WO2005015112A1 - Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method - Google Patents

Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method Download PDF

Info

Publication number
WO2005015112A1
WO2005015112A1 PCT/JP2004/011557 JP2004011557W WO2005015112A1 WO 2005015112 A1 WO2005015112 A1 WO 2005015112A1 JP 2004011557 W JP2004011557 W JP 2004011557W WO 2005015112 A1 WO2005015112 A1 WO 2005015112A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
radiating member
heat radiating
tourmaline powder
tourmaline
Prior art date
Application number
PCT/JP2004/011557
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Tsuji
Original Assignee
Kenji Tsuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenji Tsuji filed Critical Kenji Tsuji
Priority to JP2005513009A priority Critical patent/JP4404855B2/en
Priority to US10/568,042 priority patent/US20060201659A1/en
Publication of WO2005015112A1 publication Critical patent/WO2005015112A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1656Details related to functional adaptations of the enclosure, e.g. to provide protection against EMI, shock, water, or to host detachable peripherals like a mouse or removable expansions units like PCMCIA cards, or to provide access to internal components for maintenance or to removable storage supports like CDs or DVDs, or to mechanically mount accessories
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20427Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing having radiation enhancing surface treatment, e.g. black coating

Definitions

  • Heat dissipating member device using the heat dissipating member, housing, computer support, and method of manufacturing heat dissipating member
  • the present invention relates to a heat dissipating member having excellent heat dissipating properties, and a device and a housing using the heat dissipating member.
  • a computer support and a method for manufacturing a heat radiating member.
  • a circuit structure including a plurality of bus bars constituting a power circuit is provided with a heat radiating member having a bus bar adhesion surface coated with an insulating layer, and the plurality of bus bars are disposed on the bus bar adhesion surface.
  • Each bus bar is directly bonded to the bus bar bonding surface in a state where the bus bars are arranged, so that the bus bar is efficiently cooled with a simple structure (see, for example, JP-A-2003-164040).
  • an electrical connection that supports a current distribution circuit board and a printed circuit board with a gap therebetween, eliminates an insulating plate interposed therebetween, and improves heat dissipation due to the presence of the gap. Boxes and the like (for example, see JP-A-2003-87938).
  • a black paint that has the effect of radiating heat and absorbing heat is applied to a black paint having a high thermal conductivity.
  • the present invention uses a heat dissipating member that can be expected to have a further heat dissipating effect and a heat dissipating member that can be expected to have a greater heat radiation effect than a heat dissipating member that has been coated on a substrate with black paint. It is an object of the present invention to provide an apparatus, a housing, a computer support, and a method of manufacturing a heat radiating member.
  • Patent Document 1 JP 2003-164040 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-87938
  • the present inventor applied various samples to the base material and conducted an experiment in a state of heat release, and found that tourmaline had a very remarkable effect (discovered a specific attribute). After discovering that there is S, and as a result of diligent research, it has been found that there are several types of tourmalines that exist in nature, such as dravite tourmaline, shawl tourmaline, mixed tonomaline, and lithia tourmaline. We also found that the tourmaline, which has an excellent heat dissipation effect, also has a particle size and a density per unit area (application amount) that have an outstanding heat dissipation effect.
  • the present inventor focused on a specific tonoremarin, and came to invent a heat-dissipating member or the like that solves the above-mentioned problem by using the tourmaline powder (by exclusively using the properties and attributes).
  • the heat dissipating member according to claim 1 is characterized in that a coating agent obtained by mixing a shawl tourmaline powder having a particle size of approximately 3 to 7 ⁇ m with a fluid fixing agent is coated with copper, aluminum, or the like.
  • a coating agent obtained by mixing a shawl tourmaline powder having a particle size of approximately 3 to 7 ⁇ m with a fluid fixing agent is coated with copper, aluminum, or the like.
  • the heat dissipating member according to claim 2 is characterized in that shawl tourmaline powder having a particle size of approximately 31 ⁇ m is mixed into a base material made of aluminum.
  • the heat dissipating member according to claim 3 is characterized in that shawl tourmaline powder having a particle size of approximately 37 / im is mixed in a base material made of plastic.
  • the apparatus according to claim 4 is characterized in that a heat generating unit and / or a heat radiating unit that dissipates heat in a device such as a heat exchanger or various devices are provided with a heat radiating unit. It is characterized by using the heat radiating member of the item.
  • the device according to claim 5 is the device according to claim 4, wherein the device configured using the heat radiating member is a cooling device, and the heat radiating member is a cooling device of the cooling device. It is characterized by being used in heat exchanger systems.
  • the case described in claim 6 is a case in which a case constituting an electric device such as a computer or a hard disk is formed using the heat radiating member according to any one of claims 1 to 3. It is characterized.
  • a computer support according to claim 7 is a computer support on which a notebook computer is placed, and wherein the heat-radiating member according to any one of claims 1 to 3 has a side surface. It is characterized by being formed in a substantially L-shape when viewed.
  • the above-mentioned coating agent is applied to the surface of a substrate made of a metal having excellent thermal conductivity such as aluminum or aluminum so that the shawl tourmaline powder has a density of 0.25 to 0.05 grams per square cm.
  • a coating step is performed by a coating agent generating step of mixing a short-tourmaline powder having a particle size of approximately 3 to 7 ⁇ m with a fixing agent to generate a coating agent;
  • the above-mentioned coating agent is applied to the surface of a substrate made of a metal having excellent thermal conductivity such as aluminum or aluminum so that the shawl tourmaline powder has a density of 0.25 to 0.05 grams per square cm.
  • a coating step is
  • the method for manufacturing a heat radiating member according to claim 9 is characterized in that aluminum in a molten state and a Shounore tourmaline powder are mixed and solidified into a desired shape.
  • the method for manufacturing a heat radiating member according to claim 10 is characterized in that a fluid plastic material and shoal tourmaline powder are mixed and solidified into a desired shape.
  • reference numeral 1 denotes a heat radiation member
  • reference numeral 11 denotes a base material
  • reference numeral 12 denotes a tourmaline layer.
  • the heat dissipating member 1 according to the present embodiment is a thin copper plate having a high thermal conductivity as shown in FIG.
  • the tourmaline layer 12 is obtained by mixing a shawl tourmaline powder having a particle size of approximately 6 ⁇ m and a fixing agent composed of an acrylic volatile synthetic resin paint in a weight ratio of 1: 1 (coating agent). Generation process) to produce a coating agent, and the coating agent is applied to a 1 cm 2 square shawl tourmaline powder. It is formed by multi-coating (coating process) on the base material 11 so as to have a density of 0.025-0.
  • the weight ratio between the fixing agent and the shoal tourmaline powder of 1: 1 is a good balance to keep the shawl tourmaline powder in a tight state when the fixing agent is dried and solidified. From experiments, it has been confirmed from experiments that if the amount of the fixing agent is smaller than the shawl tourmaline powder, the base material tends to peel off, and if the amount of the fixing agent is larger than the shawl tourmaline powder, multiple coatings are performed until the desired density of the shoal tourmaline is obtained. Poor workability. By the way, 20 g of acrylic volatile synthetic resin paint in liquid state becomes 4 g when dried.
  • the tonoremarin layer 12 was further subjected to a particle size selection experiment, a coating amount selection experiment, and a fixing agent selection experiment with respect to the above-mentioned shawl tourmaline, which had the most heat radiation effect, and based on the experimental results, It is based on good data. The details of each selection experiment will be described later.
  • the liquid into which the shawl tourmaline powder is mixed is not limited to the acrylic volatile synthetic resin paint described above, but may be a known heat-resistant paint such as a water-based emulsion paint or a two-part mixed epoxy paint. Yes, that is, any liquid can be used as long as it is solidified and cannot be easily peeled off from the base material 11 (the coated state is maintained for a long period of time).
  • tourmaline powder having a particle size of about 3 to 7 ⁇ m may be mixed with a molten aluminum or plastic base material and solidified into a desired shape.
  • tourmaline which is limited to shawl tourmaline
  • the plastic substrate itself contains shoal tourmaline powder
  • the pellets and shoal tourmaline powder are mixed at a weight ratio of approximately 10%, and conventional molding means such as general injection molding is used.
  • a heat-radiating member having a desired shape can be manufactured by using it as it is.
  • the heat dissipating member 1 working in the present embodiment has a more effective heat dissipating effect than the comparative sample A and the comparative sample B. Further, since the heat dissipating member 1 that is powerful in the present embodiment is formed in a thin plate shape, it can be easily cut and bent, and can be processed so as to be suitable for various heat dissipating parts.
  • the heat-dissipating member M2 which is a test piece, is made of a shoal tourmaline powder having a particle size of 1.2 ⁇ m, 3 / im, 325 mesh, and 6 ⁇ , and an acrylic volatile synthetic resin. It is mixed with a fixative consisting of a paint at a weight ratio of 1: 1 (30g: 30g) to produce four sample coatings, and their size (height x width x thickness) 300 x 200 x 0
  • a copper plate Ml having a size (length ⁇ width ⁇ thickness) of 200 ⁇ 300 ⁇ 0.8 mm was placed on a thermostat-equipped electric heater.
  • the heat radiating member M2 for the sample is placed on the copper plate Ml such that the lower portions thereof are aligned and the tourmaline layer is on the upper side.
  • the temperature measuring device S2 is connected to a position shifted 10 mm inward from the center of the right end of the copper plate Ml and a position shifted 10 mm inward from the center of the upper portion of the heat radiating member M2 (tourmaline layer side). Attach the temperature sensor S1.
  • the temperature of the electric heater D1 was set to 50 ° C, and after approximately 1 hour as the preheating time, the temperature of the copper plate Ml and the temperature of the heat-dissipating member M2, which is the specimen, were measured every 15 seconds. (Note that Four electric heaters were prepared, and the four copper plates and the heat dissipating member for the test were measured simultaneously.)
  • the following table shows the experimental results obtained under the above conditions.
  • the lowermost column on the right side of each table shows the average temperature of the test heat radiating member, the average temperature of the copper plate, and the average temperature difference calculated by subtracting the average temperature of the test heat radiating member from the average temperature of the copper plate.
  • the heat dissipating member for test with a particle size of shawl tourmaline of 6 ⁇ m has an average temperature difference of 5.24 ° C for 10 minutes, which is the highest, followed by 3 m for 4.48 ° C. 4.39 for 325 mesh.
  • C 1.2 xm 2.95.
  • the experimental results of C were obtained. This means that a significant heat radiation effect can be obtained from around 3 ⁇ m with a peak of 6 ⁇ m at the particle size of the shawl tormarin.
  • the particle size becomes larger than 6 ⁇ m (325 mesh) A decrease in the heat dissipation effect was observed.
  • Shawl tourmaline with a diameter of approximately 3-7 ⁇ is preferred.
  • a shawl tormarine having a particle size of approximately 6 ⁇ which has the highest heat radiation effect and provides a surface roughness that is practically satisfactory, is extremely suitable.
  • the heat-dissipating member used as the specimen was shoal tourmaline powder having a particle size of 6 ⁇ m, and a weight ratio of 1: 1 (9 g: 9g, 15g: 15g, 30g: 30g, 60g: 60g) to make 4 sample coatings, and to make the size (length x width x thickness) 300 x 200 x 0.8mm copper plate On one surface (only one side), prepare a heat-dissipating member for all four samples with different densities. That is, the densities per square cm are 0.015 g, 0.025 g, 0.05 g, and 0.1 lg.
  • a temperature sensor connected to the temperature measuring device is provided at a position shifted 10 mm inward from the center of the right end of the copper plate and a position shifted 10 mm inward from the center of the upper part of the heat dissipating member (tourmaline layer side). Attach (see Figures 8 and 9).
  • the temperature of the electric heater was set to 50 ° C, and after about 1 hour as the preheating time, the temperatures of the copper plate and the heat dissipating member for the test were measured every 15 seconds (note that the electric heater was not used). Four copper plates and the heat dissipating member for test are measured simultaneously.
  • the following table shows the experimental results obtained under the above conditions.
  • the lowermost column on the right side of each table shows the average temperature of the test heat radiating member, the average temperature of the copper plate, and the average temperature difference calculated by subtracting the average temperature of the test heat radiating member from the average temperature of the copper plate.
  • the density of shawl tourmaline having the highest heat radiation effect was 0.05 g (temperature difference 4.39 ° C) per square cm, and then 0.025 g (temperature difference 3.3 ° C), 0.1 lg (temperature difference 3 ⁇ 20) and 0.015 g (temperature difference 3 ⁇ 18).
  • the applied force S it was confirmed that the density per 1 cm 2 of the Shounoretonoremarin, 0.05-0. 025 g force S was economical and had high heat dissipation.
  • the heat-dissipating member used as the specimen was shoal tourmaline powder having a particle size of 6 ⁇ m of shoal tourmaline, and was composed of three types of acrylic synthetic resin paint, water-based emulsion paint, and two-part mixed epoxy paint.
  • the mixture is mixed with the fixative at a weight ratio of 1: 1 (30g: 30g) to produce three sample coating materials, and the size (height x width x thickness) 300 x 200 x 0.8 mm
  • a temperature sensor connected to the temperature measurement device is located at a position shifted 10 mm inward from the center of the right end of the copper plate and a position shifted 10 mm inward from the center of the upper portion of the heat dissipating member (tourmaline layer side). Attach.
  • the temperature of the electric heater was set to 50 ° C, and after about 1 hour as the preheating time, the temperatures of the copper plate and the heat dissipating member for test were measured every 15 seconds (note that the electric heater Three copper plates and the heat dissipating member for test are measured at the same time).
  • the following table shows the experimental results obtained under the above conditions.
  • the lowermost column on the right side of each table shows the average temperature of the test heat radiating member, the average temperature of the copper plate, and the average temperature difference calculated by subtracting the average temperature of the test heat radiating member from the average temperature of the copper plate.
  • the base member 11 formed of a desired shape (radiation fins, etc.) and material (aluminum, etc.) is not necessarily formed by the thin plate-shaped heat radiation member 1 exemplified in the first embodiment.
  • the tourmaline layer 12 exemplified in 1 is formed, or the base material itself is mixed with shawl tourmaline powder.
  • the heat exchanger system E of the refrigerator includes a compressor el, a refrigerant tank e2, a cooled room e3, a heat dissipation function unit e4, and a pipe member e5 connecting them.
  • Each of these components is composed of a heat radiating member 1 in which a tormarin layer 12 is formed on a base material 11 formed in a required shape.
  • the refrigerator configured using the heat dissipating member 1 as described above has an improved heat dissipating effect, thereby improving the heat exchange rate, and is an extremely suitable refrigerator.
  • thermos state In the interior of the normal computer F, the force applied by the plating and the metal material itself are exposed between the case (housing) fl, the chassis f2, and each device f3. However, in this state, the heat generated inside is repeatedly reflected between the respective members, and the structure is hard to escape the heat to the outside, that is, it is close to a so-called thermos state.
  • the components (case f), chassis f2, each device f3 such as HDD and DVD, and CPUf4, etc., are composed of the heat dissipating member 1 having the tourmaline layer 12, so that the internal It can reduce the internal temperature of the computer F by preventing heat reflection and consuming internal heat.
  • the computer F shown in Fig. 4 is a desktop personal computer. As shown in Fig. 5, the computer F is also applicable to a notebook personal computer G.
  • the normal notebook computer case (housing) gl is made of metal or non-metallic material such as polycarbonate. Therefore, by configuring the case g1 by mixing shawl tourmaline powder, the internal heat is dissipated and consumed, and the internal temperature of the notebook computer G can be prevented from rising.
  • the chassis and the like are formed of the heat radiating member 1, thereby promoting internal heat radiation and consuming internal heat, thereby preventing a rise in temperature inside the device.
  • the housing (housing) hi of the electric motor H may be constituted by the heat radiating member 1.
  • the support base 3 on which the existing notebook personal computer N is placed may be constituted by the heat radiating member 1, and in this case, as shown in FIG.
  • the support base 3 is formed by bending and forming a substantially L-shaped side view with a width sufficient for mounting and a height suitable for inclining at a required angle.
  • the tourmaline layer is a mixture of shawl tourmaline powder having a particle size of approximately 6 zm and a fixing agent made of acrylic volatile synthetic resin paint in a weight ratio of 1: 1 (coating agent generation step). Then, a coating agent is formed and applied over the entire surface so that the density force of shawl tourmaline per square cm is approximately 0.025 g.
  • the temperature sensor is attached to the notebook computer at the approximate center of the bottom to measure the temperature. Table 13 shows the experimental results. [0093] [Table 13]
  • a broadcasting device in addition to the personal computer described above, a broadcasting device, a video device, a communication device, a router, a switch, and the like.
  • the present invention can be applied to other various devices such as an amplifier and the like. It can also be applied to other single devices and components, such as the heat-generating part of the liquid crystal panel, the solar cell light-receiving part, various transformers, electric motors, heat-dissipating parts such as cooling devices, refrigerant compressors, cooler heat-dissipating parts, in-vehicle radiators, and parts mounted on vehicles. Optional.
  • the tourmaline layer may be provided not only on the upper surface or the surface in contact with the outside world, but also on both surfaces of the substrate, or may be provided inside so as to have a sandwich structure.
  • the material of the substrate is not particularly limited.
  • the shape is not particularly limited, such as a thin plate shape, a rod shape, and the like.
  • the tourmaline layer may be colored.
  • a coating agent obtained by mixing a shawl tourmaline powder having a particle diameter of 3-7 ⁇ 7 ⁇ and a fluid fixing agent is mixed with a base material made of a metal having excellent heat conductivity such as copper or aluminum.
  • the heat dissipating member has a tourmaline layer that is applied and solidified on the surface of the heat dissipating member, making it extremely inexpensive and easy to manufacture. A significant heat radiation effect can be obtained.
  • FIG. 1 is a cross-sectional view of a heat radiating member according to Embodiment 1.
  • FIG. 2 is an explanatory diagram showing an outline of an experiment on a heat radiation effect.
  • FIG. 3 is a conceptual diagram when a heat radiation member is applied to a refrigerator.
  • FIG. 4 is a conceptual diagram when a heat radiation member is applied to a desktop computer.
  • FIG. 5 is a conceptual diagram when a heat radiation member is applied to a notebook computer.
  • FIG. 6 is a conceptual diagram when a heat radiation member is applied to an electric motor.
  • FIG. 7 is a side view of a notebook computer support base.
  • FIG. 8 is a plan view showing an outline of a selection experiment by particle size.
  • FIG. 9 is a front view showing the outline of a selection experiment by particle size.

Abstract

A heat radiating member (1) shown in Fig. 1, comprising a tourmaline layer formed thereon by coating the surface of a base material formed of a metal with excellent heat conductivity such as copper and aluminum with a coating agent formed by mixing a schorltourmaline powder of generally 3 to 7 μm in grain size with a fluid fixing agent that the schorltourmaline powder can have a density of 0.025 to 0.05 g/cm2 and hardening the coating agent. Thus, the heat radiating member expected to provide more heat radiating effect than that of a heat radiating member formed by applying black painting to a base material, a device using the heat radiating member, or a part itself using the device can be provided.

Description

明 細 書  Specification
放熱部材、及びその放熱部材を用いた装置、筐体、コンピュータ支持台、 放熱部材製造方法  Heat dissipating member, device using the heat dissipating member, housing, computer support, and method of manufacturing heat dissipating member
技術分野  Technical field
[0001] 本発明は、放熱性に優れた放熱部材、および、その放熱部材を用いた装置、筐体 The present invention relates to a heat dissipating member having excellent heat dissipating properties, and a device and a housing using the heat dissipating member.
、コンピュータ支持台、放熱部材製造方法に関する。 , A computer support, and a method for manufacturing a heat radiating member.
背景技術  Background art
[0002] 従来より、内燃機関や、冷蔵庫をはじめとする熱交換機、コンピュータの CPU等の 電子デバイス等の熱が発生する装置は、その放熱を司る放熱部、たとえば、放熱フィ ンゃ内燃機関等のマフラー、各種電動モータ、ヒートシンクなどを、黒色塗装を施して 放熱効果を向上させてレ、る。  [0002] Conventionally, devices that generate heat, such as internal combustion engines, heat exchangers such as refrigerators, and electronic devices such as CPUs of computers, are radiating units that radiate heat, such as radiating fins and internal combustion engines. The muffler, various electric motors, heat sinks, etc. are painted black to improve the heat dissipation effect.
[0003] し力、しながら、黒色塗装を施したのみでは、さらなる放熱効果の向上は期待できな いため、上記したような、熱が発生する多種多様な装置は、放熱部の構造に工夫 (例 えば熱対流を促進させる構造など)を加え、放熱効果の向上を果たしている。  [0003] However, further improvement of the heat radiation effect cannot be expected only by applying the black paint, and thus various devices that generate heat as described above are devised with a structure of the heat radiation part ( For example, a structure that promotes thermal convection is added to improve the heat dissipation effect.
[0004] その一例として、たとえば、電力回路を構成する複数のバスバーを具備する回路構 成体を、絶縁層がコーティングされたバスバー接着面を有した放熱部材を備え、この バスバー接着面上に前記複数本のバスバーが並べられた状態で当該バスバー接着 面に各バスバーが直接接着することで、簡単な構造で、バスバーを効率良く冷却す る、としている(例えば特開 2003-164040号公報参照)。  [0004] As an example, for example, a circuit structure including a plurality of bus bars constituting a power circuit is provided with a heat radiating member having a bus bar adhesion surface coated with an insulating layer, and the plurality of bus bars are disposed on the bus bar adhesion surface. Each bus bar is directly bonded to the bus bar bonding surface in a state where the bus bars are arranged, so that the bus bar is efficiently cooled with a simple structure (see, for example, JP-A-2003-164040).
[0005] また、他の例として、電流分配用回路板とプリント基板とを空隙をあけた状態で支持 し、介在させる絶縁板を廃止すると共に、空隙の存在により放熱性を向上させた電気 接続箱等があげられる(例えば特開 2003-87938号公報参照)。 [0005] Further, as another example, an electrical connection that supports a current distribution circuit board and a printed circuit board with a gap therebetween, eliminates an insulating plate interposed therebetween, and improves heat dissipation due to the presence of the gap. Boxes and the like (for example, see JP-A-2003-87938).
[0006] 以上、放熱効果を向上させるため構造に特徴を持たせた一例を例示したが、さらな る放熱効果の向上を果たすには、部材そのものを見直す必要がある。 [0006] As described above, an example in which the structure is provided with a characteristic in order to improve the heat radiation effect has been exemplified. However, in order to further improve the heat radiation effect, it is necessary to review the members themselves.
[0007] し力しながら、材質自体を改良させて物性である熱伝導率を向上させることは極め て困難である。 [0007] It is extremely difficult to improve the thermal conductivity, which is a physical property, by improving the material itself while applying force.
[0008] そこで、上述したように、放熱および吸熱の効果がある黒色塗装を、熱伝導率が高 い銅やアルミニウム等の基材に施しているわけではある力 本発明は、その黒色塗装 を基材に施した放熱部材よりも、さらなる放熱効果が期待できる放熱部材と、その放 熱部材を用いた装置、筐体、コンピュータ支持台、放熱部材製造方法を提供すること を目的とする。 [0008] Therefore, as described above, a black paint that has the effect of radiating heat and absorbing heat is applied to a black paint having a high thermal conductivity. The present invention uses a heat dissipating member that can be expected to have a further heat dissipating effect and a heat dissipating member that can be expected to have a greater heat radiation effect than a heat dissipating member that has been coated on a substrate with black paint. It is an object of the present invention to provide an apparatus, a housing, a computer support, and a method of manufacturing a heat radiating member.
[0009] 特許文献 1 :特開 2003—164040号公報 Patent Document 1: JP 2003-164040 A
特許文献 2:特開 2003 - 87938号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2003-87938
発明の開示  Disclosure of the invention
[0010] 上記課題を解決するために、本件発明者は、基材にさまざまな試料を塗布して放 熱状態の実験を試みたところ、トルマリンに極めて顕著な効果(特定の属性を発見) 力 Sあることを知見し、さらに、鋭意研究した結果、ドラバイトトルマリン、ショールトルマリ ン、ミックストノレマリン、リチアトルマリン等、数多く自然界に存在する数種のトルマリン の中力 優れた放熱効果を奏するトノレマリンを知見し、さらに、優れた放熱効果を奏 するそのトルマリンにも、際だって優れた放熱効果を奏する、粒径、単位面積あたりの 密度(塗布量)の存在を知見した。このようにして、特定のトノレマリンに着目した本件 発明者は、そのトルマリン粉末を用いて (この性質、属性を専ら利用することによって) 上記課題を解決する放熱部材等を発明するに至った。  [0010] In order to solve the above problems, the present inventor applied various samples to the base material and conducted an experiment in a state of heat release, and found that tourmaline had a very remarkable effect (discovered a specific attribute). After discovering that there is S, and as a result of diligent research, it has been found that there are several types of tourmalines that exist in nature, such as dravite tourmaline, shawl tourmaline, mixed tonomaline, and lithia tourmaline. We also found that the tourmaline, which has an excellent heat dissipation effect, also has a particle size and a density per unit area (application amount) that have an outstanding heat dissipation effect. In this way, the present inventor focused on a specific tonoremarin, and came to invent a heat-dissipating member or the like that solves the above-mentioned problem by using the tourmaline powder (by exclusively using the properties and attributes).
[0011] すなわち、請求の範囲第 1項記載の放熱部材は、粒径が概ね 3— 7 μ mのショール トルマリン粉末と流動状の固定剤とを混和してなる塗布剤を、銅やアルミニウム等の 熱伝導性の優れた金属からなる基材の表面に、前記ショールトルマリン粉末が 1平方 cmあたり 0. 025-0. 05グラムの密度となるように塗着して固化してなるトノレマリン層 を有したことを特徴とする。  [0011] That is, the heat dissipating member according to claim 1 is characterized in that a coating agent obtained by mixing a shawl tourmaline powder having a particle size of approximately 3 to 7 μm with a fluid fixing agent is coated with copper, aluminum, or the like. On the surface of a substrate made of a metal having excellent thermal conductivity, a tonoremarin layer formed by applying and solidifying the shawl tourmaline powder so as to have a density of 0.025 to 0.05 g per square cm. It is characterized by having.
[0012] 請求の範囲第 2項記載の放熱部材は、アルミニウムからなる基材に、粒径が概ね 3 一 Ί μ mのショールトルマリン粉末が混入されてなることを特徴とする。  [0012] The heat dissipating member according to claim 2 is characterized in that shawl tourmaline powder having a particle size of approximately 31 μm is mixed into a base material made of aluminum.
[0013] 請求の範囲第 3項記載の放熱部材は、プラスチックからなる基材に、粒径が概ね 3 一 7 /i mのショールトルマリン粉末が混入されてなることを特徴とする。  [0013] The heat dissipating member according to claim 3 is characterized in that shawl tourmaline powder having a particle size of approximately 37 / im is mixed in a base material made of plastic.
[0014] 請求の範囲第 4項記載の装置は、熱交換機や、各種機器等の装置における熱が 発生する発生部および/または熱を放熱させる放熱部を、請求の範囲第 1項または 第 2項の放熱部材を用いて構成したことを特徴とする。 [0015] 請求の範囲第 5項記載の装置は、請求の範囲第 4項において、前記放熱部材を用 レ、て構成した装置は、冷却装置であると共に、前記放熱部材は、前記冷却装置の熱 交換機系に用いられてレ、ることを特徴とする。 [0014] The apparatus according to claim 4 is characterized in that a heat generating unit and / or a heat radiating unit that dissipates heat in a device such as a heat exchanger or various devices are provided with a heat radiating unit. It is characterized by using the heat radiating member of the item. [0015] The device according to claim 5 is the device according to claim 4, wherein the device configured using the heat radiating member is a cooling device, and the heat radiating member is a cooling device of the cooling device. It is characterized by being used in heat exchanger systems.
[0016] 請求の範囲第 6項記載のケースは、コンピュータやハードディスク等の電気機器を 構成するケースを、請求の範囲第 1項から第 3項の何れか記載の放熱部材を用いて 形成したことを特徴とする。 [0016] The case described in claim 6 is a case in which a case constituting an electric device such as a computer or a hard disk is formed using the heat radiating member according to any one of claims 1 to 3. It is characterized.
[0017] 請求の範囲第 7項記載のコンピュータ支持台は、ノート型コンピュータを載置させる コンピュータ支持台であって、請求の範囲第 1項から第 3項の何れか記載の放熱部 材で側面視略 L字状に形成してなることを特徴とする。 [0017] A computer support according to claim 7 is a computer support on which a notebook computer is placed, and wherein the heat-radiating member according to any one of claims 1 to 3 has a side surface. It is characterized by being formed in a substantially L-shape when viewed.
[0018] 請求の範囲第 8項記載の放熱部材製造方法は、粒径が概ね 3— 7 μ mのショールト ルマリン粉末と固定剤とを混和して塗布剤を生成する塗布剤生成工程と、銅やアルミ ニゥム等の熱伝導性の優れた金属からなる基材の表面に、前記ショールトルマリン粉 末が 1平方 cmあたり 0· 025— 0· 05グラムの密度となるように前記塗布剤を塗布する 塗布工程と、を有してなることを特徴とする。 [0018] The method for manufacturing a heat radiating member according to claim 8, further comprising: a coating agent generating step of mixing a short-tourmaline powder having a particle size of approximately 3 to 7 μm with a fixing agent to generate a coating agent; The above-mentioned coating agent is applied to the surface of a substrate made of a metal having excellent thermal conductivity such as aluminum or aluminum so that the shawl tourmaline powder has a density of 0.25 to 0.05 grams per square cm. And a coating step.
[0019] 請求の範囲第 9項記載の放熱部材製造方法は、溶融状態のアルミニウムとショー ノレトルマリン粉末とを混和し、所望の形状に固化してなることを特徴とする。 [0019] The method for manufacturing a heat radiating member according to claim 9 is characterized in that aluminum in a molten state and a Shounore tourmaline powder are mixed and solidified into a desired shape.
[0020] 請求の範囲第 10項記載の放熱部材製造方法は、流動状態のプラスチック材料と ショールトルマリン粉末とを混和し、所望の形状に固化してなることを特徴とする。 発明を実施するための最良の形態 [0020] The method for manufacturing a heat radiating member according to claim 10 is characterized in that a fluid plastic material and shoal tourmaline powder are mixed and solidified into a desired shape. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明をより詳細に説明するために、添付図面を参照してこれを説明する。 The present invention will be described in more detail with reference to the accompanying drawings.
[0022] 図中、符号 1は、放熱部材を、符号 11は基材を、符号 12はトルマリン層を示す。 [0022] In the figure, reference numeral 1 denotes a heat radiation member, reference numeral 11 denotes a base material, and reference numeral 12 denotes a tourmaline layer.
[0023] (実施の形態 1) (Embodiment 1)
本実施の形態に力、かる放熱部材 1は、図 1に示すように、熱伝導率の高い銅の薄板 The heat dissipating member 1 according to the present embodiment is a thin copper plate having a high thermal conductivity as shown in FIG.
(板厚 0. 8mm)からなる基材 11と、その基材 11の上面に塗着されショールトルマリン 粉末を主成分としたトルマリン層 12とを備えてなる。 (Substrate thickness: 0.8 mm) and a tourmaline layer 12 coated on the upper surface of the substrate 11 and mainly composed of shawl tourmaline powder.
[0024] このトルマリン層 12は、粒径が概ね 6 μ mのショールトルマリン粉末と、アクリル系の 揮発性合成樹脂塗料からなる固定剤とを、その重量比 1: 1の割合で混和(塗布剤生 成工程)して塗布剤を生成し、その塗布剤を、ショールトルマリン粉末が 1平方 cmあ たり 0. 025-0. 05グラムの密度となるように基材 11に多重塗り(塗布工程)して固化 させて形成されている。 [0024] The tourmaline layer 12 is obtained by mixing a shawl tourmaline powder having a particle size of approximately 6 µm and a fixing agent composed of an acrylic volatile synthetic resin paint in a weight ratio of 1: 1 (coating agent). Generation process) to produce a coating agent, and the coating agent is applied to a 1 cm 2 square shawl tourmaline powder. It is formed by multi-coating (coating process) on the base material 11 so as to have a density of 0.025-0.
[0025] なお、ドラバイトトルマリン、ショールトルマリン、ミックストルマリン、リチアトルマリン等 の代表的なトルマリンを用いて放熱に関する予備試験を行い、最も放熱効果があつ た黒色をしたショールトルマリンを採用している。  [0025] Preliminary tests on heat radiation were conducted using typical tourmalines such as dravite tourmaline, shawl tourmaline, mixed tourmaline, and lithia tourmaline, and black shawl tourmaline having the best heat radiation effect was employed.
[0026] そもそも、トルマリンがイオンをだす、或いは電気を発生する、という事は周知のこと であるが、エネルギ不変の法則から、トルマリン力イオンや電気を出力するためには 何らかの入力エネルギが必要であり、本発明の効果から推察すると、熱ェネルギをィ オンや電気に転化しているものと思われる。  [0026] It is well known that tourmaline generates ions or generates electricity in the first place, but from the law of energy invariance, some input energy is required to output tourmaline force ions and electricity. In view of the effects of the present invention, it is considered that thermal energy is converted to ions or electricity.
[0027] したがって、電極間の電圧が高いショールトルマリンが最も放熱効果があったものと 推定している。  [0027] Therefore, it is presumed that shawl tourmaline, in which the voltage between the electrodes is high, has the highest heat radiation effect.
[0028] また、固定剤とショールトルマリン粉末との重量比 1: 1としたのは、固定剤が乾燥し て固化した際に、ショールトルマリン粉末が緊密な状態を保つのに好バランスである ことが実験から確認されており、固定剤をショールトルマリン粉末より少なくすると基材 力 剥離しやすくなり、固定剤をショールトルマリン粉末より多くすると、所望したショ ールトルマリンの密度となるまで多重塗りすることになり施工性が悪い。因みに 20gの 液状状態のアクリル系の揮発性合成樹脂塗料が、乾燥すると 4gとなっている。  [0028] The weight ratio between the fixing agent and the shoal tourmaline powder of 1: 1 is a good balance to keep the shawl tourmaline powder in a tight state when the fixing agent is dried and solidified. From experiments, it has been confirmed from experiments that if the amount of the fixing agent is smaller than the shawl tourmaline powder, the base material tends to peel off, and if the amount of the fixing agent is larger than the shawl tourmaline powder, multiple coatings are performed until the desired density of the shoal tourmaline is obtained. Poor workability. By the way, 20 g of acrylic volatile synthetic resin paint in liquid state becomes 4 g when dried.
[0029] さらに、このトノレマリン層 12は、最も放熱効果があった上記したショールトルマリンに ついて、さらに、粒径別選定実験、塗布量選定実験、固定剤選定実験を行い、その 実験結果から際だって優れたデータに基づいて構成している。その各選定実験の詳 細は後述する。  [0029] Further, the tonoremarin layer 12 was further subjected to a particle size selection experiment, a coating amount selection experiment, and a fixing agent selection experiment with respect to the above-mentioned shawl tourmaline, which had the most heat radiation effect, and based on the experimental results, It is based on good data. The details of each selection experiment will be described later.
[0030] また、このショールトルマリン粉末を混入させる液体は、上記したアクリル系の揮発 性合成樹脂塗料に限定されず、水性ェマルジヨン系塗料、二液混合エポキシ塗料な どの周知の耐熱塗料でも良いものであり、すなわち、固化し、かつ、基材 11から容易 に剥離しなレ、(長期に亘つて塗着状態を維持)ものであれば、いずれの液状物でも良 レ、。  The liquid into which the shawl tourmaline powder is mixed is not limited to the acrylic volatile synthetic resin paint described above, but may be a known heat-resistant paint such as a water-based emulsion paint or a two-part mixed epoxy paint. Yes, that is, any liquid can be used as long as it is solidified and cannot be easily peeled off from the base material 11 (the coated state is maintained for a long period of time).
[0031] また、溶融状態のアルミニウムやプラスチックの基材に、粒径が概ね 3— 7 μ mのシ ヨールトルマリン粉末を混和して所望の形状に固化させても良い。 [0032] なお、トルマリン(ショールトルマリンに限らなレ、)は、 900°C以上の熱を加えると破壊 してしまうので、熱伝導の優れると共に融点が 660°Cであるアルミニウム力 上記した ように基材自体にショールトルマリン粉末を含有させる場合において最も好適な部材 である。 [0031] In addition, a circumstance tourmaline powder having a particle size of about 3 to 7 µm may be mixed with a molten aluminum or plastic base material and solidified into a desired shape. [0032] It should be noted that tourmaline (which is limited to shawl tourmaline) is destroyed by applying heat of 900 ° C or more, and thus has an excellent thermal conductivity and an aluminum power having a melting point of 660 ° C as described above. This is the most suitable member when the shawl tourmaline powder is contained in the base material itself.
[0033] また、プラスチックの基材自体にショールトルマリン粉末を含有させる場合、ペレット とショールトルマリン粉末とを重量比、概ね 10%の割合で混和し、一般的な射出成形 などの従来の成形手段をそのまま用いて所望形状の放熱部材が製造できる。  [0033] When the plastic substrate itself contains shoal tourmaline powder, the pellets and shoal tourmaline powder are mixed at a weight ratio of approximately 10%, and conventional molding means such as general injection molding is used. A heat-radiating member having a desired shape can be manufactured by using it as it is.
[0034] 次に、以上のように構成された本実施の形態に力かる放熱部材 1を用いた放熱実 験について説明する。  Next, a heat radiation experiment using the heat radiating member 1 according to the present embodiment configured as described above will be described.
[0035] なお、実験の際に、比較対象として、 0. 8mm銅板の基材 11の上面にのみ黒色塗 装を施したもの(以下、比較試料 A)と、その基材 11そのままのもの(以下、比較試料 B)とを用い、本実施の形態に力、かる放熱部材との放熱状態を比較した。  [0035] In the experiment, as a comparison object, a 0.8 mm copper plate substrate 11 having a black coating only on the upper surface of the substrate 11 (hereinafter, comparative sample A) and a substrate 11 as it is ( Hereinafter, the comparative example B) was used to compare the heat dissipation state with the heat dissipation member according to the present embodiment.
[0036] 実験の概要は、図 2に示したように、トルマリン層 12や黒色塗装面とは反対側の面 の一端部(比較試料 Bのみ、温度センサー貼付面の方向性無し)に温度センサー C を貼付し、この放熱部材 1と、比較試料 Aまたは比較試料 Bのいずれか選んで、家庭 用電熱器(ホットプレート) Dの上に 2つ同時に載置する。このとき、トルマリン層 12や 黒色塗装が上方となるように、また、温度センサー Cが家庭用電熱器 D自体の熱の影 響を受けないように、電熱器力 遠ざけるように、放熱部材 1や比較試料 A、比較試 料 Bを家庭用電熱器 Dに載置している。  [0036] As shown in Fig. 2, the outline of the experiment was as follows. One end of the surface opposite to the tourmaline layer 12 and the black painted surface (comparative sample B only, no orientation of the temperature sensor attachment surface) Attach C and select one of the heat dissipating member 1 and either the comparative sample A or the comparative sample B and place them on the household electric heater (hot plate) D at the same time. At this time, the heat dissipating member 1 or the like is placed so that the tourmaline layer 12 and the black paint face upward, and the temperature sensor C is kept away from the electric heater so as not to be affected by the heat of the household electric heater D itself. Comparative sample A and comparative sample B are placed on household heater D.
[0037] そして、家庭用電熱器 Dを通電させることで、家庭用電熱器 Dの上に載置したこれ らものを、適当な温度に上昇させていき、そのときの家庭用電熱器 Dから離れた温度 上昇を計測することで、上面から放熱される状態が把握できる。すなわち、基材 11自 体の材質、載置条件、加熱条件を揃えているため、基材 11表面に形成された黒色 塗装層、トルマリン層 12、形成層なし、各部材の放熱効果が把握できる。  [0037] Then, by energizing the household electric heater D, those placed on the household electric heater D are raised to an appropriate temperature, and the household electric heater D at that time is increased. By measuring the temperature rise at a distance, the state of heat radiation from the upper surface can be grasped. That is, since the material, mounting conditions, and heating conditions of the base material 11 are uniform, the heat radiation effect of each member can be grasped without the black painted layer, tourmaline layer 12, and formed layer formed on the surface of the base material 11. .
[0038] このような条件のもとで、まず、放熱部材 1と比較試料 A、比較試料 Bとの放熱の実 験結果を説明する。  [0038] Under such conditions, first, the experimental results of heat radiation between the heat radiating member 1 and the comparative sample A and the comparative sample B will be described.
[0039] まず、放熱部材 1と比較試料 Bを同時条件のもとで温度計測したところ、放熱部材 1 力 S43. 5°Cであったのに対し、比較試料 Bは、 51. 7°Cであった。その温度差は、 8. 2 °Cあり、放熱部材 1の方が放熱効果があることが認められた。 First, when the temperature of the heat radiating member 1 and that of the comparative sample B were measured under the same conditions, the heat of the heat radiating member 1 was S43.5 ° C, whereas the temperature of the comparative sample B was 51.7 ° C. Met. The temperature difference is 8.2 ° C, it was confirmed that the heat dissipating member 1 had a heat dissipating effect.
[0040] 次に、放熱部材 1と比較試料 Aを同時条件のもとで温度計測したところ、放熱部材 1 力 ¾4. 5°Cであったのに対し、比較試料 Aは、 57. 8°Cであった。その温度差は、 3. 3°Cあり、放熱部材 1の方が放熱効果があることが認められた。  Next, when the temperature of the heat radiating member 1 and that of the comparative sample A were measured under the same conditions, the power of the heat radiating member 1 was ¾4.5 ° C., whereas that of the comparative sample A was 57.8 °. C. The temperature difference was 3.3 ° C, and it was confirmed that the heat dissipating member 1 had a better heat dissipating effect.
[0041] 以上のことから、本実施形態に力かる放熱部材 1は、比較試料 Aおよび比較試料 B よりも放熱効果があることが認められた。また、本実施の形態に力かる放熱部材 1は、 薄板状に構成したことから、切断加工や折り曲げ加工が容易であり、さまざまな放熱 部分に適するように加工することができる。  From the above, it was confirmed that the heat dissipating member 1 working in the present embodiment has a more effective heat dissipating effect than the comparative sample A and the comparative sample B. Further, since the heat dissipating member 1 that is powerful in the present embodiment is formed in a thin plate shape, it can be easily cut and bent, and can be processed so as to be suitable for various heat dissipating parts.
[0042] 次に、上記した本実施の形態に力、かる放熱部材のショールトルマリンを用いたトノレ マリン層を選定するために実施された、粒径別選定実験、塗布量選定実験、固定剤 選定実験について詳細に説明する。  Next, according to the present embodiment described above, a selection experiment by particle size, an application amount selection experiment, and a fixing agent selection were carried out in order to select a tonnoremarin layer using shawl tourmaline as a heat dissipation member. The experiment will be described in detail.
[0043] 1.粒径別選定実験  1. Experiment of selection by particle size
ショールトルマリンの粒径別の放熱効果にっレ、て説明する。  The effect of heat radiation by particle size of shawl tourmaline will be explained.
[0044] 供試体である放熱部材 M2は、ショールトルマリンの粒径力 1. 2 μ m、 3 /i m、 32 5メッシュ、 6 μ ΐηの夫々のショールトルマリン粉末を、アクリル系の揮発性合成樹脂塗 料からなる固定剤に、重量比 1: 1の割合(30g : 30g)で混和して、 4つの試料用塗布 剤を生成し、大きさ(縦幅 X横幅 X厚み) 300 X 200 X 0. 8mmの銅板の一表面に、 1平方 cmあたり、夫々のショールトルマリンの密度が 0. 05グラムとなるように塗布(一 表面を塗りきる)して、 4つの試料用の放熱部材 M2を用意する。  [0044] The heat-dissipating member M2, which is a test piece, is made of a shoal tourmaline powder having a particle size of 1.2 μm, 3 / im, 325 mesh, and 6 μΐη, and an acrylic volatile synthetic resin. It is mixed with a fixative consisting of a paint at a weight ratio of 1: 1 (30g: 30g) to produce four sample coatings, and their size (height x width x thickness) 300 x 200 x 0 Prepare a heat-dissipating member M4 for four samples by applying (shaving one surface) each surface of an 8mm copper plate so that the density of each shawl tourmaline is 0.05 gram per square cm. I do.
[0045] そして、図 8及び図 9に示すように、サーモスタット付きの電熱器の上に、大きさ(縦 幅 X横幅 X厚み) 200 X 300 X 0. 8mmの銅板 Mlを載置し、その銅板 Mlの上に、 試料用の放熱部材 M2を下部同士を揃えるように、かつ、トルマリン層が上側となるよ うに載置する。  Then, as shown in FIGS. 8 and 9, a copper plate Ml having a size (length × width × thickness) of 200 × 300 × 0.8 mm was placed on a thermostat-equipped electric heater. The heat radiating member M2 for the sample is placed on the copper plate Ml such that the lower portions thereof are aligned and the tourmaline layer is on the upper side.
[0046] そして、銅板 Mlの右端中央部より内側に 10mmずれた位置と、放熱部材 M2の上 部中央部より内側に 10mmずれた位置(トルマリン層側)とに、温度計測装置 S2に接 続された温度センサー S1を貼付する。  The temperature measuring device S2 is connected to a position shifted 10 mm inward from the center of the right end of the copper plate Ml and a position shifted 10 mm inward from the center of the upper portion of the heat radiating member M2 (tourmaline layer side). Attach the temperature sensor S1.
[0047] そして、電熱器 D1の温度設定に 50°Cに設定し、予熱時間として約 1時間を経過し た後、銅板 Mlと、供試体である放熱部材 M2の温度を 15秒おきに計測した(なお、 電熱器を 4つ用意し、 4つの銅板と供試用放熱部材とを同時に計測している)。 [0047] Then, the temperature of the electric heater D1 was set to 50 ° C, and after approximately 1 hour as the preheating time, the temperature of the copper plate Ml and the temperature of the heat-dissipating member M2, which is the specimen, were measured every 15 seconds. (Note that Four electric heaters were prepared, and the four copper plates and the heat dissipating member for the test were measured simultaneously.)
[0048] 上記の条件のもと、得られた実験結果を下表に示す。なお、各表の右側最下欄部 は、供試用放熱部材の平均温度、銅板の平均温度、銅板の平均温度から供試用放 熱部材の平均温度を引いて算出した平均温度差を示す。 [0048] The following table shows the experimental results obtained under the above conditions. The lowermost column on the right side of each table shows the average temperature of the test heat radiating member, the average temperature of the copper plate, and the average temperature difference calculated by subtracting the average temperature of the test heat radiating member from the average temperature of the copper plate.
[0049] [表 1] [Table 1]
Figure imgf000008_0001
Figure imgf000008_0001
[0050] [表 2]
Figure imgf000009_0001
[表 3]
[0050] [Table 2]
Figure imgf000009_0001
[Table 3]
Figure imgf000010_0001
[表 4]
Figure imgf000010_0001
[Table 4]
Figure imgf000011_0001
Figure imgf000011_0001
以上のことから、ショールトルマリンの粒径が 6 μ mの供試用の放熱部材が 10分間 の平均温度差 5. 24°Cが最も高ぐこれに続いて、 3 mが 4. 48°C、 325メッシュが 4 . 39。C、 1. 2 x mが 2. 95。Cの実験結果が得られた。このこと力、ら、ショールトルマリ ンの粒径が 6 μ mをピークに 3 μ mあたりから際だった放熱効果が得られ、粒径が 6 μ mより大きく(325メッシュ)なると、僅かながら放熱効果の減少が認められた。したが つて、基材との一体感 (塗着力)や、表面粗さ (液状の固定剤が乾燥するとショールト ルマリンによって微細な凹凸が形成される)をなるベく小さくしたいことを考慮すると、 粒径が概ね 3— 7 μ ΐηのショールトルマリンが好適である。特に、放熱効果が最も高く 、かつ、実用上問題のない表面粗さが得られる粒径が概ね 6 μ ΐηのショールトルマリ ンが極めて好適である。 [0054] 2.塗布量選定実験 Based on the above, the heat dissipating member for test with a particle size of shawl tourmaline of 6 μm has an average temperature difference of 5.24 ° C for 10 minutes, which is the highest, followed by 3 m for 4.48 ° C. 4.39 for 325 mesh. C, 1.2 xm 2.95. The experimental results of C were obtained. This means that a significant heat radiation effect can be obtained from around 3 μm with a peak of 6 μm at the particle size of the shawl tormarin. When the particle size becomes larger than 6 μm (325 mesh), A decrease in the heat dissipation effect was observed. Therefore, taking into account the feeling of unity with the base material (coating force) and the need to minimize the surface roughness (fine irregularities are formed by short-form marine when the liquid fixing agent dries), Shawl tourmaline with a diameter of approximately 3-7 μΐη is preferred. In particular, a shawl tormarine having a particle size of approximately 6 μΐη, which has the highest heat radiation effect and provides a surface roughness that is practically satisfactory, is extremely suitable. [0054] 2. Application amount selection experiment
次にショールトルマリンの塗布量別の放熱効果について説明する。  Next, the heat radiation effect according to the amount of shawl tourmaline applied will be described.
[0055] 供試体である放熱部材は、ショールトルマリンの粒径が 6 μ mのショールトルマリン 粉末とし、アクリル系の揮発性合成樹脂塗料力 なる固定剤に、重量比 1 : 1の割合( 9g : 9g、 15g : 15g、 30g : 30g、 60g: 60g)で混禾口して、 4つの試料用塗布剤を生成 し、大きさ(縦幅 X横幅 X厚み) 300 X 200 X 0. 8mmの銅板の一表面(片面のみ) に、全ての塗りきつて、密度の異なる 4つの試料用の放熱部材を用意する。すなわち 、 1平方 cm当たりの密度は 0. 015g、 0. 025g、 0. 05g、 0. lgとなる。  [0055] The heat-dissipating member used as the specimen was shoal tourmaline powder having a particle size of 6 µm, and a weight ratio of 1: 1 (9 g: 9g, 15g: 15g, 30g: 30g, 60g: 60g) to make 4 sample coatings, and to make the size (length x width x thickness) 300 x 200 x 0.8mm copper plate On one surface (only one side), prepare a heat-dissipating member for all four samples with different densities. That is, the densities per square cm are 0.015 g, 0.025 g, 0.05 g, and 0.1 lg.
[0056] そして、粒径別選定実験と同じように、サーモスタット付きの電熱器の上に、大きさ( 縦幅 X横幅 X厚み) 200 X 300 X 0. 8mmの銅板を載置し、その銅板の上に、試料 用の放熱部材を下部同士揃えるように、かつ、トルマリン層が上側となるように載置す る。  [0056] Then, as in the particle size selection experiment, a copper plate having a size of 200 mm x 300 mm x 0.8 mm (length x width x thickness) was placed on a thermostat-equipped electric heater. Place the heat radiating members for the sample on top of each other, with the tourmaline layer facing upward.
[0057] そして、銅板の右端中央部より内側に 10mmずれた位置と、放熱部材の上部中央 部より内側に 10mmずれた位置(トルマリン層側)とに、温度計測装置に接続された 温度センサーを貼付する(図 8,図 9参照)。  [0057] Then, a temperature sensor connected to the temperature measuring device is provided at a position shifted 10 mm inward from the center of the right end of the copper plate and a position shifted 10 mm inward from the center of the upper part of the heat dissipating member (tourmaline layer side). Attach (see Figures 8 and 9).
[0058] そして、電熱器の温度設定に 50°Cに設定し、予熱時間として約 1時間を経過した 後、銅板と、供試用放熱部材の温度を 15秒おきに計測した (なお、電熱器を 4つ用 意し、 4つの銅板と供試用放熱部材とを同時に計測している)。  [0058] Then, the temperature of the electric heater was set to 50 ° C, and after about 1 hour as the preheating time, the temperatures of the copper plate and the heat dissipating member for the test were measured every 15 seconds (note that the electric heater was not used). Four copper plates and the heat dissipating member for test are measured simultaneously.)
[0059] 上記の条件のもと、得られた実験結果を下表に示す。なお、各表の右側最下欄部 は、供試用放熱部材の平均温度、銅板の平均温度、銅板の平均温度から供試用放 熱部材の平均温度を引いて算出した平均温度差を示す。  The following table shows the experimental results obtained under the above conditions. The lowermost column on the right side of each table shows the average temperature of the test heat radiating member, the average temperature of the copper plate, and the average temperature difference calculated by subtracting the average temperature of the test heat radiating member from the average temperature of the copper plate.
[0060] [表 5] [Table 5]
Figure imgf000013_0002
Figure imgf000013_0002
Figure imgf000013_0001
Figure imgf000013_0001
6] 6]
Figure imgf000014_0002
Figure imgf000014_0002
Figure imgf000014_0001
[表 7]
Figure imgf000014_0001
[Table 7]
Figure imgf000015_0002
Figure imgf000015_0002
Figure imgf000015_0001
表 8
Figure imgf000015_0001
Table 8
Figure imgf000016_0001
Figure imgf000016_0001
[0064] 以上のことから、放熱効果が最も高いのが、ショールトルマリンの 1平方 cm当たりの 密度が、 0. 05g (温度差 4. 39°C)であり、次いで、 0. 025g (温度差 3. 3°C)、 0. lg (温度差 3· 20) , 0. 015g (温度差 3· 18)となってレヽる。した力 Sつて、ショーノレトノレマリ ンの 1平方 cm当たりの密度、 0. 05-0. 025g力 S経済的で、かつ、放熱性が高いこと が確認された。  [0064] From the above, the density of shawl tourmaline having the highest heat radiation effect was 0.05 g (temperature difference 4.39 ° C) per square cm, and then 0.025 g (temperature difference 3.3 ° C), 0.1 lg (temperature difference 3 · 20) and 0.015 g (temperature difference 3 · 18). With respect to the applied force S, it was confirmed that the density per 1 cm 2 of the Shounoretonoremarin, 0.05-0. 025 g force S was economical and had high heat dissipation.
[0065] 3.固定剤選定実験  [0065] 3. Experiment for selecting fixative
次に固定剤別の放熱効果について説明する。 [0066] 供試体である放熱部材は、ショールトルマリンの粒径が 6 μ mのショールトルマリン 粉末とし、アクリル系の揮発性合成樹脂塗料と、水性ェマルジヨン系塗料、二液混合 エポキシ塗料の 3種類の固定剤に、それぞれ重量比 1: 1の割合(30g : 30g)で混和 して、 3つの試料用塗布剤を生成し、大きさ(縦幅 X横幅 X厚み) 300 X 200 X 0. 8 mmの銅板の一表面に、 1平方 cmあたり、ショールトノレマリンの密度が 0. 05グラムと なるように塗布(一表面を塗りきる)して、 3つの試料用の放熱部材を用意する。 Next, the heat radiation effect of each fixing agent will be described. [0066] The heat-dissipating member used as the specimen was shoal tourmaline powder having a particle size of 6 µm of shoal tourmaline, and was composed of three types of acrylic synthetic resin paint, water-based emulsion paint, and two-part mixed epoxy paint. The mixture is mixed with the fixative at a weight ratio of 1: 1 (30g: 30g) to produce three sample coating materials, and the size (height x width x thickness) 300 x 200 x 0.8 mm On one surface of the copper plate, apply (short the entire surface) so that the density of short noremarin becomes 0.05 g per 1 cm 2, and prepare heat dissipation members for three samples.
[0067] そして、粒径別選定実験と同じように、サーモスタット付きの電熱器の上に、大きさ( 縦幅 X横幅 X厚み) 200 X 300 X 0. 8mmの銅板を載置し、その銅板の上に、試料 用の放熱部材を下部同士を揃えるように、かつ、トルマリン層が上側となるように載置 する(図 8, 9参照)。  [0067] Then, as in the particle size selection experiment, a copper plate having a size of 200 mm x 300 mm x 0.8 mm (length x width x thickness) was placed on a thermostat-equipped heater. Place the heat-dissipating members for the sample on top of each other so that the lower parts are aligned and the tourmaline layer is on the upper side (see Figs. 8 and 9).
[0068] そして、銅板の右端中央部より内側に 10mmずれた位置と、放熱部材の上部中央 部より内側に 10mmずれた位置(トルマリン層側)とに、温度計測装置に接続された 温度センサーを貼付する。  [0068] Then, a temperature sensor connected to the temperature measurement device is located at a position shifted 10 mm inward from the center of the right end of the copper plate and a position shifted 10 mm inward from the center of the upper portion of the heat dissipating member (tourmaline layer side). Attach.
[0069] そして、電熱器の温度設定に 50°Cに設定し、予熱時間として約 1時間を経過した 後、銅板と、供試用放熱部材の温度を 15秒おきに計測した (なお、電熱器を 3つ用 意し、 3つの銅板と供試用放熱部材とを同時に計測している)。  [0069] Then, the temperature of the electric heater was set to 50 ° C, and after about 1 hour as the preheating time, the temperatures of the copper plate and the heat dissipating member for test were measured every 15 seconds (note that the electric heater Three copper plates and the heat dissipating member for test are measured at the same time).
[0070] 上記の条件のもと、得られた実験結果を下表に示す。なお、各表の右側最下欄部 は、供試用放熱部材の平均温度、銅板の平均温度、銅板の平均温度から供試用放 熱部材の平均温度を引いて算出した平均温度差を示す。  [0070] The following table shows the experimental results obtained under the above conditions. The lowermost column on the right side of each table shows the average temperature of the test heat radiating member, the average temperature of the copper plate, and the average temperature difference calculated by subtracting the average temperature of the test heat radiating member from the average temperature of the copper plate.
[0071] [表 9] [Table 9]
Figure imgf000018_0001
Figure imgf000018_0001
[表 10] [Table 10]
Figure imgf000019_0001
Figure imgf000019_0001
[表 11] [Table 11]
Figure imgf000020_0001
Figure imgf000020_0001
[0074] 以上のことから、固定剤として使用する塗料については、アクリル系の揮発性合成 樹脂塗料が好適であることが確認された。  [0074] From the above, it was confirmed that an acrylic volatile synthetic resin paint is suitable for a paint used as a fixing agent.
[0075] このように、粒径別選定実験、塗布量選定実験、固定剤選定実験の結果から、粒 径が概ね 6 μ mのショールトルマリン粉末と、アクリル系の揮発性合成樹脂塗料から なる固定剤とを、その重量比 1: 1の割合で混和して塗布剤を生成 (塗布剤生成工程) し、その塗布剤を、ショールトルマリン粉末が 1平方 cmあたり 0· 05グラムの密度とな るように基材に塗着して形成したトルマリン層が極めて好適であることが確認された。  [0075] As described above, from the results of the selection experiment for each particle size, the application amount selection experiment, and the fixing agent selection experiment, it was confirmed that shaking tourmaline powder having a particle size of approximately 6 μm and an acrylic volatile synthetic resin paint were used. Is mixed with the agent at a weight ratio of 1: 1 to produce a coating agent (coating agent generation step). The coating agent has a density of 0.05 g of shawl tourmaline powder per square cm. Thus, it was confirmed that the tourmaline layer formed by coating the substrate was extremely suitable.
[0076] (実施の形態 2) 次に、放熱部材 1を具体的なさまざまな装置等に適用したものを説明する。この場 合、必ずしも実施形態 1で例示した薄板状の放熱部材 1で形成するわけではなぐ所 望の形状 (放熱フィン等) ·材質 (アルミニウム等)で形設された基材 11に、実施形態 1 で例示したトルマリン層 12を形成させたり、基材自体にショールトルマリン粉末を混入 させて構成する。 (Embodiment 2) Next, an example in which the heat radiating member 1 is applied to various specific devices will be described. In this case, the base member 11 formed of a desired shape (radiation fins, etc.) and material (aluminum, etc.) is not necessarily formed by the thin plate-shaped heat radiation member 1 exemplified in the first embodiment. The tourmaline layer 12 exemplified in 1 is formed, or the base material itself is mixed with shawl tourmaline powder.
[0077] まず、冷蔵庫の熱交換機系に用いて構成した例を、図 3を参照しながら説明する。  First, an example in which the present invention is used for a heat exchanger system of a refrigerator will be described with reference to FIG.
[0078] 冷蔵庫の熱交換機系 Eは、図 3に示すように、コンプレッサ el、冷媒タンク e2、被冷 却室 e3、熱発散機能部 e4、それらを結ぶ管部材 e5と、を備えて構成される周知構造 のもので、それらの各構成体を、それぞれ所要形状に形設された基材 11にトルマリ ン層 12を形成させた放熱部材 1で構成する。 As shown in FIG. 3, the heat exchanger system E of the refrigerator includes a compressor el, a refrigerant tank e2, a cooled room e3, a heat dissipation function unit e4, and a pipe member e5 connecting them. Each of these components is composed of a heat radiating member 1 in which a tormarin layer 12 is formed on a base material 11 formed in a required shape.
[0079] このように放熱部材 1を用いて構成された冷蔵庫は、放熱効果の向上によって熱交 換率が向上して、極めて好適な冷蔵庫となる。 [0079] The refrigerator configured using the heat dissipating member 1 as described above has an improved heat dissipating effect, thereby improving the heat exchange rate, and is an extremely suitable refrigerator.
[0080] 次に、放熱部材 1をコンピュータ Fの所要箇所に用いて構成した例を、図 4を参照し ながら説明する。 Next, an example in which the heat radiating member 1 is used at a required portion of the computer F will be described with reference to FIG.
[0081] 通常のコンピュータ Fの内部は、ケース(筐体) fl及びシャーシ f 2そして各機器 f 3の 間においてはメツキ等が施されている力、金属素材そのものが露出している。しかし ながら、この状態であると、内部で発生した熱がそれぞれの部材間で反射を繰り返し 、外部へ熱を逃がしにくい構造、いわゆる魔法瓶状態に近いものになっている。  [0081] In the interior of the normal computer F, the force applied by the plating and the metal material itself are exposed between the case (housing) fl, the chassis f2, and each device f3. However, in this state, the heat generated inside is repeatedly reflected between the respective members, and the structure is hard to escape the heat to the outside, that is, it is close to a so-called thermos state.
[0082] そこで、ケース(筐体) fl、シャーシ f 2、 HDDや DVD等の各機器 f 3、 CPUf4等の 各構成体を、トルマリン層 12を有した放熱部材 1で構成することにより、内部熱反射 を防ぐとともに、内部の熱を消耗させることにより、コンピュータ Fの内部温度を低下す ること力 Sできる。  [0082] Therefore, the components (case f), chassis f2, each device f3 such as HDD and DVD, and CPUf4, etc., are composed of the heat dissipating member 1 having the tourmaline layer 12, so that the internal It can reduce the internal temperature of the computer F by preventing heat reflection and consuming internal heat.
[0083] ここで、 2台の外付けハードディスク、 (10 DATA機器製 [HAD_iE160])を被試験体 として放熱効果の実験をした。 1台のケースは HDDノーマル (未処理)とし、もう 1台の ケースにトノレマリン層を施した。このトルマリン層を形成するにあたり、粒径が概ね 6 μ mのショールトルマリン粉末と、アクリル系の揮発性合成樹脂塗料からなる固定剤とを 、その重量比 1: 1の割合で混和(塗布剤生成工程)して塗布剤を生成し、ショールト ルマリンの 1平方 cm当たりの密度力 0. 05-0. 025g以内に収まるようにケースの 全面に渡り塗って所定時間ごとに温度測定を行った。以下の実験結果を表 12に示 す。 [0083] Here, an experiment of heat radiation effect was performed using two external hard disks ([10 DATA device [HAD_iE160]) as test objects. One case was HDD normal (untreated), and the other case was coated with Tonoremarin. In forming this tourmaline layer, shawl tourmaline powder having a particle size of approximately 6 μm and a fixing agent made of an acrylic volatile synthetic resin paint are mixed at a weight ratio of 1: 1 (the coating agent is formed). Process) to produce a coating agent and adjust the density of the case so that it falls within 0.05-0.025 g of density per square cm of short-tourmaline. The temperature was measured every predetermined time by coating the entire surface. Table 12 shows the results of the following experiments.
[表 12] [Table 12]
外付け H D Dの温度比較 Temperature comparison of external HDD
Figure imgf000022_0001
Figure imgf000022_0001
この実験によれば、 HDDノーマルの 60分後のケース平均温度は 41. 540°C、トル マリン層を設けた HDDは、 40. 060°Cの計測結果が得られ、ケース温度が低下する ことが確認できた。 [0086] 図 4に示したコンピュータ Fは、ディスクトップパソコンである力 図 5に示したように、 ノートパソコン Gでも適用可能である。通常のノートパソコンケース(筐体) glは、金属 、またはポリカーボネート等の非金属による材質で構成されている。そのためケース g 1を、ショールトルマリン粉末を混入させて構成することによって、内部熱を発散'消耗 させ、ノートパソコン Gの内部温度の上昇を防ぐことができる。 According to this experiment, the average temperature of the case 60 minutes after the HDD normal was 41.540 ° C, and the measurement result of the HDD with the tourmaline layer was 40.060 ° C. Was confirmed. [0086] The computer F shown in Fig. 4 is a desktop personal computer. As shown in Fig. 5, the computer F is also applicable to a notebook personal computer G. The normal notebook computer case (housing) gl is made of metal or non-metallic material such as polycarbonate. Therefore, by configuring the case g1 by mixing shawl tourmaline powder, the internal heat is dissipated and consumed, and the internal temperature of the notebook computer G can be prevented from rising.
[0087] 通常の各種部品等のシャーシ及び本体筐体部においては、メツキ等が施されてい る力 \あるいは金属素材そのものが露出している。このような状態では、内部で発生し た熱は外部へ逃げにくい。  [0087] In the chassis and the main body housing of the usual various components, the force applied to the plating or the metal material itself is exposed. In such a state, the heat generated inside hardly escapes to the outside.
[0088] この問題を解決するため、シャーシ等を放熱部材 1で構成することで、内部熱放射 を促進させるとともに、内部熱を消耗させることで、機器内部の温度上昇を防ぐことが できる。  [0088] In order to solve this problem, the chassis and the like are formed of the heat radiating member 1, thereby promoting internal heat radiation and consuming internal heat, thereby preventing a rise in temperature inside the device.
[0089] たとえば、図 6に示すように、電動モータ Hのハウジング(筐体) hiを放熱部材 1で 構成してもよいものである。  For example, as shown in FIG. 6, the housing (housing) hi of the electric motor H may be constituted by the heat radiating member 1.
[0090] また、放熱部材 1で既存のノートパソコン Nを載置させる支持台 3を構成しても良い もので、この場合、図 7に示したように、放熱部材 1を、ノートパソコン Nが載置するの に十分な幅と所要角度傾斜させるのに好適な高さでもって側面視略 L字状に折り曲 げ形成して支持台 3を構成する。  Further, the support base 3 on which the existing notebook personal computer N is placed may be constituted by the heat radiating member 1, and in this case, as shown in FIG. The support base 3 is formed by bending and forming a substantially L-shaped side view with a width sufficient for mounting and a height suitable for inclining at a required angle.
[0091] このように構成された支持台 3にノートパソコン Nを載置することで、ノートパソコン N のケース(筐体) nlに伝熱された熱力 さらに支持台 3に伝わり、この支持台 3から効 率よく放熱される。したがって、既存のノートパソコン Nに何ら手を加えることなぐ放 熱効果をさらに向上させることができる。  [0091] When the notebook PC N is placed on the support base 3 configured as described above, the heat transmitted to the case (housing) nl of the notebook personal computer N is further transmitted to the support base 3, and this support base 3 Heat is efficiently dissipated from Therefore, it is possible to further improve the heat radiation effect without modifying the existing notebook computer N.
[0092] ここで、ノートパソコン単体と、トルマリン層のない支持台(銅板のみ)と、トルマリン層 を形成させた支持台 3 (銅板 +トルマリン層)との放熱効果を実験した。なお、トルマリ ン層は、粒径が概ね 6 z mのショールトルマリン粉末と、アクリル系の揮発性合成樹脂 塗料からなる固定剤とを、その重量比 1: 1の割合で混和(塗布剤生成工程)して塗布 剤を生成し、ショールトルマリンの 1平方 cm当たりの密度力 略 0. 025gとなるように 全面に渡り塗着して形成されている。また、温度センサーは、ノートパソコンの底面略 中央に貼着させて温度計測している。その実験結果を表 13に示す。 [0093] [表 13] [0092] Here, the heat radiation effect of a notebook computer alone, a support without a tourmaline layer (copper plate only), and a support 3 with a tourmaline layer (copper plate + tourmaline layer) was tested. The tourmaline layer is a mixture of shawl tourmaline powder having a particle size of approximately 6 zm and a fixing agent made of acrylic volatile synthetic resin paint in a weight ratio of 1: 1 (coating agent generation step). Then, a coating agent is formed and applied over the entire surface so that the density force of shawl tourmaline per square cm is approximately 0.025 g. In addition, the temperature sensor is attached to the notebook computer at the approximate center of the bottom to measure the temperature. Table 13 shows the experimental results. [0093] [Table 13]
ノートパソコンの底面の計測温度  Measured temperature at the bottom of the laptop
Figure imgf000024_0001
Figure imgf000024_0001
[0094] この実験結果から、トルマリン層を形成させた支持台 3にノートパソコンを載置しただ けで、効果的な放熱が可能になっている。  [0094] From the results of this experiment, it is possible to effectively dissipate heat simply by placing a notebook computer on the support 3 on which the tourmaline layer is formed.
[0095] このように、既存のものに対して、何ら手を加えることなぐ放熱効果をさらに向上さ せる新たな構成体に放熱部材 1を適用しても良レ、ものである。 [0095] As described above, it is acceptable to apply the heat dissipating member 1 to a new component that further improves the heat dissipating effect without any modification to the existing one.
[0096] さらに、上述したパソコンの他に、放送機器、ビデオ、通信機器、ルーター、スィッチ[0096] Further, in addition to the personal computer described above, a broadcasting device, a video device, a communication device, a router, a switch, and the like.
、増幅器等、他の各種機器等へ適用できることは言うまでもない。また、液晶パネル 発熱部、太陽電池受光部、各種トランス、電動モータ、冷却装置等放熱部、冷媒コン プレッサ、クーラー放熱部、車載ラジェータ、車両搭載部品等他の単体機器及び部 品への適用も任意である。 It is needless to say that the present invention can be applied to other various devices such as an amplifier and the like. It can also be applied to other single devices and components, such as the heat-generating part of the liquid crystal panel, the solar cell light-receiving part, various transformers, electric motors, heat-dissipating parts such as cooling devices, refrigerant compressors, cooler heat-dissipating parts, in-vehicle radiators, and parts mounted on vehicles. Optional.
[0097] このように上述した実施形態は、本発明の好適な実施形態の一例を示すものであり[0097] Thus, the above-described embodiment is an example of a preferred embodiment of the present invention.
、本発明はそれに限定されるものではなぐその要旨を逸脱しない範囲内において、 種々変形実施が可能である。 However, the present invention is not limited thereto, and various modifications can be made without departing from the scope of the invention.
[0098] たとえば、トルマリン層は、上面や外界と接する面のみではなぐ基材の両面に設け ても良いもので、また、サンドイッチ構造となるように内部に設けても良い。基材の材 質も特に限定されない。さらに形状は、薄板状、棒状、等、特に限定されるものでは なレ、。また、トルマリン層を彩色しても良い。 [0098] For example, the tourmaline layer may be provided not only on the upper surface or the surface in contact with the outside world, but also on both surfaces of the substrate, or may be provided inside so as to have a sandwich structure. The material of the substrate is not particularly limited. Further, the shape is not particularly limited, such as a thin plate shape, a rod shape, and the like. Further, the tourmaline layer may be colored.
産業上の利用可能性  Industrial applicability
[0099] 本発明によれば、 3— 7 μ ΐηのショールトルマリン粉末と流動状の固定剤とを混和し てなる塗布剤を、銅やアルミニウム等の熱伝導性の優れた金属からなる基材の表面 に塗着して固化したトルマリン層を有して放熱部材を構成したことで、極めて安価に、 かつ、容易に、製造できるにもかかわらず、従来の黒色塗装による放熱部材に比べ、 大幅な放熱効果を得ることができる。 [0099] According to the present invention, a coating agent obtained by mixing a shawl tourmaline powder having a particle diameter of 3-7 µ 7η and a fluid fixing agent is mixed with a base material made of a metal having excellent heat conductivity such as copper or aluminum. The heat dissipating member has a tourmaline layer that is applied and solidified on the surface of the heat dissipating member, making it extremely inexpensive and easy to manufacture. A significant heat radiation effect can be obtained.
[0100] 力かる放熱部材を、放熱する必要のある機械 (部品含む)、器具、電子部品、等、さ まざまなものに対して適用することで、効率の向上、部品点数や構造の単純化などが 期待できる。  [0100] By applying a powerful heat-dissipating member to various types of equipment such as machines (including parts), appliances, electronic components, etc., which need to dissipate heat, it is possible to improve efficiency and simplify the number of parts and structure. Can be expected.
[0101] 特に、冷却装置の熱交換機系に、力、かる放熱部材を用いて構成することで、放熱 効果の向上 (熱交換の向上)によって冷却装置の温度が下がり、極めて好適な冷却 装置が提供できる。  [0101] In particular, by configuring the heat exchanger system of the cooling device using a force and a heat dissipating member, the temperature of the cooling device is lowered due to the improvement of the heat dissipating effect (improvement of heat exchange). Can be provided.
図面の簡単な説明  Brief Description of Drawings
[0102] [図 1]実施の形態 1にかかる放熱部材の断面図である。  FIG. 1 is a cross-sectional view of a heat radiating member according to Embodiment 1.
[図 2]放熱効果の実験の概要を示す説明図である。  FIG. 2 is an explanatory diagram showing an outline of an experiment on a heat radiation effect.
[図 3]放熱部材を冷蔵庫に適用した場合の概念図である。  FIG. 3 is a conceptual diagram when a heat radiation member is applied to a refrigerator.
[図 4]放熱部材をデスクトップ型コンピュータに適用した場合の概念図である。  FIG. 4 is a conceptual diagram when a heat radiation member is applied to a desktop computer.
[図 5]放熱部材をノート型コンピュータに適用した場合の概念図である。  FIG. 5 is a conceptual diagram when a heat radiation member is applied to a notebook computer.
[図 6]放熱部材を電動モータに適用した場合の概念図である。  FIG. 6 is a conceptual diagram when a heat radiation member is applied to an electric motor.
[図 7]ノート型コンピュータ用支持台の側面図である。  FIG. 7 is a side view of a notebook computer support base.
[図 8]粒径別選定実験の概要を示す平面図である。  FIG. 8 is a plan view showing an outline of a selection experiment by particle size.
[図 9]粒径別選定実験の概要を示す正面図である。  FIG. 9 is a front view showing the outline of a selection experiment by particle size.
符号の説明  Explanation of symbols
[0103] 1 放熱部材 [0103] 1 Heat dissipation member
11 基材  11 Substrate
12 ト/レマリン層  12 g / remarin layer
3 支持台  3 Support
E 冷蔵庫の熱交換機系  E Refrigerator heat exchanger system
F コンピュータ  F Computer
G ノートパソコン  G Notebook PC
S1 温度センサー  S1 Temperature sensor

Claims

請求の範囲 The scope of the claims
[1] 粒径が概ね 3 7 μ mのショールトルマリン粉末と流動状の固定剤とを混和してなる 塗布剤を、銅やアルミニウム等の熱伝導性の優れた金属からなる基材の表面に、前 記ショールトルマリン粉末が 1平方 cmあたり 0. 025—0. 05グラムの密度となるように 塗着して固化してなるトノレマリン層を有したことを特徴とする放熱部材。  [1] A coating agent, which is a mixture of shawl tourmaline powder having a particle size of approximately 37 μm and a fluid fixing agent, is applied to the surface of a substrate made of a metal with excellent thermal conductivity, such as copper or aluminum. A heat radiation member comprising a tonoremarin layer formed by applying and solidifying the shawl tourmaline powder to a density of 0.025 to 0.05 g per square cm.
[2] アルミニウムからなる基材に、粒径が概ね 3— 7 μ mのショールトルマリン粉末が混 入されてなることを特徴とする放熱部材。  [2] A heat dissipating member comprising a base made of aluminum mixed with shawl tourmaline powder having a particle size of about 3 to 7 μm.
[3] プラスチックからなる基材に、粒径が概ね 3— 7 μ mのショールトルマリン粉末が混 入されてなることを特徴とする放熱部材。  [3] A heat dissipating member characterized in that shawl tourmaline powder having a particle size of approximately 3 to 7 μm is mixed in a plastic substrate.
[4] 熱交換機や、各種機器等の装置における熱が発生する発生部および/または熱 を放熱させる放熱部を、請求の範囲第 1項または第 2項の放熱部材を用いて構成し たことを特徴とする装置。  [4] A heat generating unit and / or a heat radiating unit for radiating the heat in the heat exchanger and various devices and the like are configured using the heat radiating member according to claim 1 or 2. An apparatus characterized by the above.
[5] 前記放熱部材を用いて構成した装置は、冷却装置であると共に、前記放熱部材は 、前記冷却装置の熱交換機系に用レ、られてレ、ることを特徴とする請求の範囲第 4項 記載の放熱部材。  [5] The device configured using the heat dissipating member is a cooling device, and the heat dissipating member is used for a heat exchanger system of the cooling device. The heat dissipating member according to item 4.
[6] コンピュータやハードディスク等の電気機器を構成するケースを、請求の範囲第 1 項から第 3項の何れか記載の放熱部材を用いて形成したことを特徴とするケース。  [6] A case, wherein a case constituting an electric device such as a computer or a hard disk is formed using the heat radiating member according to any one of claims 1 to 3.
[7] ノート型コンピュータを載置させるコンピュータ支持台であって、請求の範囲第 1項 力 第 3項の何れか記載の放熱部材で側面視略 L字状に形成してなることを特徴と するコンピュータ支持台。 [7] A computer support on which a notebook computer is placed, characterized in that the heat dissipation member according to any one of claims 1 to 3 is formed in a substantially L shape in a side view. Computer support table.
[8] 粒径が概ね 3 7 a mのショールトルマリン粉末と固定剤とを混和して塗布剤を生成 する塗布剤生成工程と、 [8] a coating agent generating step of mixing a shawl tourmaline powder having a particle size of approximately 37 am and a fixing agent to generate a coating agent;
銅やアルミニウム等の熱伝導性の優れた金属からなる基材の表面に、前記ショール トルマリン粉末が 1平方 cmあたり 0. 025-0. 05グラムの密度となるように前記塗布 剤を塗布する塗布工程と、  Coating to apply the above-mentioned coating agent on the surface of a substrate made of a metal having excellent thermal conductivity such as copper or aluminum so that the shawl tourmaline powder has a density of 0.025-0.05 g per square cm. Process and
を有してなることを特徴とする放熱部材製造方法。  A method for manufacturing a heat dissipating member, comprising:
[9] 溶融状態のアルミニウムとショールトルマリン粉末とを混和し、所望の形状に固化し てなることを特徴とする放熱部材製造方法。 流動状態のプラスチック材料とショールトルマリン粉末とを混和し、所望の形状に固 化してなることを特徴とする放熱部材製造方法。 [9] A method for manufacturing a heat radiating member, comprising mixing aluminum in a molten state and shawl tourmaline powder and solidifying the mixture into a desired shape. A method for manufacturing a heat radiating member, comprising mixing a fluid plastic material and shawl tourmaline powder and solidifying the mixture into a desired shape.
PCT/JP2004/011557 2003-08-11 2004-08-11 Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method WO2005015112A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513009A JP4404855B2 (en) 2003-08-11 2004-08-11 Heat dissipation member, and apparatus, casing, computer support, and heat dissipation member manufacturing method using the heat dissipation member
US10/568,042 US20060201659A1 (en) 2003-08-11 2004-08-11 Heat radiating member, device using the heat radiating member, casing computer support stand, and radiating member manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/010213 WO2005015111A1 (en) 2003-08-11 2003-08-11 Radiation member and apparatus, cage and computer support including the radiation member
JPPCT/JP03/10213 2003-08-11

Publications (1)

Publication Number Publication Date
WO2005015112A1 true WO2005015112A1 (en) 2005-02-17

Family

ID=34131284

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2003/010213 WO2005015111A1 (en) 2003-08-11 2003-08-11 Radiation member and apparatus, cage and computer support including the radiation member
PCT/JP2004/011557 WO2005015112A1 (en) 2003-08-11 2004-08-11 Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010213 WO2005015111A1 (en) 2003-08-11 2003-08-11 Radiation member and apparatus, cage and computer support including the radiation member

Country Status (5)

Country Link
US (1) US20060201659A1 (en)
JP (1) JP4404855B2 (en)
CN (1) CN100476341C (en)
AU (1) AU2003254937A1 (en)
WO (2) WO2005015111A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184648A (en) * 2015-03-26 2016-10-20 住友電気工業株式会社 Heat sink and electronic apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896436B1 (en) * 2008-11-07 2009-05-12 황부성 A hydrogen-oxygen generating apparatus
KR100900914B1 (en) * 2008-12-05 2009-06-03 황부성 A hydrogen-oxygen generating system
US20120293952A1 (en) * 2011-05-19 2012-11-22 International Business Machines Corporation Heat transfer apparatus
JP6362232B2 (en) * 2016-10-04 2018-07-25 株式会社ランドマスター Radiation irradiation member
CN106851496A (en) * 2016-12-12 2017-06-13 瑞声科技(新加坡)有限公司 Microphone device
CN110750135B (en) * 2019-09-29 2021-04-09 华为终端有限公司 Electronic equipment
CN110586935B (en) * 2019-10-29 2021-12-17 常州品睿电子科技有限公司 Method for manufacturing copper-tourmaline composite heat dissipation material for CPU heat dissipation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051910U (en) * 1998-03-02 1998-09-11 株式会社ガイア Negative ion generating rotary fan
JPH11214129A (en) * 1998-01-20 1999-08-06 Tokai Konetsu Kogyo Co Ltd Far infrared ceramic heater
JP2001125675A (en) * 1999-10-28 2001-05-11 Kokuyo Co Ltd Personal computer support device
JP2002228085A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat-radiative surface-treated material
JP2003093102A (en) * 2001-09-21 2003-04-02 Achilles Corp Minus ion generating footwear

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677658B2 (en) * 2000-09-12 2011-04-27 ダイキン工業株式会社 Air conditioner
JP3864705B2 (en) * 2001-01-31 2007-01-10 住友金属工業株式会社 Thermal radiation surface treatment material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214129A (en) * 1998-01-20 1999-08-06 Tokai Konetsu Kogyo Co Ltd Far infrared ceramic heater
JP3051910U (en) * 1998-03-02 1998-09-11 株式会社ガイア Negative ion generating rotary fan
JP2001125675A (en) * 1999-10-28 2001-05-11 Kokuyo Co Ltd Personal computer support device
JP2002228085A (en) * 2001-01-31 2002-08-14 Sumitomo Metal Ind Ltd Heat-radiative surface-treated material
JP2003093102A (en) * 2001-09-21 2003-04-02 Achilles Corp Minus ion generating footwear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184648A (en) * 2015-03-26 2016-10-20 住友電気工業株式会社 Heat sink and electronic apparatus

Also Published As

Publication number Publication date
JP4404855B2 (en) 2010-01-27
JPWO2005015112A1 (en) 2007-09-27
CN1836147A (en) 2006-09-20
WO2005015111A1 (en) 2005-02-17
AU2003254937A1 (en) 2005-02-25
CN100476341C (en) 2009-04-08
US20060201659A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
EP1865552B1 (en) Heat transfer sheet, radiation structure and method for using heat transfer sheet
JP3183143U (en) Heat spreader with thermal vias
JP5384522B2 (en) Heat sink and heat sink forming method using wedge locking system
US10945352B2 (en) Cooling device and manufacturing method therefor
JP2003188323A (en) Graphite sheet and its manufacturing method
US20070257359A1 (en) Thermal Management Device For A Memory Module
US20080144291A1 (en) Methods and devices for cooling printed circuit boards
JP2008541490A (en) Thermal lamination module
JPWO2008126564A1 (en) Heat dissipation member, circuit board using the same, electronic component module and manufacturing method thereof
KR20090001232A (en) Heat sink of high radiation manufacturing method therefor and metal pcb therewith
JP2015046557A (en) Radiator
WO2005015112A1 (en) Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method
US20210332281A1 (en) Heat radiation material, method for producing heat radiation material, heat radiation material kit, and heat generator
CN203590662U (en) Electronic component cooling device
JP2003046038A (en) Heat-conducting base material, manufacturing method therefor and semiconductor device
KR101992749B1 (en) Multi heat spreader
CN216057999U (en) Metal substrate liquid metal phase transition piece
CN203633041U (en) Electronic element heat dissipation apparatus
CN207938595U (en) Intelligent power module and air conditioner
CN205987655U (en) Combined heat radiator
CN100409274C (en) Radiator for flat display device
CN217904913U (en) Liquid immersion type radiator
CN109328005A (en) A kind of missile-borne great-power electronic cabin Multifunctional heat-dissipating structure and method
CN211295146U (en) Heat dissipation metal substrate
TWM461036U (en) Heat dissipation case

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022939.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513009

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10568042

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10568042

Country of ref document: US

122 Ep: pct application non-entry in european phase