JP5008617B2 - Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same - Google Patents

Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same Download PDF

Info

Publication number
JP5008617B2
JP5008617B2 JP2008186855A JP2008186855A JP5008617B2 JP 5008617 B2 JP5008617 B2 JP 5008617B2 JP 2008186855 A JP2008186855 A JP 2008186855A JP 2008186855 A JP2008186855 A JP 2008186855A JP 5008617 B2 JP5008617 B2 JP 5008617B2
Authority
JP
Japan
Prior art keywords
wavelength
heat
heat radiation
selective
radiation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008186855A
Other languages
Japanese (ja)
Other versions
JP2010027831A (en
Inventor
浩雄 湯上
隆 豊永
文孝 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Okitsumo Inc
Original Assignee
Tohoku University NUC
Okitsumo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Okitsumo Inc filed Critical Tohoku University NUC
Priority to JP2008186855A priority Critical patent/JP5008617B2/en
Publication of JP2010027831A publication Critical patent/JP2010027831A/en
Application granted granted Critical
Publication of JP5008617B2 publication Critical patent/JP5008617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、電子機器の放熱効率を向上させる方法、波長選択性熱放射材料及びその製造方法に関し、特に発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器に対し、周期的な表面微細凹凸パターンを形成する多数のマイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料を適用することにより電子機器の放熱効率を向上させる方法等に関する。   The present invention relates to a method for improving the heat dissipation efficiency of an electronic device, a wavelength-selective heat radiation material, and a method for producing the same, particularly for an electronic device in which a heat source is covered with a resin member having a specific infrared transmission wavelength region. The present invention relates to a method for improving heat dissipation efficiency of an electronic device by applying a wavelength-selective heat radiation material having a heat radiation surface in which a large number of microcavities forming a periodic surface fine unevenness pattern are two-dimensionally arranged.

近年では、電子機器特に最近の情報処理機器の小型軽量化・高速化・多機能化の動きは、半導体素子の高速、高集積化を促進し、このことにより、各素子の発熱密度が増大し、局所発熱の集中が生じてきている。このため、このような温度上昇により半導体部品の故障率が上昇し、各部品の寿命が短くなるなどの問題が発生している。   In recent years, the trend toward smaller, lighter, faster, and more multifunctional electronic devices, especially information processing equipment, has promoted higher speed and higher integration of semiconductor elements, which has increased the heat generation density of each element. Concentration of local fever has occurred. For this reason, problems such as an increase in the failure rate of semiconductor components due to such a temperature rise and a shortened life of each component have occurred.

さらに、環境性を重視するという観点より、機器の密閉化冷却ファンの騒音問題など、従来から実施されていたファンによる放熱だけで上記の問題を解決することは困難な状況となっており、他の放熱手段として熱伝導あるいは熱放射を利用した新しい放熱対策が要望されている。   Furthermore, from the viewpoint of emphasizing environmental friendliness, it is difficult to solve the above-mentioned problems only by heat radiation by fans, which has been performed in the past, such as noise problems of equipment-enclosed cooling fans. As a heat dissipation means, a new heat dissipation measure using heat conduction or heat radiation is desired.

しかしながら、最近の傾向として、電子機器関係の部品には各種の樹脂が使用されるため、樹脂の熱伝導性が悪いという特性の影響により、熱伝導のみでは十分な放熱等の熱対策を講ずることは困難な状況にある。すなわち、プラスチック素材などの熱伝導性の悪い素材の中に収められた電子機器の発熱源は、効率良く熱放射光を放射させても該発熱源を覆う樹脂製のカバーに捕捉されて蓄熱を起こしてしまうため、発熱源による機器の温度上昇を十分に抑えられないといった問題があった。   However, as a recent trend, various types of resin are used for electronic equipment-related parts, so due to the effect of the poor thermal conductivity of the resin, heat measures such as sufficient heat dissipation should be taken only by thermal conduction. Is in a difficult situation. In other words, the heat source of an electronic device housed in a material with poor thermal conductivity such as a plastic material is captured by the resin cover that covers the heat source even if the heat radiation is efficiently radiated to store heat. As a result, the temperature rise of the device due to the heat source cannot be sufficiently suppressed.

一方、近年では、特許第3472838号公報、特開2002−069961号公報及び特開2004−238230号公報(以下、「特許文献1」、「特許文献2」及び「特許文献3」という)に記載されているように、波長選択性熱放射材料を用いて放射される熱エネルギーを特定の波長へ選択して集中化を図り、これにより熱の利用効率等を向上させる技術が開発されている。   On the other hand, in recent years, it has been described in Japanese Patent No. 3472838, Japanese Patent Application Laid-Open No. 2002-069961 and Japanese Patent Application Laid-Open No. 2004-238230 (hereinafter referred to as “Patent Document 1,” “Patent Document 2,” and “Patent Document 3”). As described above, a technology has been developed in which a thermal energy radiated by using a wavelength-selective thermal radiation material is selected and concentrated to a specific wavelength, thereby improving heat utilization efficiency and the like.

しかしながら、これらの技術は、原則として機器等に対し効率良く“熱エネルギーを供給”するために利用可能な技術であると考えられていたため、その適用によって機器等の熱の蓄積を助長することはあっても、機器等における熱の蓄積を抑制し、放熱などにより機器等から効率良く“熱エネルギーを放出”させるために使用することは不利であると考えられていた。
特許第3472838号公報 特開2002−069961号公報 特開2004−238230号公報
However, since these technologies were considered to be technologies that can be used to efficiently supply "thermal energy" to devices, etc., in principle, it is not possible to promote the accumulation of heat by using such technologies. Even in such a case, it has been considered disadvantageous to use it to suppress heat accumulation in the device and to efficiently “release heat energy” from the device by heat radiation or the like.
Japanese Patent No. 3472838 JP 2002-069691 A JP 2004-238230 A

そこで、本発明は、プラスチック素材などの熱伝導性の悪い素材の中に収められた電子機器の発熱源の熱を効率良く効果的に放出させる手段として、特許文献1−3に記載されているような波長選択性熱放射材料を用いてプラスチック素材など樹脂の熱に対する透過性を向上(透明化)させ、発熱源が樹脂部材で覆われている電子機器の放熱効率を向上させる方法、波長選択性熱放射材料及びその製造方法を提供することを目的とする。   Therefore, the present invention is described in Patent Documents 1-3 as means for efficiently and effectively releasing heat from a heat source of an electronic device housed in a material having poor thermal conductivity such as a plastic material. To improve the heat transmission efficiency of plastics such as plastic materials using such wavelength-selective thermal radiation materials, and to improve the heat dissipation efficiency of electronic equipment whose heat source is covered with resin material, wavelength selection An object of the present invention is to provide a heat-radiating material and a method for producing the same.

本発明者等は、波長選択性熱放射材料、及び該波長選択性熱放射材料と樹脂部材で覆われている電子機器の構造などについて鋭意検討を重ねた結果、プラスチック素材などの熱伝導性の悪い素材の中に収められた電子機器の発熱源の熱を効果的に放出させる手段として、波長選択性熱放射材料を用いて特定の熱放射光を放射する技術を利用し、該発熱源より放射される熱放射光(赤外線)の波長範囲を特定波長域に制御することにより、樹脂の赤外線吸収による蓄熱を防止(透明化)し、発熱源が樹脂部材で覆われている電子機器の放熱効率を向上できることを見い出した。   As a result of intensive studies on the wavelength-selective heat radiating material and the structure of the electronic device covered with the wavelength-selective heat radiating material and the resin member, the inventors have found that the heat conductivity of the plastic material or the like As a means of effectively releasing the heat of the heat source of the electronic device housed in a bad material, a technology that emits specific heat radiation light using a wavelength selective heat radiation material is used. By controlling the wavelength range of emitted thermal radiation (infrared rays) to a specific wavelength range, heat storage due to infrared absorption of the resin is prevented (transparent), and heat dissipation of electronic equipment whose heat source is covered with resin members I found that efficiency can be improved.

図1及び2は、横軸に照射した赤外線の波数(νcm−1)をとり、縦軸に赤外線の透過度(T%)をとり、赤外分光法により電子機器の部品として用いられるエポキシ樹脂、ポリカーボネート樹脂などの樹脂材料について赤外線吸収スペクトルを調べた結果を示している。エポキシ樹脂あるいはポリカーボネート樹脂の赤外線吸収スペクトルを観察すると、図1及び2に示されるように赤外線波長6〜7μmを境として、これより大きい波長域では赤外線は吸収され、これ以下の波長域では殆んど吸収されずに透過する傾向が認められる。   1 and 2 show the wave number (νcm-1) of the infrared ray irradiated on the horizontal axis, the infrared ray transmittance (T%) on the vertical axis, and an epoxy resin used as a component of electronic equipment by infrared spectroscopy. The result of having investigated the infrared absorption spectrum about resin materials, such as polycarbonate resin, is shown. When the infrared absorption spectrum of epoxy resin or polycarbonate resin is observed, as shown in FIGS. 1 and 2, infrared rays are absorbed in the wavelength range larger than this, with infrared wavelengths of 6 to 7 μm being the boundary, and in the wavelength range below this, the infrared rays are almost absorbed. There is a tendency to permeate without being absorbed.

そこで、本発明では、発熱源から放射される赤外線に対し上記のような樹脂材料の赤外線透過波長域内にある赤外線のみを放射する波長選択性熱放射材料を適用し、そして前記波長選択性熱放射材料を介して発熱源から放射される赤外線に対し電子機器の発熱源を覆う樹脂材料を実質的に透明化することにより、発熱源から放射される熱エネルギーを効率良く放熱できるようにした。   Therefore, in the present invention, a wavelength-selective thermal radiation material that radiates only infrared rays within the infrared transmission wavelength region of the resin material as described above is applied to the infrared rays emitted from the heat source, and the wavelength-selective thermal radiation is applied. By making the resin material covering the heat source of the electronic device substantially transparent to the infrared rays radiated from the heat source through the material, the heat energy radiated from the heat source can be efficiently dissipated.

具体的には、本発明は、発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において、周期的な表面微細凹凸パターンを形成する多数のマイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料を、前記発熱源と前記樹脂部材との間に該発熱源を覆うように配置し、発熱源が放射する熱放射光を波長選択性熱放射材料へ投入し、そして波長選択性熱放射材料の熱放射面から樹脂部材へ向けて、前記樹脂部材の赤外線透過波長域に対応する波長の熱放射光を選択的に放射させることにより電子機器の放熱効率を向上させる方法であり、好ましくは、前記熱放射光は熱の伝達において影響力の大きい赤外線を対象とする。   Specifically, according to the present invention, in an electronic device in which a heat source is covered with a resin member having a specific infrared transmission wavelength region, a number of microcavities forming a periodic surface fine unevenness pattern are two-dimensionally arranged. A wavelength-selective heat radiation material having a heat radiation surface is disposed between the heat generation source and the resin member so as to cover the heat generation source, and the heat radiation light emitted from the heat generation source is used as the wavelength-selective heat radiation material. Heat radiation from the heat radiation surface of the wavelength-selective heat radiation material toward the resin member, and selectively radiating heat radiation light having a wavelength corresponding to the infrared transmission wavelength region of the resin member. This is a method for improving efficiency, and preferably, the thermal radiation light is an infrared ray having a great influence on heat transfer.

また、本発明の他の一面によれば、発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において発熱源の放熱効率を向上させるために使用される波長選択性熱放射材料であって、平面上に周期的に繰り返される微細凹凸パターンを形成するように実質的に二次元配列された多数のマイクロキャビティと、前記マイクロキャビティの上にそれを覆うように形成される被覆層とからなる熱放射面を備え、該熱放射面は、樹脂部材の赤外線透過波長域に対応する熱放射光を選択的に放射することを特徴とする波長選択性熱放射材料が提供される。   According to another aspect of the present invention, the wavelength selective heat used for improving the heat radiation efficiency of the heat source in an electronic device in which the heat source is covered with a resin member having a specific infrared transmission wavelength region. A plurality of microcavities substantially two-dimensionally arranged to form a fine uneven pattern that is periodically repeated on a plane, and is formed on and covers the microcavities. There is provided a wavelength selective heat radiation material comprising a heat radiation surface comprising a coating layer, and the heat radiation surface selectively emits heat radiation light corresponding to the infrared transmission wavelength region of the resin member. The

なお、本発明において前記波長選択性熱放射材料は、発熱源の放熱効率を最大限にするために発熱源と樹脂部材との間に該発熱源を覆うように配置されることが好ましく、さらに、前記熱放射光は熱の伝達において影響力の大きい赤外線を対象としていることが好ましい。   In the present invention, the wavelength-selective heat radiation material is preferably arranged so as to cover the heat source between the heat source and the resin member in order to maximize the heat radiation efficiency of the heat source. The thermal radiation light is preferably intended for infrared rays having a large influence on heat transfer.

本発明材料の熱放射面には、表面テクスチャー化(surface texturing)された多数のマイクロキャビティが存在する。これらのマイクロキャビティは、所定の開口比及び所定のアスペクト比を有するように矩形状または円形状に開口し、かつ前記発熱源を覆っている樹脂部材の赤外線透過波長域の波長と実質的に同じ周期か又は1μm短い周期に形成されていることが好ましい。   There are a number of surface textured microcavities on the heat emitting surface of the inventive material. These microcavities have a rectangular or circular shape so as to have a predetermined opening ratio and a predetermined aspect ratio, and are substantially the same as the wavelength of the infrared transmission wavelength region of the resin member covering the heat source. It is preferable that it is formed in a cycle or a cycle shorter by 1 μm.

マイクロキャビティの周期を、発熱源を覆っている樹脂部材の赤外線透過波長域の波長と実質的に同じ周期にすると、その周期構造と熱放射光の電磁場とで表面プラズモン共鳴を生じるので、樹脂製部材の赤外線透過波長帯域での放射率が増加するからである(共鳴効果)。   If the period of the microcavity is set to be substantially the same as the wavelength of the infrared transmission wavelength region of the resin member covering the heat source, surface plasmon resonance occurs between the periodic structure and the electromagnetic field of the heat radiation light. This is because the emissivity in the infrared transmission wavelength band of the member increases (resonance effect).

また、マイクロキャビティの周期を、発熱源を覆っている樹脂部材の赤外線透過波長域の波長よりも1μm短い周期にすると、マイクロキャビティ内に閉じ込められた電磁波の中で最も強い強度を持つモードの波長と樹脂部材の赤外線透過波長域の波長とを一致させることが出来る。その結果、樹脂部材の赤外線透過波長域で放射率が増加するからである(キャビティ効果)。   Also, if the microcavity has a period shorter by 1 μm than the wavelength of the infrared transmission wavelength region of the resin member covering the heat source, the wavelength of the mode having the strongest intensity among the electromagnetic waves confined in the microcavity And the wavelength of the infrared transmission wavelength region of the resin member can be matched. As a result, the emissivity increases in the infrared transmission wavelength region of the resin member (cavity effect).

マイクロキャビティは、平面視野において放射面に格子状に配列されていることが好ましい。格子状の配列は熱エネルギー線の放射率を効率よく増加させるからである。なお、本発明は格子状配列のみに限定されるものではなく、ハニカム構造などの他の配列としてもよい。   The microcavities are preferably arranged in a lattice pattern on the radiation surface in a planar view. This is because the lattice arrangement efficiently increases the emissivity of the thermal energy rays. Note that the present invention is not limited to the lattice arrangement, and may be other arrangements such as a honeycomb structure.

また、被覆層(マイクロキャビティの表面物質)は、波長1〜10μmの赤外領域の放射率が0.4以下の金属材料からなることが好ましい。赤外領域の放射率が0.4を超えると、選択放射特性が低下する不都合を生じるからである。   Moreover, it is preferable that a coating layer (surface substance of a microcavity) consists of a metal material whose emissivity of the infrared region with a wavelength of 1-10 micrometers is 0.4 or less. This is because if the emissivity in the infrared region exceeds 0.4, there is a disadvantage that the selective radiation characteristic is deteriorated.

マイクロキヤビティの周期は4〜7μmとし、発熱源を覆っている樹脂部材の赤外線透過波長域の赤外線のみを選択的に放出できるようにすることが好ましい。樹脂の種類によって若干赤外線の吸収波長域と透過波長域が異なる場合もあるが、現在電子機器用部材として使用されている樹脂材料においては、ほぼ上記の波長域を示すことが多いからである。   It is preferable that the microcavity has a period of 4 to 7 μm so that only infrared rays in the infrared transmission wavelength region of the resin member covering the heat source can be selectively emitted. This is because although the infrared absorption wavelength range and the transmission wavelength range may be slightly different depending on the type of resin, the resin material currently used as a member for electronic devices often exhibits the above wavelength range.

キャビティの開口比a/Λ(図2参照)を0.5〜0.9の範囲とすることが好ましい。開口比a/Λが0.5を下回ると熱放射の選択性が低下する不都合を生じるからである。一方、開口比a/Λが0.9を上回ると微細構造の熱安定性が低下する不都合を生じるからである。   The cavity opening ratio a / Λ (see FIG. 2) is preferably in the range of 0.5 to 0.9. This is because when the aperture ratio a / Λ is less than 0.5, there is a disadvantage that the selectivity of heat radiation is lowered. On the other hand, if the aperture ratio a / Λ exceeds 0.9, there is a disadvantage that the thermal stability of the microstructure is lowered.

また、マイクロキャビティのアスペクト比d/a(図2参照)を0.8〜3.0の範囲とすることが好ましい。アスペクト比d/aが0.8を下回ると選択放射強度が低下するという不都合を生じるからである。一方、アスペクト比d/aが3.0を上回ると材料の製作上著しい困難を伴うという不都合を生じるからである。   Moreover, it is preferable to make the aspect ratio d / a (refer FIG. 2) of a microcavity into the range of 0.8-3.0. This is because when the aspect ratio d / a is less than 0.8, there is a disadvantage that the selective radiation intensity is lowered. On the other hand, if the aspect ratio d / a exceeds 3.0, there arises a disadvantage that the production of the material is extremely difficult.

本発明に使用される波長選択性熱放射材料の半導体基板は、Si、Geなどの単体半導体、あるいはW、Mo、Ta、Nbなどの高融点金属が良い、しかし必ずしも高融点金属である必要はない。Si等の半導体やタングステン等の金属は可視光および赤外線領域において固有の熱放射バンドを有するからである。   The semiconductor substrate of the wavelength-selective heat radiation material used in the present invention is preferably a single semiconductor such as Si or Ge, or a refractory metal such as W, Mo, Ta, or Nb, but is not necessarily a refractory metal. Absent. This is because a semiconductor such as Si or a metal such as tungsten has a unique thermal radiation band in the visible light and infrared regions.

なお、金属基板を微細表面加工する場合は、高速原子線(Fast Atom Beam)エッチング技術を用いる。高速原子線エッチング技術はY.Kanamori,K.Hane,H.Sai and H.Yugami,100nm period silicon antireflection structures fabricated using a porous alumina membrane mask, Appl.Phys.Lett.78 (2001) 142−143などの文献に記載されている。   Note that, when a fine surface processing is performed on a metal substrate, a fast atom beam etching technique is used. The fast atomic beam etching technology is Kanamori, K .; Hane, H .; Sai and H.M. Yugami, 100 nm period silicon antireflecting structures fabricated using a porous alumina mask, Appl. Phys. Lett. 78 (2001) 142-143.

被覆層は、Pt,Au,Ag,Cr,Cu,Al,Znなどの電気伝導性に優れた低抵抗率の金属、あるいはこれらの金属を主成分とする合金を用いることが好ましい。   The coating layer is preferably made of a low-resistivity metal excellent in electrical conductivity such as Pt, Au, Ag, Cr, Cu, Al, or Zn, or an alloy containing these metals as a main component.

本発明に係る波長選択性熱放射材料の製造方法は、発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において、前記発熱源の放熱効率を向上させるために使用される波長選択性熱放射材料を製造する方法であって、
(a)フォトリソグラフィプロセスを用いて金属薄膜シートに開口する多数の周期配列孔を開口形成し、これにより多孔金属マスクを得るステップと、
(b)半導体基板にレジストを塗布し、このレジスト塗膜と向き合うように前記多孔金属マスクを配置し、前記周期配列孔を介して前記レジスト塗膜に所定波長の光を照射してパターン露光するステップと、
(c)前記レジスト塗膜に現像液を接触させ、該レジスト塗膜中のパターン露光潜像を現像するステップと、
(d)所定のエッチング法を用いて前記半導体基板をパターンエッチングし、これにより該半導体基板の表面に微細凹凸パターンを形成するステップと、そして
(e)前記半導体基板から前記レジスト塗膜を除去し、物理的気相成長法又は化学的気相成長法を用いて前記半導体基板表面の微細凹凸パターンの上に金属被覆膜を積層し、これにより前記半導体基板の上に周期的に二次元配列されたマイクロキャビティを得るステップと、
からなることを特徴とする。
The method for producing a wavelength-selective heat radiation material according to the present invention is used to improve the heat radiation efficiency of the heat source in an electronic device in which the heat source is covered with a resin member having a specific infrared transmission wavelength region. A method for producing a wavelength selective thermal radiation material comprising:
(A) opening a large number of periodically arranged holes opened in the metal thin film sheet using a photolithography process, thereby obtaining a porous metal mask;
(B) A resist is applied to a semiconductor substrate, the porous metal mask is disposed so as to face the resist coating film, and pattern exposure is performed by irradiating the resist coating film with light having a predetermined wavelength through the periodic array holes. Steps,
(C) contacting the resist coating film with a developer, and developing a pattern exposure latent image in the resist coating film;
(D) pattern-etching the semiconductor substrate using a predetermined etching method, thereby forming a fine concavo-convex pattern on the surface of the semiconductor substrate; and (e) removing the resist coating film from the semiconductor substrate. A metal coating film is laminated on the fine concavo-convex pattern on the surface of the semiconductor substrate using a physical vapor deposition method or a chemical vapor deposition method, thereby periodically two-dimensionally arranging the semiconductor substrate on the semiconductor substrate. Obtaining a modified microcavity;
It is characterized by comprising.

上記のステップ(a)において、多孔金属マスクの周期配列孔は、発熱源を覆っている樹脂部材の赤外線透過波長域の波長と実質的に同じ周期か又は1μm短く形成されていることが好ましい。このような周期配列孔をもつマスクを用いてマイクロキャビティを形成すると、上述の共鳴効果とキャビティ効果とにより特定波長の熱輻射を発現させることができるからである。   In the above step (a), it is preferable that the periodic array holes of the porous metal mask have substantially the same period or 1 μm shorter than the wavelength of the infrared transmission wavelength region of the resin member covering the heat generation source. This is because when a microcavity is formed using a mask having such periodic array holes, thermal radiation of a specific wavelength can be expressed by the above-described resonance effect and cavity effect.

本発明によれば、発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器に対し、周期的な表面微細凹凸パターンを形成する多数のマイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料を適用することにより電子機器の放熱効率を向上させる方法、波長選択性熱放射材料及びその製造方法が提供される。   According to the present invention, for an electronic device in which a heat source is covered with a resin member having a specific infrared transmission wavelength range, a heat in which a number of microcavities forming a periodic surface fine unevenness pattern are two-dimensionally arranged. A method for improving heat dissipation efficiency of an electronic device by applying a wavelength-selective heat radiation material having a radiation surface, a wavelength-selective heat radiation material, and a method for manufacturing the same are provided.

その結果、本発明によれば、冷却ファンなどの特別な装置を用いることなく発熱源を有する電子機器を十分に放熱及び冷却することができ、コンパクトで設計の自由度の高い電子機器の製作を可能にする。   As a result, according to the present invention, it is possible to sufficiently dissipate and cool an electronic device having a heat source without using a special device such as a cooling fan, and it is possible to manufacture a compact electronic device having a high degree of freedom in design. enable.

以下、添付の図面を参照して本発明の好ましい実施の形態について説明する。なお、本発明は、以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the examples shown below, and various modifications can be made without departing from the technical idea of the present invention.

図1及び2は、電子機器の部品として用いられるエポキシ樹脂、ポリカーボネート樹脂に赤外線を照射して透過光を分光することにより、前記樹脂材料の赤外線吸収スペクトルを調べたものである。横軸は照射した赤外線の波数(νcm−1)を表し、縦軸は赤外線の透過度(T%)を表す。この結果、エポキシ樹脂あるいはポリカーボネート樹脂は、図1及び2に示されるように赤外線波長6〜7μmを境として、これより大きい波長域では赤外線を吸収し、これ以下の波長域では殆んど吸収せずに透過させる傾向があることが判る。 1 and 2 show the infrared absorption spectrum of the resin material by irradiating an epoxy resin and a polycarbonate resin used as components of an electronic device with infrared rays and dispersing transmitted light. The horizontal axis represents the wave number (νcm −1 ) of irradiated infrared rays, and the vertical axis represents infrared transmittance (T%). As a result, as shown in FIGS. 1 and 2, the epoxy resin or the polycarbonate resin absorbs infrared rays in the wavelength range larger than this with the infrared wavelength of 6 to 7 μm as a boundary, and absorbs almost in the shorter wavelength range. It turns out that there is a tendency to permeate without.

マイクロキャビティ周期構造の熱放射特性をシミュレーションするために、RCWA(Rigorous Coupled−Wave Analysis)法に基づく数値解析を実施した。その結果、マイクロキャビティ周期構造が、赤外線に対し樹脂部材を実質的に透明化するための熱放射に適したスペクトル選択性を有することを示すことが実証された。観測された放射バンドは、電磁波と表面の定常波との共鳴効果およびマイクロキャビティ内で発生する定常波モードから発生すると推察される。   In order to simulate the thermal radiation characteristics of the microcavity periodic structure, a numerical analysis based on the RCWA (Rigorous Coupled-Wave Analysis) method was performed. As a result, it was demonstrated that the microcavity periodic structure has a spectral selectivity suitable for thermal radiation for substantially transparentizing the resin member with respect to infrared rays. The observed radiation band is presumed to be generated from the resonance effect between the electromagnetic wave and the surface standing wave and the standing wave mode generated in the microcavity.

次に、RCWA法に基づく数値解析の概要について説明する。   Next, an outline of numerical analysis based on the RCWA method will be described.

数値解析
周期的な表面微細構造により波長選択的な吸収特性が得られる現象は、周期構造により誘起される表面プラズモンによる吸収やキャビティ構造による定在波モードの吸収などで説明されているが、材料物性も関係してくる複雑な事象であるため、定量的な説明はまだなされておらず、解析的に特性を評価することは困難である。
Numerical analysis The phenomenon that wavelength selective absorption characteristics can be obtained by periodic surface microstructure is explained by absorption by surface plasmon induced by periodic structure and absorption of standing wave mode by cavity structure. Since it is a complex event that also involves physical properties, quantitative explanation has not yet been made, and it is difficult to evaluate characteristics analytically.

[解析モデル]
そこで、本発明者等は、マクスウェル方程式の厳密解法であるRigorous Coupled−Wave Analysis(以下、RCWA法という)を用いてマイクロキャビティ周期構造の最適形状モデルの決定を行った。図3に示すように、最適形状モデル1は、開口径aと深さdを有する矩形のマイクロキャビティ2が、周期Λで縦横に二次元配列された構造である。これらのマイクロキャビティ2はシリコン基板3の片面に形成され、これに白金4が被覆されている。
[Analysis model]
Therefore, the present inventors have determined the optimal shape model of the microcavity periodic structure using the Rigorous Coupled-Wave Analysis (hereinafter referred to as RCWA method), which is an exact solution of the Maxwell equation. As shown in FIG. 3, the optimum shape model 1 has a structure in which rectangular microcavities 2 having an opening diameter a and a depth d are two-dimensionally arranged vertically and horizontally at a period Λ. These microcavities 2 are formed on one side of a silicon substrate 3 and covered with platinum 4.

[計算条件]
上記のような構造を有する解析モデルを用いてRCWA法に基づく数値解析を行い、表面にサブミクロン周期構造を持つ材料の光学特性をシミュレーション評価した。RCWA法では材料の誘電率分布をフーリエ級数展開により表現するため、任意の周期構造の解析が可能である。幾何形状及び材料の光学定数(複素屈折率)を入力し、マクスウェル方程式を厳密に解くことにより入射波の応答を求めることができる。RCWA法は一般的な三次元の回折格子問題を分析する方法である。微細構造領域での誘電率分布は、フーリエ展開によって表現される。解析精度は電磁場の空間的な調和展開項の数に依存する。本発明では2次元周期構造が解析対象であるが、x軸とy軸方向にそれぞれプラスマイナス7次まで、合計で225個の回折波を考慮して計算を行い、解が十分収束することを確認した。
[Calculation condition]
Numerical analysis based on the RCWA method was performed using an analysis model having the above structure, and the optical characteristics of a material having a submicron periodic structure on the surface were evaluated by simulation. In the RCWA method, since the dielectric constant distribution of the material is expressed by Fourier series expansion, analysis of an arbitrary periodic structure is possible. By inputting the geometric constant and the optical constant (complex refractive index) of the material and solving the Maxwell equation exactly, the response of the incident wave can be obtained. The RCWA method is a method for analyzing a general three-dimensional diffraction grating problem. The dielectric constant distribution in the fine structure region is expressed by Fourier expansion. The analysis accuracy depends on the number of spatial harmonic expansion terms of the electromagnetic field. In the present invention, a two-dimensional periodic structure is the object of analysis, but calculation is performed in consideration of a total of 225 diffracted waves in the x-axis and y-axis directions up to plus or minus 7th order, and the solution converges sufficiently. confirmed.

プラスマイナス7次までの回折次数はx軸およびy軸方向に考慮され、従って、本発明では225個の各回折次数についての回折効率を各波長について計算した。本発明者等はこれらの条件で解が充分収束することを確認した。入力データには、入射波の条件、構造上のプロファイル、および材料の光学定数(n, k)の状態のみが含まれ、可変パラメータは計算に用いない。各回折次数のための回折効率は、D.W.Lynch and W.R.Hunter, Handbook of Optical Constants of SolidsI,E.D.Palik, ed.(Academic Press, New York, 1985), pp.333−341、及びD.F.Edwards, Handbook of Optical Constants of SolidsI, E.D.Palik, ed.(AcademicPress, New York, 1985), pp.547−569、においてそれぞれ報告された室温での白金及びSiの光学定数を用いて計算される。その計算は、本発明者等が先の出願した特願2002−131833号の明細書に記載した手順に従っている。   Diffraction orders up to plus or minus 7th order are considered in the x-axis and y-axis directions, so the present invention calculates the diffraction efficiency for each wavelength of 225 diffraction orders for each wavelength. The present inventors have confirmed that the solution converges sufficiently under these conditions. The input data includes only the conditions of the incident wave, the structural profile, and the state of the optical constants (n, k) of the material, and no variable parameters are used in the calculation. The diffraction efficiency for each diffraction order is given by D.E. W. Lynch and W.M. R. Hunter, Handbook of Optical Constants of Solids I, E .; D. Palik, ed. (Academic Press, New York, 1985), pp. 333-341, and D.I. F. Edwards, Handbook of Optical Constants of Solids I, E.E. D. Palik, ed. (Academic Press, New York, 1985), pp. 547-569, calculated at room temperature platinum and Si optical constants, respectively. The calculation follows the procedure described in the specification of Japanese Patent Application No. 2002-131833 filed earlier by the present inventors.

図4は、横軸に波長λ(μm)をとり、縦軸にスペクトル放射率をとって、図3に示す構造モデルをRCWA法で数値解析した結果を示すスペクトル放射特性線図である。   FIG. 4 is a spectral radiation characteristic diagram showing the result of numerical analysis of the structural model shown in FIG. 3 by the RCWA method, with the wavelength λ (μm) on the horizontal axis and the spectral emissivity on the vertical axis.

スペクトル放射率は、矩形マイクロキャビティの周期Λを(1)4.8μm,(2)6.3μm,(3)7.0μmと変更してシミュレーションを行った。すなわち、(1)周期Λ=4.8μmは、樹脂の吸収がもっとも少ない波長域に波長選択性熱放射材料の放射ピークを設定したものであり、(2)周期Λ=6.3μmは、樹脂の吸収が少なくまた設定温度における黒体の放射ピークの近くで放射エネルギーが大きい波長域に波長選択性熱放射材料の放射ピークを設定したものであり、そして(3)周期Λ=7.0μmは、樹脂の吸収ピークに波長選択性熱放射材料の放射ピークを設定したものである。   The spectral emissivity was simulated by changing the period Λ of the rectangular microcavity to (1) 4.8 μm, (2) 6.3 μm, and (3) 7.0 μm. That is, (1) the period Λ = 4.8 μm is obtained by setting the radiation peak of the wavelength-selective heat radiation material in the wavelength region where the absorption of the resin is the smallest, and (2) the period Λ = 6.3 μm The radiation peak of the wavelength selective thermal radiation material is set in the wavelength region where the absorption energy of the black body is small and the radiation energy is large near the radiation peak of the black body at the set temperature, and (3) the period Λ = 7.0 μm is The radiation peak of the wavelength selective heat radiation material is set to the absorption peak of the resin.

[計算結果]
計算結果より、放射ピークは周期Λと同程度の波長と周期Λより1μm程度大きい波長に現れ、また、計算結果からは周期Λ=6.3μmΛ=あるいはΛ=4.8μmにするとエポキシの赤外線吸収係数が小さくなる波長域にほぼ制御できることが判った。
[Calculation result]
From the calculation results, the emission peak appears at a wavelength that is about the same as the period Λ and a wavelength that is about 1 μm larger than the period Λ, and from the calculation results, when the period Λ = 6.3 μmΛ = or Λ = 4.8 μm, the infrared absorption of epoxy It was found that the wavelength can be almost controlled in the wavelength range where the coefficient is small.

実施例
次に、波長選択性熱放射材料(選択エミッタ)の製造に用いるためのマスク(レチクル)を作製し、そして該マスク(レチクル)を用いて本発明による波長選択性熱放射材料(選択エミッタ)を作製した。
EXAMPLE Next, a mask (reticle) for use in the manufacture of a wavelength-selective thermal radiation material (selective emitter) is prepared, and the wavelength-selective thermal radiation material (selective emitter) according to the present invention is used with the mask (reticle). ) Was produced.

具体的には、(a)フォトリソグラフィプロセスを用いて金属薄膜シートに開口する多数の周期配列孔を開口形成し、これにより多孔金属マスクを得るステップと、(b)シリコン基板にレジストを塗布し、このレジスト塗膜と向き合うように前記多孔金属マスクを配置し、前記周期配列孔を介して前記レジスト塗膜に所定波長の光を照射してパターン露光するステップと、(c)前記レジスト塗膜に現像液を接触させ、該レジスト塗膜中のパターン露光潜像を現像するステップと、(d)所定のエッチング法を用いて前記半導体基板をパターンエッチングし、これにより当該シリコン基板の表面に微細凹凸パターンを形成するステップと、そして(e)前記シリコン基板から前記レジスト塗膜を除去し、物理的気相成長法又は化学的気相成長法を用いて前記シリコン基板表面の微細凹凸パターンの上に白金からなる金属被覆膜を積層し、これにより前記シリコン基板の上に周期的に二次元配列されたマイクロキャビティを得るステップにより、本発明による波長選択性熱放射材料を作製した。   Specifically, (a) using a photolithography process to form a large number of periodically arranged holes that open in the metal thin film sheet, thereby obtaining a porous metal mask; and (b) applying a resist to the silicon substrate. A step of arranging the porous metal mask so as to face the resist coating film, and irradiating the resist coating film with light having a predetermined wavelength through the periodic array holes, and pattern exposing, (c) the resist coating film And a step of developing a pattern exposure latent image in the resist coating film, and (d) pattern-etching the semiconductor substrate using a predetermined etching method, thereby finely forming the surface of the silicon substrate. Forming a concavo-convex pattern; and (e) removing the resist coating from the silicon substrate, and performing physical vapor deposition or chemical vapor deposition. A metal coating film made of platinum is laminated on the fine concavo-convex pattern on the surface of the silicon substrate using the method, thereby obtaining microcavities periodically arranged in a two-dimensional manner on the silicon substrate, A wavelength selective thermal radiation material according to the invention was made.

なお、より具体的なマスク(レチクル)の作製方法及び波長選択性熱放射材料(選択エミッタ)の作製方法は、本発明者等が先の出願した特願2004−238230号(特許文献3)の明細書の中に詳しく記載されているので、ここでは、参照として特許文献3に記載のマスクの作製方法及び波長選択性熱放射材料の作製方法を採り入れる。   A more specific mask (reticle) manufacturing method and wavelength-selective thermal radiation material (selective emitter) manufacturing method are disclosed in Japanese Patent Application No. 2004-238230 (Patent Document 3) previously filed by the present inventors. Since it is described in detail in the specification, the mask manufacturing method and the wavelength selective thermal radiation material manufacturing method described in Patent Document 3 are adopted here as references.

図5及び6は、本発明による波長選択性熱放射材料(選択エミッタ)の表面を約一万倍の倍率(1×10)に拡大した走査型電子顕微鏡写真であり、図5は周期Λ=6.3μm,開口径a=4.80μm、図6は周期Λ=4.8μm,開口径a=3.84μmの設定条件で作製したものである。図5及び6において、両マイクロキャビティは略矩形の形状をなし、縦横格子状に周期配列されていることを確認できる。 FIGS. 5 and 6 are scanning electron micrographs obtained by enlarging the surface of the wavelength-selective thermal radiation material (selective emitter) according to the present invention to a magnification (1 × 10 4 ) of about 10,000 times, and FIG. = 6.3 μm, aperture diameter a = 4.80 μm, FIG. 6 is produced under the setting conditions of period Λ = 4.8 μm and aperture diameter a = 3.84 μm. 5 and 6, it can be confirmed that both microcavities have a substantially rectangular shape and are periodically arranged in a vertical and horizontal lattice pattern.

放熱効果評価テスト
[評価装置]
次に、図7に示される放熱効果評価装置5を製作し、樹脂部材で覆われるヒーターに対し、該ヒーターを本発明による波長選択性熱放射材料(選択エミッタ)で覆った場合の放熱効果を評価した。
Heat dissipation effect evaluation test
[Evaluation equipment]
Next, the heat radiation effect evaluation apparatus 5 shown in FIG. 7 is manufactured, and the heat radiation effect when the heater is covered with the wavelength selective heat radiation material (selective emitter) according to the present invention is applied to the heater covered with the resin member. evaluated.

図7に示される放熱効果評価装置5は、ヒーターの表面に波長選択性熱放射材料等が適用された、外側が樹脂部材で覆われた発熱体10と、該発熱体10を外部雰囲気から断熱するためにその周囲を覆う断熱ボックス20と、そして発熱体10からの熱放射強度(温度)を測定するためのサーモトレーサー30及び熱電対31a−31dから構成される。   The heat radiation effect evaluation apparatus 5 shown in FIG. 7 has a heat generating body 10 in which a wavelength-selective heat radiation material or the like is applied to the surface of a heater and the outside is covered with a resin member, and the heat generating body 10 is insulated from the external atmosphere. In order to do so, it is composed of a heat insulating box 20 covering its periphery, and a thermotracer 30 and thermocouples 31a-31d for measuring thermal radiation intensity (temperature) from the heating element 10.

発熱体10は、2枚のアルミニウム板12で挟まれたヒーター11を備え、前記ヒーターのアルミニウム板12の表面を、マイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料等13で覆い、さらにその外側をエポキシ樹脂からなる樹脂部材14で取り囲んだ構造を有する。また、サーモトレーサー30は発熱体10を覆う樹脂部材14の表面温度を測定し、熱電対31a−31dでは、それぞれ筺体内温度,樹脂部材内面温度,樹脂部材外面温度を測定する。   The heating element 10 includes a heater 11 sandwiched between two aluminum plates 12, and the surface of the aluminum plate 12 of the heater has a heat radiating surface in which microcavities are two-dimensionally arranged. 13 and a structure in which the outside is surrounded by a resin member 14 made of epoxy resin. The thermotracer 30 measures the surface temperature of the resin member 14 covering the heating element 10, and the thermocouples 31a to 31d measure the temperature inside the housing, the temperature inside the resin member, and the temperature outside the resin member, respectively.

[評価材料]
樹脂部材14に対し赤外線の透過を促進させるため、ヒーター部11を覆う部材の表面条件としては、波長選択性熱放射材料を適用せずにヒーター部11のアルミニウム板12をそのまま樹脂部材14の内面に対して露出させたもの(比較例1)と、波長選択性熱放射材料として赤外線の波長全域にわたって高い放射率を示す高放射塗料(商品名:クールテック,オキツモ株式会社)を塗布したシリコン基板を適用したもの(比較例2)を準備し、本発明による波長選択性熱放射材料としては、上述された方法により作製した矩形マイクロキャビティの周期Λが4.8μmの熱放射材料(実施例1),6.3μmの熱放射材料(実施例2),及び7.0μmの熱放射材料(実施例3)を準備した。
[Evaluation materials]
In order to promote the transmission of infrared rays to the resin member 14, the surface condition of the member covering the heater unit 11 is that the aluminum plate 12 of the heater unit 11 is used as it is without applying the wavelength selective heat radiation material. And a silicon substrate coated with a high-radiation paint (trade name: COOLTECH, Okitsumo Co., Ltd.) exhibiting a high emissivity over the entire infrared wavelength range as a wavelength-selective thermal radiation material As a wavelength-selective heat radiating material according to the present invention, a heat radiating material in which the period Λ of the rectangular microcavity produced by the above-described method is 4.8 μm (Example 1) is prepared. ), 6.3 μm heat radiation material (Example 2), and 7.0 μm heat radiation material (Example 3).

[テスト結果]
上記の評価材料のそれぞれを、ヒーター入力60mA,36Vの条件で加熱した場合(結果として、その時のヒーター部11の温度は略90℃となる)の各測定部位の温度(熱放射強度)を測定した。その結果を表1に示す。
[test results]
Each of the above evaluation materials is heated under the conditions of heater input 60 mA, 36 V (as a result, the temperature of the heater unit 11 at that time is approximately 90 ° C.). did. The results are shown in Table 1.

表1より、本発明による実施例1−3の波長選択性熱放射材料は、比較例1の波長選択性熱放射材料(選択エミッタ)を適用しなかったもの、及び比較例2の高い放射率を示す高放射塗料を塗布したシリコン基板と比較しても、発熱体10を覆っている樹脂部材14の温度を上昇させることなく、発熱源の高い放熱効果を有していることが判った。特に、樹脂部材14で覆われている発熱体10に対して、実施例1の矩形マイクロキャビティの周期Λが4.8μmである場合が、ヒーター部11からの熱放射光を最も効果的に放熱できることが判った。   From Table 1, the wavelength-selective heat radiation material of Example 1-3 according to the present invention was obtained by applying the wavelength-selective heat radiation material (selective emitter) of Comparative Example 1 and the high emissivity of Comparative Example 2. Even when compared with a silicon substrate coated with a high-radiation paint indicating the above, it has been found that the heat source has a high heat radiation effect without increasing the temperature of the resin member 14 covering the heat generating element 10. In particular, when the period Λ of the rectangular microcavity of Example 1 is 4.8 μm with respect to the heating element 10 covered with the resin member 14, the heat radiation from the heater unit 11 is most effectively radiated. I found that I can do it.

以上詳述したように、本発明者等は、二次元表面微細構造(マイクロキャビティ)が発熱源を覆っている樹脂部材の赤外線透過波長域で選択的に熱エネルギー線を放射することを実証した。また、RCWAアルゴリズムに基づく数値解析により、矩形マイクロキャビティを有する表面微細構造が良好なスペクトル選択性を有することを確認した。   As described above in detail, the present inventors have demonstrated that the two-dimensional surface microstructure (microcavity) selectively emits thermal energy rays in the infrared transmission wavelength region of the resin member covering the heat source. . Moreover, it was confirmed by numerical analysis based on the RCWA algorithm that the surface microstructure having the rectangular microcavity has good spectral selectivity.

赤外分光法によるエポキシ樹脂の赤外線吸収スペクトル特性線図である。It is an infrared absorption spectrum characteristic diagram of an epoxy resin by infrared spectroscopy. 赤外分光法によるポリカーボネート樹脂の赤外線吸収スペクトル特性線図である。It is an infrared absorption spectrum characteristic diagram of polycarbonate resin by infrared spectroscopy. コンピュータシミュレーション数値解析法(RCWA法)に用いた解析モデルの概要図である。It is a schematic diagram of the analysis model used for the computer simulation numerical analysis method (RCWA method). 矩形キャビティの周期Λを変えたときの解析モデルについて数値解析して得た波長/スペクトル放射率の相関をそれぞれ示す特性線図である。It is a characteristic diagram which shows the correlation of the wavelength / spectral emissivity obtained by carrying out the numerical analysis about the analysis model when changing the period (LAMBDA) of a rectangular cavity. 設定周期Λ=6.0μmの本発明の波長選択性熱放射材料(選択エミッタ)の表面を拡大した走査型電子顕微鏡(SEM;倍率10000倍)写真である。It is the scanning electron microscope (SEM; magnification 10000 times) photograph which expanded the surface of the wavelength selective thermal radiation material (selective emitter) of this invention of setting period (LAMBDA) = 6.0micrometer. 設定周期Λ=4.8μmの本発明の波長選択性熱放射材料(選択エミッタ)の表面を拡大した走査型電子顕微鏡(SEM;倍率10000倍)写真である。It is the scanning electron microscope (SEM; magnification of 10000 times) photograph which expanded the surface of the wavelength selective thermal radiation material (selective emitter) of this invention of setting period (LAMBDA) = 4.8micrometer. 本発明の波長選択性熱放射材料(選択エミッタ)の放熱効果評価装置の概要図(一部断面図を含む)である。1 is a schematic view (including a partial cross-sectional view) of a heat dissipation effect evaluation apparatus for a wavelength-selective heat radiation material (selective emitter) according to the present invention.

符号の説明Explanation of symbols

1… 最適形状モデル
2… 矩形のマイクロキャビティ
3… シリコン基板
4… 白金被覆層
5… 放熱効果評価装置
10… 発熱体
11… ヒーター部材
12… アルミニウム板
13… 波長選択性熱放射材料
14… 樹脂部材
20… 断熱ボックス
30… サーモトレーサー
31a…熱電対(ヒーター)
31b…熱電対(筺体内)
31c…熱電対(樹脂部材内面)
31d…熱電対(樹脂部材外面)
DESCRIPTION OF SYMBOLS 1 ... Optimal shape model 2 ... Rectangular microcavity 3 ... Silicon substrate 4 ... Platinum coating layer 5 ... Radiation effect evaluation apparatus 10 ... Heating element 11 ... Heater member 12 ... Aluminum plate 13 ... Wavelength selective thermal radiation material 14 ... Resin member 20 ... Insulation box 30 ... Thermo tracer 31a ... Thermocouple (heater)
31b ... Thermocouple (inside the housing)
31c ... Thermocouple (resin member inner surface)
31d ... Thermocouple (resin member outer surface)

Claims (12)

発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において、
周期的な表面微細凹凸パターンを形成する多数のマイクロキャビティが二次元配列された熱放射面を有する波長選択性熱放射材料を、前記発熱源と前記樹脂部材との間に該発熱源を覆うように配置し、
前記発熱源からの熱エネルギーを伝熱または熱放射により前記波長選択性熱放射材料へ投入し、そして
前記波長選択性熱放射材料の熱放射面から前記樹脂部材へ向けて、前記樹脂部材の赤外線透過波長域に対応する熱放射光を選択的に放射させることにより、前記電子機器の放熱効率を向上させる方法。
In an electronic device in which a heat source is covered with a resin member having a specific infrared transmission wavelength range,
A wavelength-selective heat radiation material having a heat radiation surface in which a number of microcavities forming a periodic surface fine unevenness pattern are two-dimensionally arranged is covered between the heat generation source and the resin member. Placed in
Thermal energy from the heat source is input to the wavelength selective heat radiation material by heat transfer or heat radiation, and infrared rays of the resin member are directed from the heat radiation surface of the wavelength selective heat radiation material toward the resin member. A method for improving the heat dissipation efficiency of the electronic device by selectively radiating thermal radiation corresponding to a transmission wavelength region.
前記熱放射光は、赤外線であることを特徴とする請求項1に記載の電子機器の放熱効率を向上させる方法。   The method according to claim 1, wherein the heat radiation light is infrared light. 発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において、前記発熱源の放熱効率を向上させるために使用される波長選択性熱放射材料であって、
前記波長選択性熱放射材料は、前記発熱源と前記樹脂部材との間に該発熱源を覆うように配置され、そして平面上に周期的に繰り返される微細凹凸パターンを形成するように実質的に二次元配列された多数のマイクロキャビティと、前記マイクロキャビティの上にそれを覆うように形成される被覆層とからなる熱放射面を備えており、
前記熱放射面は、前記樹脂部材の赤外線透過波長域に対応する熱放射光を選択的に放射することを特徴とする前記波長選択性熱放射材料。
In an electronic device in which a heat source is covered with a resin member having a specific infrared transmission wavelength region, a wavelength-selective heat radiation material used for improving the heat dissipation efficiency of the heat source,
The wavelength-selective heat radiation material is disposed between the heat source and the resin member so as to cover the heat source, and substantially forms a fine uneven pattern that is periodically repeated on a plane. A heat radiating surface comprising a plurality of microcavities arranged two-dimensionally and a coating layer formed on and covering the microcavities;
The wavelength selective heat radiation material, wherein the heat radiation surface selectively emits heat radiation light corresponding to an infrared transmission wavelength region of the resin member.
前記熱放射光は、赤外線であることを特徴とする請求項に記載の波長選択性熱放射材料。 The wavelength selective heat radiation material according to claim 3 , wherein the heat radiation light is infrared light. 前記マイクロキャビティは、所定の開口比及び所定のアスペクト比を有するように矩形状または円形状に開口し、かつ前記発熱源を覆っている樹脂部材の赤外線透過波長域の波長と実質的に同じ周期か又は1μm短い周期に形成されていることを特徴とする請求項3ないしのいずれかに記載の波長選択性熱放射材料。 The microcavity opens in a rectangular shape or a circular shape so as to have a predetermined opening ratio and a predetermined aspect ratio, and has substantially the same period as the wavelength of the infrared transmission wavelength region of the resin member covering the heat source. The wavelength-selective heat radiation material according to any one of claims 3 to 4 , wherein the wavelength-selective heat radiation material is formed with a period shorter by 1 μm. 前記マイクロキャビティは、平面視野において放射面に格子状に配列されていることを特徴とする請求項3ないしのいずれか一方に記載の波長選択性熱放射材料。 The microcavities, wavelength-selective thermal radiation material according to one of claims 3 to 5, characterized in that it is arranged in a lattice pattern on the emitting surface in a plane field. 前記被覆層は、波長1〜10μmの赤外領域の放射率が0.4以下の金属材料からなることを特徴とする請求項3ないしのいずれかに記載の波長選択性熱放射材料。 The wavelength-selective thermal radiation material according to any one of claims 3 to 6 , wherein the coating layer is made of a metal material having an emissivity of 0.4 or less in an infrared region having a wavelength of 1 to 10 µm. 前記マイクロキャビティの周期は、4〜7μmであることを特徴とする請求項3ないしのいずれかに記載の波長選択性熱放射材料。 The wavelength selective thermal radiation material according to claim 3, wherein a period of the microcavity is 4 to 7 μm. 前記マイクロキャビティの開口比は、0.5〜0.9の範囲内であることを特徴とする請求項3ないしのいずれかに記載の波長選択性熱放射材料。 The wavelength selective thermal radiation material according to any one of claims 3 to 8 , wherein an opening ratio of the microcavity is in a range of 0.5 to 0.9. 前記マイクロキャビティのアスペクト比は、0.8〜3.0の範囲内であることを特徴とする請求項3ないしのいずれかに記載の波長選択性熱放射材料。 The wavelength-selective heat radiation material according to any one of claims 3 to 9 , wherein an aspect ratio of the microcavity is in a range of 0.8 to 3.0. 発熱源が特定の赤外線透過波長域を有する樹脂部材で覆われている電子機器において、前記発熱源の放熱効率を向上させるために使用される請求項3に記載の波長選択性熱放射材料を製造する方法であって、
(a)フォトリソグラフィプロセスを用いて金属薄膜シートに開口する多数の周期配列孔を開口形成し、これにより多孔金属マスクを得るステップと、
(b)半導体基板にレジストを塗布し、このレジスト塗膜と向き合うように前記多孔金属マスクを配置し、前記周期配列孔を介して前記レジスト塗膜に所定波長の光を照射してパターン露光するステップと、
(c)前記レジスト塗膜に現像液を接触させ、該レジスト塗膜中のパターン露光潜像を現像するステップと、
(d)所定のエッチング法を用いて前記半導体基板をパターンエッチングし、これにより該半導体基板の表面に微細凹凸パターンを形成するステップと、そして
(e)前記半導体基板から前記レジスト塗膜を除去し、物理的気相成長法又は化学的気相成長法を用いて前記半導体基板表面の微細凹凸パターンの上に金属被覆膜を積層し、これにより前記半導体基板の上に周期的に二次元配列されたマイクロキャビティを得るステップと、
からなることを特徴とする波長選択性熱放射材料の製造方法。
4. The wavelength-selective heat radiation material according to claim 3, which is used to improve heat dissipation efficiency of the heat source in an electronic device in which the heat source is covered with a resin member having a specific infrared transmission wavelength region. A way to
(A) opening a large number of periodically arranged holes opened in the metal thin film sheet using a photolithography process, thereby obtaining a porous metal mask;
(B) A resist is applied to a semiconductor substrate, the porous metal mask is disposed so as to face the resist coating film, and pattern exposure is performed by irradiating the resist coating film with light having a predetermined wavelength through the periodic array holes. Steps,
(C) contacting the resist coating film with a developer, and developing a pattern exposure latent image in the resist coating film;
(D) pattern-etching the semiconductor substrate using a predetermined etching method, thereby forming a fine concavo-convex pattern on the surface of the semiconductor substrate; and (e) removing the resist coating film from the semiconductor substrate. A metal coating film is laminated on the fine concavo-convex pattern on the surface of the semiconductor substrate using a physical vapor deposition method or a chemical vapor deposition method, thereby periodically two-dimensionally arranging the semiconductor substrate on the semiconductor substrate. Obtaining a modified microcavity;
A method for producing a wavelength-selective thermal radiation material, comprising:
前記工程(a)において、多孔金属マスクの周期配列孔は、前記発熱源を覆っている樹脂部材の赤外線透過波長域の波長と実質的に同じ周期か又は1μm短い周期に形成されていることを特徴とする請求項11に記載の波長選択性熱放射材料の製造方法。 In the step (a), the periodic array holes of the porous metal mask are formed to have substantially the same period as the wavelength of the infrared transmission wavelength region of the resin member covering the heat source or a period shorter by 1 μm. The method for producing a wavelength-selective heat radiation material according to claim 11 .
JP2008186855A 2008-07-18 2008-07-18 Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same Active JP5008617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008186855A JP5008617B2 (en) 2008-07-18 2008-07-18 Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008186855A JP5008617B2 (en) 2008-07-18 2008-07-18 Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010027831A JP2010027831A (en) 2010-02-04
JP5008617B2 true JP5008617B2 (en) 2012-08-22

Family

ID=41733378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008186855A Active JP5008617B2 (en) 2008-07-18 2008-07-18 Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5008617B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5725658B2 (en) * 2011-08-02 2015-05-27 国立大学法人東北大学 Method for producing wavelength selective thermal radiation or heat absorbing material
US9520335B2 (en) 2014-06-13 2016-12-13 Tokyo Metropolitan University Wavelength selective heat radiation material selectively radiating heat radiation light corresponding to infrared ray transmission wavelength region of resin member and method for manufacturing the same
JP6692046B2 (en) * 2015-09-04 2020-05-13 国立大学法人北海道大学 Infrared heater
WO2017179563A1 (en) * 2016-04-12 2017-10-19 Scivax株式会社 Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure
JP6777912B2 (en) * 2016-10-07 2020-10-28 株式会社マキタ Battery pack and electric work machine
US11988465B2 (en) * 2019-03-27 2024-05-21 Osaka Gas Co., Ltd. Radiative cooling device and radiative cooling method
CN110572993A (en) * 2019-10-18 2019-12-13 Oppo广东移动通信有限公司 Heat dissipation piece for electronic equipment, preparation method and electronic equipment
JP7425670B2 (en) * 2020-05-21 2024-01-31 株式会社日立製作所 heat dissipation material
CN114497262B (en) * 2022-03-02 2024-04-02 爱思菲尔光学科技(苏州)有限公司 Narrow band selective subsurface radiator and method of making same
JP7486908B1 (en) 2022-12-26 2024-05-20 星和電機株式会社 Wavelength-selective infrared radiation control member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213964B2 (en) * 2003-02-04 2009-01-28 独立行政法人科学技術振興機構 Method for promoting reforming reaction by selective heating of radiation gas, wavelength selective heat radiation material and method for producing the same
JP2005144985A (en) * 2003-11-19 2005-06-09 Sony Corp Heat radiation sheet, heat radiation structure, heat radiation member, and heat radiation instrument
JP2006114636A (en) * 2004-10-13 2006-04-27 Fujitsu Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010027831A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5008617B2 (en) Method for improving heat dissipation efficiency of electronic equipment in which heat source is covered with resin member, wavelength selective heat radiation material and method for producing the same
Jalil et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices
Sai et al. High-temperature resistive surface grating for spectral control of thermal radiation
Lu et al. Narrowband polaritonic thermal emitters driven by waste heat
TWI670813B (en) Wavelength selective heat radiation material and method of manufacturing same
US20100276612A1 (en) Terahertz emitters
Kim et al. Parallel Laser Printing of a thermal emission Pattern in a phase‐change thin film Cavity for Infrared Camouflage and security
Goldfarb et al. Thermomechanical behavior of EUV pellicle under dynamic exposure conditions
Hu et al. Ultra-sensitive nanometric flat laser prints for binocular stereoscopic image
Uetani et al. Kirigami-processed cellulose nanofiber films for smart heat dissipation by convection
Szakmany et al. Nanoantenna-based ultrafast thermoelectric long-wave infrared detectors
Gupta et al. Active Energy‐Efficient Terahertz Metasurfaces Based on Enhanced In‐Plane Electric Field Density
JP2014033062A (en) Production method of wavelength selective heat radiation material composed of aluminum sheet by nanoimprint method
JP6985161B2 (en) Thermal radiation structure
Wong et al. Thermal radiation modeling in multilayer thin film structures
Sullivan et al. Optical analysis and optimization of micropyramid texture for thermal radiation control
Scholze et al. EUV optical characterization of alternative membrane materials for EUV pellicles
Tian et al. Surface Photon‐Engineered Infrared‐Black Metametal Enabled Enhancement of Heat Dissipation
Ban et al. Possible extreme ultraviolet mask thermal deformation during exposure
Kim et al. Impact of thermal expansion coefficient on the local tilt angle of extreme ultraviolet pellicle
JP2004238230A (en) Method for promoting reforming reaction by selective heating of radiant gas, wavelength- selective heat-emitting material, and method for producing the same
Phan et al. Effects of Mid‐Infrared Graphene Plasmons on Photothermal Heating
Ding et al. Numerical and experimental study of nanolithography using nanoscale C-shaped aperture
Guk et al. Role of recombination processes during multipulse femtosecond microstructuring of silicon surface
Hsieh et al. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250