JP2021044403A - Heat-dissipating material, manufacturing method of the same, and heat-generating body - Google Patents

Heat-dissipating material, manufacturing method of the same, and heat-generating body Download PDF

Info

Publication number
JP2021044403A
JP2021044403A JP2019165632A JP2019165632A JP2021044403A JP 2021044403 A JP2021044403 A JP 2021044403A JP 2019165632 A JP2019165632 A JP 2019165632A JP 2019165632 A JP2019165632 A JP 2019165632A JP 2021044403 A JP2021044403 A JP 2021044403A
Authority
JP
Japan
Prior art keywords
heat radiating
resin
heat
radiating material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165632A
Other languages
Japanese (ja)
Inventor
拓司 安藤
Takuji Ando
拓司 安藤
真紀 高橋
Masanori Takahashi
真紀 高橋
由高 竹澤
Yoshitaka Takezawa
由高 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Materials Co Ltd filed Critical Showa Denko Materials Co Ltd
Priority to JP2019165632A priority Critical patent/JP2021044403A/en
Publication of JP2021044403A publication Critical patent/JP2021044403A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a heat-dissipating material that excels in dissipating the heat generated by a heat-generating body and has excellent adhesiveness to an adherend, a manufacturing method of the same, and a heat-generating body provided with the heat-dissipating material.SOLUTION: The heat-dissipating material has a base material layer that has resin and has an uneven structure on at least one surface and a metal layer that is disposed on the surface of the base material layer with the uneven structure thereon and has a shape corresponding to the uneven structure.SELECTED DRAWING: None

Description

本発明は、放熱材、放熱材の製造方法及び発熱体に関する。 The present invention relates to a heat radiating material, a method for manufacturing the heat radiating material, and a heating element.

近年、電子機器の小型化と多機能化に伴い、単位面積当たりの発熱量が増加する傾向にある。その結果、電子機器内で局所的に熱が集中するヒートスポットが発生し、電子機器の故障、短寿命化、動作安定性の低下、信頼性の低下等の問題が生じている。このため、発熱体で生じた熱を外部に放散させてヒートスポットの発生を緩和することの重要性が増している。 In recent years, the amount of heat generated per unit area tends to increase with the miniaturization and multifunctionality of electronic devices. As a result, heat spots in which heat is locally concentrated are generated in the electronic device, which causes problems such as failure of the electronic device, shortening of the life, deterioration of operation stability, and deterioration of reliability. Therefore, it is becoming more important to dissipate the heat generated by the heating element to the outside to mitigate the generation of heat spots.

電子機器の放熱対策のひとつとして、金属板、ヒートシンク等の放熱器を電子機器の発熱体近傍に取り付けて、発熱体で生じた熱を放熱器に伝導し、外部に放散させることが行われている。しかしながら、電子機器の小型化に伴い、電子機器に放熱器を取り付けるのが困難な場合が生じている。そこで、電子機器の小型化に適応しうる放熱手段として、シート状の放熱材が検討されている。 As one of the heat dissipation measures for electronic devices, a radiator such as a metal plate or a heat sink is attached near the heating element of the electronic device, and the heat generated by the heating element is conducted to the radiator and dissipated to the outside. There is. However, with the miniaturization of electronic devices, it may be difficult to attach a radiator to the electronic device. Therefore, a sheet-shaped heat radiating material is being studied as a heat radiating means that can be adapted to the miniaturization of electronic devices.

例えば、特許文献1には、放熱シート層の上にシリコーン樹脂中に熱伝導性フィラーを分散させた塗膜が形成された放熱材が記載されている。しかしながら、このような放熱材を樹脂ケース等の樹脂部材で覆われている電子機器の周囲に配置した場合、放熱材から放射される赤外線の多くが樹脂部材を透過することなく吸収される。その結果、樹脂部材に新たなヒートスポットが生じて充分な放熱効果が得られないおそれがある。 For example, Patent Document 1 describes a heat radiating material in which a coating film in which a heat conductive filler is dispersed in a silicone resin is formed on a heat radiating sheet layer. However, when such a heat radiating material is arranged around an electronic device covered with a resin member such as a resin case, most of the infrared rays radiated from the heat radiating material are absorbed without passing through the resin member. As a result, new heat spots may be generated in the resin member, and a sufficient heat dissipation effect may not be obtained.

そこで、特許文献2及び特許文献3では、金属薄膜シート上に多数のマイクロキャビティを二次元配列した波長選択性の放熱材が提案されている。この放熱材は、電子機器から放射される熱を、周囲の樹脂部材を透過可能な波長の赤外線に変換する。その結果、樹脂部材におけるヒートスポットの生成が緩和され、放熱性が改善する。 Therefore, Patent Document 2 and Patent Document 3 propose a wavelength-selective heat radiating material in which a large number of microcavities are two-dimensionally arranged on a metal thin film sheet. This heat radiating material converts the heat radiated from the electronic device into infrared rays having a wavelength that can be transmitted through the surrounding resin member. As a result, the generation of heat spots in the resin member is alleviated and the heat dissipation is improved.

特開2011−222862号公報Japanese Unexamined Patent Publication No. 2011-222862 特許第5008617号Patent No. 508617 特許第6039825号Patent No. 6039825

特許文献2、3に記載された放熱材は、金属体の表面に直接開口部を加工することで、マイクロキャビティの配列を形成している。マイクロキャビティのような三次元構造を金属薄膜に精度よく加工するためには、半導体素子の製造過程と同様に、マイクロキャビティの開口部と同等の開口形状を有するマスク又はレジストパターンの形成、ドライエッチング又はウエットエッチングによる金属表面の高アスペクト比加工等が必要となり、低コスト化及び生産性向上の観点から改善の余地がある。
さらに、充分な放熱効果を得るためには、放熱材は電子機器の表面に対する密着性に優れていることが求められる。
In the heat radiating materials described in Patent Documents 2 and 3, an array of microcavities is formed by directly processing an opening on the surface of a metal body. In order to accurately process a three-dimensional structure such as a microcavity into a metal thin film, the formation of a mask or resist pattern having an opening shape equivalent to the opening of the microcavity and dry etching are performed in the same manner as in the manufacturing process of semiconductor devices. Alternatively, high aspect ratio processing of the metal surface by wet etching is required, and there is room for improvement from the viewpoint of cost reduction and productivity improvement.
Further, in order to obtain a sufficient heat dissipation effect, the heat radiating material is required to have excellent adhesion to the surface of the electronic device.

上記事情にかんがみ、本発明の一態様は、発熱体から生じた熱の放熱性に優れ、かつ被着体への密着性に優れる放熱材、及びこの放熱材の製造方法を提供することを目的とする。本発明の別の一態様は、この放熱材を備える発熱体を提供することを目的とする。 In view of the above circumstances, one aspect of the present invention is to provide a heat radiating material having excellent heat dissipation from a heating element and excellent adhesion to an adherend, and a method for manufacturing the heat radiating material. And. Another aspect of the present invention is to provide a heating element provided with this heat radiating material.

上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>樹脂を含み、少なくとも一方の面に凹凸構造を有する基材層と、前記基材層の前記凹凸構造を有する面側に配置され、かつ前記凹凸構造に対応する形状を有する金属層と、を有する放熱材。
<2>前記基材層は無機粒子を含む、<1>に記載の放熱材。
<3>前記無機粒子はセラミックス粒子、金属粒子及びカーボン粒子からなる群より選択される少なくとも一つを含む、<1>又は<2>に記載の放熱材。
<4>前記基材層に含まれる前記樹脂は分子鎖が任意の方向に配列した状態である、<1>〜<3>のいずれか1項に記載の放熱材。
<5>前記基材層の厚みは2mm以下である、<1>〜<4>のいずれか1項に記載の放熱材。
<6>樹脂シートの一方の面に凹凸構造を有する型を押し当てる工程と、前記樹脂シートから前記型を除去する工程と、前記型が除去された後の前記樹脂シートの面に金属層を形成する工程と、を有する放熱材の製造方法。
<7>樹脂組成物層の一方の面に凹凸構造を有する型を押し当てる工程と、前記樹脂組成物層を硬化又は固化させて樹脂シートを得る工程と、前記樹脂シートから前記型を除去する工程と、前記型が除去された後の前記樹脂シートの面に金属層を形成する工程と、を有する放熱材の製造方法。
<8><1>〜<5>のいずれか1項に記載の放熱材を備える、発熱体。
Means for solving the above problems include the following embodiments.
<1> A base material layer containing a resin and having a concavo-convex structure on at least one surface, and a metal layer arranged on the surface side of the base material layer having the concavo-convex structure and having a shape corresponding to the concavo-convex structure. , Has a heat radiating material.
<2> The heat radiating material according to <1>, wherein the base material layer contains inorganic particles.
<3> The heat radiating material according to <1> or <2>, wherein the inorganic particles include at least one selected from the group consisting of ceramic particles, metal particles, and carbon particles.
<4> The heat radiating material according to any one of <1> to <3>, wherein the resin contained in the base material layer is in a state where molecular chains are arranged in an arbitrary direction.
<5> The heat radiating material according to any one of <1> to <4>, wherein the base material layer has a thickness of 2 mm or less.
<6> A step of pressing a mold having an uneven structure against one surface of the resin sheet, a step of removing the mold from the resin sheet, and a metal layer on the surface of the resin sheet after the mold is removed. A method of manufacturing a heat radiating material having a step of forming.
<7> A step of pressing a mold having an uneven structure against one surface of the resin composition layer, a step of curing or solidifying the resin composition layer to obtain a resin sheet, and removing the mold from the resin sheet. A method for producing a heat radiating material, comprising a step and a step of forming a metal layer on the surface of the resin sheet after the mold is removed.
<8> A heating element comprising the heat radiating material according to any one of <1> to <5>.

本発明の一態様によれば、発熱体から生じた熱の放熱性に優れ、かつ被着体への密着性に優れる放熱材、及びこの放熱材の製造方法が提供される。本発明の別の一態様によれば、この放熱材を備える発熱体が提供される。 According to one aspect of the present invention, there is provided a heat radiating material which is excellent in heat radiating property of heat generated from a heating element and is excellent in adhesion to an adherend, and a method for manufacturing the heat radiating material. According to another aspect of the present invention, a heating element provided with this heat radiating material is provided.

実施例1で作製したサンプルの外観図である。It is an external view of the sample prepared in Example 1. FIG. 実施例1で作製したサンプルの断面模式図である。It is sectional drawing of the sample produced in Example 1. FIG. 実施例1で作製したサンプルの吸収波長スペクトルである。It is an absorption wavelength spectrum of the sample prepared in Example 1. 実施例2で作製したサンプルの外観図である。It is an external view of the sample prepared in Example 2. FIG. 実施例2で作製したサンプルの断面模式図である。It is sectional drawing of the sample produced in Example 2. FIG. 実施例2で作製したサンプルの吸収波長スペクトルである。It is an absorption wavelength spectrum of the sample prepared in Example 2. 実施例8で作製したサンプルの外観図である。It is an external view of the sample produced in Example 8. 実施例8で作製したサンプルの断面摸式図である。It is sectional drawing of the sample prepared in Example 8. FIG. 比較例1で作製したサンプルの吸収波長スペクトルである。It is an absorption wavelength spectrum of the sample prepared in Comparative Example 1. 実施例9で作製した電子機器の断面模式図である。FIG. 5 is a schematic cross-sectional view of the electronic device produced in Example 9. 実施例10で作製した電子機器の断面模式図である。FIG. 5 is a schematic cross-sectional view of the electronic device produced in Example 10. 実施例11で作製したヒートパイプの断面模式図である。It is sectional drawing of the cross section of the heat pipe produced in Example 11.

以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本開示において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "~" in the present disclosure includes the numerical values before and after "~" as the minimum value and the maximum value, respectively.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
When the embodiment is described in the present disclosure with reference to the drawings, the configuration of the embodiment is not limited to the configuration shown in the drawings. Further, the size of the members in each figure is conceptual, and the relative relationship between the sizes of the members is not limited to this.

<放熱材>
本開示の放熱材は、樹脂を含み、少なくとも一方の面に凹凸構造を有する基材層と、前記基材層の前記凹凸構造を有する面側に配置され、かつ前記凹凸構造に対応する形状を有する金属層と、を有する放熱材である。
<Heat dissipation material>
The heat radiating material of the present disclosure contains a resin and is arranged on a base material layer having a concavo-convex structure on at least one surface and a surface side of the base material layer having the concavo-convex structure, and has a shape corresponding to the concavo-convex structure. It is a heat-dissipating material having a metal layer having the metal layer.

上記構成を有する放熱材は、これを発熱体(特に、周囲に樹脂部材が配置された発熱体)に取り付けた場合、優れた放熱効果を発揮する。その理由は必ずしも明らかではないが、下記のように考えられる。 A heat radiating material having the above configuration exhibits an excellent heat radiating effect when it is attached to a heating element (particularly, a heating element in which a resin member is arranged around the heating element). The reason is not always clear, but it can be considered as follows.

上記放熱材において、金属層は基材層の凹凸構造を有する面側に配置されている。このため、金属層は基材層の凹凸構造に対応する形状を有している。
凹凸構造を有する金属層に発熱体から放射された熱が伝わると、表面プラズモン共鳴が生じる。このとき、放熱材の表面温度が周囲の温度よりも高いと、放熱材表面から周囲に対して電磁波が放射される。また、放熱材の表面温度が上昇するにつれて放射エネルギーは増大する。表面プラズモン共鳴が最大となる波長を制御することで、放射される電磁波の波長域が変化する。
In the heat radiating material, the metal layer is arranged on the surface side of the base material layer having the uneven structure. Therefore, the metal layer has a shape corresponding to the uneven structure of the base material layer.
Surface plasmon resonance occurs when the heat radiated from the heating element is transferred to the metal layer having an uneven structure. At this time, if the surface temperature of the heat radiating material is higher than the ambient temperature, electromagnetic waves are radiated from the surface of the heat radiating material to the surroundings. In addition, the radiant energy increases as the surface temperature of the heat radiating material rises. By controlling the wavelength at which surface plasmon resonance is maximized, the wavelength range of the emitted electromagnetic wave changes.

放熱材が有する凹凸パターン(凹凸構造の形状)の状態により、変換される電磁波の波長域が変化する。したがって、凹凸パターンの形状、サイズ、高低差、間隔等を変更することで、変換される電磁波の波長域を制御することができる。その結果、例えば、発熱体の周囲に樹脂部材が配置されていても、樹脂部材を透過しやすい波長域の電磁波の放射率を相対的に増大させることができ、樹脂部材による蓄熱が抑制されて、放熱性が向上すると考えられる。 The wavelength range of the converted electromagnetic wave changes depending on the state of the uneven pattern (shape of the uneven structure) of the heat radiating material. Therefore, the wavelength range of the converted electromagnetic wave can be controlled by changing the shape, size, height difference, interval, and the like of the uneven pattern. As a result, for example, even if the resin member is arranged around the heating element, the emissivity of electromagnetic waves in the wavelength range that easily passes through the resin member can be relatively increased, and the heat storage by the resin member is suppressed. , It is considered that the heat dissipation is improved.

放熱材の凹凸パターンは、表面プラズモン共鳴を生じうる状態であれば特に制限されない。たとえば、同じ形状及びサイズの凹部又は凸部が等間隔で配置されているパターンであることが好ましい。 The uneven pattern of the heat radiating material is not particularly limited as long as surface plasmon resonance can occur. For example, it is preferable to have a pattern in which concave portions or convex portions having the same shape and size are arranged at equal intervals.

放熱材の凹凸パターンを構成する凹部又は凸部の形状としては、円形又は多角形が挙げられる。 Examples of the shape of the concave portion or the convex portion forming the uneven pattern of the heat radiating material include a circular shape and a polygonal shape.

凹凸パターンを構成する凹部又は凸部の形状は、その径または一辺長が直行する2軸方向に対して等しい形状(例えば、真円及び正方形)であっても、その径または一辺長が直行する2軸方向に対して異なる形状(例えば、楕円及び長方形)であってもよい。
凹凸パターンの径または一辺長が直行する2軸方向に対して等しい場合、偏波依存性が生じにくく、単一のピーク波長をもつ吸収スペクトルが生じる傾向にある。
凹凸パターンの径または一辺長が直行する2軸方向に対して異なる場合、偏波依存性が生じやすく、複数のピーク波長をもつ吸収スペクトルが生じる傾向にある。
Even if the shape of the concave or convex portion constituting the uneven pattern is equal to the biaxial direction in which the diameter or the side length is orthogonal (for example, a perfect circle or a square), the diameter or the side length is orthogonal. It may have different shapes (eg, ellipse and rectangle) with respect to the biaxial direction.
When the diameter or one side length of the uneven pattern is equal to the orthogonal biaxial direction, polarization dependence is unlikely to occur, and an absorption spectrum having a single peak wavelength tends to occur.
When the diameter or one side length of the uneven pattern is different with respect to the orthogonal biaxial direction, polarization dependence tends to occur, and an absorption spectrum having a plurality of peak wavelengths tends to occur.

凹凸パターンを構成する凹部又は凸部のサイズは、所定の波長で表面プラズモン共鳴が生じうる値であれば特に制限されない。たとえば、凹部又は凸部が円形である場合、その直径は0.5μm〜10μmの範囲であってもよく、凹部又は凸部が四角形である場合、その一辺長は0.5μm〜10μmの範囲にあってもよい。 The size of the concave portion or the convex portion forming the concave-convex pattern is not particularly limited as long as it is a value at which surface plasmon resonance can occur at a predetermined wavelength. For example, if the concave or convex portion is circular, its diameter may be in the range of 0.5 μm to 10 μm, and if the concave or convex portion is rectangular, its side length may be in the range of 0.5 μm to 10 μm. There may be.

凹凸パターンを構成する凹部又は凸部の高さ又は深さは、所定の波長で表面プラズモン共鳴が生じうる値であれば特に制限されない。たとえば、0.5μm〜10μmの範囲であってもよい。 The height or depth of the concave or convex portion forming the uneven pattern is not particularly limited as long as it is a value at which surface plasmon resonance can occur at a predetermined wavelength. For example, it may be in the range of 0.5 μm to 10 μm.

凹凸パターンを構成する凹部又は凸部のアスペクト比(高さ又は深さ/サイズ)は、所定の波長で表面プラズモン共鳴が生じうる値であれば特に制限されない。たとえば、0.5〜2の範囲内であってもよい。 The aspect ratio (height or depth / size) of the concave or convex portion constituting the uneven pattern is not particularly limited as long as it is a value at which surface plasmon resonance can occur at a predetermined wavelength. For example, it may be in the range of 0.5 to 2.

凹凸パターンの間隔は、所定の波長で表面プラズモン共鳴が生じうる値であれば特に制限されない。例えば、1μm〜20μmの範囲であってもよい。本開示において凹凸パターンの間隔とは、凹凸パターンを構成する1組の凹部及び凸部のサイズの合計値を意味する。 The interval of the uneven pattern is not particularly limited as long as it is a value at which surface plasmon resonance can occur at a predetermined wavelength. For example, it may be in the range of 1 μm to 20 μm. In the present disclosure, the interval of the uneven pattern means the total value of the sizes of a set of concave portions and convex portions constituting the concave-convex pattern.

放熱材の凹凸パターンの具体例について、図面を示して説明する。
図1に示す放熱材は、基材層と基材層の一方の面側に配置される金属層とを備え、金属層が配置された側の面に円形の凹部で構成される凹凸パターンが形成されている例である。
図2は図1に示す放熱材の断面図である。凹凸パターンを構成する円形の凹部の直径D、深さH、間隔Pの値を変更することで、変換される電磁波の波長域を所定の範囲に制御することができる。
A specific example of the uneven pattern of the heat radiating material will be described with reference to the drawings.
The heat radiating material shown in FIG. 1 includes a base material layer and a metal layer arranged on one surface side of the base material layer, and has an uneven pattern composed of circular recesses on the surface on the side on which the metal layer is arranged. This is an example of being formed.
FIG. 2 is a cross-sectional view of the heat radiating material shown in FIG. By changing the values of the diameter D, the depth H, and the interval P of the circular recesses forming the uneven pattern, the wavelength range of the converted electromagnetic wave can be controlled within a predetermined range.

図4に示す放熱材は、基材層と基材層の一方の面側に配置される金属層とを備え、金属層が配置された側の面に四角形の凹部で構成される凹凸パターンが形成されている例である。
図5は図4に示す放熱材の断面図である。凹凸パターンを構成する円形の凹部の一辺長W、深さH、間隔Pの値を変更することで、変換される電磁波の波長域を所定の範囲に制御することができる。
The heat radiating material shown in FIG. 4 includes a base material layer and a metal layer arranged on one surface side of the base material layer, and has an uneven pattern composed of quadrangular recesses on the surface on the side on which the metal layer is arranged. This is an example of being formed.
FIG. 5 is a cross-sectional view of the heat radiating material shown in FIG. By changing the values of the side length W, the depth H, and the interval P of the circular recesses forming the uneven pattern, the wavelength range of the converted electromagnetic wave can be controlled within a predetermined range.

図7に示す放熱材は、基材層と基材層の一方の面側に配置される金属層とを備え、金属層が配置された側の面に円形の凸部で構成される凹凸パターンが形成されている例である。
図8は図7に示す放熱材の断面図である。凹凸パターンを構成する円形の凸部の直径D、深さH、間隔Pの値を変更することで、変換される電磁波の波長域を所定の範囲に制御することができる。
The heat radiating material shown in FIG. 7 includes a base material layer and a metal layer arranged on one surface side of the base material layer, and has an uneven pattern composed of circular convex portions on the surface on the side on which the metal layer is arranged. Is an example of being formed.
FIG. 8 is a cross-sectional view of the heat radiating material shown in FIG. By changing the values of the diameter D, the depth H, and the interval P of the circular convex portions forming the uneven pattern, the wavelength range of the converted electromagnetic wave can be controlled within a predetermined range.

(基材層)
本開示の放熱材は、基材層が樹脂を含んでいる。このため、金属製の放熱材に比べて被着体の表面の形状にあわせて変形させやすく、優れた密着性を達成できる。
基材層に含まれる樹脂の種類は特に制限されず、公知の熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂等から選択できる。具体的には、フェノール樹脂、アルキド樹脂、アミノアルキド樹脂、ユリア樹脂、シリコーン樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ゴム系樹脂、塩化ビニル樹脂、フッ素樹脂等が挙げられる。これらの中でも耐熱性、入手性等の観点からは、アクリル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が好ましい。基材層に含まれる樹脂は、1種のみであっても2種以上であってもよい。
(Base layer)
In the heat radiating material of the present disclosure, the base material layer contains a resin. Therefore, as compared with the metal radiating material, it is easily deformed according to the shape of the surface of the adherend, and excellent adhesion can be achieved.
The type of resin contained in the base material layer is not particularly limited, and can be selected from known thermosetting resins, thermoplastic resins, ultraviolet curable resins and the like. Specifically, phenol resin, alkyd resin, aminoalkyd resin, urea resin, silicone resin, melamine urea resin, epoxy resin, polyurethane resin, unsaturated polyester resin, vinyl acetate resin, acrylic resin, rubber chloride resin, vinyl chloride. Examples include resins and fluororesins. Among these, acrylic resin, unsaturated polyester resin, epoxy resin and the like are preferable from the viewpoint of heat resistance, availability and the like. The resin contained in the base material layer may be only one type or two or more types.

基材層に含まれる樹脂は、分子鎖がランダムに混じり合った状態(非晶性樹脂)であっても、分子鎖が任意の方向に配列した状態(結晶性樹脂又は液晶性樹脂)であってもよい。基材層に含まれる樹脂が結晶性樹脂又は液晶性樹脂である場合、基材層の厚さ方向に沿って樹脂の分子鎖を配列させることで、発熱体から放射される熱を金属層までより効率的に伝えることができる。その結果、金属層の温度が上昇して表面プラズモン共鳴が強まり、電磁波の放射エネルギーが相対的に増大し、放熱材の放熱効果をより高めることができる。 The resin contained in the base material layer is a state in which the molecular chains are arranged in an arbitrary direction (crystalline resin or liquid crystal resin) even when the molecular chains are randomly mixed (amorphous resin). You may. When the resin contained in the base material layer is a crystalline resin or a liquid crystal resin, by arranging the molecular chains of the resin along the thickness direction of the base material layer, the heat radiated from the heating element is transferred to the metal layer. It can be communicated more efficiently. As a result, the temperature of the metal layer rises, surface plasmon resonance is strengthened, the radiant energy of electromagnetic waves is relatively increased, and the heat dissipation effect of the heat radiating material can be further enhanced.

基材層は、樹脂以外の材料を含んでもよい。例えば、無機粒子、添加剤等を含んでもよい。 The base material layer may contain a material other than the resin. For example, it may contain inorganic particles, additives and the like.

基材層に含まれる無機粒子は、電気絶縁性粒子(セラミックス粒子等)であっても、導電性粒子(金属粒子、カーボン粒子等)であってもよい。放熱性向上の観点からは、無機粒子は基材層に含まれる樹脂よりも熱伝導性に優れていることが好ましい。
基材層が無機粒子を含むことで、例えば、発熱体から放射された熱を金属層までより効率的に伝えることができる。その結果、金属層の温度が上昇して表面プラズモン共鳴が強まり、電磁波の放射エネルギーが相対的に増大し、放熱材の放熱効果をより高めることができる。
The inorganic particles contained in the base material layer may be electrically insulating particles (ceramic particles, etc.) or conductive particles (metal particles, carbon particles, etc.). From the viewpoint of improving heat dissipation, it is preferable that the inorganic particles have better thermal conductivity than the resin contained in the base material layer.
When the base material layer contains inorganic particles, for example, the heat radiated from the heating element can be transferred to the metal layer more efficiently. As a result, the temperature of the metal layer rises, surface plasmon resonance is strengthened, the radiant energy of electromagnetic waves is relatively increased, and the heat dissipation effect of the heat radiating material can be further enhanced.

セラミックス粒子の材質として具体的には、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、ジルコニア、酸化鉄、酸化銅、酸化ニッケル、酸化コバルト、酸化リチウム、二酸化ケイ素等の粒子が挙げられる。基材層に含まれるセラミックス粒子の材質は、1種のみであっても2種以上であってもよい。また、セラミックス粒子は単一の材質からなるものであっても2種以上の材質が複合化された状態であってもよい。 Specific examples of the material of the ceramic particles include particles such as boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, zirconia, iron oxide, copper oxide, nickel oxide, cobalt oxide, lithium oxide, and silicon dioxide. .. The material of the ceramic particles contained in the base material layer may be only one type or two or more types. Further, the ceramic particles may be made of a single material or may be in a state in which two or more kinds of materials are combined.

導電性粒子の材質として具体的には、銅、アルミニウム、ニッケル、鉄、銀、金、錫、チタン、クロム、パラジウム等の金属、カーボンなどが挙げられる。基材層に含まれる導電性粒子の材質は、1種のみであっても2種以上であってもよい。また、導電性粒子は単一の材質からなるものであっても2種以上の材質が複合化された状態であってもよい。 Specific examples of the material of the conductive particles include metals such as copper, aluminum, nickel, iron, silver, gold, tin, titanium, chromium and palladium, and carbon. The material of the conductive particles contained in the base material layer may be only one type or two or more types. Further, the conductive particles may be made of a single material or may be in a state in which two or more kinds of materials are combined.

無機粒子の大きさ及び形状は、特に制限されない。無機粒子の大きさが基材層の凹凸構造を構成する凸部のサイズよりも小さい場合は、凸部にも無機粒子が入り込むことができるが、凸部に無機粒子が含まれていなくてもよい。 The size and shape of the inorganic particles are not particularly limited. When the size of the inorganic particles is smaller than the size of the convex portion constituting the concave-convex structure of the base material layer, the inorganic particles can also enter the convex portion, but even if the convex portion does not contain the inorganic particles. Good.

基材層が含んでもよい添加剤として具体的には、分散剤、造膜助剤、可塑剤、顔料、シランカップリング剤、粘度調整剤等が挙げられる。基材層に添加剤を含有させることで、放熱材に所望の機能を付与することができる。 Specific examples of the additive that the base material layer may contain include a dispersant, a film-forming auxiliary, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier. By incorporating the additive in the base material layer, a desired function can be imparted to the heat radiating material.

基材層の厚みは、特に制限されない。基材層内での熱の蓄積を抑制し、被着体に対する充分な密着性を確保する観点からは、基材層の厚みは2mm以下であることが好ましく、1mm以下であることがより好ましい。一方、充分な強度を確保する観点からは、基材層の厚みは0.1mm以上であることが好ましく、0.5mm以上であることが好ましい。本開示において基材層の厚みは、基材層の凹凸構造を構成する凸部の高さを含む値である。 The thickness of the base material layer is not particularly limited. From the viewpoint of suppressing heat accumulation in the base material layer and ensuring sufficient adhesion to the adherend, the thickness of the base material layer is preferably 2 mm or less, more preferably 1 mm or less. .. On the other hand, from the viewpoint of ensuring sufficient strength, the thickness of the base material layer is preferably 0.1 mm or more, and preferably 0.5 mm or more. In the present disclosure, the thickness of the base material layer is a value including the height of the convex portion constituting the uneven structure of the base material layer.

(金属層)
金属層に含まれる金属として具体的には、銅、アルミニウム、ニッケル、鉄、銀、金、錫、チタン、クロム、パラジウム等が挙げられる。金属層に含まれる金属は、1種のみであっても2種以上であってもよい。また、金属層に含まれる金属は単体であっても合金化された状態であってもよい。
(Metal layer)
Specific examples of the metal contained in the metal layer include copper, aluminum, nickel, iron, silver, gold, tin, titanium, chromium, and palladium. The metal contained in the metal layer may be only one kind or two or more kinds. Further, the metal contained in the metal layer may be a simple substance or an alloyed state.

基材層の凹凸構造に対応した形状の金属層は、例えば、公知のめっき法、スパッタリング法、蒸着法等の薄膜形成技術により得ることができる。 A metal layer having a shape corresponding to the uneven structure of the base material layer can be obtained by, for example, a known thin film forming technique such as a plating method, a sputtering method, or a vapor deposition method.

金属層の厚みは特に制限されない。充分な表面プラズモン共鳴を得る観点からは、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。一方、放熱材の被着体に対する密着性を確保する観点からは、10μm以下であることが好ましく、5μm以下であることがより好ましく、1μm以下であることがさらに好ましい。 The thickness of the metal layer is not particularly limited. From the viewpoint of obtaining sufficient surface plasmon resonance, it is preferably 0.01 μm or more, more preferably 0.05 μm or more, and further preferably 0.1 μm or more. On the other hand, from the viewpoint of ensuring the adhesion of the heat radiating material to the adherend, it is preferably 10 μm or less, more preferably 5 μm or less, and further preferably 1 μm or less.

(その他の部材)
必要に応じ、放熱材は基材層及び金属層以外の部材を備えてもよい。例えば、金属層を保護するための保護層、放熱材を被着体に固定するための接着層等を備えてもよい。
(Other parts)
If necessary, the heat radiating material may include members other than the base material layer and the metal layer. For example, a protective layer for protecting the metal layer, an adhesive layer for fixing the heat radiating material to the adherend, and the like may be provided.

金属層の上に保護層を設ける場合、凹凸構造の形状を調節することで、凹凸構造に保護層が入り込んだ状態でも表面プラズモン共鳴が生じるようにすることができる。例えば、保護層の屈折率(実数部)をnとすると、保護層中を伝搬する波長は自由空間波長λの1/nに短縮することを考慮して凹凸パターンの形状を設計すればよい。 When the protective layer is provided on the metal layer, the shape of the concave-convex structure can be adjusted so that surface plasmon resonance can occur even when the protective layer is embedded in the concave-convex structure. For example, if the refractive index of the protective layer (real part) and n r, the wavelength of propagating the protective layer is by designing the shape of the uneven pattern in consideration of shortening a 1 / n r of the free space wavelength lambda 0 Just do it.

金属層で生じる表面プラズモン共鳴が最大となる波長(吸収率が最大となる波長、以下ピーク波長ともいう)は、熱放射に適した電磁波波長であり、かつ電磁波の放射面に配置した媒体(例えば、電子部品の周囲に配置される樹脂部材)を透過しやすい帯域に設定することが好ましい。
具体的には、理想的な黒体表面から放射する電磁波の波長帯域である1μmから30μm程度の範囲で表面プラズモン共鳴が最大になるように設定することが好ましい。さらに、一般的な樹脂材料を透過しやすい帯域にピーク波長を設定することが好ましい。例えば、1μm〜8μmの範囲にピーク波長を有することが好ましく、1μm〜6μmの範囲にピーク波長を有することがより好ましい。
The wavelength at which the surface plasmon resonance generated in the metal layer is maximized (the wavelength at which the absorption rate is maximum, hereinafter also referred to as the peak wavelength) is an electromagnetic wave wavelength suitable for thermal radiation, and a medium (for example, a medium arranged on the radiation surface of the electromagnetic wave). , The resin member arranged around the electronic component) is preferably set in a band that is easily transmitted.
Specifically, it is preferable to set so that the surface plasmon resonance is maximized in the range of about 1 μm to 30 μm, which is the wavelength band of the electromagnetic wave radiated from the ideal blackbody surface. Further, it is preferable to set the peak wavelength in a band in which a general resin material can easily pass through. For example, it is preferable to have a peak wavelength in the range of 1 μm to 8 μm, and more preferably to have a peak wavelength in the range of 1 μm to 6 μm.

放熱材が吸収又は放射する電磁波の放射率は特に制限されないが、熱放射性の観点からは、ピーク波長における吸収率又は放射率が1.0(最大値)に近いほど好ましい。例えば、0.8以上であることが好ましく、0.9以上であることがより好ましい。 The emissivity of the electromagnetic wave absorbed or emitted by the heat radiating material is not particularly limited, but from the viewpoint of thermal radiation, it is preferable that the absorptivity or emissivity at the peak wavelength is close to 1.0 (maximum value). For example, it is preferably 0.8 or more, and more preferably 0.9 or more.

電磁波の吸収率又は放射率は、電磁界解析手法によるシミュレーション、フーリエ変換赤外分光光度計等による測定で得ることができる。キルヒホッフの法則により、電磁波の吸収率と放射率は等しいと考えることができる。具体的には、凹凸パターンの形成面に対して電磁波を入射したときの、各波長の透過率と反射率を算出または測定し、下記式にて計算することができる。
吸収率(放射率)=1−透過率−反射率
The absorption rate or emissivity of electromagnetic waves can be obtained by simulation by an electromagnetic field analysis method, measurement by a Fourier transform infrared spectrophotometer, or the like. According to Kirchhoff's law, the absorption rate and emissivity of electromagnetic waves can be considered to be equal. Specifically, the transmittance and reflectance of each wavelength when an electromagnetic wave is incident on the surface of the uneven pattern can be calculated or measured, and can be calculated by the following formula.
Absorption rate (emissivity) = 1-transmittance-reflectivity

本開示の放熱材は、凹凸を有する面とは逆の面を発熱体の表面に取り付けることで、発熱体表面の温度を低減することができる。発熱体の種類は、特に制限されない。例えば、電子機器に含まれるIC(集積回路)、半導体素子等の電子部品、電子部品を搭載した実装基板、ヒートパイプなどが挙げられる。 The heat radiating material of the present disclosure can reduce the temperature of the surface of the heating element by attaching a surface opposite to the surface having irregularities to the surface of the heating element. The type of heating element is not particularly limited. Examples thereof include ICs (integrated circuits) included in electronic devices, electronic components such as semiconductor elements, mounting boards on which electronic components are mounted, heat pipes, and the like.

発熱体に放熱材が取り付けられる態様は、特に制限されない。例えば、放熱材の取り付け面側に形成した接着層を用いて取り付けても、別途接着剤等を用いて取り付けてもよい。 The mode in which the heat radiating material is attached to the heating element is not particularly limited. For example, it may be attached using an adhesive layer formed on the attachment surface side of the heat radiating material, or may be attached separately using an adhesive or the like.

<放熱材の製造方法>
本開示の放熱材の製造方法(第1実施形態)は、樹脂シートの一方の面に凹凸構造を有する型を押し当てる工程と、前記樹脂シートから前記型を除去する工程と、前記型が除去された後の前記樹脂シートの面に金属層を形成する工程と、を有する放熱材の製造方法である。
<Manufacturing method of heat dissipation material>
The method for producing a heat radiating material (first embodiment) of the present disclosure includes a step of pressing a mold having an uneven structure against one surface of a resin sheet, a step of removing the mold from the resin sheet, and a step of removing the mold. This is a method for manufacturing a heat radiating material, which comprises a step of forming a metal layer on the surface of the resin sheet after the resin sheet is formed.

本開示の放熱材の製造方法(第2実施形態)は、樹脂組成物層の一方の面に凹凸構造を有する型を押し当てる工程と、前記樹脂組成物層を硬化又は固化させて樹脂シートを得る工程と、前記樹脂シートから前記型を除去する工程と、前記型が除去された後の前記樹脂シートの面に金属層を形成する工程と、を有する放熱材の製造方法である。 The method for producing a heat radiating material (second embodiment) of the present disclosure includes a step of pressing a mold having a concavo-convex structure against one surface of a resin composition layer and a step of curing or solidifying the resin composition layer to form a resin sheet. A method for producing a heat radiating material, which comprises a step of obtaining the resin sheet, a step of removing the mold from the resin sheet, and a step of forming a metal layer on the surface of the resin sheet after the mold is removed.

上記方法によれば、例えば、金属部材の表面に凹凸パターンを形成して放熱材を製造する場合に比べ、簡易な手法で放熱材を得ることができる。 According to the above method, for example, the heat radiating material can be obtained by a simple method as compared with the case where the heat radiating material is manufactured by forming an uneven pattern on the surface of the metal member.

上記方法における樹脂シート及び樹脂組成物に含まれる樹脂は、上述した放熱材の基材層に含まれる樹脂と同様であってよく、その詳細及び好ましい態様も同様である。樹脂シート及び樹脂組成物は、必要に応じて上述した無機粒子、添加剤等を含有してもよい。
上記方法で形成される金属層は、上述した放熱材が備える金属層と同様であってよく、その詳細及び好ましい態様も同様である。
The resin contained in the resin sheet and the resin composition in the above method may be the same as the resin contained in the base material layer of the heat radiating material described above, and the details and preferred embodiments thereof are also the same. The resin sheet and the resin composition may contain the above-mentioned inorganic particles, additives and the like, if necessary.
The metal layer formed by the above method may be the same as the metal layer provided in the heat dissipation material described above, and the details and preferred embodiments thereof are also the same.

<発熱体>
本開示の発熱体は、上述した放熱材を備える。発熱体の種類は特に制限されない。例えば、電子機器に含まれるIC(集積回路)、半導体素子等の電子部品、電子部品を搭載した実装基板、ヒートパイプなどが挙げられる。
本開示の発熱体は、周囲に樹脂部材(樹脂ケース、封止樹脂等)が配置された状態であってもよい。
<Heating element>
The heating element of the present disclosure includes the above-mentioned heat radiating material. The type of heating element is not particularly limited. Examples thereof include ICs (integrated circuits) included in electronic devices, electronic components such as semiconductor elements, mounting boards on which electronic components are mounted, heat pipes, and the like.
The heating element of the present disclosure may be in a state in which a resin member (resin case, sealing resin, etc.) is arranged around the heating element.

放熱材による表面プラズモン共鳴を高める観点からは、発熱体の放熱材が取り付けられる表面の材質は、金属又は放射する電磁波の波長帯域で金属と同様に複素誘電率の実部が負となる媒質(例えば、TiN、ZrN等の金属窒化物)であることが好ましい。あるいは、発熱体の放熱材が取り付けられる表面に、金属又は放射する電磁波の波長帯域で金属と同様に複素誘電率の実部が負となる媒質からなるシートが搭載されていることが好ましい。 From the viewpoint of enhancing surface plasmon resonance by the heat radiating material, the surface material to which the heat radiating material of the heating element is attached is a medium in which the real part of the complex permittivity is negative like metal in the wavelength band of the emitted electromagnetic wave (metal) For example, a metal nitride such as TiN or ZrN) is preferable. Alternatively, it is preferable that a sheet made of metal or a medium having a negative real part of the complex permittivity in the wavelength band of the radiated electromagnetic wave is mounted on the surface to which the heat radiating material of the heating element is attached.

以下、実施例を参照して本開示をさらに詳細に説明する。ただし本開示は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail with reference to Examples. However, the present disclosure is not limited to the contents described in the following examples.

<実施例1>
樹脂シートとしてのポリカーボネートフィルム(厚さ約0.1mm、100mm×100mm)を載せたシリコンウエハを、160℃に加熱したステージ上に搭載した。加熱した樹脂シートの表面に、80mm×80mmの範囲に直径D、高さHが表1に示す値である円形の柱状構造が表1に示す間隔Pで配列したニッケル型を、約2MPaの荷重で5分間押し当てた。ニッケル型を押し当てたまま室温(25℃)まで冷却し、ニッケル型を除去して、直径D、深さHが表1に示す値である円形の凹部が表1に示す間隔Pで配列した樹脂シートを得た。
<Example 1>
A silicon wafer on which a polycarbonate film (thickness: about 0.1 mm, 100 mm × 100 mm) as a resin sheet was placed was mounted on a stage heated to 160 ° C. On the surface of the heated resin sheet, a nickel mold in which a circular columnar structure having a diameter D and a height H of the values shown in Table 1 is arranged in a range of 80 mm × 80 mm at intervals P shown in Table 1 is loaded with a load of about 2 MPa. Pressed for 5 minutes. The nickel mold was cooled to room temperature (25 ° C.) while being pressed, the nickel mold was removed, and circular recesses having a diameter D and a depth H of the values shown in Table 1 were arranged at intervals P shown in Table 1. A resin sheet was obtained.

樹脂シートの凹凸構造を有する面に、高周波(RF)マグネトロンスパッタリング装置で厚さ100nmのアルミニウム膜を成膜し、シリコンウエハを除去して、 図1及び図2に示すような円形の凹部が配列した状態の凹凸構造を一方の面に有する放熱材CI〜CIVを得た。 An aluminum film having a thickness of 100 nm is formed on the surface of the resin sheet having an uneven structure by a radio frequency (RF) magnetron sputtering device, the silicon wafer is removed, and circular recesses as shown in FIGS. 1 and 2 are arranged. Heat-dissipating materials CI to CIV having a concavo-convex structure on one surface were obtained.

作製した放熱材の金属層から放射される電磁波の波長域が変化しているか否かを実証するために、RCWA(Rigoraous Coupled Wave Analysis)法に基づく数値シミュレーションを実施した。この手法は、平面波が周期構造に入射したときの回折波のふるまいを解析する際にしばしば用いられる。結果を表1に示す。 In order to demonstrate whether or not the wavelength range of the electromagnetic wave radiated from the metal layer of the produced heat radiating material has changed, a numerical simulation based on the RCWA (Rigorous Coupled Wave Analysis) method was carried out. This technique is often used to analyze the behavior of diffracted waves when a plane wave is incident on a periodic structure. The results are shown in Table 1.

Figure 2021044403
Figure 2021044403

評価した吸収波長スペクトルを図3に示す。図3に示すように、凹凸構造の形状が異なると、吸収波長スペクトルのピーク波長が変化する傾向が確認された。また、いずれのサンプルでも、ピーク波長において0.9以上の吸収率が得られた。 The evaluated absorption wavelength spectrum is shown in FIG. As shown in FIG. 3, it was confirmed that the peak wavelength of the absorption wavelength spectrum tends to change when the shape of the concave-convex structure is different. In addition, in each sample, an absorption rate of 0.9 or more was obtained at the peak wavelength.

<実施例2>
離型フィルムを載せたシリコンウエハ上に、液状エポキシ系樹脂組成物を滴下した。樹脂組成物の上に、80mm×80mmの範囲に一辺長W、高さHが表2に示す値である正方形の柱状構造が表2に示す間隔Pで配列したニッケル型を、約0.5MPaの荷重で押し当てて、樹脂組成物を平均厚さ0.1mm、100mm×100mm以上の範囲に広げて樹脂組成物層を形成した。この状態で130℃で加熱硬化し、ニッケル型を除去して、一辺長W、深さHが表2に示す値である正方形の凹部が表2に示す間隔Pで配列した凹凸構造を有する樹脂シートを得た。
<Example 2>
The liquid epoxy resin composition was dropped onto the silicon wafer on which the release film was placed. On the resin composition, nickel molds in which a square columnar structure having a side length W and a height H of the values shown in Table 2 are arranged in a range of 80 mm × 80 mm at intervals P shown in Table 2 are arranged at an interval P of about 0.5 MPa. The resin composition was spread over an average thickness of 0.1 mm and a range of 100 mm × 100 mm or more to form a resin composition layer. In this state, the resin is heat-cured at 130 ° C. to remove the nickel mold, and has a concave-convex structure in which square recesses having a side length W and a depth H of the values shown in Table 2 are arranged at intervals P shown in Table 2. I got a sheet.

樹脂シートの凹凸構造を有する面に、無電解めっき法で厚さ100nmのニッケル膜を成膜し、シリコンウエハを除去して、図4及び図5に示すような正方形の凹部が配列した状態の凹凸構造を一方の面に有する放熱材RI〜RIVを得た。 A nickel film having a thickness of 100 nm was formed on the surface of the resin sheet having an uneven structure by an electroless plating method, the silicon wafer was removed, and square recesses as shown in FIGS. 4 and 5 were arranged. Heat radiating materials RI to RIV having an uneven structure on one surface were obtained.

Figure 2021044403
Figure 2021044403

実施例1と同様にして評価した放熱材RI〜RIVの吸収波長スペクトルを図6に示す。図6に示すように、凹凸構造の形状が異なると、吸収波長スペクトルのピーク波長が変化する傾向が確認された。また、いずれのサンプルでも、ピーク波長において0.8以上の吸収率が得られた。 The absorption wavelength spectra of the heat radiating materials RI to RIV evaluated in the same manner as in Example 1 are shown in FIG. As shown in FIG. 6, it was confirmed that the peak wavelength of the absorption wavelength spectrum tends to change when the shape of the concave-convex structure is different. In addition, in each sample, an absorption rate of 0.8 or more was obtained at the peak wavelength.

<実施例3>
実施例1で作製した放熱材CIIIを実施例3とした。
<Example 3>
The heat radiating material CIII produced in Example 1 was designated as Example 3.

<実施例4>
実施例2で作製した放熱材RIIを実施例4とした。
<Example 4>
The heat radiating material RII produced in Example 2 was designated as Example 4.

<実施例5>
離型フィルムを載せたシリコンウエハ上に、体積平均粒子径が約1μmの窒化アルミニウムの粉体を15体積%となるように混合した液状エポキシ系樹脂組成物を滴下した。樹脂組成物の上に、80mm×80mmの範囲に直径2.2μm、高さ2μmの円形の柱状構造を間隔4.2μmで配列したニッケル型を、約1MPaの荷重で押し当てて、樹脂組成物を平均厚さ0.2mm、100mm×100mm以上の範囲に広げて樹脂組成物層を形成した。この状態で130℃で加熱硬化し、ニッケル型を除去して、直径2.2μm、深さ2μmの円形状の凹部が間隔4.2μmで配列した凹凸構造を有する樹脂シートを得た。
<Example 5>
A liquid epoxy resin composition prepared by mixing aluminum nitride powder having a volume average particle diameter of about 1 μm so as to be 15% by volume was dropped onto a silicon wafer on which a release film was placed. A nickel mold in which circular columnar structures having a diameter of 2.2 μm and a height of 2 μm are arranged at an interval of 4.2 μm in an area of 80 mm × 80 mm is pressed onto the resin composition with a load of about 1 MPa to press the resin composition. The resin composition layer was formed by spreading the mixture over an average thickness of 0.2 mm and a range of 100 mm × 100 mm or more. In this state, the resin sheet was heat-cured at 130 ° C. to remove the nickel mold to obtain a resin sheet having a concavo-convex structure in which circular recesses having a diameter of 2.2 μm and a depth of 2 μm were arranged at intervals of 4.2 μm.

樹脂シートの凹凸構造を有する面に、無電解めっき法で厚さ100nmの銅膜を成膜し、シリコンウエハを除去して、放熱材を得た。 A copper film having a thickness of 100 nm was formed on the surface of the resin sheet having an uneven structure by an electroless plating method, and a silicon wafer was removed to obtain a heat radiating material.

<実施例6>
メソゲン骨格を有するエポキシ系樹脂に体積平均粒子径が約3μmの酸化アルミニウムの粉体を10体積%となるように混合して、樹脂組成物を調製した。この樹脂組成物をアプリケータで離型フィルム上に厚みが約75μmになるように塗布し、常温(25℃)で10〜15分放置した後に100℃で30分乾燥させた。その後、空気に触れていた上面を離型フィルムで覆い、熱プレス(熱板130℃、圧力1MPa、処理時間1分)により平坦化処理を行い、両面が離型フィルムで覆われている、100mm×150mm×厚さ50μmのBステージ(半硬化)状態の樹脂シートを得た。
<Example 6>
A resin composition was prepared by mixing an epoxy resin having a mesogen skeleton with a powder of aluminum oxide having a volume average particle diameter of about 3 μm so as to be 10% by volume. This resin composition was applied on a release film with an applicator so as to have a thickness of about 75 μm, left at room temperature (25 ° C.) for 10 to 15 minutes, and then dried at 100 ° C. for 30 minutes. After that, the upper surface that was in contact with air was covered with a release film, flattened by a hot press (hot plate 130 ° C., pressure 1 MPa, processing time 1 minute), and both sides were covered with a release film, 100 mm. A resin sheet in a B stage (semi-cured) state of × 150 mm × thickness 50 μm was obtained.

変性ポリアミドイミド樹脂ワニスを、コンマコータにより離形処理を施した剥離フィルム上に塗布し、約140℃で約8分間乾燥を行い、厚さ約5μmの接着層を作製した。そして、先述の樹脂シートの片面から剥離フィルムを剥がし、接着層と貼り合わせた。 The modified polyamide-imide resin varnish was applied onto a release film that had been subjected to a mold release treatment with a comma coater, and dried at about 140 ° C. for about 8 minutes to prepare an adhesive layer having a thickness of about 5 μm. Then, the release film was peeled off from one side of the resin sheet described above and bonded to the adhesive layer.

樹脂シートの接着層と接する面と逆側の面の剥離フィルムを剥し、80mm×80mmの範囲に直径2.2μm、高さ2μmの円形の柱状構造を間隔4.2μmで配列したニッケル型を、約1MPaの荷重で押し当てた。この状態で約130℃で加熱硬化し、ニッケル型を除去して、直径2.2μm、深さ2μmの円形状の凹部が間隔4.2μmで配列した凹凸構造を有する樹脂シートを得た。 The release film on the surface opposite to the surface in contact with the adhesive layer of the resin sheet was peeled off, and a nickel mold in which circular columnar structures having a diameter of 2.2 μm and a height of 2 μm were arranged at an interval of 4.2 μm in an area of 80 mm × 80 mm was formed. It was pressed with a load of about 1 MPa. In this state, the resin sheet was heat-cured at about 130 ° C. to remove the nickel mold to obtain a resin sheet having a concavo-convex structure in which circular recesses having a diameter of 2.2 μm and a depth of 2 μm were arranged at intervals of 4.2 μm.

樹脂シートの凹凸構造を有する面に、無電解めっき法で、厚さ100nmのニッケル膜を成膜して、接着層を備える放熱材を得た。 A nickel film having a thickness of 100 nm was formed on the surface of the resin sheet having an uneven structure by an electroless plating method to obtain a heat radiating material having an adhesive layer.

<実施例7>
離型フィルムを載せたシリコンウエハ上に液状エポキシ系樹脂組成物を滴下し、80mm×80mmの範囲に一辺長1.8μm、高さ1.6μmの正方形の柱状構造を間隔3.1μmで配列したニッケル型を約2MPaの荷重で押し当てて、樹脂組成物を平均厚さ50μmで100mm×100mmより広い範囲に広げ、樹脂組成物層を形成した。この状態で130℃で加熱硬化し、ニッケル型を除去して、一辺長1.8μm、深さ1.6μmの正方形の凹部が間隔3.1μmで配列した凹凸構造を有する樹脂シートを得た。
<Example 7>
The liquid epoxy resin composition was dropped onto a silicon wafer on which a release film was placed, and square columnar structures having a side length of 1.8 μm and a height of 1.6 μm were arranged in a range of 80 mm × 80 mm at an interval of 3.1 μm. The nickel mold was pressed with a load of about 2 MPa, and the resin composition was spread over a range wider than 100 mm × 100 mm with an average thickness of 50 μm to form a resin composition layer. In this state, it was heat-cured at 130 ° C. to remove the nickel mold to obtain a resin sheet having a concavo-convex structure in which square recesses having a side length of 1.8 μm and a depth of 1.6 μm were arranged at an interval of 3.1 μm.

樹脂シートの凹凸構造を有する面に、無電解めっき法で、厚さ100nmのニッケル膜を成膜した。さらに、ポリカーボネート系樹脂100質量%に対して30質量%のメチルエチルケトンを混合した樹脂組成物を、ニッケル膜の上に厚みが約75μmになるように塗布し、常温(25℃)で10分〜15分放置した後に85℃で30分乾燥させることで、厚さ50μmの保護層を金属層の上に備える放熱材を得た。
図示しないが、本放熱材の吸収波長スペクトルをシミュレーションで求めた結果、4.4μmのピーク波長で0.9以上の吸収率が得られた。
A nickel film having a thickness of 100 nm was formed on the surface of the resin sheet having an uneven structure by an electroless plating method. Further, a resin composition in which 30% by mass of methyl ethyl ketone is mixed with 100% by mass of the polycarbonate resin is applied onto a nickel film so as to have a thickness of about 75 μm, and is applied at room temperature (25 ° C.) for 10 minutes to 15 minutes. After leaving it for a minute, it was dried at 85 ° C. for 30 minutes to obtain a heat radiating material having a protective layer having a thickness of 50 μm on the metal layer.
Although not shown, as a result of calculating the absorption wavelength spectrum of this heat radiating material by simulation, an absorption rate of 0.9 or more was obtained at a peak wavelength of 4.4 μm.

<実施例8>
樹脂シートとして、ポリカーボネートフィルム(厚さ約0.2mm、100mm×100mm)を載せたシリコンウエハを、160℃に加熱したステージ上に搭載した。加熱した樹脂シートの表面に、80mm×80mmの範囲に直径1.8μm、深さ3μmの円形のホール構造を間隔4μmで配列したニッケル型を、約5MPaの荷重で5分間押し当てた。この状態で室温(25℃)まで冷却し、ニッケル型を除去して、直径1.8μm、高さ3μmの円形状の凸部が間隔4μmで配列した凹凸構造を有する樹脂シートを得た。
<Example 8>
As a resin sheet, a silicon wafer on which a polycarbonate film (thickness: about 0.2 mm, 100 mm × 100 mm) was placed was mounted on a stage heated to 160 ° C. A nickel mold in which circular hole structures having a diameter of 1.8 μm and a depth of 3 μm were arranged at intervals of 4 μm in a range of 80 mm × 80 mm was pressed against the surface of the heated resin sheet for 5 minutes with a load of about 5 MPa. In this state, the mixture was cooled to room temperature (25 ° C.) and the nickel mold was removed to obtain a resin sheet having a concavo-convex structure in which circular convex portions having a diameter of 1.8 μm and a height of 3 μm were arranged at intervals of 4 μm.

樹脂シートの凹凸構造を有する面に、高周波(RF)マグネトロンスパッタリング装置で、厚さ100nmのアルミニウム膜を成膜し、シリコンウエハを除去した。図7、8に示すような直径Dが2μm、高さHが3μm、間隔Pが4μmの円形状の凸部が配列した状態の凹凸構造を有する放熱材を得た。
図示しないが、本放熱材の吸収波長スペクトルをシミュレーションで求めた結果、4.4μmのピーク波長で0.95以上の吸収率が得られた。
An aluminum film having a thickness of 100 nm was formed on the surface of the resin sheet having an uneven structure by a radio frequency (RF) magnetron sputtering apparatus, and the silicon wafer was removed. As shown in FIGS. 7 and 8, a heat radiating material having a concavo-convex structure in which circular convex portions having a diameter D of 2 μm, a height H of 3 μm, and an interval P of 4 μm are arranged was obtained.
Although not shown, as a result of calculating the absorption wavelength spectrum of this heat radiating material by simulation, an absorption rate of 0.95 or more was obtained at a peak wavelength of 4.4 μm.

<比較例1>
アクリル系樹脂100質量%に対して30質量%の酢酸ブチルを混合し、樹脂組成物を作製した。この樹脂組成物を吹付塗装装置を用いて50mm×100mm、厚さ2mmのアルミニウム板の全面に吹付塗装し、樹脂組成物層を形成した。この樹脂組成物層を自然乾燥させ、60℃、30分で加熱硬化させて、膜厚が30μmのサンプルを作製した。
<Comparative example 1>
A resin composition was prepared by mixing 30% by mass of butyl acetate with 100% by mass of an acrylic resin. This resin composition was spray-coated on the entire surface of an aluminum plate having a thickness of 50 mm × 100 mm and a thickness of 2 mm using a spray coating apparatus to form a resin composition layer. This resin composition layer was air-dried and heat-cured at 60 ° C. for 30 minutes to prepare a sample having a film thickness of 30 μm.

比較例1で作製した樹脂層の吸収波長スペクトルをフーリエ変換赤外分光光度計で測定した結果を図9に示す。図3、図6に示す実施例の吸収波長スペクトルに比べて、8μm以下の波長域で吸収率が低くなっていることがわかる。 FIG. 9 shows the results of measuring the absorption wavelength spectrum of the resin layer produced in Comparative Example 1 with a Fourier transform infrared spectrophotometer. It can be seen that the absorption rate is lower in the wavelength range of 8 μm or less as compared with the absorption wavelength spectra of the examples shown in FIGS. 3 and 6.

<比較例2>
アクリル系樹脂95体積%と、二酸化ケイ素粒子5体積%を含む市販の熱放射性塗料を、吹付塗装装置を用いて50mm×100mm、厚さ2mmのアルミニウム板に吹付塗装し、組成物層を形成した。この組成物層を自然乾燥させ、60℃、30分で加熱硬化させて、膜厚が30μmのサンプルを作製した。
<Comparative example 2>
A commercially available thermal radioactive paint containing 95% by volume of acrylic resin and 5% by volume of silicon dioxide particles was spray-coated on an aluminum plate having a thickness of 50 mm × 100 mm and a thickness of 2 mm using a spray coating device to form a composition layer. .. This composition layer was air-dried and heat-cured at 60 ° C. for 30 minutes to prepare a sample having a film thickness of 30 μm.

<放熱性の評価>
実施例3〜8及び比較例1、2で作製したサンプルに対し、下記の手法により放熱性の評価を行った。結果を表3に示す。
市販の面状発熱体(ポリイミドヒーター)をアルミニウム板(50mm×80mm、厚さ2mm)で挟む。アルミニウム板の表面に、K熱電対をアルミニウム用はんだで接着する。一方のアルミニウム板の両面の表面全体にサンプルを密着させる。サンプルが貼り付けられたアルミニウム板を、25℃に設定した恒温槽中央に静置し、アルミニウム板表面の温度変化を測定する。この際、ヒーターの出力は、サンプルが形成されていない状態のアルミニウム板の表面温度が100℃になるように設定する。ヒーターは一定の熱量を発生しているので、サンプルの放熱効果が高いほど、アルミニウム板表面の温度は低下する。すなわち、アルミニウム板の表面温度が低くなるほど放熱効果が高いといえる。測定したアルミニウム板の表面温度(最高温度)を表3に示す。
<Evaluation of heat dissipation>
The heat dissipation of the samples prepared in Examples 3 to 8 and Comparative Examples 1 and 2 was evaluated by the following method. The results are shown in Table 3.
A commercially available planar heating element (polyimide heater) is sandwiched between aluminum plates (50 mm × 80 mm, thickness 2 mm). A K thermocouple is bonded to the surface of the aluminum plate with aluminum solder. The sample is brought into close contact with the entire surface of both sides of one aluminum plate. The aluminum plate to which the sample is attached is placed in the center of a constant temperature bath set at 25 ° C., and the temperature change on the surface of the aluminum plate is measured. At this time, the output of the heater is set so that the surface temperature of the aluminum plate in the state where the sample is not formed becomes 100 ° C. Since the heater generates a certain amount of heat, the higher the heat dissipation effect of the sample, the lower the temperature of the aluminum plate surface. That is, it can be said that the lower the surface temperature of the aluminum plate, the higher the heat dissipation effect. Table 3 shows the measured surface temperature (maximum temperature) of the aluminum plate.

Figure 2021044403
Figure 2021044403

表3に示すように、金属層を有するサンプルをアルミニウム板に取り付けた実施例3〜8では、金属層を有しないサンプルをアルミニウム板に取り付けた比較例1、2に比べ、アルミニウム板の表面温度の低減の度合いが大きく、優れた放熱効果を示した。 As shown in Table 3, in Examples 3 to 8 in which the sample having the metal layer was attached to the aluminum plate, the surface temperature of the aluminum plate was compared with Comparative Examples 1 and 2 in which the sample having no metal layer was attached to the aluminum plate. The degree of reduction was large, and an excellent heat dissipation effect was shown.

樹脂中に二酸化ケイ素粒子が分散したサンプルを取り付けた比較例2では、比較例1に比べてアルミニウム板の表面温度が低かったが、実施例に比べるとその低減効果は小さかった。 In Comparative Example 2 in which the sample in which the silicon dioxide particles were dispersed in the resin was attached, the surface temperature of the aluminum plate was lower than that in Comparative Example 1, but the reduction effect was smaller than that in Example.

<実施例9>
図10に示す構成の電子機器に、実施例7で作製した放熱材(放熱材1、2)を取り付けて、温度低減効果を調べた。
<Example 9>
The heat radiating materials (heat radiating materials 1 and 2) produced in Example 7 were attached to the electronic device having the configuration shown in FIG. 10, and the temperature reduction effect was examined.

図10に示す電子機器は、電子部品(発熱体)と、これらが実装された回路基板を含んでいる。回路基板は公知のガラスエポキシ基板であり、その表面に銅の配線板が備えられている。一部の電子部品の直下の回路基板には、貫通孔(サーマルビア)が形成されて、回路基板裏面と熱的につなげられている。放熱材1は、基材層側が回路基板に貼り付けられ、回路基板と樹脂ケースとで挟み込まれている。放熱材1は、緩衝材としても機能する。また、放熱材2が電子部品の素子搭載側の面に取り付けられている。この電子機器を作動したところ、電子部品の最高温度が125℃(放熱材なし)から85℃に低下した。 The electronic device shown in FIG. 10 includes an electronic component (heating element) and a circuit board on which these are mounted. The circuit board is a known glass epoxy board, and a copper wiring board is provided on the surface thereof. A through hole (thermal via) is formed in the circuit board directly under some electronic components, and is thermally connected to the back surface of the circuit board. The heat radiating material 1 has a base material layer side attached to the circuit board and is sandwiched between the circuit board and the resin case. The heat radiating material 1 also functions as a cushioning material. Further, the heat radiating material 2 is attached to the surface of the electronic component on the element mounting side. When this electronic device was operated, the maximum temperature of the electronic component dropped from 125 ° C. (without heat radiating material) to 85 ° C.

<実施例10>
(電子機器II)
図11に示す構成の電子機器に、実施例6で作製した放熱材(放熱材1、2)を取り付けて、温度低減効果を調べた。
図11に示す電子機器は、図10に示す電子機器と異なり、樹脂ケースの代わりに封止樹脂が配置されている。さらに、1個の放熱材1が複数の電子部品に対応するように連続して設けられている。この電子機器を作動したところ、電子部品の温度が145℃(放熱材なし)から95℃に低下した。
<Example 10>
(Electronic Equipment II)
The heat radiating materials (heat radiating materials 1 and 2) produced in Example 6 were attached to the electronic device having the configuration shown in FIG. 11, and the temperature reduction effect was examined.
Unlike the electronic device shown in FIG. 10, the electronic device shown in FIG. 11 has a sealing resin arranged instead of the resin case. Further, one heat radiating material 1 is continuously provided so as to correspond to a plurality of electronic components. When this electronic device was operated, the temperature of the electronic component dropped from 145 ° C. (without heat radiating material) to 95 ° C.

<実施例11>
(ヒートパイプ)
図12に示すようなヒートパイプ(発熱体)に、実施例3で作製した放熱材を取り付けて、温度低減効果を調べた。
図12に示すヒートパイプはステンレス鋼の管(直径32mm)であり、実施例6で作製した放熱材の基材層側の面が貼り付けられている。このヒートパイプの内部に90℃の水を流したところ、表面温度が85℃(放熱材なし)から60℃に低下した。
<Example 11>
(heat pipe)
The heat radiating material produced in Example 3 was attached to a heat pipe (heating element) as shown in FIG. 12, and the temperature reduction effect was investigated.
The heat pipe shown in FIG. 12 is a stainless steel pipe (diameter 32 mm), and the surface of the heat radiating material produced in Example 6 on the base material layer side is attached. When water at 90 ° C. was passed through the heat pipe, the surface temperature decreased from 85 ° C. (without heat radiating material) to 60 ° C.

Claims (8)

樹脂を含み、少なくとも一方の面に凹凸構造を有する基材層と、前記基材層の前記凹凸構造を有する面側に配置され、かつ前記凹凸構造に対応する形状を有する金属層と、を有する放熱材。 It has a base material layer containing a resin and having a concavo-convex structure on at least one surface, and a metal layer arranged on the surface side of the base material layer having the concavo-convex structure and having a shape corresponding to the concavo-convex structure. Heat dissipation material. 前記基材層は無機粒子を含む、請求項1に記載の放熱材。 The heat radiating material according to claim 1, wherein the base material layer contains inorganic particles. 前記無機粒子はセラミックス粒子、金属粒子及びカーボン粒子からなる群より選択される少なくとも一つを含む、請求項1又は請求項2に記載の放熱材。 The heat radiating material according to claim 1 or 2, wherein the inorganic particles include at least one selected from the group consisting of ceramic particles, metal particles, and carbon particles. 前記基材層に含まれる前記樹脂は分子鎖が任意の方向に配列した状態である、請求項1〜請求項3のいずれか1項に記載の放熱材。 The heat radiating material according to any one of claims 1 to 3, wherein the resin contained in the base material layer is in a state in which molecular chains are arranged in an arbitrary direction. 前記基材層の厚みは2mm以下である、請求項1〜請求項4のいずれか1項に記載の放熱材。 The heat radiating material according to any one of claims 1 to 4, wherein the thickness of the base material layer is 2 mm or less. 樹脂シートの一方の面に凹凸構造を有する型を押し当てる工程と、前記樹脂シートから前記型を除去する工程と、前記型が除去された後の前記樹脂シートの面に金属層を形成する工程と、を有する放熱材の製造方法。 A step of pressing a mold having an uneven structure against one surface of the resin sheet, a step of removing the mold from the resin sheet, and a step of forming a metal layer on the surface of the resin sheet after the mold is removed. And, a method of manufacturing a heat radiating material having. 樹脂組成物層の一方の面に凹凸構造を有する型を押し当てる工程と、前記樹脂組成物層を硬化又は固化させて樹脂シートを得る工程と、前記樹脂シートから前記型を除去する工程と、前記型が除去された後の前記樹脂シートの面に金属層を形成する工程と、を有する放熱材の製造方法。 A step of pressing a mold having an uneven structure against one surface of the resin composition layer, a step of curing or solidifying the resin composition layer to obtain a resin sheet, and a step of removing the mold from the resin sheet. A method for producing a heat radiating material, which comprises a step of forming a metal layer on the surface of the resin sheet after the mold is removed. 請求項1〜請求項5のいずれか1項に記載の放熱材を備える、発熱体。 A heating element comprising the heat radiating material according to any one of claims 1 to 5.
JP2019165632A 2019-09-11 2019-09-11 Heat-dissipating material, manufacturing method of the same, and heat-generating body Pending JP2021044403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165632A JP2021044403A (en) 2019-09-11 2019-09-11 Heat-dissipating material, manufacturing method of the same, and heat-generating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165632A JP2021044403A (en) 2019-09-11 2019-09-11 Heat-dissipating material, manufacturing method of the same, and heat-generating body

Publications (1)

Publication Number Publication Date
JP2021044403A true JP2021044403A (en) 2021-03-18

Family

ID=74864279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165632A Pending JP2021044403A (en) 2019-09-11 2019-09-11 Heat-dissipating material, manufacturing method of the same, and heat-generating body

Country Status (1)

Country Link
JP (1) JP2021044403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477920B1 (en) 2023-03-31 2024-05-02 Ebinax株式会社 Heat Transport Devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477920B1 (en) 2023-03-31 2024-05-02 Ebinax株式会社 Heat Transport Devices

Similar Documents

Publication Publication Date Title
JPWO2020071073A1 (en) Heat radiating material, manufacturing method of heat radiating material, heat radiating material kit and heating element
JP5008617B2 (en) Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same
WO2017086241A1 (en) Radiator, electronic device, illumination device, and method for manufacturing radiator
JP2008251950A (en) Wiring board
JP2021044403A (en) Heat-dissipating material, manufacturing method of the same, and heat-generating body
JP2021044404A (en) Heat-dissipating material, manufacturing method of the same, and heat-generating body
JP2022096532A (en) Heat radiation film, method for producing heat radiation film and electronic apparatus
JP2022096533A (en) Heat radiation film, method for producing heat radiation film and electronic apparatus
TWI586797B (en) Preparation method of higher thermal conductive coating and its metal s
TWI564141B (en) Solar cell and producing method thereof
JP2008244193A (en) Material for heat dissipation and its manufacturing method
WO2005015112A1 (en) Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method
TWM520790U (en) Heat dissipation substrate and housing using the same
JP2011222862A (en) Composite heat dissipation sheet and method for producing the same
JP2022013411A (en) Heat dissipation material and production method thereof, heat dissipation material kit, and composition for heat dissipation material formation
JP7153828B1 (en) thermally conductive sheet
JP2004158706A (en) Substrate for electronic equipment treated with high heat absorption painting, and electronic part
TWM504439U (en) Heat dissipation assembly
JP2014007247A (en) Radiation-heat-conduction-suppressing sheet
JP3930796B2 (en) High heat dissipation silicon wafer, semiconductor device and manufacturing method thereof
Ito et al. Design and Heat-dissipation Characteristics of a Novel Spectrally Selective Thermal-radiation Material
TWI601935B (en) Thermally conductive structure, and method of reducing contact resistance at heat transfer interface
JP6501075B2 (en) Resin structure and electronic component and electronic device using the structure
TWM363193U (en) Heat dissipating substrate capable of emitting far infrared and heat radiation
WO2016190291A1 (en) Portable terminal