
  • the infrared emissivity of the ceramic particles 21 is higher than the infrared emissivity of the binder 22 . For this reason, heat dissipation member 10 can aim at improvement in heat dissipation.
  • the occupancy rate of the surfaces of the ceramic particles 21 protruding from the surface 22a of the binder 22 on the surface of the heat radiation layer 12A is 20 to 70%. Therefore, the heat dissipation member 10 can prevent the bonding of the ceramic particles 21 to the binder 22 from becoming insufficient.
  • the grain size of the ceramic particles 21 is 10-100 ⁇ m. Therefore, the heat dissipation member 10 can suppress the sedimentation of the ceramic particles 21 inside the binder 22 and the increase in the thickness of the heat radiation layer 12A.
  • the ceramic particles 21 are any one of aluminum nitride, silicon nitride, boron nitride, zinc oxide, aluminum oxide, crystalline silica, titanium oxide, manganese ferrite ((FeMn)2O3), and ferric oxide (Fe2O3). It is made of one or more materials. Therefore, the heat radiating member 10 can easily obtain the ceramic particles 22 having a higher infrared emissivity than the binder 22 .
  • the base material 11A is made of any one of metal, resin, and ceramic. Therefore, the heat dissipation member 10 can sufficiently absorb the heat generated from the heat source by the base material 11A. As a result, the heat dissipation member 10 can cool the heat source.
  • the electronic device 100 according to Embodiment 1 includes the heat dissipation member 10 . Therefore, in the electronic device 100 , the heat emitted from the heat source is transferred to the ceramic particles 21 , so that the heat radiation from the ceramic particles 21 is not blocked by the binder 22 .
  • the electronic device 100 includes a ceramic substrate 51 in contact with the base material 11A of the heat dissipation member 10, a circuit pattern 52 provided on the ceramic substrate 51, and a high frequency circuit 53 and a circuit 54 provided on the circuit pattern 52 and having semiconductors mounted thereon. Prepare. Therefore, in the electronic device 100 , the heat emitted from the semiconductor is transmitted to the ceramic particles 21 , so that the heat radiation from the ceramic particles 21 is not blocked by the binder 22 . As a result, the electronic device 100 can cool the semiconductors mounted in the high-frequency circuits 53 and 54 .
  • the electronic device 100 includes a ceramic substrate 51 , a circuit pattern 52 , a high frequency circuit 53 , and a case 60 that covers the circuit 54 . Therefore, the electronic device 100 can protect the ceramic substrate 51 , the circuit pattern 52 , the high-frequency circuit 53 , and the circuit 54 with the case 60 .
  • the binder 22 is diluted with a solvent, the diluted binder 22 is applied to the surface of the base material 11A, and the binder 22 applied to the surface of the base material 11A is coated with , the ceramic particles 21 are sprinkled, the ceramic particles 21 not bound to the binder 22 are removed, the solvent is dried, and the binder 22 is heated and hardened. Therefore, in the heat dissipation member 10 , heat dissipation from the ceramic particles 21 is not blocked by the binder 22 .
  • FIG. 8 is a vertical cross-sectional view of a heat radiating member 20 according to Embodiment 2.
  • FIG. 8 It should be noted that configurations having functions similar to those of the configuration described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the heat dissipation member 20 includes a base material 11B and a heat emission layer 12B.
  • the base material 11B has a role of absorbing heat emitted from a heat source such as a semiconductor element and transmitting the absorbed heat to the thermal emission layer 12B.
  • the thermal radiation layer 12B has a role of radiating the heat transferred from the base material 11B as infrared rays from its surface.
  • the base material 11B is formed in a semi-cylindrical shape. Therefore, the surface of the substrate 11B on which the heat emitting layer 12B is provided is a curved surface. On the other hand, the thermal radiation layer 12B is provided along the curved surface of the base material 11B.
  • This heat emitting layer 12B has a plurality of ceramic particles 21 and a binder 22. As shown in FIG. A surface 22a of the binder 22 is curved. The surface of the ceramic particle 21 protrudes from the curved surface 22a.
  • the heat radiation member 20 according to Embodiment 2 is provided on the surface of the base material 11B and includes the heat radiation layer 12B containing the ceramic particles 21 and the binder 22.
  • the surface of the ceramic particles 21 extends from the surface 22a of the binder 22. protrude. Therefore, the binder 22 does not block heat radiation from the ceramic particles 21 in the heat radiation member 20 .
  • FIG. 9 is a vertical cross-sectional view of a heat radiating member 30 according to Embodiment 3.
  • FIG. 9 It should be noted that configurations having functions similar to those of the configuration described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the heat dissipation member 30 includes a base material 11C and a heat emission layer 12C.
  • the base material 11C has a role of absorbing heat emitted from a heat source such as a semiconductor element and transmitting the absorbed heat to the thermal emission layer 12C.
  • the thermal radiation layer 12C has a role of radiating the heat transferred from the substrate 11C as infrared rays from its surface.
  • the base material 11C is formed in a flat plate shape.
  • the surface of the substrate 11C on which the thermal emission layer 12C is provided is an uneven surface.
  • the thermal radiation layer 12B is provided on the uneven surface of the base material 11C.
  • This heat emitting layer 12C has a plurality of ceramic particles 21 and a binder 22. As shown in FIG. A surface 22a of the binder 22 is flat. The surfaces of the ceramic particles 21 protrude from the planar surface 22a.
  • the heat radiation member 30 according to Embodiment 3 is provided on the surface of the substrate 11C and includes the heat radiation layer 12C containing the ceramic particles 21 and the binder 22.
  • the surface of the ceramic particles 21 extends from the surface 22a of the binder 22. protrude. Therefore, the binder 22 does not block the heat radiation from the ceramic particles 21 in the heat radiation member 30 .
  • the present disclosure can freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. .
  • the heat dissipating member according to the present disclosure is suitable for use as a heat dissipating member, etc., because the heat dissipation from the ceramic particles is not blocked by the binder by projecting the surface of the ceramic particles from the surface of the binder.

Abstract

This heat dissipation member (10) comprises a heat radiation layer (12A) that is provided on a surface of a substrate (11A) and contains ceramic particles (21) and a binder (22). Surfaces of the ceramic particles (21) protrude from the surface (22a) of the binder (22).

Description

放熱部材、電子機器、及び、放熱部材の製造方法Heat dissipation member, electronic device, and method for manufacturing heat dissipation member
 本開示は、放熱部材、電子機器、及び、放熱部材の製造方法に関する。 The present disclosure relates to a heat dissipation member, an electronic device, and a method for manufacturing a heat dissipation member.
 従来、電子機器等の熱対策として、高い熱伝導率を有する放熱シートを採用する場合がある。このような、従来の放熱シートは、例えば、特許文献1に開示されている。 Conventionally, heat dissipation sheets with high thermal conductivity are sometimes used as heat countermeasures for electronic devices. Such a conventional heat dissipation sheet is disclosed in Patent Document 1, for example.
特開2017-87673号公報JP 2017-87673 A
 特許文献1に開示された放熱シートは、伝熱層と熱放射層とを備えている。伝熱層は、熱源から発せられた熱を熱放射層へ伝える役割を有する。熱放射層は、伝熱層から伝えられた熱を、赤外線として放射する役割を有する。また、熱放射層は、バインダーと、熱伝導性を有する無機フィラーとを、含有している。 The heat dissipation sheet disclosed in Patent Document 1 includes a heat transfer layer and a heat radiation layer. The heat transfer layer has a role of transferring heat generated from the heat source to the heat radiation layer. The heat radiation layer has a role of radiating the heat transferred from the heat transfer layer as infrared rays. Moreover, the thermal radiation layer contains a binder and a thermally conductive inorganic filler.
 ここで、特許文献1に開示された放熱シートの熱放射層においては、無機フィラーは、バインダー中に設けられている。このように、無機フィラーがバインダー中に埋没すると、当該無機フィラーからの放熱が、バインダーによって遮られてしまう。この結果、特許文献1に開示された放熱シートにおいては、放熱性の低下を招くおそれがある。 Here, in the heat radiation layer of the heat radiation sheet disclosed in Patent Document 1, the inorganic filler is provided in the binder. Thus, when the inorganic filler is buried in the binder, heat radiation from the inorganic filler is blocked by the binder. As a result, in the heat dissipation sheet disclosed in Patent Literature 1, there is a possibility that heat dissipation may be deteriorated.
 本開示は、上記のような課題を解決するためになされたもので、バインダー以外からの放熱が当該バインダーによって遮られることがない放熱部材、電子機器、及び、放熱部材の製造方法を提供することを目的としている。 The present disclosure has been made to solve the above problems, and provides a heat dissipation member, an electronic device, and a method for manufacturing the heat dissipation member in which heat dissipation from sources other than the binder is not blocked by the binder. It is an object.
 本開示に係る放熱部材は、基材の表面に設けられ、セラミック粒子及びバインダーを含む熱放射層を備え、セラミック粒子の表面は、バインダーの表面から突出するものである。 A heat dissipating member according to the present disclosure is provided on the surface of a base material and includes a heat emitting layer containing ceramic particles and a binder, the surface of the ceramic particles protruding from the surface of the binder.
 本開示によれば、バインダー以外からの放熱が当該バインダーによって遮られることがない。 According to the present disclosure, heat radiation from sources other than the binder is not blocked by the binder.
実施の形態1に係る放熱部材の縦断面図である。2 is a vertical cross-sectional view of a heat radiating member according to Embodiment 1; FIG. 図1の要部拡大図である。FIG. 2 is an enlarged view of a main portion of FIG. 1; 実施の形態1に係る放熱部材の平面図である。2 is a plan view of the heat radiating member according to Embodiment 1; FIG. 熱源を備える放熱部材の縦断面図である。FIG. 4 is a vertical cross-sectional view of a heat dissipation member provided with a heat source; 実施の形態1に係る放熱部材の製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a heat radiating member according to Embodiment 1; 実施の形態1に係る放熱部材を実施した場合の各実施例の構成を示す図である。4A and 4B are diagrams showing configurations of examples when the heat radiating member according to the first embodiment is implemented; FIG. 実施の形態1に係る放熱部材が適用される電子機器の縦断面図である。1 is a vertical cross-sectional view of an electronic device to which the heat dissipation member according to Embodiment 1 is applied; FIG. 実施の形態2に係る放熱部材の縦断面図である。FIG. 8 is a longitudinal sectional view of a heat radiating member according to Embodiment 2; 実施の形態3に係る放熱部材の縦断面図である。FIG. 11 is a vertical cross-sectional view of a heat radiating member according to Embodiment 3;
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described according to the attached drawings.
実施の形態1.
 実施の形態1に係る放熱部材10について、図1から図6を用いて説明する。
Embodiment 1.
A heat radiating member 10 according to Embodiment 1 will be described with reference to FIGS. 1 to 6. FIG.
 先ず、実施の形態1に係る放熱部材10の構成について、図1から図4を用いて説明する。図1は、実施の形態1に係る放熱部材10の縦断面図である。図2は、図1の要部拡大図である。図3は、実施の形態1に係る放熱部材10の平面図である。図4は、熱源40を備える放熱部材10の縦断面図である。 First, the configuration of the heat radiating member 10 according to Embodiment 1 will be described with reference to FIGS. 1 to 4. FIG. FIG. 1 is a vertical cross-sectional view of a heat radiating member 10 according to Embodiment 1. FIG. 2 is an enlarged view of a main part of FIG. 1. FIG. FIG. 3 is a plan view of the heat dissipation member 10 according to Embodiment 1. FIG. FIG. 4 is a vertical cross-sectional view of the heat dissipation member 10 including the heat source 40. As shown in FIG.
 実施の形態1に係る放熱部材10は、基材11A及び熱放射層12Aを備えている。基材11Aは、半導体素子等の熱源から発せられた熱を吸収し、この吸収した熱を熱放射層12Aに伝える役割を有する。熱放射層12Aは、基材11Aから伝えられた熱を、その表面から赤外線として放射する役割を有している。 The heat dissipation member 10 according to Embodiment 1 includes a base material 11A and a heat emission layer 12A. The base material 11A has a role of absorbing heat emitted from a heat source such as a semiconductor element and transmitting the absorbed heat to the thermal radiation layer 12A. The thermal radiation layer 12A has a role of radiating the heat transferred from the substrate 11A as infrared rays from its surface.
 熱放射層12Aは、複数のセラミック粒子21及びバインダー22を有している。複数のセラミック粒子21は、バインダー22の内部に設けられている。バインダー22は、基材11Aの表面に設けられている。セラミック粒子21及びバインダー22は、共に、基材11Aから伝えられた熱を赤外線として放射する。 The thermal radiation layer 12A has a plurality of ceramic particles 21 and a binder 22. A plurality of ceramic particles 21 are provided inside the binder 22 . The binder 22 is provided on the surface of the substrate 11A. Both the ceramic particles 21 and the binder 22 radiate the heat transferred from the substrate 11A as infrared rays.
 このとき、バインダー22の内部に設けられるセラミック粒子21は、基材11Aの表面に接しているセラミック粒子21、表面(球面)の一部がバインダー22の表面22aから突出しているセラミック粒子21、及び、表面同士が接触しているセラミック粒子21等から構成されている。 At this time, the ceramic particles 21 provided inside the binder 22 are the ceramic particles 21 that are in contact with the surface of the base material 11A, the ceramic particles 21 that have a part of the surface (spherical surface) protruding from the surface 22a of the binder 22, and , ceramic particles 21, etc. whose surfaces are in contact with each other.
 ここで、熱放射層12Aの表面とは、バインダー22の表面22aと、セラミック粒子21における表面22aから突出した部分の表面とを含むものである。また、図3に示すように、表面の一部がバインダー22の表面22aから突出しているセラミック粒子21とは、バインダー22の表面22aに対して垂直方向から見た投影面において、当該バインダー22の表面22aから突出している部分を有するセラミック粒子21を意味している。 Here, the surface of the thermal emission layer 12A includes the surface 22a of the binder 22 and the surfaces of the portions of the ceramic particles 21 protruding from the surface 22a. In addition, as shown in FIG. 3, the ceramic particles 21 having a part of the surface protruding from the surface 22a of the binder 22 are projected on the surface 22a of the binder 22 in the direction perpendicular to the surface 22a of the binder 22. A ceramic particle 21 having a portion protruding from the surface 22a is meant.
 このため、セラミック粒子21におけるバインダー22の表面22aから突出している部分の表面からの赤外線の放射は、バインダー22に遮られることなく、放熱部材10の外部に向けて行われる。また、セラミック粒子21は、バインダー22の赤外線放射率よりも高い赤外線放射率を有する材料で、形成されている。 Therefore, infrared radiation from the surfaces of the portions of the ceramic particles 21 protruding from the surface 22 a of the binder 22 is directed to the outside of the heat dissipation member 10 without being blocked by the binder 22 . Also, the ceramic particles 21 are made of a material having an infrared emissivity higher than that of the binder 22 .
 従って、放熱部材10は、全体として、セラミック粒子21がバインダー22の表面22aから突出していない放熱部材に比べて、赤外線放射率が高くなっている。この結果、放熱部材10の熱放射性能は、向上されている。 Therefore, the radiation member 10 as a whole has a higher infrared emissivity than a radiation member in which the ceramic particles 21 do not protrude from the surface 22 a of the binder 22 . As a result, the heat radiation performance of the heat radiation member 10 is improved.
 セラミック粒子21は、バインダー22の赤外線放射率よりも高い赤外線放射率を有する材料を、適宜選択することで、形成されている。このセラミック粒子21は、例えば、窒化アルミニウム、窒化珪素、窒化ホウ素、酸化亜鉛、酸化アルミニウム、結晶シリカ、酸化チタン、マンガン・フェライト((FeMn)2O3)、及び、酸化第二鉄(Fe2O3)等のうち、いずれか1つ以上の材料で形成されている。 The ceramic particles 21 are formed by appropriately selecting a material having an infrared emissivity higher than that of the binder 22 . The ceramic particles 21 are, for example, aluminum nitride, silicon nitride, boron nitride, zinc oxide, aluminum oxide, crystalline silica, titanium oxide, manganese ferrite ((FeMn)2O3), and ferric oxide (Fe2O3). It is made of at least one of these materials.
 セラミック粒子21の粒径は、例えば、10μm以上100μm以下が好ましい。ここで、セラミック粒子21の粒径は、累積質量50%粒子径である。セラミック粒子21の粒径が10μm未満となる場合、当該セラミック粒子21は、バインダー22の内部に沈降し易くなり、バインダー22の表面22aから突出しないおそれがある。また、セラミック粒子21の粒径が100μmを超える場合、セラミック粒子21を結着させるために、熱放射層12Aの厚さが増加し、基材11Aから熱放射層12Aへの熱伝導が、低下するおそれがある。 The particle size of the ceramic particles 21 is preferably 10 μm or more and 100 μm or less, for example. Here, the particle size of the ceramic particles 21 is the cumulative mass 50% particle size. If the particle size of the ceramic particles 21 is less than 10 μm, the ceramic particles 21 tend to settle inside the binder 22 and may not protrude from the surface 22 a of the binder 22 . In addition, when the particle size of the ceramic particles 21 exceeds 100 μm, the thickness of the heat emitting layer 12A increases to bind the ceramic particles 21, and the heat conduction from the substrate 11A to the heat emitting layer 12A decreases. There is a risk of
 バインダー22は、基材11Aの表面に対して、セラミック粒子21を結着させることができるものであれば良い。このバインダー22は、有機バインダー及び無機バインダーのうち、いずれか一方のバインダーを適宜選択することで、形成されている。 The binder 22 may be any material as long as it can bind the ceramic particles 21 to the surface of the substrate 11A. This binder 22 is formed by appropriately selecting either one of an organic binder and an inorganic binder.
 また、バインダー22には、無機フィラーが含有されても良い。この場合、無機フィラーは、バインダー22の熱伝導率よりも高い熱伝導率を有する材料で形成されていれば良い。無機フィラーは、例えば、金属粉、窒化アルミニウム粉、酸化アルミニウム粉、酸化亜鉛粉、酸化マグネシウム粉、酸化ケイ素粉、ケイ酸塩粉、窒化ケイ素粉、炭化ケイ素粉、炭化タングステン粉、窒化ホウ素粉、水酸化アルミニウム粉、水酸化マグネシウム粉、酸化窒化アルミニウム粉、コーディエライト粉、ムライト粉、グラファイト粉、カーボンナノチューブ、ダイヤモンド粉、炭素繊維、及び、フラーレン等のうち、いずれか1つ以上の材料で形成されている。 In addition, the binder 22 may contain an inorganic filler. In this case, the inorganic filler should be made of a material having a thermal conductivity higher than that of the binder 22 . Inorganic fillers include, for example, metal powder, aluminum nitride powder, aluminum oxide powder, zinc oxide powder, magnesium oxide powder, silicon oxide powder, silicate powder, silicon nitride powder, silicon carbide powder, tungsten carbide powder, boron nitride powder, Any one or more of aluminum hydroxide powder, magnesium hydroxide powder, aluminum oxynitride powder, cordierite powder, mullite powder, graphite powder, carbon nanotube, diamond powder, carbon fiber, fullerene, etc. formed.
 バインダー22を有機バインダーとする場合、この有機バインダーは、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、及び、ポリイミド樹脂等のうち、いずれか1つ以上の樹脂で形成されている。 When the binder 22 is an organic binder, the organic binder is formed of at least one of epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, silicone resin, polyimide resin, and the like. It is
 また、上述した有機バインダーの中でも、エポキシ樹脂は、接着性に優れているため、最も好ましい。エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環脂肪族エポキシ樹脂、及び、グリシジル-アミノフェノール系エポキシ樹脂等が挙げられる。エポキシ樹脂は、それらの樹脂のうち、いずれか1つ以上の樹脂で形成されている。 In addition, among the organic binders described above, epoxy resins are most preferable because of their excellent adhesiveness. Examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, orthocresol novolac type epoxy resins, phenol novolac type epoxy resins, alicyclic aliphatic epoxy resins, and glycidyl-aminophenol type epoxy resins. be done. Epoxy resin is made of one or more of these resins.
 更に、熱硬化性樹脂としてエポキシ樹脂を用いる場合、そのエポキシ樹脂に適用される硬化剤は、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及び、無水ハイミック酸等の脂環式酸無水物;ドデセニル無水コハク酸等の脂肪族酸無水物;無水フタル酸、及び、無水トリメリット酸等の芳香族酸無水物;ジシアンジアミド、及び、アジピン酸ジヒドラジド等の有機ジヒドラジド;トリス(ジメチルアミノメチル)フェノール;ジメチルベンジルアミン;1,8-ジアザビシクロ(5,4,0)ウンデセン、及び、その誘導体;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、及び、2-フェニルイミダゾール等のイミダゾール類等が挙げられる。エポキシ樹脂の硬化剤は、それらの硬化剤のうち、いずれか1つ以上の硬化剤で形成されている。 Furthermore, when an epoxy resin is used as the thermosetting resin, the curing agent applied to the epoxy resin is, for example, an alicyclic acid such as methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hymic anhydride. Anhydrides; aliphatic acid anhydrides such as dodecenyl succinic anhydride; aromatic acid anhydrides such as phthalic anhydride and trimellitic anhydride; organic dihydrazides such as dicyandiamide and adipic acid dihydrazide; ) phenol; dimethylbenzylamine; 1,8-diazabicyclo(5,4,0)undecene and its derivatives; imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole etc. Curing agents for epoxy resins are formed from one or more of these curing agents.
 硬化剤の配合量は、使用する熱硬化性樹脂及び硬化剤の種類等に応じて適宜設定する必要がある。一般的に、100質量部の熱硬化性樹脂に対して、0.1質量部以上200質量部以下とすることが良い。 The blending amount of the curing agent must be appropriately set according to the type of thermosetting resin and curing agent used. In general, it is preferable to use 0.1 parts by mass or more and 200 parts by mass or less with respect to 100 parts by mass of the thermosetting resin.
 一方、バインダー22を無機バインダーとする場合、この無機バインダーは、例えば、ゾルゲルガラス、有機無機ハイブリッドガラス、水ガラス、一液性の無機接着剤、及び、二液性の無機接着剤等のうち、いずれか1つ以上の材料で形成されている。 On the other hand, when the binder 22 is an inorganic binder, the inorganic binder includes, for example, sol-gel glass, organic-inorganic hybrid glass, water glass, one-liquid inorganic adhesive, and two-liquid inorganic adhesive. It is made of one or more materials.
 基材11Aは、熱放射層12Aの形成を妨げるもので無ければ、材質が特に限定されるものではない。基材11Aは、例えば、アルミニウム及び鉄等の金属、樹脂、及び、セラミックのうち、いずれか1つの材料で形成されている。特に、基材11Aに、金属等の熱伝導率が高い材料を用いる場合、図4に示すように、基材11Aに取り付けられる取付面積が小さい熱源40を、当該基材11Aに取り付けることで、基材11Aは、熱源40から伝えられた熱を、横方向に拡げることができる。このため、放熱部材10は、熱源40に対する放熱性を向上させ、当該熱源40を冷却することができる。 The material of the base material 11A is not particularly limited as long as it does not interfere with the formation of the thermal emission layer 12A. 11 A of base materials are formed with any one material, for example among metals, such as aluminum and iron, resin, and ceramics. In particular, when a material with high thermal conductivity such as metal is used for the base material 11A, as shown in FIG. The base material 11A can laterally spread the heat transferred from the heat source 40 . Therefore, the heat radiating member 10 can improve the heat radiating performance with respect to the heat source 40 and cool the heat source 40 .
 なお、基材11Aは、熱放射層12Aの形成を妨げるもので無ければ、形状が特に限定されるものではない。この点については、実施の形態2,3において詳細に説明する。 The shape of the substrate 11A is not particularly limited as long as it does not interfere with the formation of the thermal radiation layer 12A. This point will be described in detail in the second and third embodiments.
 ここで、熱放射層12Aの表面における、セラミック粒子21の表面がバインダー22の表面22aから突出している占有率が、大きくなる程、放熱部材10は、赤外線の放射率を向上させることができる。しかしながら、熱放射層12Aに含まれるバインダー22の含有量が不足していると、セラミック粒子21がバインダー22から脱落し易く、熱放射層12Aの強度も低下するおそれがある。そこで、熱放射層12Aの表面におけるセラミック粒子21の表面が占める占有率は、20~70%であると良い。 Here, as the proportion of the surface of the heat radiation layer 12A where the surface of the ceramic particles 21 protrudes from the surface 22a of the binder 22 increases, the radiation member 10 can improve the infrared emissivity. However, if the content of the binder 22 contained in the thermal emission layer 12A is insufficient, the ceramic particles 21 are likely to fall off the binder 22, and the strength of the thermal emission layer 12A may also decrease. Therefore, the occupation ratio of the surfaces of the ceramic particles 21 on the surface of the heat emitting layer 12A is preferably 20 to 70%.
 但し、熱放射層12Aの表面におけるセラミック粒子21の表面が占める占有率とは、図3に示すように、バインダー22の表面22aに対して垂直方向から見た投影面において、当該バインダー22の表面22aから突出しているセラミック粒子21の表面が占める投影面積の割合を示している。この占有率は、例えば、下記の式(1)を用いて求めることができる。 However, the occupancy rate of the surface of the ceramic particles 21 on the surface of the heat radiation layer 12A is, as shown in FIG. It shows the ratio of the projected area occupied by the surfaces of the ceramic particles 21 protruding from 22a. This occupancy can be obtained, for example, using the following formula (1).
 占有率=(突出しているセラミック粒子の表面の投影面積)/(熱放射層の表面の投影面積)×100 ・・・ (1) Occupancy = (Projected area of surface of protruding ceramic particles)/(Projected area of surface of thermal emission layer) x 100 (1)
 なお、放熱部材10においては、熱源40が接触する面の反対側に位置する面に、熱放射層12Aが、少なくとも設けられていれば良い。また、熱放射層12Aは、熱源40が接触する面の反対側に位置する面の全域を覆う必要は無く、放熱性を発揮できる範囲で、適宜設けられていれば良い。 In addition, in the heat dissipation member 10, it is sufficient that at least the heat emission layer 12A is provided on the surface opposite to the surface with which the heat source 40 contacts. Moreover, the heat radiation layer 12A does not need to cover the entire surface opposite to the surface in contact with the heat source 40, and may be appropriately provided within a range in which the heat radiation property can be exhibited.
 次に、実施の形態1に係る放熱部材10の製造方法について、図5を用いて説明する。図5は、実施の形態1に係る放熱部材10の製造方法を示すフローチャートである。 Next, a method for manufacturing the heat radiating member 10 according to Embodiment 1 will be described with reference to FIG. FIG. 5 is a flow chart showing a method for manufacturing the heat radiating member 10 according to the first embodiment.
 ステップST11において、バインダー22が溶媒で希釈される。 At step ST11, the binder 22 is diluted with a solvent.
 ステップST12において、希釈したバインダー22に、セラミック粒子21とは異なる熱伝導フィラーが分散して混合される。バインダー22に熱伝導フィラーを混合分散させる方法は、例えば、ニーダー、ボールミル、遊星ボールミル、混練ミキサー、及び、ビーズミル等を用いた方法等が挙げられる。なお、ステップST12は、放熱部材10の製造方法において、無くても良い。 In step ST12, a thermally conductive filler different from the ceramic particles 21 is dispersed and mixed with the diluted binder 22. Methods for mixing and dispersing the thermally conductive filler in the binder 22 include, for example, methods using a kneader, ball mill, planetary ball mill, kneading mixer, bead mill, and the like. Note that step ST12 may be omitted in the manufacturing method of the heat dissipation member 10 .
 ステップST13において、バインダー22が基材11Aの表面に塗布される。バインダー22を基材11Aに塗布する方法は、例えば、スプレー法、浸漬法、刷毛塗法、スクリーン印刷法、及び、転写法等を用いた方法が挙げられる。バインダー22を塗布する際の厚さは、当該バインダー22の乾燥収縮率及び硬化収縮率から逆算し、乾燥、硬化後のバインダー22の厚みが所望の厚みとなるように適宜調整される。 At step ST13, the binder 22 is applied to the surface of the base material 11A. Examples of the method of applying the binder 22 to the base material 11A include methods using a spray method, a dipping method, a brush coating method, a screen printing method, a transfer method, and the like. The thickness when the binder 22 is applied is calculated backward from the drying shrinkage rate and cure shrinkage rate of the binder 22, and is appropriately adjusted so that the thickness of the binder 22 after drying and curing becomes a desired thickness.
 ステップST14において、セラミック粒子21が、塗布したバインダー22上に振り掛けられる。セラミック粒子21をバインダー22上に振り掛ける方法は、例えば、メッシュ状のふるいにセラミック粒子21を入れて、上から振りかける方法、及び、スプレーノズルを用いて粉体塗装する方法等が挙げられる。セラミック粒子21を振り掛ける量は、突出しているセラミック粒子21の表面の占有率が、所望の占有率となるように、塗布したバインダー22の厚み及びセラミック粒子21の粒径に応じて、適宜調整される。 In step ST14, the ceramic particles 21 are sprinkled on the applied binder 22. Examples of the method of sprinkling the ceramic particles 21 on the binder 22 include a method of putting the ceramic particles 21 in a mesh sieve and sprinkling from above, and a method of powder coating using a spray nozzle. The amount of the ceramic particles 21 to be sprinkled is appropriately adjusted according to the thickness of the applied binder 22 and the particle size of the ceramic particles 21 so that the surface occupancy of the protruding ceramic particles 21 becomes a desired occupancy. be done.
 ステップST15において、バインダー22に結着されていないセラミック粒子21が取り除かれる。結着されていないセラミック粒子21をバインダー22から取り除く方法は、例えば、セラミック粒子21をエアブローで吹き飛ばす方法、及び、セラミック粒子21をバキュームによって吸引する方法等が挙げられる。ここで、このステップST15(バインダー22に結着されていないセラミック粒子21を取り除く工程)は、セラミック粒子21を振りかけた直後、溶媒の乾燥後、及び、バインダー22の硬化後のうち、いずれか1つの時期で、実施されれば良い。 At step ST15, the ceramic particles 21 not bound to the binder 22 are removed. Methods for removing the unbound ceramic particles 21 from the binder 22 include, for example, a method of blowing off the ceramic particles 21 with an air blow, a method of sucking the ceramic particles 21 with a vacuum, and the like. Here, this step ST15 (the step of removing the ceramic particles 21 not bound to the binder 22) is performed immediately after the ceramic particles 21 are sprinkled, after the solvent is dried, or after the binder 22 is cured. It should be implemented at one time.
 ステップST16において、塗布したバインダー22に含まれる溶媒が、所望の温度で乾燥される。バインダー22からの脱溶媒の熱処理方法は、例えば、乾燥オーブン、ホットプレート、熱風送風機、電気炉、及び、高周波加熱炉等を用いた方法が挙げられる。また、バインダー22からの脱溶媒の熱処理温度は、使用した溶媒の沸点を参考にして、適宜調整される。このとき、溶媒の沸点よりも数十度低い温度で熱処理することが好ましい。溶媒の沸点を超える高い温度で熱処理した場合、溶媒が急激に蒸発し、バインダー22の表面22aにクレーター状の穴が発生し、当該バインダー22の厚みも不均一になり易い。 In step ST16, the solvent contained in the applied binder 22 is dried at a desired temperature. Examples of the heat treatment method for removing the solvent from the binder 22 include methods using a drying oven, a hot plate, a hot air blower, an electric furnace, a high-frequency heating furnace, and the like. Further, the heat treatment temperature for solvent removal from the binder 22 is appropriately adjusted with reference to the boiling point of the solvent used. At this time, the heat treatment is preferably performed at a temperature several tens of degrees lower than the boiling point of the solvent. When the heat treatment is performed at a temperature higher than the boiling point of the solvent, the solvent rapidly evaporates, crater-like holes are generated on the surface 22a of the binder 22, and the thickness of the binder 22 tends to become uneven.
 ステップST17において、バインダー22が所望の温度で加熱され硬化する。この結果、熱放射層12Aが形成される。バインダー22を硬化させるための熱処理方法は、例えば、乾燥オーブン、ホットプレート、熱風送風機、電気炉、及び、高周波加熱炉等を用いた方法が挙げられる。また、バインダー22を硬化させるための熱処理温度は、使用したバインダー22の硬化温度を参考にして、適宜調整される。そして、放熱部材10の製造方法は、終了する。 At step ST17, the binder 22 is heated at a desired temperature and hardened. As a result, the thermal emission layer 12A is formed. Examples of the heat treatment method for curing the binder 22 include methods using a drying oven, a hot plate, a hot air blower, an electric furnace, a high-frequency heating furnace, and the like. Further, the heat treatment temperature for curing the binder 22 is appropriately adjusted with reference to the curing temperature of the binder 22 used. Then, the manufacturing method of the heat radiating member 10 ends.
 なお、上述した放熱部材10の製造方法は、後述する放熱部材20,30の製造方法にも適用可能である。 It should be noted that the method for manufacturing the heat dissipating member 10 described above can also be applied to the method for manufacturing the heat dissipating members 20 and 30, which will be described later.
 次に、実施の形態1に係る放熱部材10が奏する効果について、図6を用いて説明する。図6は、実施の形態1に係る放熱部材10を実施した場合の各実施例の構成を示す図である。 Next, the effects of the heat radiating member 10 according to Embodiment 1 will be described with reference to FIG. FIG. 6 is a diagram showing the configuration of each example when the heat radiating member 10 according to Embodiment 1 is implemented.
 図6は、放熱部材10の構成が適用された実施例1-5のサンプルの具体的な構成と、放熱部材10の構成が適用されていない比較例1,2のサンプルの具体的な構成とを、示したものである。 FIG. 6 shows the specific configuration of the samples of Examples 1-5 to which the configuration of the heat dissipation member 10 is applied, and the specific configurations of the samples of Comparative Examples 1 and 2 to which the configuration of the heat dissipation member 10 is not applied. is shown.
[実施例1]
 実施例1は、エポキシ樹脂に溶剤を添加し混合させたものを、アルミニウム製の基材11Aにおける5cm×5cmの表面に、厚みが100μmとなるように塗布した。次に、実施例1は、エポキシ樹脂の表面に、アルミナ粒子をふるいを用いて0.751g振り掛け、アルミナ粒子の占有率が15%となるようにした。次に、実施例1は、乾燥オーブンで溶媒を乾燥させた後、エポキシ樹脂を硬化させた。このようにして、実施例1の放熱部材10は、基材11Aの表面に熱放射層12Aを形成したサンプルである。
[Example 1]
In Example 1, a mixture of an epoxy resin and a solvent was applied to the surface of a 5 cm×5 cm aluminum substrate 11A so as to have a thickness of 100 μm. Next, in Example 1, 0.751 g of alumina particles were sprinkled on the surface of the epoxy resin using a sieve so that the occupancy of the alumina particles was 15%. Next, in Example 1, after drying the solvent in a drying oven, the epoxy resin was cured. Thus, the heat dissipation member 10 of Example 1 is a sample in which the heat emission layer 12A is formed on the surface of the substrate 11A.
[実施例2]
 実施例2は、アルミナ粒子の添加量を0.766gに変え、その占有率を20%となるようにしたこと以外は、実施例1と同様にして得られたサンプルである。
[Example 2]
Example 2 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.766 g and the occupancy rate was 20%.
[実施例3]
 実施例3は、アルミナ粒子の添加量を0.798gに変え、その占有率を30%となるようにしたこと以外は、実施例1と同様にして得られたサンプルである。
[Example 3]
Example 3 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.798 g so that the occupancy rate was 30%.
[実施例4]
 実施例4は、アルミナ粒子の添加量を0.925gに変え、占有率を70%となるようにしたこと以外は、実施例1と同様にして得られたサンプルである。
[Example 4]
Example 4 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.925 g so that the occupancy was 70%.
[実施例5]
 実施例5は、アルミナ粒子の添加量を0.956gに変え、占有率を80%となるようにしたこと以外は、実施例1と同様にして得られたサンプルである。
[Example 5]
Example 5 is a sample obtained in the same manner as in Example 1, except that the amount of alumina particles added was changed to 0.956 g so that the occupancy rate was 80%.
[比較例1]
 比較例1は、アルミニウム製の基材11Aにおける5cm×5cmの表面に、熱放射層12Aを形成していないサンプルである。
[Comparative Example 1]
Comparative Example 1 is a sample in which the thermal emitting layer 12A is not formed on the surface of the aluminum substrate 11A measuring 5 cm×5 cm.
[比較例2]
 比較例2は、エポキシ樹脂の表面にアルミナ粒子を振り掛けることなく、その占有率が0%となるようにしたこと以外は、実施例1と同様にして得られたサンプルである。
[Comparative Example 2]
Comparative Example 2 is a sample obtained in the same manner as in Example 1, except that the surface of the epoxy resin was not sprinkled with alumina particles so that the occupancy rate was 0%.
 上述した実施例1-5及び比較例1,2のサンプルに対して、以下のようにして、冷却性能(放熱性能)を評価した。 The cooling performance (heat dissipation performance) was evaluated as follows for the samples of Examples 1-5 and Comparative Examples 1 and 2 described above.
 この評価方法においては、基材11Aにおける熱放射層12Aが設けられた面の反対側に位置する面に、セラミックヒーター(熱源40)が取り付けられている。各サンプルは、セラミックヒーターに電力が印加され、各サンプルの温度とセラミックヒーターの温度が飽和温度に達するまで、数時間放置される。その後、セラミックヒーターの表面温度が、熱電対等を用いて計測される。 In this evaluation method, a ceramic heater (heat source 40) is attached to the surface of the substrate 11A opposite to the surface on which the heat radiation layer 12A is provided. Each sample is left for several hours with power applied to the ceramic heater until the temperature of each sample and the temperature of the ceramic heater reach the saturation temperature. After that, the surface temperature of the ceramic heater is measured using a thermocouple or the like.
 冷却性能の評価結果は、実施例1のサンプルで得られた飽和温度を基準とし、実施例2-5及び比較例1,2の各サンプルで得られた飽和温度が、実施例1の飽和温度よりも低い場合を◎、同等の場合を〇、高い場合を×とする。 The evaluation results of the cooling performance are based on the saturation temperature obtained in the sample of Example 1, and the saturation temperature obtained in each sample of Examples 2-5 and Comparative Examples 1 and 2 is the saturation temperature of Example 1. ◎ is lower than , 〇 is equal, and x is higher.
 実施例2のサンプルにおいては、アルミナ粒子の占有率が20%となることで、冷却性能が向上し、飽和温度が低下した。実施例3のサンプルにおいては、アルミナ粒子の占有率が30%となることで、冷却性能が向上し、飽和温度が低下した。実施例4のサンプルにおいては、アルミナ粒子の占有率が70%となることで、冷却性能が向上し、飽和温度が低下した。実施例5のサンプルにおいては、アルミナ粒子の結着が不十分となり、当該アルミナ粒子の占有率に対する評価には適さないものであると判断した。 In the sample of Example 2, the occupancy of the alumina particles was 20%, which improved the cooling performance and lowered the saturation temperature. In the sample of Example 3, the occupancy of the alumina particles was 30%, so that the cooling performance was improved and the saturation temperature was lowered. In the sample of Example 4, the occupancy of the alumina particles was 70%, so that the cooling performance was improved and the saturation temperature was lowered. In the sample of Example 5, the binding of the alumina particles was insufficient, and it was judged that the sample was not suitable for the evaluation of the occupancy rate of the alumina particles.
 比較例1のサンプルにおいては、熱放射層12Aが設けられないことで、冷却性能が低下し、飽和温度が上昇した。比較例2のサンプルにおいては、アルミナ粒子がバインダー22となるエポキシ樹脂の表面から突出していないことで、冷却性能が低下し、飽和温度が上昇した。 In the sample of Comparative Example 1, since the thermal radiation layer 12A was not provided, the cooling performance decreased and the saturation temperature increased. In the sample of Comparative Example 2, since the alumina particles did not protrude from the surface of the epoxy resin serving as the binder 22, the cooling performance decreased and the saturation temperature increased.
 次に、実施の形態1に係る放熱部材10が適用される電子機器100について、図7を用いて説明する。図7は、実施の形態1に係る放熱部材10が適用される電子機器100の縦断面図である。 Next, electronic device 100 to which heat dissipation member 10 according to Embodiment 1 is applied will be described with reference to FIG. FIG. 7 is a longitudinal sectional view of electronic device 100 to which heat dissipation member 10 according to Embodiment 1 is applied.
 図7に示すように、電子機器100は、例えば、高周波モジュールである。この電子機器100は、放熱部材10、セラミック基板51、回路パターン52、高周波回路53、回路54、ボンディングワイヤ55、及び、ケース60を備えている。 As shown in FIG. 7, the electronic device 100 is, for example, a high frequency module. This electronic device 100 includes a heat dissipation member 10 , a ceramic substrate 51 , a circuit pattern 52 , a high frequency circuit 53 , a circuit 54 , bonding wires 55 and a case 60 .
 セラミック基板51は、例えば、多層誘電体基板である。このセラミック基板51は、基材11Aにおける熱放射層12Aが設けられた面の反対側に位置する面に取り付けられている。セラミック基板51の基材11Aへの取り付け方法は、例えば、はんだによる接合、及び、焼結型金属による接合等を用いることができる。このとき、セラミック基板51を基材11Aに接合する場合、電子機器100は、基材11Aの表面に、メタライズ層等の金属層を予め形成しておき、接合性の向上を図っても良い。 The ceramic substrate 51 is, for example, a multilayer dielectric substrate. The ceramic substrate 51 is attached to the surface of the substrate 11A opposite to the surface provided with the thermal emission layer 12A. As a method for attaching the ceramic substrate 51 to the base material 11A, for example, bonding by soldering, bonding by sintered metal, or the like can be used. At this time, when bonding the ceramic substrate 51 to the base material 11A, the electronic device 100 may form a metal layer such as a metallized layer in advance on the surface of the base material 11A to improve bonding.
 回路パターン52は、セラミック基板51の表面に設けられている。このセラミック基板51の表面とは、セラミック基板51における基材11Aと接触する面の反対側に位置する面のことである。 The circuit pattern 52 is provided on the surface of the ceramic substrate 51 . The surface of the ceramic substrate 51 is the surface located opposite to the surface of the ceramic substrate 51 in contact with the substrate 11A.
 高周波回路53は、回路パターン52の表面に設けられている。この高周波回路53には、例えば、熱源となる半導体ベアチップが実装されている。また、回路54は、回路パターン52の表面に設けられている。この回路54には、例えば、熱源となる半導体ベアチップが実装されている。そして、高周波回路53及び回路54は、ボンディングワイヤ55を介して、回路パターン52と電気的に接続されている。 The high frequency circuit 53 is provided on the surface of the circuit pattern 52 . A semiconductor bare chip that serves as a heat source, for example, is mounted on the high-frequency circuit 53 . Also, the circuit 54 is provided on the surface of the circuit pattern 52 . This circuit 54 is mounted with, for example, a semiconductor bare chip that serves as a heat source. The high frequency circuit 53 and the circuit 54 are electrically connected to the circuit pattern 52 via bonding wires 55 .
 ケース60は、セラミック基板51、回路パターン52、高周波回路53、回路54、及び、ボンディングワイヤ55の周囲を覆うように、当該セラミック基板51に設けられている。このケース60は、ケース本体61及びカバー62を有している。ケース60は、例えば、金属材料又は樹脂材料で形成されている。 The case 60 is provided on the ceramic substrate 51 so as to cover the ceramic substrate 51 , the circuit pattern 52 , the high frequency circuit 53 , the circuit 54 and the bonding wires 55 . This case 60 has a case body 61 and a cover 62 . The case 60 is made of, for example, a metal material or a resin material.
 ケース本体61は、セラミック基板51の周囲を取り囲むような、当該ケース60の縦壁を構成するものである。このケース本体61の一端は、セラミック基板51の表面、又は、回路パターン52の表面に取り付けられている。カバー62は、回路パターン52、高周波回路53、回路54、及び、ボンディングワイヤ55を覆うように、ケース本体61の他端に設けられている。 The case body 61 constitutes a vertical wall of the case 60 surrounding the ceramic substrate 51 . One end of the case body 61 is attached to the surface of the ceramic substrate 51 or the surface of the circuit pattern 52 . The cover 62 is provided at the other end of the case body 61 so as to cover the circuit pattern 52 , the high frequency circuit 53 , the circuit 54 and the bonding wires 55 .
 従って、電子機器100は、高周波回路53の半導体ベアチップ、及び、回路54の半導体ベアチップから発せられた熱を、基材11Aで吸収し、この吸収した熱を熱放射層12Aに伝えることができる。そして、電子機器100は、熱放射層12Aに伝えられた熱を、セラミック粒子21の表面、及び、バインダー22の表面22aから、赤外線として放射することができる。この結果、電子機器100は、半導体ベアチップを冷却することができる。 Therefore, in the electronic device 100, the base material 11A absorbs heat emitted from the semiconductor bare chips of the high-frequency circuit 53 and the semiconductor bare chips of the circuit 54, and the absorbed heat can be transferred to the thermal radiation layer 12A. Then, the electronic device 100 can radiate the heat transferred to the heat radiation layer 12A from the surfaces of the ceramic particles 21 and the surface 22a of the binder 22 as infrared rays. As a result, the electronic device 100 can cool the semiconductor bare chip.
 なお、電子機器100は、上述した放熱部材10に替えて、後述する放熱部材20,30を適用することができる。 It should be noted that the electronic device 100 can employ heat dissipating members 20 and 30 described later instead of the heat dissipating member 10 described above.
 以上、実施の形態1に係る放熱部材10は、基材11Aの表面に設けられ、セラミック粒子21及びバインダー22を含む熱放射層12Aを備え、セラミック粒子21の表面は、バインダー22の表面22aから突出する。このため、放熱部材10は、セラミック粒子21からの放熱がバインダー22によって遮られることがない。 As described above, the heat dissipation member 10 according to Embodiment 1 is provided on the surface of the substrate 11A and includes the heat emission layer 12A containing the ceramic particles 21 and the binder 22. The surface of the ceramic particles 21 extends from the surface 22a of the binder 22. protrude. Therefore, in the heat dissipation member 10 , heat dissipation from the ceramic particles 21 is not blocked by the binder 22 .
 放熱部材10においては、セラミック粒子21における赤外線の放射率は、バインダー22における赤外線の放射率よりも高い。このため、放熱部材10は、放熱性の向上を図ることができる。 In the heat dissipation member 10 , the infrared emissivity of the ceramic particles 21 is higher than the infrared emissivity of the binder 22 . For this reason, heat dissipation member 10 can aim at improvement in heat dissipation.
 放熱部材10においては、熱放射層12Aの表面におけるバインダー22の表面22aから突出したセラミック粒子21の表面が占める占有率は、20~70%である。このため、放熱部材10は、バインダー22に対するセラミック粒子21の結着が不十分になることを、抑制することができる。 In the heat radiating member 10, the occupancy rate of the surfaces of the ceramic particles 21 protruding from the surface 22a of the binder 22 on the surface of the heat radiation layer 12A is 20 to 70%. Therefore, the heat dissipation member 10 can prevent the bonding of the ceramic particles 21 to the binder 22 from becoming insufficient.
 放熱部材10においては、セラミック粒子21の粒径は、10~100μmである。このため、放熱部材10は、セラミック粒子21のバインダー22の内部への沈降、及び、熱放射層12Aの厚さの増大を、抑制することができる。 In the heat dissipation member 10, the grain size of the ceramic particles 21 is 10-100 μm. Therefore, the heat dissipation member 10 can suppress the sedimentation of the ceramic particles 21 inside the binder 22 and the increase in the thickness of the heat radiation layer 12A.
 セラミック粒子21は、窒化アルミニウム、窒化珪素、窒化ホウ素、酸化亜鉛、酸化アルミニウム、結晶シリカ、酸化チタン、マンガン・フェライト((FeMn)2O3)、及び、酸化第二鉄(Fe2O3)のうち、いずれか1つ以上の材料で形成される。このため、放熱部材10は、赤外線の放射率がバインダー22における赤外線の放射率よりも高いセラミック粒子22を容易に得ることができる。 The ceramic particles 21 are any one of aluminum nitride, silicon nitride, boron nitride, zinc oxide, aluminum oxide, crystalline silica, titanium oxide, manganese ferrite ((FeMn)2O3), and ferric oxide (Fe2O3). It is made of one or more materials. Therefore, the heat radiating member 10 can easily obtain the ceramic particles 22 having a higher infrared emissivity than the binder 22 .
 放熱部材10においては、基材11Aは、金属、樹脂、及び、セラミックのうち、いずれか1つの材料で形成される。このため、放熱部材10は、熱源から発せられた熱を、基材11Aで十分に吸収することができる。この結果、放熱部材10は、熱源を冷却することができる。 In the heat dissipation member 10, the base material 11A is made of any one of metal, resin, and ceramic. Therefore, the heat dissipation member 10 can sufficiently absorb the heat generated from the heat source by the base material 11A. As a result, the heat dissipation member 10 can cool the heat source.
 また、実施の形態1に係る電子機器100は、放熱部材10を備える。このため、電子機器100は、その熱源から発せられた熱がセラミック粒子21に伝わることで、セラミック粒子21からの放熱がバインダー22によって遮られることがない。 Further, the electronic device 100 according to Embodiment 1 includes the heat dissipation member 10 . Therefore, in the electronic device 100 , the heat emitted from the heat source is transferred to the ceramic particles 21 , so that the heat radiation from the ceramic particles 21 is not blocked by the binder 22 .
 電子機器100は、放熱部材10の基材11Aと接触するセラミック基板51と、セラミック基板51に設けられる回路パターン52と、回路パターン52に設けられ、半導体が実装される高周波回路53及び回路54とを備える。このため、電子機器100は、半導体から発せられた熱がセラミック粒子21に伝わることで、セラミック粒子21からの放熱がバインダー22によって遮られることがない。この結果、電子機器100は、高周波回路53及び回路54に実装されている半導体を冷却することができる。 The electronic device 100 includes a ceramic substrate 51 in contact with the base material 11A of the heat dissipation member 10, a circuit pattern 52 provided on the ceramic substrate 51, and a high frequency circuit 53 and a circuit 54 provided on the circuit pattern 52 and having semiconductors mounted thereon. Prepare. Therefore, in the electronic device 100 , the heat emitted from the semiconductor is transmitted to the ceramic particles 21 , so that the heat radiation from the ceramic particles 21 is not blocked by the binder 22 . As a result, the electronic device 100 can cool the semiconductors mounted in the high- frequency circuits 53 and 54 .
 電子機器100は、セラミック基板51、回路パターン52、高周波回路53、及び、回路54の周囲を覆うように設けられるケース60を備える。このため、電子機器100は、ケース60によって、セラミック基板51、回路パターン52、高周波回路53、及び、回路54を、保護することができる。 The electronic device 100 includes a ceramic substrate 51 , a circuit pattern 52 , a high frequency circuit 53 , and a case 60 that covers the circuit 54 . Therefore, the electronic device 100 can protect the ceramic substrate 51 , the circuit pattern 52 , the high-frequency circuit 53 , and the circuit 54 with the case 60 .
 更に、実施の形態1に係る放熱部材10の製造方法は、バインダー22を溶媒で希釈し、希釈したバインダー22を基材11Aの表面に塗布し、基材11Aの表面に塗布したバインダー22上に、セラミック粒子21を振り掛け、バインダー22に結着されていないセラミック粒子21を取り除き、溶媒を乾燥させ、バインダー22を加熱して硬化させる。このため、放熱部材10は、セラミック粒子21からの放熱がバインダー22によって遮られることがない。 Furthermore, in the method for manufacturing the heat radiating member 10 according to Embodiment 1, the binder 22 is diluted with a solvent, the diluted binder 22 is applied to the surface of the base material 11A, and the binder 22 applied to the surface of the base material 11A is coated with , the ceramic particles 21 are sprinkled, the ceramic particles 21 not bound to the binder 22 are removed, the solvent is dried, and the binder 22 is heated and hardened. Therefore, in the heat dissipation member 10 , heat dissipation from the ceramic particles 21 is not blocked by the binder 22 .
実施の形態2.
 実施の形態2に係る放熱部材20について、図8を用いて説明する。図8は、実施の形態2に係る放熱部材20の縦断面図である。なお、上述した実施の形態1で説明した構成と同様の機能を有する構成については、同一の符号を付し、その説明を省略する。
Embodiment 2.
A heat radiating member 20 according to Embodiment 2 will be described with reference to FIG. FIG. 8 is a vertical cross-sectional view of a heat radiating member 20 according to Embodiment 2. FIG. It should be noted that configurations having functions similar to those of the configuration described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 図8に示すように、放熱部材20は、基材11B及び熱放射層12Bを備えている。基材11Bは、半導体素子等の熱源から発せられた熱を吸収し、この吸収した熱を熱放射層12Bに伝える役割を有する。熱放射層12Bは、基材11Bから伝えられた熱を、その表面から赤外線として放射する役割を有している。 As shown in FIG. 8, the heat dissipation member 20 includes a base material 11B and a heat emission layer 12B. The base material 11B has a role of absorbing heat emitted from a heat source such as a semiconductor element and transmitting the absorbed heat to the thermal emission layer 12B. The thermal radiation layer 12B has a role of radiating the heat transferred from the base material 11B as infrared rays from its surface.
 基材11Bは、半円柱状に形成されている。このため、基材11Bにおける熱放射層12Bが設けられる面は、曲面となっている。これに対して、熱放射層12Bは、その基材11Bの曲面に沿うよう設けられている。この熱放射層12Bは、複数のセラミック粒子21及びバインダー22を有している。バインダー22の表面22aは、曲面となっている。セラミック粒子21の表面は、曲面となる表面22aから突出している。 The base material 11B is formed in a semi-cylindrical shape. Therefore, the surface of the substrate 11B on which the heat emitting layer 12B is provided is a curved surface. On the other hand, the thermal radiation layer 12B is provided along the curved surface of the base material 11B. This heat emitting layer 12B has a plurality of ceramic particles 21 and a binder 22. As shown in FIG. A surface 22a of the binder 22 is curved. The surface of the ceramic particle 21 protrudes from the curved surface 22a.
 以上、実施の形態2に係る放熱部材20は、基材11Bの表面に設けられ、セラミック粒子21及びバインダー22を含む熱放射層12Bを備え、セラミック粒子21の表面は、バインダー22の表面22aから突出する。このため、放熱部材20は、セラミック粒子21からの放熱がバインダー22によって遮られることがない。 As described above, the heat radiation member 20 according to Embodiment 2 is provided on the surface of the base material 11B and includes the heat radiation layer 12B containing the ceramic particles 21 and the binder 22. The surface of the ceramic particles 21 extends from the surface 22a of the binder 22. protrude. Therefore, the binder 22 does not block heat radiation from the ceramic particles 21 in the heat radiation member 20 .
実施の形態3.
 実施の形態3に係る放熱部材30について、図9を用いて説明する。図9は、実施の形態3に係る放熱部材30の縦断面図である。なお、上述した実施の形態1で説明した構成と同様の機能を有する構成については、同一の符号を付し、その説明を省略する。
Embodiment 3.
A heat radiating member 30 according to Embodiment 3 will be described with reference to FIG. FIG. 9 is a vertical cross-sectional view of a heat radiating member 30 according to Embodiment 3. FIG. It should be noted that configurations having functions similar to those of the configuration described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 図9に示すように、放熱部材30は、基材11C及び熱放射層12Cを備えている。基材11Cは、半導体素子等の熱源から発せられた熱を吸収し、この吸収した熱を熱放射層12Cに伝える役割を有する。熱放射層12Cは、基材11Cから伝えられた熱を、その表面から赤外線として放射する役割を有している。 As shown in FIG. 9, the heat dissipation member 30 includes a base material 11C and a heat emission layer 12C. The base material 11C has a role of absorbing heat emitted from a heat source such as a semiconductor element and transmitting the absorbed heat to the thermal emission layer 12C. The thermal radiation layer 12C has a role of radiating the heat transferred from the substrate 11C as infrared rays from its surface.
 基材11Cは、平板状に形成されている。また、基材11Cにおける熱放射層12Cが設けられる面は、凹凸面となっている。これに対して、熱放射層12Bは、その基材11Cの凹凸面に設けられている。この熱放射層12Cは、複数のセラミック粒子21及びバインダー22を有している。バインダー22の表面22aは、平面となっている。セラミック粒子21の表面は、平面となる表面22aから突出している。 The base material 11C is formed in a flat plate shape. In addition, the surface of the substrate 11C on which the thermal emission layer 12C is provided is an uneven surface. On the other hand, the thermal radiation layer 12B is provided on the uneven surface of the base material 11C. This heat emitting layer 12C has a plurality of ceramic particles 21 and a binder 22. As shown in FIG. A surface 22a of the binder 22 is flat. The surfaces of the ceramic particles 21 protrude from the planar surface 22a.
 以上、実施の形態3に係る放熱部材30は、基材11Cの表面に設けられ、セラミック粒子21及びバインダー22を含む熱放射層12Cを備え、セラミック粒子21の表面は、バインダー22の表面22aから突出する。このため、放熱部材30は、セラミック粒子21からの放熱がバインダー22によって遮られることがない。 As described above, the heat radiation member 30 according to Embodiment 3 is provided on the surface of the substrate 11C and includes the heat radiation layer 12C containing the ceramic particles 21 and the binder 22. The surface of the ceramic particles 21 extends from the surface 22a of the binder 22. protrude. Therefore, the binder 22 does not block the heat radiation from the ceramic particles 21 in the heat radiation member 30 .
 なお、本開示はその開示の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In addition, within the scope of the disclosure, the present disclosure can freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. .
 本開示に係る放熱部材は、セラミック粒子の表面をバインダーの表面から突出させることで、セラミック粒子からの放熱がバインダーによって遮られることが無くなり、放熱部材等に用いるのに適している。 The heat dissipating member according to the present disclosure is suitable for use as a heat dissipating member, etc., because the heat dissipation from the ceramic particles is not blocked by the binder by projecting the surface of the ceramic particles from the surface of the binder.
 10,20,30 放熱部材、11A~11C 基材、12A~12C 熱放射層、21 セラミック粒子、22 バインダー、22a 表面、40 熱源、51 セラミック基板、52 回路パターン、53 高周波回路、54 回路、55 ボンディングワイヤ、60 ケース、61 ケース本体、62 カバー、100 電子機器。 10, 20, 30 heat dissipation member, 11A to 11C base material, 12A to 12C heat radiation layer, 21 ceramic particles, 22 binder, 22a surface, 40 heat source, 51 ceramic substrate, 52 circuit pattern, 53 high frequency circuit, 54 circuit, 55 Bonding wire, 60 case, 61 case body, 62 cover, 100 electronic device.

Claims (10)

  1.  基材の表面に設けられ、セラミック粒子及びバインダーを含む熱放射層を備え、
     前記セラミック粒子の表面は、前記バインダーの表面から突出する
     ことを特徴とする放熱部材。
    provided on the surface of the base material and comprising a heat emitting layer containing ceramic particles and a binder;
    The heat dissipating member, wherein the surface of the ceramic particles protrudes from the surface of the binder.
  2.  前記セラミック粒子における赤外線の放射率は、前記バインダーにおける赤外線の放射率よりも高い
     ことを特徴とする請求項1記載の放熱部材。
    2. The heat dissipating member according to claim 1, wherein the infrared emissivity of the ceramic particles is higher than the infrared emissivity of the binder.
  3.  前記熱放射層の表面における前記バインダーの表面から突出した前記セラミック粒子の表面が占める占有率は、20~70%である
     ことを特徴路する請求項1記載の放熱部材。
    2. The heat dissipating member according to claim 1, wherein the surface of the heat emitting layer is occupied by the surface of the ceramic particles protruding from the surface of the binder in a range of 20 to 70%.
  4.  前記セラミック粒子の粒径は、10~100μmである
     ことを特徴とする請求項1記載の放熱部材。
    2. The heat dissipating member according to claim 1, wherein the ceramic particles have a particle size of 10 to 100 μm.
  5.  前記セラミック粒子は、窒化アルミニウム、窒化珪素、窒化ホウ素、酸化亜鉛、酸化アルミニウム、結晶シリカ、酸化チタン、マンガン・フェライト((FeMn)2O3)、及び、酸化第二鉄(Fe2O3)のうち、いずれか1つ以上の材料で形成される
     ことを特徴とする請求項1記載の放熱部材。
    The ceramic particles are aluminum nitride, silicon nitride, boron nitride, zinc oxide, aluminum oxide, crystalline silica, titanium oxide, manganese ferrite ((FeMn)2O3), and ferric oxide (Fe2O3). The heat dissipating member of claim 1, wherein the heat dissipating member is made of one or more materials.
  6.  前記基材は、金属、樹脂、及び、セラミックのうち、いずれか1つの材料で形成される
     ことを特徴とする請求項1記載の放熱部材。
    2. The heat dissipating member according to claim 1, wherein the base material is made of any one of metal, resin, and ceramic.
  7.  請求項1から請求項6のうちのいずれか1項記載の放熱部材を備える
     ことを特徴とする電子機器。
    An electronic device comprising the heat dissipation member according to any one of claims 1 to 6.
  8.  前記放熱部材の前記基材と接触する基板と、
     前記基板に設けられる回路パターンと、
     前記回路パターンに設けられ、半導体が実装される回路とを備える
     ことを特徴とする請求項7記載の電子機器。
    a substrate in contact with the base material of the heat dissipation member;
    a circuit pattern provided on the substrate;
    8. The electronic device according to claim 7, further comprising a circuit provided on the circuit pattern and having a semiconductor mounted thereon.
  9.  前記基板、前記回路パターン、及び、前記回路の周囲を覆うように設けられるケースを備える
     ことを特徴とする請求項8記載の電子機器。
    9. The electronic device according to claim 8, further comprising a case provided so as to cover the substrate, the circuit pattern, and the circuit.
  10.  バインダーを溶媒で希釈し、
     希釈した前記バインダーを基材の表面に塗布し、
     前記基材の表面に塗布した前記バインダー上に、セラミック粒子を振り掛け、
     前記バインダーに結着されていないセラミック粒子を取り除き、
     前記溶媒を乾燥させ、
     前記バインダーを加熱して硬化させる
     ことを特徴とする放熱部材の製造方法。
    diluting the binder with a solvent,
    Applying the diluted binder to the surface of the base material,
    Sprinkling ceramic particles on the binder applied to the surface of the base material,
    removing ceramic particles not bound to the binder;
    drying the solvent;
    A method for manufacturing a heat dissipating member, comprising heating and curing the binder.
PCT/JP2021/043118 2021-11-25 2021-11-25 Heat dissipation member, electronic device, and production method for heat dissipation member WO2023095228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043118 WO2023095228A1 (en) 2021-11-25 2021-11-25 Heat dissipation member, electronic device, and production method for heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043118 WO2023095228A1 (en) 2021-11-25 2021-11-25 Heat dissipation member, electronic device, and production method for heat dissipation member

Publications (1)

Publication Number Publication Date
WO2023095228A1 true WO2023095228A1 (en) 2023-06-01

Family

ID=86539104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043118 WO2023095228A1 (en) 2021-11-25 2021-11-25 Heat dissipation member, electronic device, and production method for heat dissipation member

Country Status (1)

Country Link
WO (1) WO2023095228A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122463A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Cooling structure
JP2016046476A (en) * 2014-08-26 2016-04-04 株式会社デンソー Electronic device and manufacturing method of the same
JP2017113934A (en) * 2015-12-22 2017-06-29 三菱マテリアル株式会社 Heat transfer component and manufacturing method of heat transfer component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122463A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Cooling structure
JP2016046476A (en) * 2014-08-26 2016-04-04 株式会社デンソー Electronic device and manufacturing method of the same
JP2017113934A (en) * 2015-12-22 2017-06-29 三菱マテリアル株式会社 Heat transfer component and manufacturing method of heat transfer component

Similar Documents

Publication Publication Date Title
JP5036696B2 (en) Thermally conductive sheet and power module
JP4089636B2 (en) Method for manufacturing thermally conductive resin sheet and method for manufacturing power module
KR101430235B1 (en) Thermally conductive and emissive heat resistant graphene composite coating and its application method
KR102167531B1 (en) Semiconductor device
JP2014078558A (en) Semiconductor device, ceramic circuit board, and method for manufacturing semiconductor device
KR102418086B1 (en) Electronic module, method
JP2008255186A (en) Heat-conductive resin sheet and power module
TW201946237A (en) Monolithic microwave integrated circuit (MMIC) cooling structure
JP2009099753A (en) Heat sink
JP5274007B2 (en) Thermally conductive resin sheet and power module using the same
WO2023095228A1 (en) Heat dissipation member, electronic device, and production method for heat dissipation member
JP5416367B2 (en) Heat dissipating solder resist composition and heat dissipating printed wiring board
JPH06167806A (en) Solder resist ink composition and printed circuit board formed by suing the same
JP6508384B2 (en) Thermal conductive sheet and semiconductor device
TW202033729A (en) Heat-dissipation member, method of producing heat-dissipation member, composition and heating element
JP7208720B2 (en) Semiconductor device and method for manufacturing semiconductor device
CN106133900B (en) Thermally conductive sheet and semiconductor device
JPH07162177A (en) Radiator
CN113826193A (en) Antenna array for 5G communication, antenna structure, noise-suppressing thermally conductive sheet, and thermally conductive sheet
JP7265321B2 (en) Semiconductor device and method for manufacturing semiconductor device
KR101432476B1 (en) Manufacturing method of aluminium nitride-polymer composite having high thermal conductivity
JP7330419B1 (en) Heat-dissipating member, heat-dissipating member with base material, and power module
JP7486666B2 (en) Heat dissipation member and heat sink
WO2022224368A1 (en) Heat-dissipating member and heat sink
JP6160037B2 (en) Manufacturing method of joined body, manufacturing method of power module, joined body, power module, and substrate for power module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965600

Country of ref document: EP

Kind code of ref document: A1