WO2017179563A1 - Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure - Google Patents

Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure Download PDF

Info

Publication number
WO2017179563A1
WO2017179563A1 PCT/JP2017/014776 JP2017014776W WO2017179563A1 WO 2017179563 A1 WO2017179563 A1 WO 2017179563A1 JP 2017014776 W JP2017014776 W JP 2017014776W WO 2017179563 A1 WO2017179563 A1 WO 2017179563A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
heat
wave conversion
wavelength
conversion structure
Prior art date
Application number
PCT/JP2017/014776
Other languages
French (fr)
Japanese (ja)
Inventor
縄田晃史
粟屋信義
谷口大介
田中覚
Original Assignee
Scivax株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scivax株式会社 filed Critical Scivax株式会社
Priority to CN201780001294.1A priority Critical patent/CN107534028A/en
Publication of WO2017179563A1 publication Critical patent/WO2017179563A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a heat-electromagnetic wave conversion structure that mutually converts heat and an electromagnetic wave having a predetermined wavelength, a heat-electromagnetic wave conversion member using the structure, a wavelength-selective heat dissipation device, a wavelength-selective heating device, a wavelength-selective heat dissipation method, a wavelength
  • the present invention relates to a selective heating method and a method for producing a heat-electromagnetic wave conversion structure.
  • Heat is transmitted through heat transfer by vibration between molecules and free electrons in the body, heat from the body is transferred to the fluid by heat conduction, and the fluid that receives the heat moves to transfer heat.
  • heat transfer that moves
  • heat radiation that moves when heat energy of an object is radiated as electromagnetic waves.
  • Patent Document 1 a technology for improving the heating efficiency of an object by using a wavelength-selective heat radiation material that converts heat into electromagnetic waves and controlling the heat radiation
  • Patent Document 2 a technology for improving the heat radiation efficiency
  • the conventional wavelength-selective heat radiation material requires a periodic structure, so that the degree of freedom in design is low and there are many restrictions on manufacturing.
  • the conventional wavelength-selective heat radiation material only considers electromagnetic waves that are single plane waves in a direction perpendicular to the structure, and does not consider electromagnetic waves having various directions. The efficiency was still not sufficient.
  • the present invention provides a heat-electromagnetic wave conversion structure having an optimal shape capable of converting heat and electromagnetic waves more efficiently, a heat-electromagnetic wave conversion member, a wavelength-selective heat dissipation device, a wavelength, and the like using the heat-electromagnetic wave conversion structure. It is an object of the present invention to provide a selective heating device, a wavelength selective heat dissipation method, a wavelength selective heating method, and a method for producing a heat-electromagnetic wave conversion structure.
  • the heat-electromagnetic wave conversion structure of the present invention is a structure for mutually converting heat and an electromagnetic wave having a predetermined wavelength ⁇ , and comprises a core part that transmits the electromagnetic wave, a metal part, and the core part
  • the waveguide has a length that can form a standing wave by the electromagnetic wave.
  • the waveguide is preferably formed to have a width of 1 or less of 10 of the wavelength ⁇ of the electromagnetic wave.
  • the waveguide is formed to have a width of less than 1 ⁇ m.
  • the waveguide has a structure having openings at both ends that can transmit the electromagnetic wave.
  • a concavo-convex structure composed of a concave portion and a convex portion, and to have a layered structure that constitutes the core portion and the clad portion below the convex portion.
  • the plurality of layered structures may constitute a plurality of waveguides having different lengths.
  • the concave portion is formed to have a width that can prevent transmission of electromagnetic waves that do not require conversion.
  • the waveguide may have a structure having an opening that can transmit the electromagnetic wave at one end.
  • the waveguide has a concavo-convex structure including a concave portion constituting the core portion and a convex portion constituting the clad portion.
  • the recess is formed to have a width that can prevent transmission of electromagnetic waves that do not require conversion.
  • the uneven structure may be a line and space structure.
  • the waveguide may be adjusted to a length such that the predetermined wavelength ⁇ is 0.75 ⁇ m or more.
  • the core portion can be formed of silicon or silicon oxide.
  • the heat-electromagnetic wave conversion member of the present invention is characterized by having a plurality of heat-electromagnetic wave conversion structures of the present invention.
  • the heat-electromagnetic wave conversion member may have a plurality of two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths.
  • the wavelength-selective heat radiation apparatus of the present invention includes a heat source, a covering member that is made of a material having a specific electromagnetic wave transmission wavelength region, and covers the heat generation source.
  • a heat-electromagnetic wave conversion member that converts the heat-electromagnetic wave conversion member into the heat-electromagnetic wave conversion member, wherein the heat-electromagnetic wave conversion member has a plurality of heat-electromagnetic wave conversion structures of the present invention, and is disposed between the heat generation source and the covering member. It is characterized by being.
  • the wavelength-selective heating device of the present invention heats a material having a specific electromagnetic wave absorption wavelength region by irradiating the electromagnetic wave in the electromagnetic wave absorption wavelength region with a plurality of heat-electromagnetic wave conversion structures of the present invention.
  • the wavelength-selective heat dissipation method of the present invention is a device in which the heat source is covered with a covering member made of a material having a specific electromagnetic wave transmission wavelength region, and the heat of the present invention is between the heat source and the covering member.
  • An electromagnetic wave conversion structure is disposed, heat energy from the heat generation source is converted into an electromagnetic wave in the electromagnetic wave transmission wavelength region by the heat-electromagnetic wave conversion structure, and the electromagnetic wave is radiated to the covering member.
  • the wavelength-selective heating method of the present invention is a method of heating a material having a specific electromagnetic wave absorption wavelength range by irradiating the electromagnetic wave in the electromagnetic wave absorption wavelength range with energy to the heat-electromagnetic wave conversion structure of the present invention.
  • the energy is converted into an electromagnetic wave in the electromagnetic wave absorption wavelength range by the heat-electromagnetic wave conversion structure, and the electromagnetic wave is radiated to the covering member.
  • the method for manufacturing a heat-electromagnetic wave conversion structure includes a waveguide composed of a core portion that transmits electromagnetic waves and a clad portion that is made of metal and surrounds the core portion, and has heat and a predetermined wavelength ⁇ .
  • a core portion forming step for forming the core portion so that the waveguide has a predetermined width, and a standing wave by an electromagnetic wave having a wavelength ⁇ is generated by the waveguide.
  • An opening forming step of forming the opening so as to have a length that can be formed.
  • the core part forming step is performed by increasing or decreasing the thickness of the core part until it reaches a predetermined width.
  • the thickness of the core part is preferably formed to be 1 or less of 10 of the wavelength ⁇ of the electromagnetic wave.
  • the thickness of the core part may be formed to be less than 1 ⁇ m.
  • the opening forming step at least a part of the cladding is removed to form the opening.
  • a mask layer is formed in a portion where the opening of the waveguide is to be formed, and after the cladding is formed, the mask layer is removed to form the opening. Also good.
  • the heat-electromagnetic wave conversion structure of the present invention may be formed by controlling the length and width of the waveguide, and does not require periodicity. Therefore, the structure can be freely designed according to the purpose of use.
  • 1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention.
  • FIG. 1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention.
  • 1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention.
  • FIG. 3 is a process diagram showing a method for producing a heat-electromagnetic wave conversion structure of the present invention.
  • FIG. 3 is a process diagram showing a method for producing a heat-electromagnetic wave conversion structure of the present invention.
  • It is a schematic sectional drawing which shows the wavelength selective heat dissipation apparatus of this invention.
  • It is a schematic sectional drawing which shows the wavelength selective heating apparatus of this invention.
  • It is a graph which shows the relationship between the incident angle of the electromagnetic waves to the structure using periodicity, and the absorption factor of electromagnetic waves.
  • 4 is a graph showing the relationship between the incident angle of electromagnetic waves on the heat-electromagnetic wave conversion structure of the present invention and the absorption rate of electromagnetic waves.
  • the refractive index of silicon dioxide with respect to the wavelength of the electromagnetic wave (SiO 2) n is a graph showing the attenuation coefficient k.
  • 6 is a graph showing the relationship between the length of the waveguide of the heat-electromagnetic wave conversion structure of the present invention and the absorption rate of electromagnetic waves. 6 is a graph showing the relationship between the waveguide width of the heat-electromagnetic wave conversion structure of the present invention and the electromagnetic wave absorption rate.
  • the heat-electromagnetic wave conversion structure of the present invention is a structure for mutually converting heat and an electromagnetic wave having a predetermined wavelength ⁇ , and includes a core portion 2 that transmits electromagnetic waves and a core made of metal. It has a waveguide composed of a clad part 3 surrounding the part 2.
  • the wavelength ⁇ means the wavelength of an electromagnetic wave in a vacuum unless otherwise specified.
  • the waveguide is formed to have a length d capable of forming a standing wave by the electromagnetic wave having the wavelength ⁇ in , where ⁇ in is the wavelength in the waveguide of the electromagnetic wave to be converted.
  • the electromagnetic wave having the wavelength ⁇ in resonates in the waveguide.
  • the thermal vibration in the waveguide is converted into an electromagnetic wave having a wavelength ⁇ in .
  • the electromagnetic wave having the wavelength ⁇ in is converted into thermal vibration.
  • the heat-electromagnetic wave conversion structure according to the present invention does not require periodicity unlike the conventional wavelength selective heat radiation material, and only the length d of the waveguide needs to be controlled. The degree is high, and the manufacturing restrictions are low.
  • the width of the waveguide (the width of the core portion 2) is preferably narrow, and is less than or equal to 1/20 or less than 1/20, preferably less than 1/30, more preferably 40 or less of the wavelength ⁇ of the electromagnetic wave. It is better to be formed to 1 or less.
  • the width of the waveguide is less than 1 ⁇ m, preferably 500 nm or less, more preferably 200 nm or less.
  • the core part 2 is a part through which incident electromagnetic waves or generated electromagnetic waves can pass. Any material can be used as the material for the core 2 as long as it transmits electromagnetic waves. For example, silicon (Si) or silicon dioxide (SiO 2 ) can be used. Moreover, gas, such as air, may be sufficient and a vacuum may be sufficient.
  • the clad portion 3 is a portion that is made of a metal that reflects incident electromagnetic waves or generated electromagnetic waves and surrounds the core portion 2. Any material can be used as the material of the clad part 3 as long as it reflects electromagnetic waves. For example, metals such as aluminum, copper, gold, platinum, and tungsten can be used. A combination of these may also be used.
  • the single structure of the heat-electromagnetic wave conversion structure configured as described above has a weak function of converting heat and electromagnetic waves, but the heat-electromagnetic wave conversion member 10 having a plurality of them can increase the conversion of heat and electromagnetic waves. Can do. It should be noted that a periodic structure like a conventional wavelength-selective heat radiation material is unnecessary, and the arrangement of each structure in the heat-electromagnetic wave conversion member 10 may be arbitrary. In addition, the heat-electromagnetic wave conversion member 10 may include two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths d, thereby converting a plurality of electromagnetic waves.
  • a first structure having openings 4 capable of transmitting electromagnetic waves at both ends of the waveguide and a second structure having openings 4 capable of transmitting electromagnetic waves only at one end of the waveguide.
  • the first heat-electromagnetic wave converting structure 1 has a concavo-convex structure composed of a concave portion 5 and a convex portion 6, and the convex portion 6 and below the convex portion 6.
  • the waveguide is formed parallel to the substrate. Therefore, there is an advantage that the waveguide width t can be easily formed narrower than that in which the waveguide is formed perpendicular to the base material as in the prior art.
  • the core portion 2 may be a part of the convex portion 6 as shown in FIG. 1A as long as a waveguide can be formed, or as shown in FIG. You may arrange
  • the recessed part 5 may be filled with the material which can permeate
  • the length d of the waveguide needs to be adjusted as appropriate.
  • the heat-electromagnetic wave conversion member 10 may be mixed with two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths d.
  • two types of heat-electromagnetic wave conversion structures 11 and 12 having different waveguide lengths d 1 and d 2 can be mixed.
  • the concavo-convex structure may be formed in a line-and-space form as shown in FIG. 3, or may be formed in a lattice form as shown in FIG. Further, the concavo-convex structure does not require periodicity and may be formed randomly.
  • the recessed part 5 in the width
  • the width of the recess 5 is preferably formed smaller than ⁇ x / 2, and more preferably formed smaller than ⁇ x / 4. good.
  • the uneven structure can function as an electromagnetic shield, a wavelength to suppress the occurrence and absorption of lambda x or electromagnetic waves.
  • the width of the recess is limited as described above, a wavelength of 8 ⁇ m or more can be shielded, and for example, only a wavelength of 4 ⁇ m shorter than that can be emitted.
  • the width of the concave portion 5 may be determined based on the minimum width (one side of the square in FIG. 4) of the concave portion 5, but is preferably determined based on the maximum width (diagonal line of the square in FIG. 4). preferable.
  • the convex portion 6 may have a plurality of layered structures including the core portion 2 and the clad portion 3. If comprised in this way, a heat
  • a plurality of waveguides having different lengths may be formed on the convex portion 6.
  • a waveguide having a longer length on the substrate side than on the tip side of the convex portion 6 can be formed.
  • the second heat-electromagnetic wave conversion structure 9 is a concavo-convex structure including a concave portion 7 constituting the core portion 2 and a convex portion 8 constituting the clad portion 3.
  • the waveguide composed of the core part 2 and the clad part 3 is formed perpendicular to the base material 30 which is also a part of the clad part 3.
  • the waveguide has a closed tube structure with one end closed.
  • the width t of the waveguide (that is, the width t of the recess 7) is preferably as narrow as possible as described above. However, if the width t is too narrow, incident electromagnetic waves or generated electromagnetic waves can be passed. Disappear. Therefore, when the wavelength of the electromagnetic wave desired to be converted is ⁇ , at least the width in one direction of the recess 7 is formed to be ⁇ / 2 or more.
  • relief structure, and the structure of the width t 1 is wide line-and-space shape as shown in FIG. 8, may be the width t 1 and t 2 is wide lattice-like structure as shown in FIG.
  • the concavo-convex structure does not require periodicity and may be formed randomly.
  • the recessed part 7 may be filled with the material which can permeate
  • d (2m ⁇ 1) ⁇ in / 4 (where m is a natural number) Is to satisfy.
  • an error occurs in the length of the waveguide depending on the shape and the incident angle of light. Therefore, the length d of the waveguide needs to be adjusted as appropriate.
  • the concave portion 7 may be formed of a plurality of types having different depths. Thereby, a plurality of types of electromagnetic waves having different wavelengths and heat can be mutually converted by a plurality of types of waveguides having different lengths.
  • the manufacturing method of the heat-electromagnetic wave conversion structure 1 mainly includes a core portion forming step and an opening portion forming step.
  • the waveguide width t is determined in the core portion forming step, and the waveguide length d is determined in the opening portion forming step.
  • the core part 2 is formed so that the waveguide has a predetermined width t.
  • Any method may be used for forming the core portion 2.
  • a clad portion 31 is formed on the substrate 50, and as shown in FIG. 10 (b).
  • the core portion 2 may be formed on the clad portion 31 by sputtering or the like until the thickness reaches a predetermined width.
  • the core portion 2 may be formed to have a predetermined thickness or more, and the core portion 2 may be formed by reducing the thickness of the core portion 2 to a predetermined width t by etching or the like.
  • the thickness of the core part 2 is formed to be 1/10 or less than 1/10 of the wavelength ⁇ of the electromagnetic wave, preferably 1/15 or less, more preferably 1/20 or less. Is preferred.
  • the thickness of the core part 2 may be less than 1 ⁇ m, preferably 500 nm or less, more preferably 200 nm or less.
  • the opening 4 is formed in the waveguide so that the waveguide has a length d capable of forming a standing wave by an electromagnetic wave having a wavelength ⁇ .
  • the concave portion that becomes the core portion 2 is formed in the direction perpendicular to the base material, it is difficult to adjust or narrow the length d (depth of the concave portion) of the waveguide.
  • the manufacturing method of the heat-electromagnetic wave conversion structure 1 of the present application has an advantage that the waveguide width t is easily adjusted because the waveguide length d is determined by the distance between the openings.
  • the opening forming process may be any process as long as it forms the opening 4 of the waveguide.
  • the three-layer structure of the cladding portion 31, the core portion 2 that transmits electromagnetic waves, and the second cladding portion 32 made of metal is formed by sputtering or the like.
  • a mask layer 40 having a pattern for forming the opening 4 is formed on the surface of the second cladding portion 32 by using a photolithography technique, a nanoimprint technique, or the like.
  • the thickness of the mask layer 40 is appropriately determined in consideration of the selection ratio.
  • the opening 4 may be formed by removing a part of the second cladding portion 32 so that at least the core portion 2 is exposed by etching or the like. Note that the recess formed at this time may have a depth that reaches the core 2 or the first cladding 31. 10D and 10E, the second cladding portion 32 and the core portion 2 are removed to form the opening 4.
  • a layer 60 having high thermal conductivity may be provided.
  • the layer 60 may be formed in advance on the substrate 50, or may be formed after the opening 4 is formed, and the timing is not particularly limited.
  • a mask layer 40 is formed in a portion where the opening 4 of the waveguide is to be formed, and after the cladding 3 is formed, the mask layer 40 is removed to open the opening.
  • a lift-off technique for forming 4 may be used.
  • the mask layer may be formed at least before the cladding portion 3 is completed.
  • the core portion 2 that transmits electromagnetic waves is sputtered on a base material 50 made of a metal that functions as the first cladding portion 31 through an intermediate layer 35 if necessary. Etc. are formed.
  • the intermediate layer 35 is for improving the adhesion between the substrate 50 and the core portion 2.
  • the adhesion can be improved by forming the intermediate layer 35 made of titanium therebetween.
  • the intermediate layer 35 may be formed using, for example, sputtering.
  • a mask layer 40 is formed on a portion of the core portion 2 opposite to the first clad portion 31 where the opening 4 is to be formed.
  • an intermediate layer 35 is formed as shown in FIG.
  • a second clad portion 32 made of metal is formed on the core portion 2 via the intermediate layer 35.
  • the mask layer 40 is removed to form the opening 4.
  • the mask layer 40 is formed so as to have a pattern for forming the opening 4 on the surface of the core portion 2 using a photolithography technique, a nanoimprint technique, or the like.
  • the mask layer 40 may be removed by etching or the like.
  • the first device includes a heat source 101, a covering member 102 made of a material having a specific electromagnetic wave transmission wavelength region, and covering the heat source 101, and the heat of the heat source 101 in the electromagnetic wave transmission wavelength region.
  • a wavelength-selective heat dissipation device 100 that includes a heat-electromagnetic wave conversion member 10 that converts the electromagnetic wave 103 and efficiently radiates the heat of the heat source 101.
  • any heat source may be used as long as it generates heat.
  • a heat generating electronic device is applicable.
  • the covering member 102 is a member that covers the heat source 101 for various reasons, and refers to a member that inhibits the heat of the heat source 101 from radiating to the outside. However, it is limited to those made of a material having a specific electromagnetic wave transmission wavelength range.
  • the heat-electromagnetic wave conversion member 10 has a plurality of the heat-electromagnetic wave conversion structures of the present invention described above, and is disposed between the heat source 101 and the covering member 102.
  • the length d of the waveguide is adjusted so as to convert the heat of the heat source 101 into the electromagnetic wave 103 in the electromagnetic wave transmission wavelength region.
  • the heat-electromagnetic wave conversion member 10 may include two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths as long as the heat-electromagnetic wave conversion member 10 can convert the electromagnetic wave 103 into the electromagnetic wave transmission wavelength region.
  • Such a wavelength-selective heat radiating device 100 corresponds to a device that efficiently radiates heat from a heat source such as an electronic device housed in a material having poor thermal conductivity such as a plastic material.
  • the second device irradiates a material 201 having a specific electromagnetic wave absorption wavelength region with an electromagnetic wave 202 in the electromagnetic wave absorption wavelength region and efficiently heats the material 201.
  • Heating device 200 The wavelength-selective heating device 200 mainly includes a heat-electromagnetic wave conversion member 10 and an energy supply source 203 that supplies energy to the heat-electromagnetic wave conversion member 10.
  • the heat-electromagnetic wave conversion member 10 has a plurality of the heat-electromagnetic wave conversion structures 1 of the present invention described above, and is disposed between the energy supply source and the material to be heated.
  • the length d of the waveguide is adjusted so as to convert energy such as heat from an energy supply source and electromagnetic waves into electromagnetic waves in the electromagnetic wave absorption wavelength region.
  • the heat-electromagnetic wave conversion member 10 may include two or more types of heat-electromagnetic wave conversion structures 1 having different waveguide lengths as long as the heat-electromagnetic wave conversion member 10 can convert electromagnetic waves in the electromagnetic wave absorption wavelength region.
  • Any energy supply source may be used as long as it can supply energy to the heat-electromagnetic wave conversion member 10.
  • an energy supply source that supplies heat energy to the heat-electromagnetic wave conversion member 10 from a heat source such as an electric heater. Use it.
  • a power source that supplies electric energy to the clad portion 3 and heats it by energization may be used.
  • a wavelength selective heating device for example, a radiation gas having a specific electromagnetic wave absorption wavelength region (such as a hydrocarbon gas reforming system that generates hydrogen from a hydrocarbon gas such as natural gas or methane gas) ( This applies to materials 201) that are efficiently heated. Further, for example, a snow melting device that efficiently heats water molecules (material 201) is also applicable.
  • a radiation gas having a specific electromagnetic wave absorption wavelength region such as a hydrocarbon gas reforming system that generates hydrogen from a hydrocarbon gas such as natural gas or methane gas
  • a snow melting device that efficiently heats water molecules (material 201) is also applicable.
  • Simulation 1 the difference between the conventional structure focusing on periodicity and the structure of the present invention will be described using simulation.
  • the concavo-convex structure was a line-and-space with a concave width of 3.5 ⁇ m, a convex height of 5.4 ⁇ m, and a pitch of 4.8 ⁇ m.
  • the incident angle of the electromagnetic wave was set to seven types that differed by 10 ° from 0 ° to 60 ° with the line-and-space line as the axis.
  • the simulation was performed assuming that the material of the concavo-convex structure was aluminum and the concave portion was air.
  • the wavelength to be absorbed was calculated every 0.02 ⁇ m from 1.5 to 10 ⁇ m.
  • FIG. 14 it can be seen that the wavelength of the absorption peak differs depending on the incident angle of the electromagnetic wave. Therefore, an absorptance was simulated by comprehensively considering electromagnetic waves from various longitudes and incident angles (latitudes). The result is shown in FIG. As shown in FIG. 15, the wavelength selectivity of the absorption peak is greatly reduced. That is, in a structure that focuses on periodicity as in the prior art, there is wavelength selectivity when focusing on electromagnetic waves having a constant incident angle, but when considering electromagnetic waves of various incident angles, the wavelength It can be seen that the selectivity is low.
  • the concavo-convex structure was a line and space in which the length of the waveguide (width of the convex portion) was 1 ⁇ m, the height of the convex portion was 250 nm, the thickness of the core portion was 50 nm, the thickness of the cladding portion was 200 nm, and the pitch was 2 ⁇ m.
  • the incident angle of the electromagnetic wave was set to seven types that differed by 10 ° from 0 ° to 60 ° with the line-and-space line as the axis.
  • the simulation was performed assuming that the material of the cladding part 3 is aluminum, the material of the core part 2 is silicon dioxide (SiO 2 ), and the concave part is air.
  • the wavelength to be absorbed was calculated every 0.02 ⁇ m from 1.5 to 10 ⁇ m.
  • the numerical values shown in FIG. 17 assuming silicon dioxide (SiO 2 ) were used for the refractive index n and attenuation coefficient k of the core with respect to the wavelength of the electromagnetic wave.
  • the relationship between the length d and width t of the waveguide and the electromagnetic wave will be described using simulation.
  • an electromagnetic wave not only a single plane wave in a direction perpendicular to the heat-electromagnetic wave conversion structure as in the past is considered, but an electromagnetic wave from various longitudes and incident angles (latitudes) is considered. Absorption rate was calculated. Further, the wavelength to be absorbed was calculated every 0.05 ⁇ m from 2.0 to 8.0 ⁇ m.
  • the numerical values shown in FIG. 17 assuming silicon dioxide (SiO 2 ) were used for the refractive index n and attenuation coefficient k of the core with respect to the wavelength of the electromagnetic wave.
  • the concavo-convex structure is a line and space in which the height of the convex portion is 150 nm, the thickness of the core portion is 50 nm, the thickness of the cladding portion is 100 nm, and the pitch is 2 ⁇ m, and the waveguide length d (the width of the convex portion) is 0. Eleven types differing by 0.1 ⁇ m from 5 to 1.5 ⁇ m.
  • FIG. 18 shows that the wavelength of the absorbed electromagnetic wave increases as the waveguide length d is increased.
  • the concavo-convex structure is a line and space in which the length of the waveguide (width of the convex portion) is 1 ⁇ m, the thickness of the cladding is 100 nm, and the pitch is 2 ⁇ m, and the width t of the waveguide is 11 types that are different by 25 nm from 50 to 300 nm. did. Further, the wavelength to be absorbed was calculated every 0.1 ⁇ m from 3.0 to 8.0 ⁇ m.
  • FIG. 19 shows that the absorption rate of electromagnetic waves increases when the waveguide width t is reduced.

Abstract

Provided are: a heat-electromagnetic wave conversion structure with an optimum shape for efficient conversion of heat and electromagnetic waves; a heat-electromagnetic wave conversion member; a wavelength selective heat dissipation device; a wavelength selective heating device; a wavelength selective heat dissipation method; a wavelength selective heating method; and a method for manufacturing a heat-electromagnetic wave conversion structure. The heat-electromagnetic wave conversion structure is a structure for mutually converting heat and electromagnetic waves of a predetermined wavelength λ, and comprises a waveguide configured from a core portion 2 which transmits the electromagnetic waves and a clad portion 3 made of metal and enclosing the core portion 2. The heat-electromagnetic wave conversion member 10 includes an arrangement of a plurality of said heat-electromagnetic wave conversion structures. The heat-electromagnetic wave conversion structure and the heat-electromagnetic wave conversion member 10 are utilized in the wavelength selective heat dissipation device, the wavelength selective heating device, the wavelength selective heat dissipation method, the wavelength selective heating method, and the method for manufacturing a heat-electromagnetic wave conversion structure.

Description

熱-電磁波変換構造、熱-電磁波変換部材、波長選択性放熱機器、波長選択性加熱機器、波長選択性放熱方法、波長選択性加熱方法および熱-電磁波変換構造の製造方法Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength-selective heat dissipation device, wavelength-selective heating device, wavelength-selective heat dissipation method, wavelength-selective heating method, and manufacturing method of heat-electromagnetic wave conversion structure
 本発明は、熱と所定波長の電磁波を相互に変換する熱-電磁波変換構造とこれを利用した熱-電磁波変換部材、波長選択性放熱機器、波長選択性加熱機器、波長選択性放熱方法、波長選択性加熱方法および熱-電磁波変換構造の製造方法に関するものである。 The present invention relates to a heat-electromagnetic wave conversion structure that mutually converts heat and an electromagnetic wave having a predetermined wavelength, a heat-electromagnetic wave conversion member using the structure, a wavelength-selective heat dissipation device, a wavelength-selective heating device, a wavelength-selective heat dissipation method, a wavelength The present invention relates to a selective heating method and a method for producing a heat-electromagnetic wave conversion structure.
 熱の伝わり方には物体内部で分子間の振動や自由電子による熱移動によって熱が伝わる熱伝導、物体の熱が流体に熱伝導で伝わり、熱を受けた当該流体が移動することで熱も移動する熱伝達、物体の熱エネルギーが電磁波となって放射されることにより熱が移動する熱放射の3つがある。このうち、熱を電磁波に変換する波長選択性熱放射材料を用い、熱放射をコントロールすることにより、物体の加熱効率を向上する技術(例えば、特許文献1)や、放熱効率を向上する技術(例えば、特許文献2)が検討されている。 Heat is transmitted through heat transfer by vibration between molecules and free electrons in the body, heat from the body is transferred to the fluid by heat conduction, and the fluid that receives the heat moves to transfer heat. There are three types of heat transfer: heat transfer that moves, and heat radiation that moves when heat energy of an object is radiated as electromagnetic waves. Among these, a technology for improving the heating efficiency of an object by using a wavelength-selective heat radiation material that converts heat into electromagnetic waves and controlling the heat radiation (for example, Patent Document 1) or a technology for improving the heat radiation efficiency ( For example, Patent Document 2) has been studied.
特開2004-238230JP 2004-238230 A 特開2010-27831JP 2010-27831 A
 しかしながら、従来の波長選択性熱放射材料は、周期的な構造を必要とするため設計の自由度が低く、製造にも制約が多かった。また、従来の波長選択性熱放射材料は、当該構造に対して垂直な方向の単一の平面波である電磁波しか考慮されておらず、種々の方向性を有する電磁波を考慮していないため、変換効率はまだ十分ではなかった。 However, the conventional wavelength-selective heat radiation material requires a periodic structure, so that the degree of freedom in design is low and there are many restrictions on manufacturing. In addition, the conventional wavelength-selective heat radiation material only considers electromagnetic waves that are single plane waves in a direction perpendicular to the structure, and does not consider electromagnetic waves having various directions. The efficiency was still not sufficient.
 そこで本発明は、更に効率良く熱と電磁波を変換できる最適な形状の熱-電磁波変換構造を提供すること、当該熱-電磁波変換構造を利用した熱-電磁波変換部材、波長選択性放熱機器、波長選択性加熱機器、波長選択性放熱方法、波長選択性加熱方法および熱-電磁波変換構造の製造方法を提供することを目的とする。 Accordingly, the present invention provides a heat-electromagnetic wave conversion structure having an optimal shape capable of converting heat and electromagnetic waves more efficiently, a heat-electromagnetic wave conversion member, a wavelength-selective heat dissipation device, a wavelength, and the like using the heat-electromagnetic wave conversion structure. It is an object of the present invention to provide a selective heating device, a wavelength selective heat dissipation method, a wavelength selective heating method, and a method for producing a heat-electromagnetic wave conversion structure.
 上記目的を達成するために、本発明の熱-電磁波変換構造は、熱と所定波長λの電磁波を相互に変換する構造であって、前記電磁波を透過するコア部と、金属からなり前記コア部を囲うクラッド部とで構成された導波路を有し、前記導波路は、前記電磁波による定常波を形成可能な長さを有するように形成されることを特徴とする。 In order to achieve the above object, the heat-electromagnetic wave conversion structure of the present invention is a structure for mutually converting heat and an electromagnetic wave having a predetermined wavelength λ, and comprises a core part that transmits the electromagnetic wave, a metal part, and the core part The waveguide has a length that can form a standing wave by the electromagnetic wave.
 この場合、前記導波路は、前記電磁波の波長λの10の1以下の幅を有するように形成される方が好ましい。例えば、前記導波路は、1μm未満の幅を有するように形成される。 In this case, the waveguide is preferably formed to have a width of 1 or less of 10 of the wavelength λ of the electromagnetic wave. For example, the waveguide is formed to have a width of less than 1 μm.
 また、前記導波路は、前記電磁波を透過可能な開口部を両端に有する構造である。この場合、凹部と凸部とからなる凹凸構造を有し、前記凸部およびその下方に前記コア部と前記クラッド部を構成する層状構造を有する方が好ましい。また、前記凸部およびその下方に前記コア部と前記クラッド部からなる複数の層状構造を有するようにしても良い。更に、前記複数の層状構造は、長さの異なる複数の導波路を構成するようにしても良い。また、前記凹部は、変換を望まない電磁波の透過を防止できる幅に形成される方が好ましい。また、前記コア部と前記クラッド部の間に密着性を向上するための中間層を有するようにしても良い。 Further, the waveguide has a structure having openings at both ends that can transmit the electromagnetic wave. In this case, it is preferable to have a concavo-convex structure composed of a concave portion and a convex portion, and to have a layered structure that constitutes the core portion and the clad portion below the convex portion. Moreover, you may make it have a some layered structure which consists of the said core part and the said clad part under the said convex part. Further, the plurality of layered structures may constitute a plurality of waveguides having different lengths. Further, it is preferable that the concave portion is formed to have a width that can prevent transmission of electromagnetic waves that do not require conversion. Moreover, you may make it have an intermediate | middle layer for improving adhesiveness between the said core part and the said clad part.
 また、前記導波路は、前記電磁波を透過可能な開口部を一端に有する構造であっても良い。この場合、前記導波路は、前記コア部を構成する凹部と前記クラッド部を構成する凸部とからなる凹凸構造である。また、前記凹部は、変換を望まない電磁波の透過を防止できる幅に形成される。また、前記凹凸構造は、ラインアンドスペース状の構造とすることができる。 In addition, the waveguide may have a structure having an opening that can transmit the electromagnetic wave at one end. In this case, the waveguide has a concavo-convex structure including a concave portion constituting the core portion and a convex portion constituting the clad portion. The recess is formed to have a width that can prevent transmission of electromagnetic waves that do not require conversion. The uneven structure may be a line and space structure.
 また、電磁波として赤外線を考慮する場合、前記導波路は、前記所定波長λが0.75μm以上になる長さに調節されたものとすることができる。また、前記コア部は、ケイ素又は酸化ケイ素で形成することができる。 In addition, when infrared rays are considered as electromagnetic waves, the waveguide may be adjusted to a length such that the predetermined wavelength λ is 0.75 μm or more. The core portion can be formed of silicon or silicon oxide.
 また、本発明の熱-電磁波変換部材は、本発明の熱-電磁波変換構造を複数有することを特徴とする。この場合、熱-電磁波変換部材は、導波路の長さが異なる2種類以上の熱-電磁波変換構造を複数有していても良い。 The heat-electromagnetic wave conversion member of the present invention is characterized by having a plurality of heat-electromagnetic wave conversion structures of the present invention. In this case, the heat-electromagnetic wave conversion member may have a plurality of two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths.
 また、本発明の波長選択性熱放射機器は、発熱源と、特定の電磁波透過波長域を有する材料からなり前記発熱源を覆う被覆部材と、前記発熱源の熱を前記電磁波透過波長域の電磁波に変換する熱-電磁波変換部材と、からなるものであって、前記熱-電磁波変換部材は、本発明の熱-電磁波変換構造を複数有し、前記発熱源と前記被覆部材との間に配置されるものであることを特徴とする。 The wavelength-selective heat radiation apparatus of the present invention includes a heat source, a covering member that is made of a material having a specific electromagnetic wave transmission wavelength region, and covers the heat generation source. A heat-electromagnetic wave conversion member that converts the heat-electromagnetic wave conversion member into the heat-electromagnetic wave conversion member, wherein the heat-electromagnetic wave conversion member has a plurality of heat-electromagnetic wave conversion structures of the present invention, and is disposed between the heat generation source and the covering member. It is characterized by being.
 また、本発明の波長選択性加熱機器は、特定の電磁波吸収波長域を有する材料に当該電磁波吸収波長域の電磁波を照射して加熱するものであって、本発明の熱-電磁波変換構造を複数有する熱-電磁波変換部材と、前記熱-電磁波変換部材にエネルギーを供給するエネルギー供給源と、を具備することを特徴とする。 The wavelength-selective heating device of the present invention heats a material having a specific electromagnetic wave absorption wavelength region by irradiating the electromagnetic wave in the electromagnetic wave absorption wavelength region with a plurality of heat-electromagnetic wave conversion structures of the present invention. A heat-electromagnetic wave conversion member, and an energy supply source for supplying energy to the heat-electromagnetic wave conversion member.
 また、本発明の波長選択性放熱方法は、発熱源が特定の電磁波透過波長域を有する材料からなる被覆部材で覆われている機器において、前記発熱源と前記被覆部材の間に本発明の熱-電磁波変換構造を配置し、前記発熱源からの熱エネルギーを前記熱-電磁波変換構造によって前記電磁波透過波長域の電磁波に変換し、前記電磁波を前記被覆部材に放射することを特徴とする。 The wavelength-selective heat dissipation method of the present invention is a device in which the heat source is covered with a covering member made of a material having a specific electromagnetic wave transmission wavelength region, and the heat of the present invention is between the heat source and the covering member. An electromagnetic wave conversion structure is disposed, heat energy from the heat generation source is converted into an electromagnetic wave in the electromagnetic wave transmission wavelength region by the heat-electromagnetic wave conversion structure, and the electromagnetic wave is radiated to the covering member.
 また、本発明の波長選択性加熱方法は、特定の電磁波吸収波長域を有する材料に当該電磁波吸収波長域の電磁波を照射して加熱する方法であって、本発明の熱-電磁波変換構造にエネルギーを供給し、前記エネルギーを前記熱-電磁波変換構造によって前記電磁波吸収波長域の電磁波に変換し、当該電磁波を前記被覆部材に放射することを特徴とする。 The wavelength-selective heating method of the present invention is a method of heating a material having a specific electromagnetic wave absorption wavelength range by irradiating the electromagnetic wave in the electromagnetic wave absorption wavelength range with energy to the heat-electromagnetic wave conversion structure of the present invention. The energy is converted into an electromagnetic wave in the electromagnetic wave absorption wavelength range by the heat-electromagnetic wave conversion structure, and the electromagnetic wave is radiated to the covering member.
 また、本発明の熱-電磁波変換構造の製造方法は、電磁波を透過するコア部と、金属からなり前記コア部を囲うクラッド部とで構成された導波路を有し、熱と所定波長λの電磁波を相互に変換する熱-電磁波変換構造の製造方法において、前記導波路が所定の幅となるように前記コア部を形成するコア部形成工程と、前記導波路が波長λの電磁波による定常波を形成可能な長さとなるように開口部を形成する開口部形成工程と、を有することを特徴とする。 The method for manufacturing a heat-electromagnetic wave conversion structure according to the present invention includes a waveguide composed of a core portion that transmits electromagnetic waves and a clad portion that is made of metal and surrounds the core portion, and has heat and a predetermined wavelength λ. In a manufacturing method of a heat-electromagnetic wave conversion structure for mutually converting electromagnetic waves, a core portion forming step for forming the core portion so that the waveguide has a predetermined width, and a standing wave by an electromagnetic wave having a wavelength λ is generated by the waveguide. An opening forming step of forming the opening so as to have a length that can be formed.
 この場合、前記コア部形成工程は、前記コア部の厚さが所定の幅になるまで増加又は減少させて形成するものである。また、前記コア部形成工程は、前記コア部の厚さを前記電磁波の波長λの10の1以下に形成する方が好ましい。例えば、前記コア部形成工程は、前記コア部の厚さを1μm未満に形成すれば良い。 In this case, the core part forming step is performed by increasing or decreasing the thickness of the core part until it reaches a predetermined width. In the core part forming step, the thickness of the core part is preferably formed to be 1 or less of 10 of the wavelength λ of the electromagnetic wave. For example, in the core part forming step, the thickness of the core part may be formed to be less than 1 μm.
 また、前記開口部形成工程は、少なくとも前記クラッド部の一部を除去して前記開口部を形成するものである。また、前記開口部形成工程は、前記導波路の開口部を形成する部分にマスク層を形成し、前記クラッド部を形成した後に当該マスク層を除去して前記開口部を形成するものであっても良い。 In the opening forming step, at least a part of the cladding is removed to form the opening. In the opening forming step, a mask layer is formed in a portion where the opening of the waveguide is to be formed, and after the cladding is formed, the mask layer is removed to form the opening. Also good.
 本発明の熱-電磁波変換構造は、導波路の長さと幅を制御して形成すれば良く、周期性を必要としないため、使用目的に合わせて自由に構造を設計することができる。 The heat-electromagnetic wave conversion structure of the present invention may be formed by controlling the length and width of the waveguide, and does not require periodicity. Therefore, the structure can be freely designed according to the purpose of use.
本発明の熱-電磁波変換構造を示す概略断面図である。1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略断面図である。1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略斜視図である。1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略斜視図である。1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略断面図である。1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略断面図である。1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略断面図である。1 is a schematic cross-sectional view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略斜視図である。1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造を示す概略斜視図である。1 is a schematic perspective view showing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造の製造方法を示す工程図である。FIG. 3 is a process diagram showing a method for producing a heat-electromagnetic wave conversion structure of the present invention. 本発明の熱-電磁波変換構造の製造方法を示す工程図である。FIG. 3 is a process diagram showing a method for producing a heat-electromagnetic wave conversion structure of the present invention. 本発明の波長選択性放熱機器を示す概略断面図である。It is a schematic sectional drawing which shows the wavelength selective heat dissipation apparatus of this invention. 本発明の波長選択性加熱機器を示す概略断面図である。It is a schematic sectional drawing which shows the wavelength selective heating apparatus of this invention. 周期性を用いた構造への電磁波の入射角度と電磁波の吸収率との関係を示すグラフである。It is a graph which shows the relationship between the incident angle of the electromagnetic waves to the structure using periodicity, and the absorption factor of electromagnetic waves. 周期性を用いた構造と電磁波の吸収率との関係を示すグラフである。It is a graph which shows the relationship between the structure using periodicity, and the absorption factor of electromagnetic waves. 本発明の熱-電磁波変換構造への電磁波の入射角度と電磁波の吸収率との関係を示すグラフである。4 is a graph showing the relationship between the incident angle of electromagnetic waves on the heat-electromagnetic wave conversion structure of the present invention and the absorption rate of electromagnetic waves. 電磁波の波長に対する二酸化ケイ素(SiO)の屈折率n、減衰係数kを示すグラフである。The refractive index of silicon dioxide with respect to the wavelength of the electromagnetic wave (SiO 2) n, is a graph showing the attenuation coefficient k. 本発明の熱-電磁波変換構造の導波路の長さと電磁波の吸収率との関係を示すグラフである。6 is a graph showing the relationship between the length of the waveguide of the heat-electromagnetic wave conversion structure of the present invention and the absorption rate of electromagnetic waves. 本発明の熱-電磁波変換構造の導波路の幅と電磁波の吸収率との関係を示すグラフである。6 is a graph showing the relationship between the waveguide width of the heat-electromagnetic wave conversion structure of the present invention and the electromagnetic wave absorption rate.
 以下に、本発明の熱-電磁波変換構造について説明する。本発明の熱-電磁波変換構造は、図1~図9に示すように、熱と所定波長λの電磁波を相互に変換する構造であって、電磁波を透過するコア部2と、金属からなりコア部2を囲うクラッド部3とで構成された導波路を有するものである。なお、波長λとは、特に示さない限り、真空中における電磁波の波長を意味する。 Hereinafter, the heat-electromagnetic wave conversion structure of the present invention will be described. As shown in FIGS. 1 to 9, the heat-electromagnetic wave conversion structure of the present invention is a structure for mutually converting heat and an electromagnetic wave having a predetermined wavelength λ, and includes a core portion 2 that transmits electromagnetic waves and a core made of metal. It has a waveguide composed of a clad part 3 surrounding the part 2. The wavelength λ means the wavelength of an electromagnetic wave in a vacuum unless otherwise specified.
 また、導波路は、変換したい電磁波の導波路内の波長をλinとした場合、波長λinの電磁波による定常波を形成可能な長さdを有するように形成される。これにより、導波路内では、波長λinの電磁波が共振する。その結果、導波路内の熱振動は波長λinの電磁波に変換される。また、波長λinの電磁波は熱震動に変換される。このように、本発明の熱-電磁波変換構造は、従来の波長選択性熱放射材料のような周期性を必要とせず、導波路の長さdのみを制御すれば良いので、構造設計の自由度が高く、また、製造上の制約も低くなる。 Further, the waveguide is formed to have a length d capable of forming a standing wave by the electromagnetic wave having the wavelength λ in , where λ in is the wavelength in the waveguide of the electromagnetic wave to be converted. As a result, the electromagnetic wave having the wavelength λ in resonates in the waveguide. As a result, the thermal vibration in the waveguide is converted into an electromagnetic wave having a wavelength λ in . In addition, the electromagnetic wave having the wavelength λ in is converted into thermal vibration. As described above, the heat-electromagnetic wave conversion structure according to the present invention does not require periodicity unlike the conventional wavelength selective heat radiation material, and only the length d of the waveguide needs to be controlled. The degree is high, and the manufacturing restrictions are low.
 また、本発明者等が鋭意研究した結果、導波路は、コア部2の幅が狭いほどプラズモン共鳴を生じ、熱と電磁波相互の変換効率が増大することがわかった。したがって、導波路の幅(コア部2の幅)は、狭い方が良く、電磁波の波長λの20分の1以下又は20分の1未満、好ましくは30分の1以下、更に好ましくは、40の1以下に形成される方が良い。例えば、変換したい電磁波が波長10μmの赤外線(λ≧0.75μm)である場合、導波路の幅を1μm未満、好ましくは500nm以下、更に好ましくは200nm以下とするのが良い。 Further, as a result of intensive studies by the present inventors, it has been found that the waveguide causes plasmon resonance as the width of the core portion 2 is narrower, and the conversion efficiency between heat and electromagnetic waves increases. Therefore, the width of the waveguide (the width of the core portion 2) is preferably narrow, and is less than or equal to 1/20 or less than 1/20, preferably less than 1/30, more preferably 40 or less of the wavelength λ of the electromagnetic wave. It is better to be formed to 1 or less. For example, when the electromagnetic wave to be converted is an infrared ray having a wavelength of 10 μm (λ ≧ 0.75 μm), the width of the waveguide is less than 1 μm, preferably 500 nm or less, more preferably 200 nm or less.
 コア部2は、入射した電磁波又は発生した電磁波が透過可能な部分である。コア部2の材料としては、電磁波を透過するものであればどのようなものでも良いが、例えばケイ素(Si)や二酸化ケイ素(SiO)を用いることができる。また、空気等の気体であっても良いし、真空であっても良い。 The core part 2 is a part through which incident electromagnetic waves or generated electromagnetic waves can pass. Any material can be used as the material for the core 2 as long as it transmits electromagnetic waves. For example, silicon (Si) or silicon dioxide (SiO 2 ) can be used. Moreover, gas, such as air, may be sufficient and a vacuum may be sufficient.
 クラッド部3は、入射した電磁波又は発生した電磁波を反射する金属からなりコア部2を囲う部分である。クラッド部3の材料としては、電磁波を反射するものであればどのようなものでも良いが、例えばアルミニウム、銅、金、プラチナ、タングステン等の金属を用いることができる。また、これらの組み合わせであっても構わない。 The clad portion 3 is a portion that is made of a metal that reflects incident electromagnetic waves or generated electromagnetic waves and surrounds the core portion 2. Any material can be used as the material of the clad part 3 as long as it reflects electromagnetic waves. For example, metals such as aluminum, copper, gold, platinum, and tungsten can be used. A combination of these may also be used.
 このように構成される熱-電磁波変換構造は、単数では熱と電磁波を変換する機能は弱いが、これらを複数有する熱-電磁波変換部材10とすることにより、熱と電磁波の変換を大きくすることができる。なお、従来の波長選択性熱放射材料のような周期的な構造は不要であり、熱-電磁波変換部材10における各構造の配置は任意で良い。また、熱-電磁波変換部材10は、導波路の長さdが異なる2種類以上の熱-電磁波変換構造を混在させても良く、これにより、複数の電磁波を変換させることができる。 The single structure of the heat-electromagnetic wave conversion structure configured as described above has a weak function of converting heat and electromagnetic waves, but the heat-electromagnetic wave conversion member 10 having a plurality of them can increase the conversion of heat and electromagnetic waves. Can do. It should be noted that a periodic structure like a conventional wavelength-selective heat radiation material is unnecessary, and the arrangement of each structure in the heat-electromagnetic wave conversion member 10 may be arbitrary. In addition, the heat-electromagnetic wave conversion member 10 may include two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths d, thereby converting a plurality of electromagnetic waves.
 次に、本発明の熱-電磁波変換構造の具体的な形状を説明する。本発明の熱-電磁波変換構造には、電磁波を透過可能な開口部4を導波路の両端に有する第1の構造と、電磁波を透過可能な開口部4を導波路の一端のみに有する第2の構造の2つがある。 Next, a specific shape of the heat-electromagnetic wave conversion structure of the present invention will be described. In the heat-electromagnetic wave conversion structure of the present invention, a first structure having openings 4 capable of transmitting electromagnetic waves at both ends of the waveguide, and a second structure having openings 4 capable of transmitting electromagnetic waves only at one end of the waveguide. There are two structures.
 第1の熱-電磁波変換構造1は、例えば、図1(a)、(b)に示すように、凹部5と凸部6とからなる凹凸構造を有し、当該凸部6およびその下方に、コア部2とクラッド部3からなる導波路を構成する層状構造を有する。すなわち、クラッド部3として機能する基材の表面にコア部2が形成され、更にその上にクラッド部3が形成された構造である。この場合、導波路は、基材に対し平行に形成される。したがって、従来技術のように導波路が基材に対して垂直に形成されるものと比較し、導波路の幅tを狭く形成し易いというメリットがある。また、導波路の長さdも調節し易いというメリットがある。なお、コア部2は、導波路を形成できれば、図1(a)に示すように凸部6の一部となっていても良いし、図1(b)に示すように、凸部6の下方に配置されていても良い。また、凹部5は、変換したい電磁波を透過可能な材料で充填されていても良い。 For example, as shown in FIGS. 1A and 1B, the first heat-electromagnetic wave converting structure 1 has a concavo-convex structure composed of a concave portion 5 and a convex portion 6, and the convex portion 6 and below the convex portion 6. And a layered structure constituting a waveguide composed of the core portion 2 and the clad portion 3. That is, the core portion 2 is formed on the surface of the base material functioning as the cladding portion 3, and the cladding portion 3 is further formed thereon. In this case, the waveguide is formed parallel to the substrate. Therefore, there is an advantage that the waveguide width t can be easily formed narrower than that in which the waveguide is formed perpendicular to the base material as in the prior art. Further, there is an advantage that the length d of the waveguide can be easily adjusted. The core portion 2 may be a part of the convex portion 6 as shown in FIG. 1A as long as a waveguide can be formed, or as shown in FIG. You may arrange | position below. Moreover, the recessed part 5 may be filled with the material which can permeate | transmit the electromagnetic waves to convert.
 第1の構造において導波路内に定常波が生じる条件は、導波路の長さをd、発生させたい電磁波又は吸収させたい電磁波の導波路内の波長をλinとすると、
 d=mλin/2 (ただし、mは自然数)
を満たすことである。なお、実際の構造においては、形状や光の入射角度によって導波路の長さに誤差が生じるため、導波路の長さdは適宜調節する必要がある。
In the first structure, the condition for generating a standing wave in the waveguide is that the length of the waveguide is d, and the wavelength of the electromagnetic wave to be generated or absorbed is λ in .
d = mλ in / 2 (where m is a natural number)
Is to satisfy. In an actual structure, an error occurs in the length of the waveguide depending on the shape and the incident angle of light. Therefore, the length d of the waveguide needs to be adjusted as appropriate.
 なお、熱-電磁波変換部材10には、導波路の長さdが異なる2種類以上の熱-電磁波変換構造を混在させても良い。例えば、図2(a)、(b)のように、導波路の長さdとdが異なる2種類の熱-電磁波変換構造11、12を混在させることができる。 The heat-electromagnetic wave conversion member 10 may be mixed with two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths d. For example, as shown in FIGS. 2A and 2B, two types of heat-electromagnetic wave conversion structures 11 and 12 having different waveguide lengths d 1 and d 2 can be mixed.
 凹凸構造は、図3に示すように、ラインアンドスペース状に形成しても良いし、図4に示すように、格子状に形成しても良い。また、凹凸構造に周期性は不要であり、ランダムに形成しても良い。 The concavo-convex structure may be formed in a line-and-space form as shown in FIG. 3, or may be formed in a lattice form as shown in FIG. Further, the concavo-convex structure does not require periodicity and may be formed randomly.
 また、凹部5は、変換を望まない電磁波の透過を防止できる幅に形成しても良い。つまり、凹部5のクラッド部3を電磁シールドに利用することが可能である。この場合、変換を望まない電磁波の波長をλ(>λ)とすると、凹部5の幅はλ/2より小さく形成する方が良く、更に好ましくはλ/4より小さく形成する方が良い。これにより、凹凸構造が電磁シールドとして機能し、波長がλ以上の電磁波の発生や吸収を抑制することができる。また、熱を所望の電磁波に変換したい場合、凹凸構造から波長がλ以上の電磁波を放出することがなくなるため、その分だけ熱をより効率的に所望の波長λの電磁波に変換することができる。例えば、二酸化ケイ素(SiO)をコア材料に使う場合、図17に示すように8μm~10μmの波長に吸収帯が存在する。このため選択した波長以外に、二酸化ケイ素(SiO)に依存する波長の放出が起きる。しかし、上述のように凹部の幅を制限してやれば8μm以上の波長をシールドすることができ、例えばそれより短い4μmの波長のみを放出することができる。なお、凹部5の幅は、凹部5の最小幅(図4では、正方形の一辺)を基準に決めても良いが、好ましくは、最大幅(図4では正方形の対角線)を基準に決めるのが好ましい。 Moreover, you may form the recessed part 5 in the width | variety which can prevent permeation | transmission of the electromagnetic wave which does not want conversion. That is, it is possible to use the clad part 3 of the recessed part 5 for an electromagnetic shield. In this case, if the wavelength of the electromagnetic wave that is not desired to be converted is λ x (> λ), the width of the recess 5 is preferably formed smaller than λ x / 2, and more preferably formed smaller than λ x / 4. good. Thereby, the uneven structure can function as an electromagnetic shield, a wavelength to suppress the occurrence and absorption of lambda x or electromagnetic waves. Also, if you want to convert heat to the desired electromagnetic wave, since there is no the wavelength from relief structure which emits electromagnetic waves of more than lambda x, to convert thermal correspondingly more efficient electromagnetic waves of a desired wavelength lambda it can. For example, when silicon dioxide (SiO 2 ) is used as the core material, an absorption band exists at a wavelength of 8 μm to 10 μm as shown in FIG. Therefore, in addition to the selected wavelength, emission of wavelengths depending on silicon dioxide (SiO 2 ) occurs. However, if the width of the recess is limited as described above, a wavelength of 8 μm or more can be shielded, and for example, only a wavelength of 4 μm shorter than that can be emitted. The width of the concave portion 5 may be determined based on the minimum width (one side of the square in FIG. 4) of the concave portion 5, but is preferably determined based on the maximum width (diagonal line of the square in FIG. 4). preferable.
 また、上記説明では、凸部6にコア部2が一つ形成されたものを説明したが、これに限られるものではない。例えば、図5に示すように、凸部6は、コア部2とクラッド部3からなる複数の層状構造を有しても良い。このように構成すれば、更に効率良く熱と電磁波を相互に変換することができる。 Further, in the above description, the one in which the core portion 2 is formed on the convex portion 6 has been described, but the present invention is not limited to this. For example, as shown in FIG. 5, the convex portion 6 may have a plurality of layered structures including the core portion 2 and the clad portion 3. If comprised in this way, a heat | fever and electromagnetic waves can be mutually converted more efficiently.
 また、凸部6に複数の層状構造を設ける場合、凸部6には、長さの異なる複数の導波路を形成するようにしても良い。例えば、図6に示すように、凸部6の形状を断面台形にすることにより、凸部6の先端側よりも基材側の方が長さの大きい導波路を形成することができる。これにより、波長の異なる複数種類の電磁波と熱を相互に変換することができる。 Further, when a plurality of layered structures are provided on the convex portion 6, a plurality of waveguides having different lengths may be formed on the convex portion 6. For example, as shown in FIG. 6, by making the shape of the convex portion 6 into a trapezoidal cross section, a waveguide having a longer length on the substrate side than on the tip side of the convex portion 6 can be formed. Thereby, it is possible to mutually convert a plurality of types of electromagnetic waves and heat having different wavelengths.
 第2の熱-電磁波変換構造9は、例えば、図7に示すように、コア部2を構成する凹部7とクラッド部3を構成する凸部8とからなる凹凸構造である。この場合、コア部2とクラッド部3とからなる導波路は、クラッド部3の一部でもある基材30に対し垂直に形成される。また、導波路は、一端が閉じた閉管構造となる。 For example, as shown in FIG. 7, the second heat-electromagnetic wave conversion structure 9 is a concavo-convex structure including a concave portion 7 constituting the core portion 2 and a convex portion 8 constituting the clad portion 3. In this case, the waveguide composed of the core part 2 and the clad part 3 is formed perpendicular to the base material 30 which is also a part of the clad part 3. The waveguide has a closed tube structure with one end closed.
 なお、導波路の幅t(すなわち凹部7の幅t)は、上述したようにできる限り狭く形成する方が好ましいが、幅tを狭くし過ぎると入射する電磁波又は発生する電磁波を通すことができなくなる。したがって、変換を望む電磁波の波長をλとすると、少なくとも凹部7の一方向の幅はλ/2以上に形成される。例えば、凹凸構造は、図8に示すように幅tが広いラインアンドスペース状の構造や、図9に示すように幅tやtが広い格子状の構造とすれば良い。また、凹凸構造に周期性は不要であり、ランダムに形成しても良い。また、凹部7は、変換したい電磁波を透過可能な材料で充填されていても良い。 The width t of the waveguide (that is, the width t of the recess 7) is preferably as narrow as possible as described above. However, if the width t is too narrow, incident electromagnetic waves or generated electromagnetic waves can be passed. Disappear. Therefore, when the wavelength of the electromagnetic wave desired to be converted is λ, at least the width in one direction of the recess 7 is formed to be λ / 2 or more. For example, relief structure, and the structure of the width t 1 is wide line-and-space shape as shown in FIG. 8, may be the width t 1 and t 2 is wide lattice-like structure as shown in FIG. Further, the concavo-convex structure does not require periodicity and may be formed randomly. Moreover, the recessed part 7 may be filled with the material which can permeate | transmit the electromagnetic waves to convert.
 第2の構造において導波路内に定常波が生じる条件は、導波路の長さをd、発生させたい電磁波又は吸収させたい電磁波の導波路内の波長をλinとすると、
 d=(2m-1)λin/4 (ただし、mは自然数)
を満たすことである。なお、実際の構造においては、形状や光の入射角度によって導波路の長さに誤差が生じるため、導波路の長さdは適宜調節する必要がある。
In the second structure, the condition for generating a standing wave in the waveguide is that the length of the waveguide is d, and the wavelength of the electromagnetic wave to be generated or absorbed is λ in .
d = (2m−1) λ in / 4 (where m is a natural number)
Is to satisfy. In an actual structure, an error occurs in the length of the waveguide depending on the shape and the incident angle of light. Therefore, the length d of the waveguide needs to be adjusted as appropriate.
 なお、凹部7は、深さの異なる複数種類のものを形成しても良い。これにより、長さが異なる複数種類の導波路によって、波長の異なる複数種類の電磁波と熱を相互に変換することができる。 Note that the concave portion 7 may be formed of a plurality of types having different depths. Thereby, a plurality of types of electromagnetic waves having different wavelengths and heat can be mutually converted by a plurality of types of waveguides having different lengths.
 次に熱-電磁波変換構造1の製造方法について説明する。本発明の熱-電磁波変換構造1の製造方法は、コア部形成工程と、開口部形成工程と、で主に構成される。なお、コア部形成工程では導波路の幅tが決定され、開口部形成工程では導波路の長さdが決定される。 Next, a method for manufacturing the heat-electromagnetic wave conversion structure 1 will be described. The manufacturing method of the heat-electromagnetic wave conversion structure 1 according to the present invention mainly includes a core portion forming step and an opening portion forming step. The waveguide width t is determined in the core portion forming step, and the waveguide length d is determined in the opening portion forming step.
 コア部形成工程は、導波路が所定の幅tとなるようにコア部2を形成するものである。コア部2の形成方法はどのようなものでも良いが、例えば、図10(a)に示すように、基材50上にクラッド部31を形成しておき、図10(b)に示すように、当該クラッド部31上に、スパッタリング等によってコア部2を、厚さが所定の幅になるまで増加させて形成すれば良い。なお、コア部2を所定の厚さ以上に形成しておき、エッチング等によってコア部2の厚さが所定の幅tになるまで減少させて形成させても良い。 In the core part forming step, the core part 2 is formed so that the waveguide has a predetermined width t. Any method may be used for forming the core portion 2. For example, as shown in FIG. 10 (a), a clad portion 31 is formed on the substrate 50, and as shown in FIG. 10 (b). The core portion 2 may be formed on the clad portion 31 by sputtering or the like until the thickness reaches a predetermined width. Note that the core portion 2 may be formed to have a predetermined thickness or more, and the core portion 2 may be formed by reducing the thickness of the core portion 2 to a predetermined width t by etching or the like.
 なお、導波路は、その幅tが狭いほどプラズモン共鳴を生じ、熱と電磁波相互の変換効率が増大する。ここで、基材に対して垂直方向にコア部2となる凹部を形成する場合には、導波路の幅t(凹部の幅t)を調節したり狭くしたりするのが困難である。一方、本願の熱-電磁波変換構造1の製造方法は、導波路のコア部2をその幅方向(コア部2の厚さを大きくまたは小さくする方向)に形成するため、導波路の幅tを調節したり、狭く形成したりし易いというメリットがある。なお、コア部形成工程では、コア部2の厚さを電磁波の波長λの10の1以下又は10分の1未満、好ましくは15分の1以下、更に好ましくは、20の1以下に形成する方が好ましい。例えば電磁波が波長の比較的大きい赤外線である場合、コア部2の厚さを1μm未満、好ましくは500nm以下、更に好ましくは200nm以下とすれば良い。 Note that plasmon resonance occurs as the width t of the waveguide decreases, and the conversion efficiency between heat and electromagnetic waves increases. Here, in the case where the concave portion that becomes the core portion 2 is formed in the direction perpendicular to the base material, it is difficult to adjust or narrow the waveguide width t (width t of the concave portion). On the other hand, in the manufacturing method of the heat-electromagnetic wave conversion structure 1 of the present application, since the core portion 2 of the waveguide is formed in the width direction (direction in which the thickness of the core portion 2 is increased or decreased), the width t of the waveguide is reduced. There is a merit that it is easy to adjust and form narrowly. In the core part forming step, the thickness of the core part 2 is formed to be 1/10 or less than 1/10 of the wavelength λ of the electromagnetic wave, preferably 1/15 or less, more preferably 1/20 or less. Is preferred. For example, when the electromagnetic waves are infrared rays having a relatively large wavelength, the thickness of the core part 2 may be less than 1 μm, preferably 500 nm or less, more preferably 200 nm or less.
 開口部形成工程は、導波路が波長λの電磁波による定常波を形成可能な長さdとなるように、導波路に開口部4を形成するものである。基材に対して垂直方向にコア部2となる凹部を形成する場合には、導波路の長さd(凹部の深さ)を調節したり狭くしたりするのが困難である。一方、本願の熱-電磁波変換構造1の製造方法は、開口部間の距離によって導波路の長さdを決定するため、導波路の幅tを調節し易いというメリットがある。 In the opening forming step, the opening 4 is formed in the waveguide so that the waveguide has a length d capable of forming a standing wave by an electromagnetic wave having a wavelength λ. In the case where the concave portion that becomes the core portion 2 is formed in the direction perpendicular to the base material, it is difficult to adjust or narrow the length d (depth of the concave portion) of the waveguide. On the other hand, the manufacturing method of the heat-electromagnetic wave conversion structure 1 of the present application has an advantage that the waveguide width t is easily adjusted because the waveguide length d is determined by the distance between the openings.
 開口部形成工程は、導波路の開口部4を形成するものであればどのようなものでも良いが、例えば、図10(b)に示すように、基材50上に、金属からなる第1のクラッド部31、電磁波を透過するコア部2、金属からなる第2のクラッド部32の三層構造をスパッタリング等によって形成しておく。具体例としては、シリコン基板(基材)上に厚さ100~200nmのアルミニウム(第1のクラッド部)、厚さ50nmのシリコン(コア部)、厚さ100~200nmのアルミニウム(第2のクラッド部)の三層構造等が考えられる。そして、図10(c)に示すように、第2クラッド部32の表面にフォトリソグラフィー技術やナノインプリント技術等を用いて開口部4を形成するためのパターンを有するマスク層40を形成する。マスク層40の厚さは、選択比を考慮して適宜決定する。そして、エッチング等によって少なくともコア部2が露出するように第2クラッド部32の一部を除去して開口部4を形成すれば良い。なお、この際に形成される凹部は、コア部2や第1のクラッド部31に達する深さを有していても構わない。図10(d)、(e)では、第2クラッド部32と、コア部2を除去して開口部4を形成している。 The opening forming process may be any process as long as it forms the opening 4 of the waveguide. For example, as shown in FIG. The three-layer structure of the cladding portion 31, the core portion 2 that transmits electromagnetic waves, and the second cladding portion 32 made of metal is formed by sputtering or the like. As a specific example, aluminum (first cladding part) having a thickness of 100 to 200 nm, silicon (core part) having a thickness of 50 nm, and aluminum having a thickness of 100 to 200 nm (second cladding) on a silicon substrate (base material). A three-layer structure, etc.). Then, as shown in FIG. 10C, a mask layer 40 having a pattern for forming the opening 4 is formed on the surface of the second cladding portion 32 by using a photolithography technique, a nanoimprint technique, or the like. The thickness of the mask layer 40 is appropriately determined in consideration of the selection ratio. Then, the opening 4 may be formed by removing a part of the second cladding portion 32 so that at least the core portion 2 is exposed by etching or the like. Note that the recess formed at this time may have a depth that reaches the core 2 or the first cladding 31. 10D and 10E, the second cladding portion 32 and the core portion 2 are removed to form the opening 4.
 なお、熱-電磁波変換構造1を後述する波長選択性放熱機器に用いる場合には、図10(f)のように、基材50の裏面側に熱源からの熱を受けるために、金属等の熱伝導性の高い層60を設けても良い。なお、層60は基材50に予め形成しておいても良いし、開口部4を形成した後に形成しても良く、そのタイミングは特に限定されない。 When the heat-electromagnetic wave conversion structure 1 is used for a wavelength selective heat radiating device to be described later, since the heat from the heat source is received on the back side of the substrate 50 as shown in FIG. A layer 60 having high thermal conductivity may be provided. The layer 60 may be formed in advance on the substrate 50, or may be formed after the opening 4 is formed, and the timing is not particularly limited.
 また、開口部形成工程の別の方法としては、例えば、導波路の開口部4を形成したい部分にマスク層40を形成し、クラッド部3を形成した後に当該マスク層40を除去して開口部4を形成するリフトオフ技術等を用いても良い。マスク層を形成するのは、少なくともクラッド部3の完成前であれば良い。例えば、図11(a)に示すように、第1のクラッド部31として機能する金属からなる基材50上に、必要であれば中間層35を介して、電磁波を透過するコア部2をスパッタリング等によって形成しておく。ここで中間層35は、基材50とコア部2との密着力を向上するためのものである。例えば、銅板からなる基材50に二酸化ケイ素からなるコア部2をスパッタリングによって形成する場合には、その間にチタンからなる中間層35を形成することにより、密着力を向上することができる。中間層35の形成は、例えばスパッタリング等を用いれば良い。そして、図11(b)に示すように、コア部2の第1のクラッド部31とは反対側であって開口部4を形成したい部分にマスク層40を形成する。次に、必要であれば、図11(c)に示すように、中間層35を形成する。そして、図11(d)に示すように、コア部2上に、中間層35を介して、金属からなる第2のクラッド部32を形成する。最後に、図11(e)に示すように、マスク層40を除去して開口部4を形成する。なお、マスク層40は、コア部2の表面にフォトリソグラフィー技術やナノインプリント技術等を用いて開口部4を形成するためのパターンを有するように形成される。また、マスク層40の除去は、エッチング等を用いれば良い。 As another method of the opening forming step, for example, a mask layer 40 is formed in a portion where the opening 4 of the waveguide is to be formed, and after the cladding 3 is formed, the mask layer 40 is removed to open the opening. For example, a lift-off technique for forming 4 may be used. The mask layer may be formed at least before the cladding portion 3 is completed. For example, as shown in FIG. 11A, the core portion 2 that transmits electromagnetic waves is sputtered on a base material 50 made of a metal that functions as the first cladding portion 31 through an intermediate layer 35 if necessary. Etc. are formed. Here, the intermediate layer 35 is for improving the adhesion between the substrate 50 and the core portion 2. For example, when the core part 2 made of silicon dioxide is formed on the base material 50 made of a copper plate by sputtering, the adhesion can be improved by forming the intermediate layer 35 made of titanium therebetween. The intermediate layer 35 may be formed using, for example, sputtering. Then, as shown in FIG. 11B, a mask layer 40 is formed on a portion of the core portion 2 opposite to the first clad portion 31 where the opening 4 is to be formed. Next, if necessary, an intermediate layer 35 is formed as shown in FIG. Then, as shown in FIG. 11 (d), a second clad portion 32 made of metal is formed on the core portion 2 via the intermediate layer 35. Finally, as shown in FIG. 11E, the mask layer 40 is removed to form the opening 4. The mask layer 40 is formed so as to have a pattern for forming the opening 4 on the surface of the core portion 2 using a photolithography technique, a nanoimprint technique, or the like. The mask layer 40 may be removed by etching or the like.
 次に、当該熱-電磁波変換構造又は熱-電磁波変換部材を用いた機器について説明する。 Next, a device using the heat-electromagnetic wave conversion structure or the heat-electromagnetic wave conversion member will be described.
 第1の機器は、図12に示すように、発熱源101と、特定の電磁波透過波長域を有する材料からなり発熱源101を覆う被覆部材102と、発熱源101の熱を電磁波透過波長域の電磁波103に変換する熱-電磁波変換部材10と、からなり、発熱源101の熱を効率良く放熱する波長選択性放熱機器100である。 As shown in FIG. 12, the first device includes a heat source 101, a covering member 102 made of a material having a specific electromagnetic wave transmission wavelength region, and covering the heat source 101, and the heat of the heat source 101 in the electromagnetic wave transmission wavelength region. A wavelength-selective heat dissipation device 100 that includes a heat-electromagnetic wave conversion member 10 that converts the electromagnetic wave 103 and efficiently radiates the heat of the heat source 101.
 発熱源101としては、熱を発生するものであればどのようなものでも該当するが、例えば、発熱する電子機器等が該当する。 As the heat source 101, any heat source may be used as long as it generates heat. For example, a heat generating electronic device is applicable.
 また、被覆部材102とは、種々の理由により発熱源101を覆う部材であり、発熱源101の熱が外部に放熱するのを阻害するものを指す。ただし、特定の電磁波透過波長域を有する材料からなるものに限られる。 Further, the covering member 102 is a member that covers the heat source 101 for various reasons, and refers to a member that inhibits the heat of the heat source 101 from radiating to the outside. However, it is limited to those made of a material having a specific electromagnetic wave transmission wavelength range.
 熱-電磁波変換部材10は、上述した本発明の熱-電磁波変換構造を複数有し、発熱源101と被覆部材102との間に配置されるものである。熱-電磁波変換構造は、発熱源101の熱を電磁波透過波長域の電磁波103に変換するように、導波路の長さdが調節される。また、熱-電磁波変換部材10は、電磁波透過波長域の電磁波103に変換できれば、導波路の長さが異なる2種類以上の熱-電磁波変換構造が混在していても良い。 The heat-electromagnetic wave conversion member 10 has a plurality of the heat-electromagnetic wave conversion structures of the present invention described above, and is disposed between the heat source 101 and the covering member 102. In the heat-electromagnetic wave conversion structure, the length d of the waveguide is adjusted so as to convert the heat of the heat source 101 into the electromagnetic wave 103 in the electromagnetic wave transmission wavelength region. Further, the heat-electromagnetic wave conversion member 10 may include two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths as long as the heat-electromagnetic wave conversion member 10 can convert the electromagnetic wave 103 into the electromagnetic wave transmission wavelength region.
 このような波長選択性放熱機器100としては、例えば、プラスチック素材などの熱伝導性の悪い素材の中に納められた電子機器等の発熱源の熱を効率良く放熱するものが該当する。 Such a wavelength-selective heat radiating device 100 corresponds to a device that efficiently radiates heat from a heat source such as an electronic device housed in a material having poor thermal conductivity such as a plastic material.
 また、第2の機器は、図13に示すように、特定の電磁波吸収波長域を有する材料201に当該電磁波吸収波長域の電磁波202を照射して、当該材料201を効率良く加熱する波長選択性加熱機器200である。当該波長選択性加熱機器200は、熱-電磁波変換部材10と、熱-電磁波変換部材10にエネルギーを供給するエネルギー供給源203と、で主に構成される。 Further, as shown in FIG. 13, the second device irradiates a material 201 having a specific electromagnetic wave absorption wavelength region with an electromagnetic wave 202 in the electromagnetic wave absorption wavelength region and efficiently heats the material 201. Heating device 200. The wavelength-selective heating device 200 mainly includes a heat-electromagnetic wave conversion member 10 and an energy supply source 203 that supplies energy to the heat-electromagnetic wave conversion member 10.
 熱-電磁波変換部材10は、上述した本発明の熱-電磁波変換構造1を複数有し、エネルギー供給源と加熱する材料との間に配置されるものである。熱-電磁波変換構造1は、エネルギー供給源の熱や電磁波等のエネルギーを電磁波吸収波長域の電磁波に変換するように、導波路の長さdが調節される。また、熱-電磁波変換部材10は、電磁波吸収波長域の電磁波に変換できれば、導波路の長さが異なる2種類以上の熱-電磁波変換構造1が混在していても良い。 The heat-electromagnetic wave conversion member 10 has a plurality of the heat-electromagnetic wave conversion structures 1 of the present invention described above, and is disposed between the energy supply source and the material to be heated. In the heat-electromagnetic wave conversion structure 1, the length d of the waveguide is adjusted so as to convert energy such as heat from an energy supply source and electromagnetic waves into electromagnetic waves in the electromagnetic wave absorption wavelength region. The heat-electromagnetic wave conversion member 10 may include two or more types of heat-electromagnetic wave conversion structures 1 having different waveguide lengths as long as the heat-electromagnetic wave conversion member 10 can convert electromagnetic waves in the electromagnetic wave absorption wavelength region.
 エネルギー供給源としては、熱-電磁波変換部材10にエネルギーを供給できるものであればどのようなものでも良いが、例えば電気ヒータ等の熱源から熱-電磁波変換部材10に熱エネルギーを供給するものを用いれば良い。また、熱-電磁波変換部材10には、金属からなるクラッド部3を有することから、当該クラッド部3に電気エネルギーを供給し、通電加熱する電源を用いて良い。 Any energy supply source may be used as long as it can supply energy to the heat-electromagnetic wave conversion member 10. For example, an energy supply source that supplies heat energy to the heat-electromagnetic wave conversion member 10 from a heat source such as an electric heater. Use it. Further, since the heat-electromagnetic wave conversion member 10 has the clad portion 3 made of metal, a power source that supplies electric energy to the clad portion 3 and heats it by energization may be used.
 このような波長選択性加熱機器としては、例えば、天然ガスやメタンガス等の炭化水素系ガスから水素を生成する炭化水素ガス改質システムのように、特定の電磁波吸収波長域を有するふく射性ガス(材料201)を効率良く加熱するものが該当する。また、例えば、水分子(材料201)を効率的に加熱する融雪装置等も該当する。 As such a wavelength selective heating device, for example, a radiation gas having a specific electromagnetic wave absorption wavelength region (such as a hydrocarbon gas reforming system that generates hydrogen from a hydrocarbon gas such as natural gas or methane gas) ( This applies to materials 201) that are efficiently heated. Further, for example, a snow melting device that efficiently heats water molecules (material 201) is also applicable.
 次に、シミュレーションを用いて本発明の構造を説明する。シミュレーションには、シノプシス社(synopsys, Inc)製のソフトDiffractMODを用いた。なお、熱から電磁波への変換と電磁波から熱への変換には相関関係があり、特定の電磁波から熱への変換効率が高い場合には、熱から当該電磁波への変換効率も高いことがわかっている。そこで、以下のシミュレーションでは、電磁波から熱への変換に相当する電磁波の吸収率を計算することにより評価した。 Next, the structure of the present invention will be described using simulation. For the simulation, a software DiffractMOD manufactured by Synopsys, Inc. was used. Note that there is a correlation between the conversion from heat to electromagnetic waves and the conversion from electromagnetic waves to heat, and when the conversion efficiency from a specific electromagnetic wave to heat is high, the conversion efficiency from heat to the electromagnetic wave is also high. ing. Therefore, in the following simulation, evaluation was performed by calculating the absorption rate of electromagnetic waves corresponding to conversion from electromagnetic waves to heat.
[シミュレーション1]
 はじめに、従来の周期性に着目した構造と本発明の構造の違いについてシミュレーションを用いて説明する。まず、周期的な凹凸構造への電磁波の入射角度と吸収率との関係をシミュレーションした。当該凹凸構造としては、凹部の幅が3.5μm、凸部の高さが5.4μm、ピッチが4.8μmのラインアンドスペースとした。また、電磁波の入射角度は、ラインアンドスペースのラインを軸として0°~60°まで10°ずつ異なる7種類とした。なお、凹凸構造の材質はアルミニウム、凹部は空気を想定してシミュレーションを行った。また、吸収する波長は、1.5~10μmまで、0.02μmごとに計算した。
[Simulation 1]
First, the difference between the conventional structure focusing on periodicity and the structure of the present invention will be described using simulation. First, the relationship between the incident angle of electromagnetic waves on the periodic uneven structure and the absorption rate was simulated. The concavo-convex structure was a line-and-space with a concave width of 3.5 μm, a convex height of 5.4 μm, and a pitch of 4.8 μm. In addition, the incident angle of the electromagnetic wave was set to seven types that differed by 10 ° from 0 ° to 60 ° with the line-and-space line as the axis. The simulation was performed assuming that the material of the concavo-convex structure was aluminum and the concave portion was air. The wavelength to be absorbed was calculated every 0.02 μm from 1.5 to 10 μm.
 その結果を図14に示す。図14に示すように、電磁波の入射角度によって、吸収ピークの波長が異なっていることがわかる。そこで、種々の経度と入射角(緯度)からの電磁波を総合的に考慮した吸収率をシミュレーションした。その結果を図15に示す。図15に示すように、吸収ピークの波長選択性は大幅に低下している。すなわち、従来技術のような周期性に着目した構造では、一定の入射角を有する電磁波に着目すれば波長選択性があるが、種々の入射角の電磁波を総合して考慮した場合には、波長選択性が低いことがわかる。 The result is shown in FIG. As shown in FIG. 14, it can be seen that the wavelength of the absorption peak differs depending on the incident angle of the electromagnetic wave. Therefore, an absorptance was simulated by comprehensively considering electromagnetic waves from various longitudes and incident angles (latitudes). The result is shown in FIG. As shown in FIG. 15, the wavelength selectivity of the absorption peak is greatly reduced. That is, in a structure that focuses on periodicity as in the prior art, there is wavelength selectivity when focusing on electromagnetic waves having a constant incident angle, but when considering electromagnetic waves of various incident angles, the wavelength It can be seen that the selectivity is low.
 次に、図3に示す本発明の熱-電磁波変換部材について、熱-電磁波変換構造への電磁波の入射角度と吸収率との関係をシミュレーションした。凹凸構造は、導波路の長さ(凸部の幅)が1μm、凸部の高さが250nm、コア部の厚みが50nm、クラッド部の厚みが200nm、ピッチが2μmのラインアンドスペースとした。また、電磁波の入射角度は、ラインアンドスペースのラインを軸として0°~60°まで10°ずつ異なる7種類とした。なお、クラッド部3の材質はアルミニウム、コア部2の材質は二酸化ケイ素(SiO)、凹部は空気を想定してシミュレーションを行った。また、吸収する波長は、1.5~10μmまで、0.02μmごとに計算した。また、電磁波の波長に対するコア部の屈折率n、減衰係数kは二酸化ケイ素(SiO)を想定した図17に示す数値を用いた。 Next, for the heat-electromagnetic wave conversion member of the present invention shown in FIG. 3, the relationship between the incident angle of the electromagnetic wave on the heat-electromagnetic wave conversion structure and the absorption rate was simulated. The concavo-convex structure was a line and space in which the length of the waveguide (width of the convex portion) was 1 μm, the height of the convex portion was 250 nm, the thickness of the core portion was 50 nm, the thickness of the cladding portion was 200 nm, and the pitch was 2 μm. In addition, the incident angle of the electromagnetic wave was set to seven types that differed by 10 ° from 0 ° to 60 ° with the line-and-space line as the axis. The simulation was performed assuming that the material of the cladding part 3 is aluminum, the material of the core part 2 is silicon dioxide (SiO 2 ), and the concave part is air. The wavelength to be absorbed was calculated every 0.02 μm from 1.5 to 10 μm. Moreover, the numerical values shown in FIG. 17 assuming silicon dioxide (SiO 2 ) were used for the refractive index n and attenuation coefficient k of the core with respect to the wavelength of the electromagnetic wave.
 その結果を図16に示す。図16の矢印AやBに示す波長域では、電磁波の入射角度に依存しない吸収ピークがみられる。すなわち、本発明の構造は、電磁波の入射角度に依存しない波長選択性があることがわかる。 The result is shown in FIG. In the wavelength range indicated by arrows A and B in FIG. 16, an absorption peak independent of the incident angle of the electromagnetic wave is observed. That is, it can be seen that the structure of the present invention has wavelength selectivity independent of the incident angle of electromagnetic waves.
 次に、図3に示す本発明の熱-電磁波変換部材について、導波路の長さdや幅tと電磁波との関係をシミュレーションを用いて説明する。電磁波としては、従来のように熱-電磁波変換構造に対して垂直な方向の単一の平面波だけを考慮するのではなく、種々の経度と入射角(緯度)からの電磁波を考慮した総合的な吸収率を計算した。また、吸収する波長は、2.0~8.0μmまで、0.05μmごとに計算した。また、電磁波の波長に対するコア部の屈折率n、減衰係数kは二酸化ケイ素(SiO)を想定した図17に示す数値を用いた。 Next, regarding the heat-electromagnetic wave conversion member of the present invention shown in FIG. 3, the relationship between the length d and width t of the waveguide and the electromagnetic wave will be described using simulation. As an electromagnetic wave, not only a single plane wave in a direction perpendicular to the heat-electromagnetic wave conversion structure as in the past is considered, but an electromagnetic wave from various longitudes and incident angles (latitudes) is considered. Absorption rate was calculated. Further, the wavelength to be absorbed was calculated every 0.05 μm from 2.0 to 8.0 μm. Moreover, the numerical values shown in FIG. 17 assuming silicon dioxide (SiO 2 ) were used for the refractive index n and attenuation coefficient k of the core with respect to the wavelength of the electromagnetic wave.
[シミュレーション2]
 まず、図3に示す熱-電磁波変換部材について、熱-電磁波変換構造の導波路の長さdと電磁波の吸収率との関係をシミュレーションした。凹凸構造は、凸部の高さが150nm、コア部の厚みが50nm、クラッド部の厚みが100nm、ピッチが2μmのラインアンドスペースとし、導波路の長さd(凸部の幅)は0.5~1.5μmまで0.1μmずつ異なる11種類とした。
[Simulation 2]
First, for the heat-electromagnetic wave conversion member shown in FIG. 3, the relationship between the waveguide length d of the heat-electromagnetic wave conversion structure and the electromagnetic wave absorption rate was simulated. The concavo-convex structure is a line and space in which the height of the convex portion is 150 nm, the thickness of the core portion is 50 nm, the thickness of the cladding portion is 100 nm, and the pitch is 2 μm, and the waveguide length d (the width of the convex portion) is 0. Eleven types differing by 0.1 μm from 5 to 1.5 μm.
 その結果を図18に示す。図18より、導波路の長さdを大きくすると吸収される電磁波の波長も大きくなることがわかる。
[シミュレーション3]
 次に、図3に示す熱-電磁波変換部材について、熱-電磁波変換構造1の導波路の幅tと電磁波の吸収率との関係をシミュレーションした。凹凸構造は、導波路の長さ(凸部の幅)が1μm、クラッド部の厚みが100nm、ピッチが2μmのラインアンドスペースとし、導波路の幅tは50~300nmまで25nmずつ異なる11種類とした。また、吸収する波長は、3.0~8.0μmまで、0.1μmごとに計算した。
The result is shown in FIG. FIG. 18 shows that the wavelength of the absorbed electromagnetic wave increases as the waveguide length d is increased.
[Simulation 3]
Next, for the heat-electromagnetic wave conversion member shown in FIG. 3, the relationship between the waveguide width t of the heat-electromagnetic wave conversion structure 1 and the electromagnetic wave absorption rate was simulated. The concavo-convex structure is a line and space in which the length of the waveguide (width of the convex portion) is 1 μm, the thickness of the cladding is 100 nm, and the pitch is 2 μm, and the width t of the waveguide is 11 types that are different by 25 nm from 50 to 300 nm. did. Further, the wavelength to be absorbed was calculated every 0.1 μm from 3.0 to 8.0 μm.
 その結果を図19に示す。図19より、導波路の幅tを小さくすると電磁波の吸収率が大きくなることがわかる。 The result is shown in FIG. FIG. 19 shows that the absorption rate of electromagnetic waves increases when the waveguide width t is reduced.
1 熱-電磁波変換構造
2 コア部
3 クラッド部
4 開口部
5 凹部
6 凸部
7 凹部
8 凸部
9 熱-電磁波変換構造
10 熱-電磁波変換部材
11 熱-電磁波変換構造
12 熱-電磁波変換構造
30 基材
31 第1のクラッド部
32 第2のクラッド部
35 中間層
40 マスク層
50 基材
60 層
100 波長選択性放熱機器
101 発熱源
102 被覆部材
103 電磁波
200 波長選択性加熱機器
201 材料
202 電磁波
203 エネルギー供給源
DESCRIPTION OF SYMBOLS 1 Heat-electromagnetic wave conversion structure 2 Core part 3 Clad part 4 Opening part 5 Concave part 6 Convex part 7 Concave part 8 Convex part 9 Heat-electromagnetic wave conversion structure
10 Heat-electromagnetic wave conversion member
11 Heat-electromagnetic wave conversion structure
12 Heat-electromagnetic wave conversion structure
30 Base material
31 First cladding
32 Second cladding
35 Middle layer
40 Mask layer
50 substrate
60 layers
100 wavelength selective heat dissipation device
101 Heat source
102 Cover member
103 electromagnetic waves
200 wavelength selective heating equipment
201 materials
202 electromagnetic waves
203 Energy supply

Claims (27)

  1.  熱と所定波長λの電磁波を相互に変換する熱-電磁波変換構造であって、
     前記電磁波を透過するコア部と、金属からなり前記コア部を囲うクラッド部とで構成された導波路を有し、
     前記導波路は、前記電磁波による定常波を形成可能な長さを有するように形成されることを特徴とする熱-電磁波変換構造。
    A heat-electromagnetic wave conversion structure for mutually converting heat and electromagnetic waves of a predetermined wavelength λ,
    A waveguide composed of a core part that transmits the electromagnetic wave and a clad part that is made of metal and surrounds the core part;
    The heat-electromagnetic wave conversion structure, wherein the waveguide is formed to have a length capable of forming a standing wave by the electromagnetic wave.
  2.  前記導波路は、前記電磁波の波長λの10の1以下の幅を有するように形成されることを特徴とする請求項1記載の熱-電磁波変換構造。 2. The heat-electromagnetic wave conversion structure according to claim 1, wherein the waveguide is formed to have a width of 10 or less of a wavelength λ of the electromagnetic wave.
  3.  前記導波路は、1μm未満の幅を有するように形成されることを特徴とする請求項1記載の熱-電磁波変換構造。 2. The heat-electromagnetic wave converting structure according to claim 1, wherein the waveguide is formed to have a width of less than 1 μm.
  4.  前記導波路は、前記電磁波を透過可能な開口部を両端に有する構造であることを特徴とする請求項1ないし3のいずれかに記載の熱-電磁波変換構造。 The heat-electromagnetic wave conversion structure according to any one of claims 1 to 3, wherein the waveguide has a structure having openings that can transmit the electromagnetic wave at both ends.
  5.  凹部と凸部とからなる凹凸構造を有し、前記凸部およびその下方に前記コア部と前記クラッド部を構成する層状構造を有することを特徴とする請求項4記載の熱-電磁波変換構造。 5. The heat-electromagnetic wave conversion structure according to claim 4, wherein the heat-electromagnetic wave conversion structure has a concavo-convex structure composed of a concave portion and a convex portion, and has a layered structure constituting the core portion and the clad portion below the convex portion.
  6.  前記凸部およびその下方に前記コア部と前記クラッド部からなる複数の層状構造を有することを特徴とする請求項5記載の熱-電磁波変換構造。 6. The heat-electromagnetic wave conversion structure according to claim 5, wherein the heat-electromagnetic wave conversion structure has a plurality of layered structures including the core portion and the clad portion below the convex portion.
  7.  前記複数の層状構造は、長さの異なる複数の導波路を構成することを特徴とする請求項6記載の熱-電磁波変換構造。 The heat-electromagnetic wave conversion structure according to claim 6, wherein the plurality of layered structures constitute a plurality of waveguides having different lengths.
  8.  前記凹部は、変換を望まない電磁波の透過を防止できる幅に形成されることを特徴とする請求項5ないし7のいずれかに記載の熱-電磁波変換構造。 The heat-electromagnetic wave conversion structure according to any one of claims 5 to 7, wherein the concave portion is formed to have a width that can prevent transmission of electromagnetic waves that do not require conversion.
  9.  前記コア部と前記クラッド部の間に密着性を向上するための中間層を有することを特徴とする請求項5ないし8のいずれかに記載の熱-電磁波変換構造。 9. The heat-electromagnetic wave conversion structure according to claim 5, further comprising an intermediate layer for improving adhesion between the core portion and the clad portion.
  10.  前記導波路は、前記電磁波を透過可能な開口部を一端に有する構造であることを特徴とする請求項1ないし3のいずれかに記載の熱-電磁波変換構造。 The heat-electromagnetic wave conversion structure according to any one of claims 1 to 3, wherein the waveguide has a structure having an opening that can transmit the electromagnetic wave at one end.
  11.  前記導波路は、前記コア部を構成する凹部と前記クラッド部を構成する凸部とからなる凹凸構造であることを特徴とする請求項10記載の熱-電磁波変換構造。 11. The heat-electromagnetic wave converting structure according to claim 10, wherein the waveguide has a concave-convex structure including a concave portion constituting the core portion and a convex portion constituting the clad portion.
  12.  前記凹部は、変換を望まない電磁波の透過を防止できる幅に形成されることを特徴とする請求項11記載の熱-電磁波変換構造。 12. The heat-electromagnetic wave conversion structure according to claim 11, wherein the concave portion is formed to have a width that can prevent transmission of electromagnetic waves that do not require conversion.
  13.  前記凹凸構造は、ラインアンドスペース状の構造であることを特徴とする請求項11記載の熱-電磁波変換構造。 The heat-electromagnetic wave conversion structure according to claim 11, wherein the uneven structure is a line-and-space structure.
  14.  前記導波路は、前記所定波長λが0.75μm以上になる長さに調節されたものであることを特徴とする請求項1ないし13のいずれかに記載の熱-電磁波変換構造。 14. The heat-electromagnetic wave conversion structure according to claim 1, wherein the waveguide is adjusted to a length such that the predetermined wavelength λ is 0.75 μm or more.
  15.  前記コア部は、ケイ素又は酸化ケイ素からなることを特徴とする請求項2ないし9のいずれかに記載の熱-電磁波変換構造。 10. The heat-electromagnetic wave conversion structure according to claim 2, wherein the core portion is made of silicon or silicon oxide.
  16.  前記請求項1ないし15のいずれかに記載の熱-電磁波変換構造を複数有することを特徴とする熱-電磁波変換部材。 A heat-electromagnetic wave conversion member comprising a plurality of the heat-electromagnetic wave conversion structures according to any one of claims 1 to 15.
  17.  前記請求項1ないし15のいずれかに記載の熱-電磁波変換構造であって、導波路の長さが異なる2種類以上の熱-電磁波変換構造を複数有することを特徴とする熱-電磁波変換部材。 16. The heat-electromagnetic wave conversion member according to claim 1, comprising a plurality of two or more types of heat-electromagnetic wave conversion structures having different waveguide lengths. .
  18.  発熱源と、特定の電磁波透過波長域を有する材料からなり前記発熱源を覆う被覆部材と、前記発熱源の熱を前記電磁波透過波長域の電磁波に変換する熱-電磁波変換部材と、からなる波長選択性放熱機器において、
     前記熱-電磁波変換部材は、請求項1ないし15のいずれかに記載の熱-電磁波変換構造を複数有し、前記発熱源と前記被覆部材との間に配置されることを特徴とする波長選択性放熱機器。
    A wavelength composed of a heat source, a covering member made of a material having a specific electromagnetic wave transmission wavelength range, and a heat-electromagnetic wave conversion member for converting the heat of the heat source into an electromagnetic wave in the electromagnetic wave transmission wavelength range In selective heat dissipation equipment,
    16. The wavelength selection device according to claim 1, wherein the heat-electromagnetic wave conversion member has a plurality of the heat-electromagnetic wave conversion structures according to any one of claims 1 to 15, and is disposed between the heat generation source and the covering member. Heat dissipation device.
  19.  特定の電磁波吸収波長域を有する材料に当該電磁波吸収波長域の電磁波を照射して加熱する波長選択性加熱機器であって、
     請求項1ないし15のいずれかに記載の熱-電磁波変換構造を複数有する熱-電磁波変換部材と、
     前記熱-電磁波変換部材にエネルギーを供給するエネルギー供給源と、
    を具備することを特徴とする波長選択性加熱機器。
    A wavelength-selective heating device that heats a material having a specific electromagnetic wave absorption wavelength region by irradiating the electromagnetic wave in the electromagnetic wave absorption wavelength region,
    A heat-electromagnetic wave conversion member having a plurality of heat-electromagnetic wave conversion structures according to any one of claims 1 to 15,
    An energy supply source for supplying energy to the heat-electromagnetic wave conversion member;
    A wavelength-selective heating device comprising:
  20.  発熱源が特定の電磁波透過波長域を有する材料からなる被覆部材で覆われている機器において、前記発熱源と前記被覆部材の間に請求項1ないし15のいずれかに記載の熱-電磁波変換構造を配置し、
     前記発熱源からの熱エネルギーを前記熱-電磁波変換構造によって前記電磁波透過波長域の電磁波に変換し、
     前記電磁波を前記被覆部材に放射することを特徴とする波長選択性放熱方法。
    16. The heat-electromagnetic wave conversion structure according to claim 1, wherein the heat source is covered with a covering member made of a material having a specific electromagnetic wave transmission wavelength range, and the heat-electromagnetic wave conversion structure according to claim 1 is provided between the heat generation source and the covering member. And place
    The heat energy from the heat source is converted into electromagnetic waves in the electromagnetic wave transmission wavelength region by the heat-electromagnetic wave conversion structure,
    A wavelength-selective heat dissipation method, wherein the electromagnetic wave is radiated to the covering member.
  21.  特定の電磁波吸収波長域を有する材料に当該電磁波吸収波長域の電磁波を照射して加熱する波長選択性加熱方法であって、
     請求項1ないし15のいずれかに記載の熱-電磁波変換構造にエネルギーを供給し、
     前記エネルギーを前記熱-電磁波変換構造によって前記電磁波吸収波長域の電磁波に変換し、
     当該電磁波を前記被覆部材に放射することを特徴とする波長選択性加熱方法。
    A wavelength selective heating method in which a material having a specific electromagnetic wave absorption wavelength region is heated by irradiating an electromagnetic wave in the electromagnetic wave absorption wavelength region,
    Energy is supplied to the heat-electromagnetic wave conversion structure according to any one of claims 1 to 15,
    The energy is converted into an electromagnetic wave in the electromagnetic wave absorption wavelength range by the heat-electromagnetic wave conversion structure,
    A wavelength-selective heating method, wherein the electromagnetic wave is emitted to the covering member.
  22.  電磁波を透過するコア部と、金属からなり前記コア部を囲うクラッド部とで構成された導波路を有し、熱と所定波長λの電磁波を相互に変換する熱-電磁波変換構造の製造方法において、
     前記導波路が所定の幅となるように前記コア部を形成するコア部形成工程と、
     前記導波路が波長λの電磁波による定常波を形成可能な長さとなるように開口部を形成する開口部形成工程と、
    を有することを特徴とする熱-電磁波変換構造の製造方法。
    In a manufacturing method of a heat-electromagnetic wave conversion structure having a waveguide composed of a core part that transmits electromagnetic waves and a clad part that is made of metal and surrounds the core part, and that mutually converts heat and electromagnetic waves of a predetermined wavelength λ ,
    A core part forming step of forming the core part so that the waveguide has a predetermined width;
    An opening forming step of forming an opening so that the waveguide has a length capable of forming a standing wave by an electromagnetic wave having a wavelength λ;
    A method for producing a heat-electromagnetic wave conversion structure, comprising:
  23.  前記コア部形成工程は、前記コア部の厚さが所定の幅になるまで増加又は減少させて形成するものであることを特徴とする請求項22記載の熱-電磁波変換構造の製造方法。 23. The method of manufacturing a heat-electromagnetic wave conversion structure according to claim 22, wherein the core portion forming step is formed by increasing or decreasing the thickness of the core portion until a predetermined width is reached.
  24.  前記コア部形成工程は、前記コア部の厚さを前記電磁波の波長λの10の1以下に形成することを特徴とする請求項22又は23記載の熱-電磁波変換構造の製造方法。 The method of manufacturing a heat-electromagnetic wave conversion structure according to claim 22 or 23, wherein the core part forming step forms the thickness of the core part to be 1 or less of 10 of the wavelength λ of the electromagnetic wave.
  25.  前記コア部形成工程は、前記コア部の厚さを1μm未満に形成することを特徴とする請求項22又は23記載の熱-電磁波変換構造の製造方法。 The method for manufacturing a heat-electromagnetic wave conversion structure according to claim 22 or 23, wherein the core part forming step forms the core part with a thickness of less than 1 µm.
  26.  前記開口部形成工程は、少なくとも前記クラッド部の一部を除去して前記開口部を形成するものであることを特徴とする請求項22ないし25のいずれかに記載の熱-電磁波変換構造の製造方法。 26. The manufacture of a heat-electromagnetic wave conversion structure according to claim 22, wherein the opening forming step forms at least a part of the clad portion to form the opening. Method.
  27.  前記開口部形成工程は、前記導波路の開口部を形成する部分にマスク層を形成し、前記クラッド部を形成した後に当該マスク層を除去して前記開口部を形成するものであることを特徴とする請求項22ないし25のいずれかに記載の熱-電磁波変換構造の製造方法。 In the opening forming step, a mask layer is formed in a portion where the opening of the waveguide is to be formed, and after forming the cladding, the mask layer is removed to form the opening. The method for producing a heat-electromagnetic wave conversion structure according to any one of claims 22 to 25.
PCT/JP2017/014776 2016-04-12 2017-04-11 Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure WO2017179563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780001294.1A CN107534028A (en) 2016-04-12 2017-04-11 Thermoelectricity magnetic wave transformational structure, thermoelectricity magnetic wave translation building block, wavelength selectivity heat dissipation equipment, wavelength selectivity firing equipment, wavelength selectivity heat dissipating method, the manufacture method of wavelength selectivity heating means and thermoelectricity magnetic wave transformational structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-079918 2016-04-12
JP2016079918 2016-04-12

Publications (1)

Publication Number Publication Date
WO2017179563A1 true WO2017179563A1 (en) 2017-10-19

Family

ID=60041608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014776 WO2017179563A1 (en) 2016-04-12 2017-04-11 Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure

Country Status (2)

Country Link
CN (1) CN107534028A (en)
WO (1) WO2017179563A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766690B (en) * 2021-08-05 2022-06-14 北京航空航天大学 Waveguide horn excitation metal fold surface wave uniform heating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332607A (en) * 2002-05-07 2003-11-21 Univ Tohoku Wavelength selective solar light absorbing material and its manufacturing method
JP2004238230A (en) * 2003-02-04 2004-08-26 Japan Science & Technology Agency Method for promoting reforming reaction by selective heating of radiant gas, wavelength- selective heat-emitting material, and method for producing the same
JP2010027831A (en) * 2008-07-18 2010-02-04 Tohoku Univ Method of improving heat radiation efficiency of electronic equipment whose heat generating source is covered with resin material, and wavelength selective heat radiation material and method of manufacturing the same
JP2014190915A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Detector and electronic equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193180B (en) * 2012-08-02 2020-07-28 日亚化学工业株式会社 Wavelength conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332607A (en) * 2002-05-07 2003-11-21 Univ Tohoku Wavelength selective solar light absorbing material and its manufacturing method
JP2004238230A (en) * 2003-02-04 2004-08-26 Japan Science & Technology Agency Method for promoting reforming reaction by selective heating of radiant gas, wavelength- selective heat-emitting material, and method for producing the same
JP2010027831A (en) * 2008-07-18 2010-02-04 Tohoku Univ Method of improving heat radiation efficiency of electronic equipment whose heat generating source is covered with resin material, and wavelength selective heat radiation material and method of manufacturing the same
JP2014190915A (en) * 2013-03-28 2014-10-06 Seiko Epson Corp Detector and electronic equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. KHODASEVYCH IRYNA ET AL.: "Micro- and Nanostructured Surfaces for Selective Solar Absorption", ADVANCED OPTICAL MATERIALS, vol. 3, no. 7, July 2015 (2015-07-01), pages 852 - 881, XP055430160 *
SAKURAI ATSUSHI ET AL.: "PREDICTION OF THE RESONANCE CONDITION OF METAMATERIAL EMITTERS AND ABSORBERS USING LC CIRCUIT MODEL", PROCEEDING OF THE 15TH INTERNATIONAL HEAT TRANSFER CONFERENCE , IHTC15-9012, 15 August 2014 (2014-08-15), pages 1 - 10, XP055430157 *

Also Published As

Publication number Publication date
CN107534028A (en) 2018-01-02

Similar Documents

Publication Publication Date Title
US20170070181A1 (en) Metallic dielectric photonic crystals and methods of fabrication
US6724465B2 (en) Lithography device which uses a source of radiation in the extreme ultraviolet range and multi-layered mirrors with a broad spectral band in this range
WO2018079386A1 (en) Infrared heater
US8325776B2 (en) Plasmon stabilized laser diodes
KR101990194B1 (en) Structure with various patterns and manufacturing method thereoff
US7482610B2 (en) Vertical-cavity enhanced resonant thermal emitter
WO2015021255A1 (en) Light-source efficiency enhancement using metasurfaces
WO2017179563A1 (en) Heat-electromagnetic wave conversion structure, heat-electromagnetic wave conversion member, wavelength selective heat dissipation device, wavelength selective heating device, wavelength selective heat dissipation method, wavelength selective heating method, and method for manufacturing heat-electromagnetic wave conversion structure
Zhou et al. Self-focused thermal emission and holography realized by mesoscopic thermal emitters
JP6217120B2 (en) Wavelength conversion element and wavelength conversion device
US8242527B2 (en) Light emitting device and method of manufacturing the same
JP6977943B2 (en) Infrared radiant device
JP6692046B2 (en) Infrared heater
JP2013137306A (en) X-ray waveguide and x-ray waveguide system
EP2600355A2 (en) X-ray waveguide and X-ray waveguide system
CN112513690B (en) Radiation device and emission cooling device
Rybin et al. Enhanced optical absorbance of CVD‐graphene monolayer by combination with photonic crystal slab
JP6985161B2 (en) Thermal radiation structure
US10797633B2 (en) Thermal emitter for energy conversion technical field
JP6997060B2 (en) Infrared radiant device
JP2020017433A (en) Infrared radiation apparatus
KR102495990B1 (en) Sunroof system performing passive radiant cooling
Girshova et al. Prospects for using organic and metal− polymer materials in optoacoustic generators of ultrasound
JP2007250800A (en) Laser device
Komisar et al. Scattering holography designed metasurfaces for channeling single-photon emission

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782376

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP