JP2014036187A - Heat dissipation structure and heating element device provided with the same - Google Patents

Heat dissipation structure and heating element device provided with the same Download PDF

Info

Publication number
JP2014036187A
JP2014036187A JP2012177936A JP2012177936A JP2014036187A JP 2014036187 A JP2014036187 A JP 2014036187A JP 2012177936 A JP2012177936 A JP 2012177936A JP 2012177936 A JP2012177936 A JP 2012177936A JP 2014036187 A JP2014036187 A JP 2014036187A
Authority
JP
Japan
Prior art keywords
heat
contact prevention
heat dissipation
prevention plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012177936A
Other languages
Japanese (ja)
Inventor
Naoko Matsumoto
尚子 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012177936A priority Critical patent/JP2014036187A/en
Publication of JP2014036187A publication Critical patent/JP2014036187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat dissipation structure which prevents breakage due to contact during assembly of a heat sink and is improved in heat dissipation performance.SOLUTION: A heating element 1 is mounted on a wiring board 2 to constitute a heating source H. The heating source H is attached to a heat sink 4 by a thermally conductive interface material layer 3. The heat sink 4 has an uneven structure of nanometer-order to submicrometer-order size (pitch) formed on a surface S4 thereof and is made of a carbon-based material having high thermal conductivity. A contact prevention plate 5 is provided on the surface S4 of the heat sink 4 via support columns 5a and 5b to protect the uneven structure on the surface S4 of the heat sink 4. The contact prevention plate 5 is made of a resin such as a polycarbonate (PC) or a metal such as aluminum and has openings formed therein.

Description

本発明は発光ダイオード(LED)素子、レーザダイオード(LD)素子、マイクロプロセッサ等の発熱素子を含む発熱素子装置、特に、その放熱構造の保護に関する。   The present invention relates to a heating element device including a light emitting diode (LED) element, a laser diode (LD) element, a heating element such as a microprocessor, and more particularly to protection of the heat dissipation structure.

近年、LED素子、LD素子、マイクロプロセッサ等の発熱素子の高性能化に伴い、発熱素子の発熱量は増大してきている。一方、発熱素子の小型化、薄型化の要求が高まり、発熱素子の発熱密度は非常に高くなり熱的に厳しい状況を強いられている。   In recent years, the amount of heat generated by a heating element has increased with the improvement in performance of heating elements such as LED elements, LD elements, and microprocessors. On the other hand, there is an increasing demand for miniaturization and thinning of the heat generating elements, and the heat generation density of the heat generating elements becomes very high, which forces a severe thermal condition.

特に、LED素子、LD素子は自身が発する熱により寿命及び性能が低下するという負の特性がある。また、発光素子との組合せにより発光色を変化させる目的で使用される蛍光体層も熱による負の特性を有する。   In particular, LED elements and LD elements have negative characteristics that their lifetime and performance are reduced by the heat generated by themselves. Moreover, the phosphor layer used for the purpose of changing the emission color by combining with the light emitting element also has a negative characteristic due to heat.

そのため、発熱素子、蛍光体層の温度上昇が問題となり、ヒートシンクの放熱手法以上の発熱素子、蛍光体層の放熱効率を高める放熱手法が求められている。   Therefore, the temperature rise of the heat generating element and the phosphor layer becomes a problem, and a heat dissipating method for improving the heat dissipating efficiency of the heat generating element and the phosphor layer more than the heat dissipating method of the heat sink is required.

尚、ヒートシンクは発熱素子の熱を自然に空気中に放散させるものであり、その包絡体積が大きい程、潜在的放熱性能が上昇する。従って、包絡体積によってほぼ放熱機能が決定付けられる。一方、製品の小型化、薄型化の要求の高まり、ヒートシンクの包絡体積を単純に大きくできない。   The heat sink naturally dissipates the heat of the heating element into the air. The larger the envelope volume, the higher the potential heat dissipation performance. Therefore, the heat radiation function is almost determined by the envelope volume. On the other hand, there is an increasing demand for smaller and thinner products, and the envelope volume of the heat sink cannot be simply increased.

従来の放熱構造として、表面にナノメートルオーダからサブミクロメートルオーダのサイズ(ピッチ)の凹凸構造を形成した熱伝導率が高い炭素系材料よりなる放熱板を備えるものがある(参照:特許文献1)。   As a conventional heat dissipation structure, there is one provided with a heat dissipation plate made of a carbon-based material having a high thermal conductivity and having a concavo-convex structure with a size (pitch) of nanometer order to submicrometer order on the surface (see Patent Document 1). ).

特開2011−49281号公報JP 2011-49281 A

しかしながら、上述の従来の放熱構造においては、放熱性能向上のための凹凸構造は非常に脆いので、組立時に接触して破壊される恐れがあり、この結果、実使用時に著しく放熱性能が低下するという課題がある。   However, in the above-described conventional heat dissipation structure, the uneven structure for improving the heat dissipation performance is very fragile, so there is a risk of contact and breakage during assembly, and as a result, the heat dissipation performance is significantly reduced during actual use. There are challenges.

上述の課題を解決するために本発明に係る放熱構造は、裏面に発熱源を取り付けられるように形成されており、表面にナノメートルオーダからサブミクロメートルオーダのサイズの凹凸構造を形成した炭素系材料よりなる放熱板と、放熱板の表面に対して所定距離離して対向して配置された接触防止板とを具備し、接触防止板に開口を形成したものである。   In order to solve the above-described problems, the heat dissipation structure according to the present invention is formed so that a heat source can be attached to the back surface, and a carbon-based structure in which a concavo-convex structure having a size of nanometer order to submicrometer order is formed on the surface. A heat dissipation plate made of a material and a contact prevention plate arranged to face each other with a predetermined distance from the surface of the heat dissipation plate are provided, and an opening is formed in the contact prevention plate.

また、接触防止板の放熱板に対向する受熱面での放射率を接触防止板の受熱面の反対の放熱面での放射率より小さくする。   The emissivity at the heat receiving surface of the contact prevention plate facing the heat radiating plate is made smaller than the emissivity at the heat radiating surface opposite to the heat receiving surface of the contact prevention plate.

さらに、上述の開口はスリットあるいはメッシュである。   Furthermore, the above-mentioned opening is a slit or a mesh.

本発明によれば、接触防止板により放熱板の組立時の接触破壊を防止できると共に、開口を形成した接触防止板による放熱表面積の増大により放熱性能を向上できる。   According to the present invention, the contact prevention plate can prevent contact breakage during assembly of the heat dissipation plate, and can improve the heat dissipation performance by increasing the heat dissipation surface area due to the contact prevention plate having the opening.

本発明に係る発熱素子装置の第1の実施の形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the heat generating element apparatus which concerns on this invention. 図1の放射板の凹凸構造の加工フローを示すフローチャートである。It is a flowchart which shows the processing flow of the uneven structure of the radiation plate of FIG. 図2のプラズマエッチング後のグラファイト基板の表面の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the surface of the graphite substrate after the plasma etching of FIG. 図1の発熱素子装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the heat generating element apparatus of FIG. 本発明に係る発熱素子装置の第2の実施の形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the heat generating element apparatus which concerns on this invention. 図5の発熱素子装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the heat generating element apparatus of FIG. 図1、図5の接触防止板の第1の例を示し、(A)は分解斜視写真、(B)は組立斜視写真である。FIGS. 1 and 5 show a first example of the contact prevention plate, in which (A) is an exploded perspective photograph and (B) is an assembled perspective photograph. 図1、図5の接触防止板の第2の例を示す組立斜視写真である。FIG. 6 is an assembly perspective photograph showing a second example of the contact prevention plate of FIGS. 1 and 5. 本願発明者が実施した接触防止板なしの従来の発熱素子装置の実験結果、接触防止板の第1、第2の例を適用した本発明の発熱素子装置の実験結果を示すテーブルである。It is a table | surface which shows the experimental result of the heat generating element apparatus of this invention which applied the 1st, 2nd example of the contact heating board and the experimental result of the conventional heat generating element apparatus without the contact preventive board which this inventor implemented.

図1は本発明に係る発熱素子装置の第1の実施の形態を示す断面図である。   FIG. 1 is a cross-sectional view showing a first embodiment of a heating element device according to the present invention.

図1においては、LED素子、LD素子等の発熱素子1は配線基板2に搭載されて発熱源Hを構成する。   In FIG. 1, a heating element 1 such as an LED element or an LD element is mounted on a wiring board 2 to constitute a heating source H.

発熱源Hは熱伝導性インターフェイス材料(Thermal Interface Material)層3によって放熱板4に取り付けられている。熱伝導性インターフェイス材料層3はたとえばシート状のシリコーン樹脂によって形成され、発熱源Hと放熱板4との間に発生する接触熱抵抗を軽減させる作用を有するので、発熱素子1に対する温度低減効果を奏する。   The heat source H is attached to the heat sink 4 by a thermally conductive interface material layer 3. The heat conductive interface material layer 3 is formed of, for example, a sheet-like silicone resin, and has an action of reducing contact thermal resistance generated between the heat generation source H and the heat radiating plate 4. Play.

放熱板4はその表面S4にナノメートルオーダからサブミクロメートルオーダのサイズ(ピッチ)の凹凸構造を形成した熱伝導率が高い炭素系材料よりなる。   The heat radiating plate 4 is made of a carbon-based material having a high thermal conductivity in which an uneven structure having a size (pitch) of nanometer order to submicrometer order is formed on the surface S4.

上述のナノメートルオーダからサブミクロメートルオーダのサイズの凹凸構造は、炭素系基板たとえばグラファイト基板、金属を混ぜた稠密グラファイト基板、その他ダイヤモンド基板、ガラス状炭素系基板上にも加工でき、また、基板あるいは層(シート)のいずれにも加工できる。この凹凸構造の加工を図2のフローチャートを参照して説明する(参照:特許文献1)。   The uneven structure having a size of nanometer order to submicrometer order can be processed on a carbon-based substrate such as a graphite substrate, a dense graphite substrate mixed with metal, a diamond substrate, or a glassy carbon-based substrate. Alternatively, it can be processed into any layer (sheet). The processing of the concavo-convex structure will be described with reference to the flowchart of FIG. 2 (see: Patent Document 1).

すなわち、ステップ201を参照すると、たとえばグラファイト基板にナノメートルオーダからサブミクロメートルオーダのサイズの凹凸構造を形成する。凹凸構造の例を図3に示す。尚、図3の(A)、(B)は撮影角度が異なる。図3に示すように、凹凸構造の突起部のピッチ(間隔)はサイズ(幅)の数倍程度であり、同一オーダである。尚、凹凸構造の高さはサブミクロメートルオーダ以上である。すなわち、グラファイト基板をプラズマエッチング装置に投入し、グラファイト基板を酸素(O2)ガスを用いたプラズマエッチング法によってエッチングを行う。 That is, referring to step 201, for example, a concavo-convex structure having a size of nanometer order to submicrometer order is formed on a graphite substrate. An example of the uneven structure is shown in FIG. 3A and 3B have different shooting angles. As shown in FIG. 3, the pitch (interval) of the protrusions of the concavo-convex structure is about several times the size (width) and is in the same order. The height of the concavo-convex structure is on the order of submicrometers or more. That is, the graphite substrate is put into a plasma etching apparatus, and the graphite substrate is etched by a plasma etching method using oxygen (O 2 ) gas.

プラズマエッチング条件は、たとえば、次のごとくである。
RFパワー:500W
圧力:6.65Pa(50mTorr)
O2流量:200sccm
エッチング時間:50分
である。
The plasma etching conditions are, for example, as follows.
RF power: 500W
Pressure: 6.65Pa (50mTorr)
O 2 flow rate: 200sccm
Etching time: 50 minutes.

尚、ステップ201でのプラズマエッチング法は、電子サイクロトロン共鳴(ECR)エッチング法、反応性イオンエッチング(RIE)法、大気圧プラズマエッチング法等のいずれでもよく、また、処理ガスは、O2ガス以外のArガス、CO2ガス、H2ガス、CF4ガス等、及びこれらの混合ガスのいずれでもよい。 The plasma etching method in step 201 may be any of an electron cyclotron resonance (ECR) etching method, a reactive ion etching (RIE) method, an atmospheric pressure plasma etching method, and the like, and the processing gas is other than O 2 gas. Any of Ar gas, CO 2 gas, H 2 gas, CF 4 gas, etc., and mixed gas thereof may be used.

また、図2のプラズマエッチングステップ201の前に、サンドブラスト等の機械的表面研磨及び/またはCO2レーザ、YAGレーザ、エキシマレーザ等のハイパワーレーザ照射による表面研磨によるさらなる前処理、つまり、ミクロメートルオーダからサブミクロメートルオーダの不規則周期凹凸構造を予め形成しておく。尚、この不規則周期凹凸構造の高さもミクロメートルオーダ以上である。従って、凹凸構造だけの場合よりも、不規則周期凹凸構造によりグラファイト基板の凹凸構造の表面積が一層増大して放熱効率が高くなる。尚、ステップ201でのプラズマエッチングの前に、不規則周期凹凸構造が形成される場合、この不規則周期凹凸構造のサイズ(ピッチ)はステップ201でのプラズマエッチングで形成される凹凸構造のサイズ(ピッチ)よりも必ず大きいものである。このときの放射温度計(商標KEYENCE FT-H20)により測定した結果、基板の表面の温度が150℃のときの放射率は理論最大値1.00に対して0.99となった。   Further, before the plasma etching step 201 of FIG. 2, further pretreatment by mechanical surface polishing such as sand blasting and / or surface polishing by high power laser irradiation such as CO2 laser, YAG laser, excimer laser, etc. To a sub-micrometer order irregular periodic concavo-convex structure is formed in advance. Note that the height of the irregular periodic concavo-convex structure is also on the order of micrometers or more. Therefore, the surface area of the concavo-convex structure of the graphite substrate is further increased by the irregular periodic concavo-convex structure than in the case of the concavo-convex structure alone, and the heat dissipation efficiency is increased. If the irregular periodic concavo-convex structure is formed before the plasma etching in step 201, the size (pitch) of the irregular periodic concavo-convex structure is the size of the concavo-convex structure formed by plasma etching in step 201 ( Is always larger than (pitch). As a result of measurement with a radiation thermometer (trademark KEYENCE FT-H20) at this time, the emissivity when the surface temperature of the substrate was 150 ° C. was 0.99 against the theoretical maximum value of 1.00.

尚、上述のナノメートルオーダとは約10〜500nmの範囲を示し、サブミクロメートルオーダとは約0.5〜10μmの範囲を示し、ミクロメートルオーダとは約10〜500μmの範囲を示す。   The nanometer order is in the range of about 10 to 500 nm, the submicrometer order is in the range of about 0.5 to 10 μm, and the micrometer order is in the range of about 10 to 500 μm.

図1に戻ると、放熱板4の表面S4上に接触防止板5を支柱5a、5bを介して設け、放熱板4の表面S4の凹凸構造を保護する。接触防止板5は樹脂たとえばポリカーボネート(PC)あるいは金属たとえばアルミニウムよりなり、後述するスリット51あるいはメッシュ52の開口が形成されている。支柱5a、5bは同一材料で構成しても他の熱伝導性材料で構成してもよい。このとき、開口が形成された接触防止板5により放熱表面積も増大するので、放熱性能も向上する。   Returning to FIG. 1, the contact prevention plate 5 is provided on the surface S <b> 4 of the heat radiating plate 4 via the columns 5 a and 5 b to protect the uneven structure of the surface S <b> 4 of the heat radiating plate 4. The contact prevention plate 5 is made of a resin such as polycarbonate (PC) or a metal such as aluminum, and has an opening of a slit 51 or a mesh 52 described later. The supports 5a and 5b may be made of the same material or may be made of other heat conductive materials. At this time, the heat dissipation surface area is also increased by the contact prevention plate 5 in which the opening is formed, so that the heat dissipation performance is also improved.

次に、図1の発熱素子装置の動作を図4を参照して説明する。   Next, the operation of the heating element device of FIG. 1 will be described with reference to FIG.

発熱素子1から発生した熱は、矢印Aに示す熱伝導により、配線基板2、熱伝導性インターフェイス材料層3、放熱板4及び支柱5a、5bを介して接触防止板5の受熱面S51に受熱される。   The heat generated from the heating element 1 is received by the heat receiving surface S51 of the contact prevention plate 5 through the wiring substrate 2, the heat conductive interface material layer 3, the heat radiating plate 4, and the columns 5a and 5b by the heat conduction indicated by the arrow A. Is done.

また、同時に放熱板4の熱は、矢印Bに示す対流により、接触防止板5の受熱面S51に受熱される。   At the same time, the heat of the heat radiating plate 4 is received by the heat receiving surface S51 of the contact prevention plate 5 by the convection indicated by the arrow B.

最後に、接触防止板5に受熱された熱は、矢印B+Cに示す対流及び放射により、放熱面S52から外気へ放熱される。この場合、接触防止板5には開口(スリット51、メッシュ52)が形成されている。そのため、矢印Bに示す放熱板4からの対流(熱)が接触防止板5の開口を通過することにより、放熱板4の熱を外気へ放熱させることができる。   Finally, the heat received by the contact prevention plate 5 is radiated from the heat radiation surface S52 to the outside air by convection and radiation indicated by arrows B + C. In this case, an opening (slit 51, mesh 52) is formed in the contact prevention plate 5. Therefore, the convection (heat) from the heat radiating plate 4 indicated by the arrow B passes through the opening of the contact prevention plate 5 so that the heat of the heat radiating plate 4 can be radiated to the outside air.

図4においては、接触防止板5が単一の樹脂もしくは金属よりなるので、接触防止板5の受熱面S51側の放射率と放熱面S52側の放射率とは同一となる。従って、接触防止板5に一旦受熱された熱の一部は、矢印C’に示す放射により、受熱面S51から放熱板4に戻る。この結果、放熱板4と接触防止板5との間に熱だまりXが発生する。   In FIG. 4, since the contact prevention plate 5 is made of a single resin or metal, the emissivity on the heat receiving surface S51 side and the emissivity on the heat dissipation surface S52 side of the contact prevention plate 5 are the same. Therefore, part of the heat once received by the contact prevention plate 5 returns from the heat receiving surface S51 to the heat radiating plate 4 by radiation indicated by an arrow C '. As a result, a heat pool X is generated between the heat radiating plate 4 and the contact prevention plate 5.

図1の発熱素子装置によれば、接触防止板5により放熱板4の表面S4の凹凸構造を保護できると共に、熱だまりXが発生するも、接触防止板5による放熱表面積が増大し、さらに、接触防止板5に形成された開口によって対流による放熱が増大するので、放熱性能も向上できる。   According to the heating element device of FIG. 1, the contact prevention plate 5 can protect the uneven structure of the surface S4 of the heat radiating plate 4, and although the heat trap X is generated, the heat radiating surface area due to the contact prevention plate 5 is increased. Since heat radiation by convection is increased by the opening formed in the contact prevention plate 5, heat radiation performance can be improved.

図5は本発明に係る発熱素子装置の第2の実施の形態を示す断面図である。   FIG. 5 is a sectional view showing a second embodiment of the heating element device according to the present invention.

図5においては、図1の接触防止板5の代りに、接触防止板5’を設けてある。接触防止板5’においては、受熱面S51’での放射率を放熱面S52’での放射率より小さくしてある。接触防止板5’にも後述するスリット51あるいはメッシュ52の開口が形成されている。この場合、受熱面S51’での放射率は0.1〜0.5であり、放熱面S52’での放射率は0.8以上である。たとえば、接触防止板5’をアルミニウム等の金属で構成し、その放熱面S52’側を放射率が大きいアルマイト処理等による金属酸化物を形成する。あるいは、接触防止板5’をポリカーボネート(PC)等の樹脂で構成し、その受熱面S51’側をアルミニウム等の放射率の小さい金属層を蒸着する。   In FIG. 5, a contact prevention plate 5 'is provided instead of the contact prevention plate 5 of FIG. In the contact prevention plate 5 ', the emissivity at the heat receiving surface S51' is smaller than the emissivity at the heat radiating surface S52 '. The contact prevention plate 5 'is also formed with an opening of a slit 51 or a mesh 52 described later. In this case, the emissivity at the heat receiving surface S51 'is 0.1 to 0.5, and the emissivity at the heat radiating surface S52' is 0.8 or more. For example, the contact prevention plate 5 ′ is made of a metal such as aluminum, and a metal oxide is formed on the heat radiating surface S 52 ′ side by alumite treatment having a high emissivity. Alternatively, the contact prevention plate 5 'is made of a resin such as polycarbonate (PC), and a metal layer having a low emissivity such as aluminum is deposited on the heat receiving surface S51' side.

次に、図5の発熱素子装置の動作を図6を参照して説明する。   Next, the operation of the heating element device of FIG. 5 will be described with reference to FIG.

図4の場合と同様に、発熱素子1から発生した熱は、矢印Aに示す熱伝導率及び矢印Bに示す対流により、接触防止板5’の受熱面S51’に受熱され、また、接触防止板5’に受熱された熱は、矢印B+Cに示す対流及び放射により、放熱面S52’から外気へ放熱される。   As in the case of FIG. 4, the heat generated from the heating element 1 is received by the heat receiving surface S51 ′ of the contact prevention plate 5 ′ by the thermal conductivity indicated by the arrow A and the convection indicated by the arrow B, and also prevents contact. The heat received by the plate 5 ′ is radiated from the heat radiating surface S52 ′ to the outside air by convection and radiation indicated by arrows B + C.

図6においては、接触防止板5’の受熱面S51’側の放射率は放熱面S52’側の放射率より小さくしてある。これにより、接触防止板5´の受熱面S51’の熱の吸収率も小さくなり、放熱板4の表面S4からの放射熱を受熱しにくくなる。従って、接触防止板5’の受熱面S51’から放熱板4の表面S4への放射による熱の戻りはほとんどなくなる。この結果、図4の熱だまりXはほとんど発生せず、放熱性能がさらに向上する。   In FIG. 6, the emissivity on the heat receiving surface S51 'side of the contact prevention plate 5' is smaller than the emissivity on the heat radiating surface S52 'side. Thereby, the heat absorption rate of the heat receiving surface S51 'of the contact prevention plate 5' is also reduced, and it becomes difficult to receive the radiant heat from the surface S4 of the heat radiating plate 4. Accordingly, there is almost no return of heat due to radiation from the heat receiving surface S51 'of the contact prevention plate 5' to the surface S4 of the heat radiating plate 4. As a result, the heat trap X in FIG. 4 hardly occurs and the heat dissipation performance is further improved.

図5の発熱素子装置によれば、接触防止板5’により放熱板4の表面S4の凹凸構造を保護できると共に、熱だまりXを発生せずに、開口が形成された接触防止板5’による放熱表面積が増大するので、放熱性能をさらに向上できる。   According to the heating element device of FIG. 5, the uneven structure of the surface S4 of the heat sink 4 can be protected by the contact prevention plate 5 ′, and the contact prevention plate 5 ′ having an opening without generating the heat pool X can be used. Since the heat radiation surface area increases, the heat radiation performance can be further improved.

図7は図1、図5の接触防止板5、5’の第1の例を示し、(A)は分解斜視写真、(B)は組立斜視写真である。   FIG. 7 shows a first example of the contact prevention plates 5 and 5 ′ of FIGS. 1 and 5, (A) is an exploded perspective photograph, and (B) is an assembled perspective photograph.

図7においては、接触防止板5、5’に複数の規則的なスリット51を設ける。たとえば、接触防止板5、5’のサイズを50mm×50mmとすれば、スリット51の線形幅を1mm、ピッチを6mmとし、スリット51による開口の開口率を75%とする。これにより、接触防止板5、5’のスリット51を介して空気の循環を可能にし、放熱性能をさらに向上させる。   In FIG. 7, a plurality of regular slits 51 are provided in the contact prevention plates 5, 5 '. For example, if the size of the contact prevention plates 5 and 5 ′ is 50 mm × 50 mm, the linear width of the slits 51 is 1 mm, the pitch is 6 mm, and the aperture ratio of the openings by the slits 51 is 75%. As a result, air can be circulated through the slits 51 of the contact prevention plates 5, 5 ', and the heat dissipation performance is further improved.

図8は図1、図5の接触防止板5、5’の第2の例を示す組立斜視写真である。   FIG. 8 is an assembly perspective photograph showing a second example of the contact prevention plates 5 and 5 ′ of FIGS. 1 and 5.

図8においては、接触防止板5、5’に複数の規則的なメッシュ52を設ける。たとえば、接触防止板5、5’のサイズを50mm×50mmとすれば、メッシュ52の線形幅を0.5mm、ピッチを2.04mmとし、メッシュ52による開口の開口率を80%とする。これにより、接触防止板5、5’のメッシュ52を介して空気の循環を可能にし、放熱性能をさらに向上させる。   In FIG. 8, a plurality of regular meshes 52 are provided on the contact prevention plates 5, 5 '. For example, if the size of the contact prevention plates 5 and 5 ′ is 50 mm × 50 mm, the linear width of the mesh 52 is 0.5 mm, the pitch is 2.04 mm, and the aperture ratio of the openings by the mesh 52 is 80%. As a result, air can be circulated through the mesh 52 of the contact prevention plates 5, 5 ', and the heat dissipation performance is further improved.

図9は本願発明者が実施した接触防止板なしの従来の発熱素子装置の実験結果、接触防止板5、5’の第1の例、第2の例を適用した本発明の発熱素子装置の実験結果を示すテーブルである。   FIG. 9 shows the experimental results of the conventional heating element device without the contact prevention plate carried out by the inventor of the present invention, and the heating element device of the present invention to which the first and second examples of the contact prevention plates 5, 5 ′ are applied. It is a table which shows an experimental result.

従来の発熱素子装置及び本発明の発熱素子装置の共通条件は次の通りである。   Common conditions of the conventional heating element device and the heating element device of the present invention are as follows.

発熱素子1:
セラミックヒータ
サイズ:10mm×10mm
発熱量:2.5W
配線基板2
実施例においては省略。つまり、発熱素子1を熱伝導性インターフェイス材料層3によって放熱板4に直接取り付ける。
熱伝導性インターフェイス材料層3
材料:シリコーン樹脂
サイズ:10mm×10mm
厚さ:0.5mm
熱伝導率:2.1W/mK
放熱板4
材料:炭素
サイズ:50mm×50mm
厚さ:1mm
熱伝導率:140W/mK
周囲温度
25℃
Heating element 1:
Ceramic heater Size: 10mm × 10mm
Calorific value: 2.5W
Wiring board 2
Omitted in the examples. That is, the heat generating element 1 is directly attached to the heat sink 4 by the heat conductive interface material layer 3.
Thermally conductive interface material layer 3
Material: Silicone resin Size: 10mm × 10mm
Thickness: 0.5mm
Thermal conductivity: 2.1W / mK
Heat sink 4
Material: Carbon Size: 50mm x 50mm
Thickness: 1mm
Thermal conductivity: 140W / mK
Ambient temperature
25 ℃

上述の共通条件を満足する従来の発熱素子装置の発熱源(発熱素子1)の発熱温度は、図9の(A)に示すごとく、
58℃
と高かった。
As shown in FIG. 9A, the heating temperature of the heating source (heating element 1) of the conventional heating element device that satisfies the above common conditions is
58 ℃
It was high.

接触防止板5、5’にスリット51を用いた第1の例の共通条件は次の通りである。
接触防止板5、5’のスリット51
スリットの線形:1mm
スリットのピッチ:6mm
スリットの開口率:75%
支柱5a、5b
高さ:1mm
Common conditions of the first example in which the slits 51 are used in the contact prevention plates 5 and 5 ′ are as follows.
Contact prevention plate 5, 5 'slit 51
Slit alignment: 1mm
Slit pitch: 6mm
Slit opening ratio: 75%
Prop 5a, 5b
Height: 1mm

第1の例の接触防止板5(第1の実施の形態)として、
材料:ポリカーボネート(PC)
熱伝導率:0.2W/mK
を用いた場合、図9の(B)の左側に示すごとく、発熱源(発熱素子1)の熱源温度は、
57.0℃
と低かった。
As the first example of the contact prevention plate 5 (first embodiment),
Material: Polycarbonate (PC)
Thermal conductivity: 0.2W / mK
As shown on the left side of FIG. 9B, the heat source temperature of the heat source (heat generating element 1) is
57.0 ° C
It was low.

また、第1の例の接触防止板5(第1の実施の形態)として、
材料:アルミニウム
熱伝導率:140W/mK
を用いた場合、図9の(B)の左側に示すごとく、発熱源(発熱素子1)の発熱温度は、
56.5℃
と低かった。これにより、第1の例(スリット)を用いた接触防止板5(第1の実施の形態)の材料として、ポリカーボネートよりもアルミニウムを用いた方が放熱性能は向上していた。
Moreover, as the contact prevention plate 5 (first embodiment) of the first example,
Material: Aluminum Thermal conductivity: 140W / mK
As shown on the left side of FIG. 9B, the heating temperature of the heating source (heating element 1) is
56.5 ℃
It was low. Thereby, as a material of the contact prevention plate 5 (first embodiment) using the first example (slit), the heat radiation performance was improved by using aluminum rather than polycarbonate.

第1の例の接触防止板5’(第2の実施の形態)として、
材料:ポリカーボネート(PC)樹脂
熱伝導率:0.2W/mK
を用いた場合、
受熱面S51’での放射率:0.3
放熱面S52’での放射率:0.9
となり、図9の(B)の右側に示すごとく、発熱源(発熱素子1)の熱源温度は、
57.2℃
と低かった。
As the first example of the contact prevention plate 5 ′ (second embodiment),
Material: Polycarbonate (PC) resin Thermal conductivity: 0.2W / mK
When using
Emissivity at heat receiving surface S51 ': 0.3
Emissivity at heat radiation surface S52 ′: 0.9
As shown on the right side of FIG. 9B, the heat source temperature of the heat source (heat generating element 1) is
57.2 ℃
It was low.

また、第1の例の接触防止板5’(第2の実施の形態)として、
材料:アルミニウム
熱伝導率:140W/mK
を用いた場合、
受熱面S51’での放射率:0.3
放熱面S52’での放射率:0.9
となり、図9の(B)の右側に示すごとく、発熱源(発熱素子1)の発熱温度は、
55.5℃
と低かった。これにより、第1の例(スリット)を用いた接触防止板5’(第2の実施の形態)の材料として、ポリカーボネートにアルミニウムを蒸着したものよりもアルミニウムを酸化してアルミナ(登録商標)を形成したものを用いた方が放熱性能は向上していた。
In addition, as the contact prevention plate 5 ′ (second embodiment) of the first example,
Material: Aluminum Thermal conductivity: 140W / mK
When using
Emissivity at heat receiving surface S51 ': 0.3
Emissivity at heat radiation surface S52 ′: 0.9
As shown on the right side of FIG. 9B, the heating temperature of the heating source (heating element 1) is
55.5 ℃
It was low. As a result, as a material of the contact prevention plate 5 ′ (second embodiment) using the first example (slit), aluminum is oxidized to alumina (registered trademark) rather than polycarbonate deposited with aluminum. The heat dissipation performance was improved by using the formed one.

接触防止板5、5’にメッシュ52を用いた第2の例の共通条件は次の通りである。
接触防止板5、5’のメッシュ52
メッシュの線形:0.5mm
メッシュのピッチ:2.04mm
メッシュの開口率:80%
支柱5a、5b
高さ:1mm
Common conditions of the second example in which the mesh 52 is used for the contact prevention plates 5 and 5 ′ are as follows.
Contact prevention plate 5, 5 'mesh 52
Mesh alignment: 0.5mm
Mesh pitch: 2.04mm
Mesh opening ratio: 80%
Prop 5a, 5b
Height: 1mm

第2の例の接触防止板5(第1の実施の形態)として、
材料:ポリカーボネート(PC)
熱伝導率:0.2W/mK
を用いた場合、図9の(C)の左側に示すごとく、発熱源(発熱素子1)の熱源温度は、
57.7℃
と低かった。
As the contact prevention plate 5 (first embodiment) of the second example,
Material: Polycarbonate (PC)
Thermal conductivity: 0.2W / mK
As shown on the left side of FIG. 9C, the heat source temperature of the heat source (heat generating element 1) is
57.7 ℃
It was low.

また、第2の例の接触防止板5(第1の実施の形態)として、
材料:アルミニウム
熱伝導率:140W/mK
を用いた場合、図9の(C)の左側に示すごとく、発熱源(発熱素子1)の発熱温度は、
55.1℃
と低かった。これにより、第2の例(メッシュ)を用いた接触防止板5(第1の実施の形態)の材料として、ポリカーボネートよりもアルミニウムを用いた方が放熱性能は向上していた。
In addition, as the contact prevention plate 5 (first embodiment) of the second example,
Material: Aluminum Thermal conductivity: 140W / mK
As shown on the left side of FIG. 9C, the heating temperature of the heating source (heating element 1) is
55.1 ℃
It was low. Thereby, as a material of the contact prevention plate 5 (first embodiment) using the second example (mesh), the heat radiation performance was improved by using aluminum rather than polycarbonate.

第2の例の接触防止板5’(第2の実施の形態)として、
材料:ポリカーボネート(PC)樹脂
熱伝導率:0.2W/mK
を用いた場合、
受熱面S51’での放射率:0.3
放熱面S52’での放射率:0.9
となり、図9の(C)の右側に示すごとく、発熱源(発熱素子1)の熱源温度は、
57.7℃
と低かった。
As the contact prevention plate 5 ′ (second embodiment) of the second example,
Material: Polycarbonate (PC) resin Thermal conductivity: 0.2W / mK
When using
Emissivity at heat receiving surface S51 ': 0.3
Emissivity at heat radiation surface S52 ′: 0.9
As shown on the right side of FIG. 9C, the heat source temperature of the heat source (heat generating element 1) is
57.7 ℃
It was low.

また、第2の例の接触防止板5’(第2の実施の形態)として、
材料:アルミニウム
熱伝導率:140W/mK
を用いた場合、
受熱面S51’での放射率:0.3
放熱面S52’での放射率:0.9
となり、図9の(C)の右側に示すごとく、発熱源(発熱素子1)の発熱温度は、
55.1℃
と低かった。これにより、第2の例(メッシュ)を用いた接触防止板5’(第2の実施の形態)の材料として、ポリカーボネートにアルミニウムを蒸着したものよりもアルミニウムを酸化してアルミナ(登録商標)を形成したものを用いた方が放熱性能は向上していた。
In addition, as the contact prevention plate 5 ′ (second embodiment) of the second example,
Material: Aluminum Thermal conductivity: 140W / mK
When using
Emissivity at heat receiving surface S51 ': 0.3
Emissivity at heat radiation surface S52 ′: 0.9
As shown on the right side of FIG. 9C, the heating temperature of the heating source (heating element 1) is
55.1 ℃
It was low. As a result, as a material for the contact prevention plate 5 ′ (second embodiment) using the second example (mesh), alumina is oxidized by oxidizing aluminum rather than the aluminum deposited on polycarbonate. The heat dissipation performance was improved by using the formed one.

尚、図9の(B)、(C)においては、表裏の放射率に差を付けた第2の実施の形態が表裏の放射率が同一の第1の実施の形態に比較して顕著な熱源温度の低下が観察できないのは、寸法の最適化が図られていないためと考えられる。   In FIGS. 9B and 9C, the second embodiment in which the emissivities of the front and back sides are different is more remarkable than the first embodiment in which the emissivities of the front and back sides are the same. The reason why the decrease in the heat source temperature cannot be observed is thought to be because the dimensions have not been optimized.

1:発熱素子
2:配線基板
3:熱伝導性インターフェイス材料層
4:放熱板
5、5’:接触防止板
5a、5b:支柱
S51、S51’:受熱面
S52、S52’:放熱面
51:スリット
52:メッシュ

1: Heating element 2: Wiring board 3: Thermally conductive interface material layer 4: Heat radiation plate 5, 5 ′: Contact prevention plate 5a, 5b: Support columns S51, S51 ′: Heat receiving surface S52, S52 ′: Heat radiation surface 51: Slit 52: Mesh

Claims (8)

裏面に発熱源を取り付けられるように形成されており、表面にナノメートルオーダからサブミクロメートルオーダのサイズの凹凸構造を形成した炭素系材料よりなる放熱板と、
該放熱板の前記表面に対して所定距離離して対向して配置された接触防止板と
を具備し、前記接触防止板に開口を形成した放熱構造。
A heat sink made of a carbon-based material that is formed so that a heat source can be attached to the back surface, and has a concavo-convex structure with a size of nanometer order to submicrometer order on the surface,
A contact prevention plate disposed opposite to the surface of the heat dissipation plate by a predetermined distance, and a heat dissipation structure in which an opening is formed in the contact prevention plate.
前記接触防止板の前記放熱板に対向する受熱面での放射率を前記接触防止板の受熱面の反対の放熱面での放射率より小さくした請求項1に記載の放熱構造。   The heat dissipation structure according to claim 1, wherein an emissivity at a heat receiving surface of the contact prevention plate facing the heat dissipation plate is smaller than an emissivity at a heat dissipation surface opposite to the heat receiving surface of the contact prevention plate. 前記接触防止板は樹脂よりなり、該樹脂の受熱面側に金属層を形成した請求項2に記載の放熱構造。   The heat dissipation structure according to claim 2, wherein the contact prevention plate is made of resin, and a metal layer is formed on a heat receiving surface side of the resin. 前記接触防止板は金属よりなり、該金属の放熱面側を酸化した請求項2に記載の放熱構造。   The heat dissipation structure according to claim 2, wherein the contact prevention plate is made of metal and the heat dissipation surface side of the metal is oxidized. 前記開口はスリットである請求項1〜4のいずれかに記載の放熱構造。   The heat dissipation structure according to claim 1, wherein the opening is a slit. 前記開口はメッシュである請求項1〜4のいずれかに記載の放熱構造。   The heat dissipation structure according to claim 1, wherein the opening is a mesh. 前記放熱板の裏面に、発熱素子を含む前記発熱源が取り付けられた請求項1〜6のいずれかに記載の放熱構造が設けられた発熱素子装置。   The heat generating element apparatus provided with the heat radiating structure according to any one of claims 1 to 6, wherein the heat generating source including the heat generating element is attached to a back surface of the heat radiating plate. 前記放熱板は熱伝導性インターフェイス材料層を介して前記発熱源に取り付けられた請求項7に記載の発熱素子装置。
The heating element device according to claim 7, wherein the heat radiating plate is attached to the heat generation source via a thermally conductive interface material layer.
JP2012177936A 2012-08-10 2012-08-10 Heat dissipation structure and heating element device provided with the same Pending JP2014036187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177936A JP2014036187A (en) 2012-08-10 2012-08-10 Heat dissipation structure and heating element device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177936A JP2014036187A (en) 2012-08-10 2012-08-10 Heat dissipation structure and heating element device provided with the same

Publications (1)

Publication Number Publication Date
JP2014036187A true JP2014036187A (en) 2014-02-24

Family

ID=50284968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177936A Pending JP2014036187A (en) 2012-08-10 2012-08-10 Heat dissipation structure and heating element device provided with the same

Country Status (1)

Country Link
JP (1) JP2014036187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105263297A (en) * 2015-10-23 2016-01-20 惠州市杰普特电子技术有限公司 Laser heat insulation device
JP2016162639A (en) * 2015-03-03 2016-09-05 株式会社ユメックス Anode for short arc discharge lamp, and method of manufacturing the same
JP2020039516A (en) * 2018-09-07 2020-03-19 スタンレー電気株式会社 Fluid disinfection device
CN111477595A (en) * 2020-06-28 2020-07-31 甬矽电子(宁波)股份有限公司 Heat dissipation packaging structure and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738009A (en) * 1993-06-25 1995-02-07 Matsushita Electric Works Ltd Chip carrier
JPH08125364A (en) * 1994-10-21 1996-05-17 Fujitsu Ltd Heat radiation structure of semiconductor part
US5559674A (en) * 1993-03-19 1996-09-24 Fujitsu Limited Heat sink and mounting structure for heat sink
JP2001210980A (en) * 2000-01-24 2001-08-03 Denso Corp Electronic circuit unit
JP2004214401A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Heat radiation device of electronic part
JP2004363525A (en) * 2003-06-09 2004-12-24 Meidensha Corp Cooling structure for electronic equipment
JP2006222146A (en) * 2005-02-08 2006-08-24 Toshiba Corp Heat dissipation device and heat dissipation method of electronic apparatus
JP2006237149A (en) * 2005-02-23 2006-09-07 Toshiba Corp Heat radiator of electronic equipment
JP2008047771A (en) * 2006-08-18 2008-02-28 National Institute Of Advanced Industrial & Technology Semiconductor device
JP2010118710A (en) * 2010-03-03 2010-05-27 Toshiba Corp Electronic device
JP2011049281A (en) * 2009-08-26 2011-03-10 Stanley Electric Co Ltd Heat radiation material and method for manufacturing the same
JP2012151392A (en) * 2011-01-21 2012-08-09 Stanley Electric Co Ltd Heat radiation material and manufacturing method of the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559674A (en) * 1993-03-19 1996-09-24 Fujitsu Limited Heat sink and mounting structure for heat sink
JPH0738009A (en) * 1993-06-25 1995-02-07 Matsushita Electric Works Ltd Chip carrier
JPH08125364A (en) * 1994-10-21 1996-05-17 Fujitsu Ltd Heat radiation structure of semiconductor part
JP2001210980A (en) * 2000-01-24 2001-08-03 Denso Corp Electronic circuit unit
JP2004214401A (en) * 2002-12-27 2004-07-29 Matsushita Electric Ind Co Ltd Heat radiation device of electronic part
JP2004363525A (en) * 2003-06-09 2004-12-24 Meidensha Corp Cooling structure for electronic equipment
JP2006222146A (en) * 2005-02-08 2006-08-24 Toshiba Corp Heat dissipation device and heat dissipation method of electronic apparatus
JP2006237149A (en) * 2005-02-23 2006-09-07 Toshiba Corp Heat radiator of electronic equipment
JP2008047771A (en) * 2006-08-18 2008-02-28 National Institute Of Advanced Industrial & Technology Semiconductor device
JP2011049281A (en) * 2009-08-26 2011-03-10 Stanley Electric Co Ltd Heat radiation material and method for manufacturing the same
JP2010118710A (en) * 2010-03-03 2010-05-27 Toshiba Corp Electronic device
JP2012151392A (en) * 2011-01-21 2012-08-09 Stanley Electric Co Ltd Heat radiation material and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162639A (en) * 2015-03-03 2016-09-05 株式会社ユメックス Anode for short arc discharge lamp, and method of manufacturing the same
CN105263297A (en) * 2015-10-23 2016-01-20 惠州市杰普特电子技术有限公司 Laser heat insulation device
JP2020039516A (en) * 2018-09-07 2020-03-19 スタンレー電気株式会社 Fluid disinfection device
JP7267699B2 (en) 2018-09-07 2023-05-02 スタンレー電気株式会社 Fluid sterilizer
CN111477595A (en) * 2020-06-28 2020-07-31 甬矽电子(宁波)股份有限公司 Heat dissipation packaging structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5795021B2 (en) Heat dissipation structure
JP5098642B2 (en) Method for producing heat-dissipating graphite sheet
JP2014036187A (en) Heat dissipation structure and heating element device provided with the same
JP5385054B2 (en) Heat dissipation material and manufacturing method thereof
JP2008159995A (en) Heat sink
US20150201530A1 (en) Heat Spreading Packaging Apparatus
JP2007005283A5 (en)
JP2003046038A (en) Heat-conducting base material, manufacturing method therefor and semiconductor device
JP2006269643A (en) Heat radiation sheet
JP2012151392A (en) Heat radiation material and manufacturing method of the same
JP2007005332A (en) Heat sink and its manufacturing method
JP2012174743A (en) Heat radiation material and semiconductor unit
JP5634805B2 (en) Metal-impregnated carbon-based substrate, heat dissipation material including the same, and method for producing metal-impregnated carbon-based substrate
KR20170119979A (en) Heat radiation sheet and method for manufacturing the same
JP2013089915A (en) Apparatus including radiation structure
JP2017017178A (en) Natural air cooling type heat sink and heat generating element device using the same
JP7425670B2 (en) heat dissipation material
JP2013182984A (en) Heating element heat dissipation structure
KR102552824B1 (en) Heat emission sheet composites
TW201519746A (en) Electronic device and method for making housing of the same
TWI779869B (en) Immersion-cooled porous heat-dissipation structure
JP6190087B1 (en) Thermal light conversion element
TWM426063U (en) Heat dissipation structure
TWM436316U (en)
JP2012164853A (en) Carbon-based substrate, heat sink, method of producing carbon-based substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170501