JP2021181759A - Intake device - Google Patents

Intake device Download PDF

Info

Publication number
JP2021181759A
JP2021181759A JP2020086720A JP2020086720A JP2021181759A JP 2021181759 A JP2021181759 A JP 2021181759A JP 2020086720 A JP2020086720 A JP 2020086720A JP 2020086720 A JP2020086720 A JP 2020086720A JP 2021181759 A JP2021181759 A JP 2021181759A
Authority
JP
Japan
Prior art keywords
intake air
curvature
surge tank
pipe
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020086720A
Other languages
Japanese (ja)
Other versions
JP7384110B2 (en
Inventor
将人 山田
Masato Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2020086720A priority Critical patent/JP7384110B2/en
Publication of JP2021181759A publication Critical patent/JP2021181759A/en
Application granted granted Critical
Publication of JP7384110B2 publication Critical patent/JP7384110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

To provide an intake device capable of effectively reducing a pressure loss at the time when intake air flows from a storage part to a supply pipe.SOLUTION: An intake manifold 11 includes a surge tank 13 capable of storing intake air, an inflow pipe 14 that is connected to the surge tank 13 to let intake air flow into the surge tank 13, and branch pipes 15 that are connected to the surge tank 13 at positions not opposed to the inflow pipe 14 and supply the intake air, which flows into the surge tank 13 from the inflow pipe 14, to an internal combustion engine side. A cross section of the branch pipe 15 orthogonal to a direction in which the branch pipe 15 extends has a polygonal shape in which corner portions 19 have arc shapes. Among the plurality of corner portions 19 in the cross section of a connection portion 20 of the branch pipe 15 to the surge tank 13, the curvature radius of the corner portions 21, 22 located on a side where the intake air from the inflow pipe 14 flows into the branch pipe 15 is smaller than the curvature radius of the other corner portions 23, 24.SELECTED DRAWING: Figure 4

Description

本発明は、内燃機関の吸気装置に関する。 The present invention relates to an intake device of an internal combustion engine.

従来、この種の吸気装置として、例えば特許文献1に示すものが知られている。こうした吸気装置は、吸気を流入させる開口部を有したサージタンク(収容部)と、サージタンクに接続されてサージタンク内の吸気を内燃機関の複数の気筒に分配してそれぞれ供給する複数の吸気管(供給管)とを備えている。各吸気管は、経路の途中が所定の曲率半径を有して湾曲した構成になっている。 Conventionally, as an intake device of this type, for example, the one shown in Patent Document 1 is known. Such an intake device includes a surge tank (accommodation unit) having an opening for inflowing intake air, and a plurality of intake air connected to the surge tank to distribute and supply the intake air in the surge tank to a plurality of cylinders of an internal combustion engine. It is equipped with a pipe (supply pipe). Each intake pipe has a curved structure in which the middle of the path has a predetermined radius of curvature.

特許第6394154号公報Japanese Patent No. 6394154

ところで、上述のような吸気装置では、各吸気管の湾曲下流部の断面において、湾曲内側の吸気通路内面に接する2つの円弧形状部(コーナー部)の曲率半径を、湾曲外側の吸気通路内面に接する2つの円弧形状部(コーナー部)の曲率半径よりも小さくすることで、各吸気管内の湾曲内側と湾曲外側との間での吸気の流速差を減少させて湾曲下流部を流れる吸気の圧力損失を低減するようにしている。 By the way, in the intake device as described above, in the cross section of the curved downstream portion of each intake pipe, the radius of curvature of the two arc-shaped portions (corner portions) in contact with the inner surface of the intake passage inside the curve is set to the inner surface of the intake passage outside the curve. By making it smaller than the radius of curvature of the two arcuate parts (corners) in contact with each other, the difference in the flow velocity of the intake air between the inside and outside of the curve in each intake pipe is reduced, and the pressure of the intake air flowing in the downstream part of the curve is reduced. I try to reduce the loss.

しかしながら、上述のような吸気装置では、吸気がサージタンクから各吸気管へ流れる際の圧力損失を低減する工夫が特になされていないため、吸気がサージタンクから各吸気管へ流れる際の圧力損失を低減する上では改善の余地を残すものとなっている。 However, in the intake device as described above, since the pressure loss when the intake air flows from the surge tank to each intake pipe is not particularly devised, the pressure loss when the intake air flows from the surge tank to each intake pipe is reduced. There is room for improvement in reducing it.

本発明は、このような従来技術に存在する問題点に着目してなされた。その目的は、吸気が収容部から供給管へ流れる際の圧力損失を効果的に低減できる吸気装置を提供することにある。 The present invention has focused on such problems existing in the prior art. An object of the present invention is to provide an intake device capable of effectively reducing the pressure loss when the intake air flows from the accommodating portion to the supply pipe.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する吸気装置は、吸気を収容可能な収容部と、前記収容部に接続され、前記吸気を前記収容部内に流入させる流入管と、前記収容部における前記流入管と対向しない位置に接続され、前記流入管から前記収容部内に流入した前記吸気を内燃機関側へ供給する供給管と、を備え、前記供給管における前記供給管が延びる方向と直交する断面は、コーナー部が円弧状をなす多角形状をなしており、前記供給管における前記収容部との接続部の断面の複数の前記コーナー部のうち、前記流入管からの前記吸気が前記供給管に流れてくる側に位置する前記コーナー部の曲率半径は、他の前記コーナー部の曲率半径よりも小さくなっていることを要旨とする。
Hereinafter, means for solving the above problems and their actions and effects will be described.
The intake device for solving the above problems is located at a position not facing the accommodating portion capable of accommodating the intake air, the inflow pipe connected to the accommodating portion and allowing the intake air to flow into the accommodating portion, and the inflow pipe in the accommodating portion. A supply pipe that is connected and supplies the intake air that has flowed into the accommodating portion from the inflow pipe to the internal combustion engine side is provided, and the cross section of the supply pipe that is orthogonal to the direction in which the supply pipe extends has an arcuate corner portion. It has a polygonal shape forming a The gist is that the radius of curvature of the corner portion is smaller than the radius of curvature of the other corner portions.

この構成によれば、供給管の接続部の断面における流入管からの吸気が流れてくる側のコーナー部の曲率半径を小さくすることで、接続部における曲率半径を小さくしたコーナー部側、すなわち流入管からの吸気が流れてくる側の流路断面積を稼ぐことができる。このため、流入管から収容部内に流入した吸気が供給管内に円滑に流れるため、接続部での乱流の発生が抑制される。したがって、吸気が収容部から供給管へ流れる際の圧力損失を効果的に低減できる。 According to this configuration, by reducing the radius of curvature of the corner portion on the side where the intake air from the inflow pipe flows in the cross section of the connection portion of the supply pipe, the radius of curvature at the connection portion is reduced on the corner portion side, that is, the inflow. It is possible to earn the cross-sectional area of the flow path on the side where the intake air from the pipe flows. Therefore, the intake air that has flowed into the accommodating portion from the inflow pipe smoothly flows into the supply pipe, so that the generation of turbulent flow at the connection portion is suppressed. Therefore, the pressure loss when the intake air flows from the accommodating portion to the supply pipe can be effectively reduced.

一実施形態のインテークマニホールドの側面図。A side view of the intake manifold of one embodiment. 図1の平面図。Top view of FIG. 図2の3−3線矢視断面図。FIG. 2 is a cross-sectional view taken along the line 3-3. 図1の4−4線矢視断面図。FIG. 1 is a cross-sectional view taken along the line 4-4. 図3の5−5線矢視断面図。FIG. 3 is a cross-sectional view taken along the line 5-5 in FIG. 図3の6−6線矢視断面図。FIG. 3 is a cross-sectional view taken along the line 6-6 in FIG. 変更例の吸気装置を示す断面模式図。FIG. 6 is a schematic cross-sectional view showing an intake device of a modified example.

以下、吸気装置をインテークマニホールドに具体化した一実施形態を図面に従って説明する。
図1及び図2に示すように、吸気装置の一例としてのインテークマニホールド11は、合成樹脂などによって構成され、例えば直列4気筒の車載用の内燃機関12に取り付けられる。インテークマニホールド11は、吸気を収容可能な収容部の一例としてのサージタンク13と、サージタンク13に接続されて吸気をサージタンク13内に流入させる流入管14と、流入管14からサージタンク13内に流入した吸気を内燃機関12側へ分配して供給する例えば4つの供給管の一例としての分岐管15とを備えている。
Hereinafter, an embodiment in which the intake device is embodied in an intake manifold will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the intake manifold 11 as an example of the intake device is made of synthetic resin or the like, and is attached to, for example, an in-line 4-cylinder in-vehicle internal combustion engine 12. The intake manifold 11 includes a surge tank 13 as an example of an accommodating portion capable of accommodating intake air, an inflow pipe 14 connected to the surge tank 13 to allow intake air to flow into the surge tank 13, and an inflow pipe 14 into the surge tank 13. A branch pipe 15 is provided as an example of, for example, four supply pipes that distribute and supply the intake air that has flowed into the internal combustion engine 12 side.

4つの分岐管15は、サージタンク13における流入管14と対向しない位置に、互いに並ぶようにそれぞれ一端側が接続されている。本実施形態において、4つの分岐管15の並ぶ方向は並び方向Xとされ、並び方向Xは図1における紙面と直交する方向及び図2における左右方向とそれぞれ一致している。 One end of each of the four branch pipes 15 is connected to the surge tank 13 at a position not facing the inflow pipe 14 so as to line up with each other. In the present embodiment, the arrangement direction of the four branch pipes 15 is the arrangement direction X, and the arrangement direction X coincides with the direction orthogonal to the paper surface in FIG. 1 and the left-right direction in FIG. 2, respectively.

流入管14は、並び方向Xにおけるサージタンク13の一端側に接続されている。流入管14におけるサージタンク13側とは反対側の端部には、外周側に突出するフランジ部16が設けられている。フランジ部16には、複数の挿通孔16aが形成されている。図示は省略するが、流入管14におけるサージタンク13側とは反対側の端部は、フランジ部16において各挿通孔16aに挿通されるボルトにより、スロットルバルブを有したスロットルボディに固定されている。また、図示は省略するが、サージタンク13には、内燃機関12の運転に伴って発生するブローバイガスをサージタンク13内に導入するガス導入部が設けられている。 The inflow pipe 14 is connected to one end side of the surge tank 13 in the arrangement direction X. A flange portion 16 projecting to the outer peripheral side is provided at an end portion of the inflow pipe 14 opposite to the surge tank 13 side. A plurality of insertion holes 16a are formed in the flange portion 16. Although not shown, the end of the inflow pipe 14 opposite to the surge tank 13 side is fixed to the throttle body having a throttle valve by a bolt inserted into each insertion hole 16a in the flange portion 16. .. Although not shown, the surge tank 13 is provided with a gas introduction section for introducing blow-by gas generated by the operation of the internal combustion engine 12 into the surge tank 13.

各分岐管15は、サージタンク13の下方側から上方側に向かってサージタンク13の外周を囲むように湾曲して延びている。すなわち、各分岐管15は、湾曲部17を形成するように延びている。各分岐管15の先端には、外周側に突出する共通のフランジ部18が設けられている。 Each branch pipe 15 is curved and extends from the lower side to the upper side of the surge tank 13 so as to surround the outer periphery of the surge tank 13. That is, each branch pipe 15 extends so as to form a curved portion 17. A common flange portion 18 projecting to the outer peripheral side is provided at the tip of each branch pipe 15.

フランジ部18には、複数の挿通孔18aが形成されている。図示は省略するが、各分岐管15におけるサージタンク13側とは反対側の端部は、フランジ部18において各挿通孔18aに挿通されるボルトにより、内燃機関12のシリンダヘッドに固定されている。これにより、各分岐管15が内燃機関12における各気筒の燃焼室に連通される。 A plurality of insertion holes 18a are formed in the flange portion 18. Although not shown, the end of each branch pipe 15 opposite to the surge tank 13 side is fixed to the cylinder head of the internal combustion engine 12 by a bolt inserted into each insertion hole 18a in the flange portion 18. .. As a result, each branch pipe 15 is communicated with the combustion chamber of each cylinder in the internal combustion engine 12.

図3及び図4に示すように、各分岐管15における分岐管15が延びる方向と直交する断面は、4つのコーナー部19が円弧状をなす略矩形状をなしている。すなわち、各分岐管15は、サージタンク13との接続部20及び接続部20よりも内燃機関12側に位置する湾曲部17を含むほぼ全体の断面が略矩形状をなしている。各分岐管15が接続部20においてサージタンク13内に開口する方向と、流入管14からサージタンク13内に吸気が流入する方向とは、ほぼ直交している。 As shown in FIGS. 3 and 4, the cross section of each branch pipe 15 orthogonal to the direction in which the branch pipe 15 extends has a substantially rectangular shape in which the four corner portions 19 form an arc shape. That is, each branch pipe 15 has a substantially rectangular cross section including the connection portion 20 with the surge tank 13 and the curved portion 17 located on the internal combustion engine 12 side of the connection portion 20. The direction in which each branch pipe 15 opens into the surge tank 13 at the connection portion 20 and the direction in which the intake air flows into the surge tank 13 from the inflow pipe 14 are substantially orthogonal to each other.

図3〜図5に示すように、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21〜24のうち、流入管14からの吸気が各分岐管15に流れてくる側に位置する2つのコーナー部21,22の曲率半径は、他の2つのコーナー部23,24の曲率半径よりも小さくなっている。 As shown in FIGS. 3 to 5, of the four corners 21 to 24 of the cross section of the connection portion 20 with the surge tank 13 in each branch pipe 15, the intake air from the inflow pipe 14 flows to each branch pipe 15. The radius of curvature of the two corner portions 21 and 22 located on the coming side is smaller than the radius of curvature of the other two corner portions 23 and 24.

すなわち、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21〜24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径よりも小さくなっている。 That is, of the four corners 21 to 24 of the cross section of the connection portion 20 with the surge tank 13 in each branch pipe 15, the radius of curvature of the two corner portions 21 and 22 located on the inflow pipe 14 side in the arrangement direction X is , It is smaller than the radius of curvature of the two corner portions 23, 24 located on the side opposite to the inflow pipe 14 side in the alignment direction X.

この場合、各分岐管15の接続部20の断面の4つのコーナー部21〜24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は互いに同じになっており、且つ並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径は互いに同じになっている。 In this case, of the four corners 21 to 24 of the cross section of the connection portion 20 of each branch pipe 15, the radii of curvature of the two corner portions 21 and 22 located on the inflow pipe 14 side in the arrangement direction X are the same as each other. The two corner portions 23, 24 located on the opposite side of the inflow pipe 14 side in the alignment direction X have the same radius of curvature.

図3及び図6に示すように、各分岐管15の湾曲部17の断面における4つのコーナー部25〜28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている。この場合、内周側に位置する2つコーナー部25,26の曲率半径は互いに同じになっており、且つ外周側に位置する2つのコーナー部27,28の曲率半径は互いに同じになっている。 As shown in FIGS. 3 and 6, the radius of curvature of the two corner portions 25, 26 located on the inner peripheral side of the four corner portions 25 to 28 in the cross section of the curved portion 17 of each branch pipe 15 is the outer circumference. It is smaller than the radius of curvature of the two corners 27 and 28 located on the side. In this case, the radii of curvature of the two corner portions 25 and 26 located on the inner peripheral side are the same as each other, and the radii of curvature of the two corner portions 27 and 28 located on the outer peripheral side are the same as each other. ..

なお、各分岐管15の断面における4つのコーナー部19の曲率半径は、接続部20から湾曲部17に向かって徐々に変化している。すなわち、接続部20の断面におけるコーナー部21,22,23,24の曲率半径は、湾曲部17に向かうにつれて湾曲部17の断面におけるコーナー部25,27,26,28の曲率半径へとそれぞれ徐々に変化する。図5では、上側が各分岐管15の湾曲部17の内周側に対応し、下側が各分岐管15の湾曲部17の外周側に対応する。 The radius of curvature of the four corners 19 in the cross section of each branch pipe 15 gradually changes from the connecting portion 20 toward the curved portion 17. That is, the radius of curvature of the corners 21, 22, 23, 24 in the cross section of the connecting portion 20 gradually becomes the radius of curvature of the corners 25, 27, 26, 28 in the cross section of the curved portion 17 toward the curved portion 17. Changes to. In FIG. 5, the upper side corresponds to the inner peripheral side of the curved portion 17 of each branch pipe 15, and the lower side corresponds to the outer peripheral side of the curved portion 17 of each branch pipe 15.

次に、インテークマニホールド11の作用について説明する。
図4及び図5に示すように、流入管14からサージタンク13内に流入した吸気は、サージタンク13内から4つの分岐管15に対して接続部20からそれぞれ流れ込むことで分配される。このとき、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21〜24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径よりも小さくなっている。
Next, the operation of the intake manifold 11 will be described.
As shown in FIGS. 4 and 5, the intake air flowing into the surge tank 13 from the inflow pipe 14 is distributed by flowing from the connection portion 20 into the four branch pipes 15 from the inside of the surge tank 13. At this time, of the four corners 21 to 24 of the cross section of the connection portion 20 with the surge tank 13 in each branch pipe 15, the radius of curvature of the two corner portions 21 and 22 located on the inflow pipe 14 side in the arrangement direction X. Is smaller than the radius of curvature of the two corner portions 23, 24 located on the side opposite to the inflow pipe 14 side in the alignment direction X.

このため、各分岐管15の接続部20における吸気の流路断面積は、流入管14からの吸気が流れてくる側の方が、流入管14からの吸気が流れてくる側とは反対側よりも大きくなる。したがって、流入管14からサージタンク13内に流入した吸気の主流が接続部20から各分岐管15内に円滑に流れ込むため、接続部20での乱流の発生が抑制される。この結果、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失が効果的に低減される。 Therefore, the cross-sectional area of the intake flow path at the connection portion 20 of each branch pipe 15 is on the side where the intake air from the inflow pipe 14 flows is opposite to the side where the intake air from the inflow pipe 14 flows. Will be larger than. Therefore, the main flow of the intake air that has flowed into the surge tank 13 from the inflow pipe 14 smoothly flows from the connection portion 20 into each branch pipe 15, so that the generation of turbulent flow at the connection portion 20 is suppressed. As a result, the pressure loss when the intake air flows from the surge tank 13 to each branch pipe 15 is effectively reduced.

図3及び図6に示すように、サージタンク13から各分岐管15へ流れ込んだ吸気は、湾曲部17内を通って内燃機関12側へ流れる。このとき、湾曲部17内を流れる吸気の流速は、通常、内周側の方が外周側よりも速くなる。この点、本実施形態の各分岐管15の湾曲部17の断面における4つのコーナー部25〜28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている。 As shown in FIGS. 3 and 6, the intake air that has flowed from the surge tank 13 into each branch pipe 15 flows through the curved portion 17 to the internal combustion engine 12 side. At this time, the flow velocity of the intake air flowing in the curved portion 17 is usually faster on the inner peripheral side than on the outer peripheral side. In this regard, the radius of curvature of the two corner portions 25, 26 located on the inner peripheral side of the four corner portions 25 to 28 in the cross section of the curved portion 17 of each branch pipe 15 of the present embodiment is located on the outer peripheral side. It is smaller than the radius of curvature of the two corners 27 and 28.

このため、湾曲部17内においては内周側の方が外周側よりも流路断面積が大きくなるので、湾曲部17内の内周側を流れる吸気の流速を下げることができる。したがって、湾曲部17内の内周側を流れる吸気と湾曲部17内の外周側を流れる吸気との流速差が小さくなって乱流の発生が抑制されるので、湾曲部17内を流れる吸気の圧力損失が効果的に低減される。 Therefore, in the curved portion 17, the flow path cross-sectional area on the inner peripheral side is larger than that on the outer peripheral side, so that the flow velocity of the intake air flowing on the inner peripheral side in the curved portion 17 can be reduced. Therefore, the difference in flow velocity between the intake air flowing on the inner peripheral side in the curved portion 17 and the intake air flowing on the outer peripheral side in the curved portion 17 becomes small and the generation of turbulent flow is suppressed, so that the intake air flowing in the curved portion 17 is suppressed. Pressure loss is effectively reduced.

さらに、各分岐管15の断面におけるコーナー部19の曲率半径は、接続部20から湾曲部17に向かって徐々に変化している。このため、各分岐管15は、接続部20から湾曲部17にかけての部位において、吸気の圧力損失の低減に対して有利となる。すなわち、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失、湾曲部17内を流れる吸気の圧力損失、及び接続部20から湾曲部17にかけての部位を流れる吸気の圧力損失が低減される。 Further, the radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 gradually changes from the connecting portion 20 toward the curved portion 17. Therefore, each branch pipe 15 is advantageous for reducing the pressure loss of the intake air at the portion from the connecting portion 20 to the curved portion 17. That is, the pressure loss when the intake air flows from the surge tank 13 to each branch pipe 15, the pressure loss of the intake air flowing in the curved portion 17, and the pressure loss of the intake air flowing in the portion from the connecting portion 20 to the curved portion 17 are reduced. NS.

以上詳述した実施形態によれば、次のような効果が発揮される。
(1)インテークマニホールド11において、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21〜24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径よりも小さくなっている。この構成によれば、各分岐管15の接続部20の断面における流入管からの吸気が流れてくる側の2つのコーナー部21,22の曲率半径を小さくすることで、接続部20における曲率半径を小さくした2つのコーナー部21,22側、すなわち流入管14からの吸気が流れてくる側の流路断面積を稼ぐことができる。このため、流入管14からサージタンク13内に流入した吸気が各分岐管15内に円滑に流れるため、接続部20での乱流の発生が抑制される。したがって、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失を効果的に低減できる。
According to the embodiment described in detail above, the following effects are exhibited.
(1) In the intake manifold 11, of the four corners 21 to 24 of the cross section of the connection portion 20 with the surge tank 13 in each branch pipe 15, the two corner portions 21 located on the inflow pipe 14 side in the arrangement direction X. The radius of curvature of, 22 is smaller than the radius of curvature of the two corner portions 23, 24 located on the side opposite to the inflow pipe 14 side in the arrangement direction X. According to this configuration, the radius of curvature at the connection portion 20 is reduced by reducing the radius of curvature of the two corner portions 21 and 22 on the side where the intake air from the inflow pipe flows in the cross section of the connection portion 20 of each branch pipe 15. It is possible to increase the cross-sectional area of the flow path on the two corner portions 21 and 22 sides, that is, the side on which the intake air from the inflow pipe 14 flows. Therefore, the intake air that has flowed into the surge tank 13 from the inflow pipe 14 smoothly flows into each branch pipe 15, and the occurrence of turbulent flow at the connection portion 20 is suppressed. Therefore, the pressure loss when the intake air flows from the surge tank 13 to each branch pipe 15 can be effectively reduced.

(2)インテークマニホールド11において、各分岐管15の湾曲部17の断面における4つのコーナー部25〜28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている。通常、湾曲部17内を流れる吸気の流速は、内周側の方が外周側よりも速くなる。この点、この構成によれば、湾曲部17内の内周側の方が外周側よりも流路断面積が大きくなるので、湾曲部17内の内周側を流れる吸気の流速を下げることができる。このため、湾曲部17内の内周側を流れる吸気と湾曲部17内の外周側を流れる吸気との流速差が小さくなって乱流の発生が抑制されるので、湾曲部17内を流れる吸気の圧力損失を効果的に低減できる。 (2) In the intake manifold 11, the radius of curvature of the two corner portions 25, 26 located on the inner peripheral side of the four corner portions 25 to 28 in the cross section of the curved portion 17 of each branch pipe 15 is on the outer peripheral side. It is smaller than the radius of curvature of the two located corners 27 and 28. Normally, the flow velocity of the intake air flowing in the curved portion 17 is faster on the inner peripheral side than on the outer peripheral side. In this respect, according to this configuration, the flow path cross-sectional area on the inner peripheral side in the curved portion 17 is larger than that on the outer peripheral side, so that the flow velocity of the intake air flowing on the inner peripheral side in the curved portion 17 can be reduced. can. Therefore, the difference in flow velocity between the intake air flowing on the inner peripheral side in the curved portion 17 and the intake air flowing on the outer peripheral side in the curved portion 17 becomes small and the generation of turbulent flow is suppressed, so that the intake air flowing in the curved portion 17 is suppressed. Pressure loss can be effectively reduced.

(3)インテークマニホールド11において、各分岐管15の断面におけるコーナー部19の曲率半径は、接続部20から湾曲部17に向かって徐々に変化している。この構成によれば、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失、湾曲部17内を流れる吸気の圧力損失、及び接続部20から湾曲部17にかけての部位を流れる吸気の圧力損失を低減できる。 (3) In the intake manifold 11, the radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 gradually changes from the connecting portion 20 toward the curved portion 17. According to this configuration, the pressure loss when the intake air flows from the surge tank 13 to each branch pipe 15, the pressure loss of the intake air flowing in the curved portion 17, and the pressure of the intake air flowing in the portion from the connection portion 20 to the curved portion 17. Loss can be reduced.

(変更例)
なお、上記実施形態は次のように変更してもよい。
・各分岐管15の断面におけるコーナー部19の曲率半径は、必ずしも接続部20から湾曲部17に向かって徐々に変化している必要はない。すなわち、各分岐管15の断面におけるコーナー部19の曲率半径は、接続部20から湾曲部17に向かって急激に変化していてもよい。
(Change example)
The above embodiment may be changed as follows.
The radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 does not necessarily have to gradually change from the connecting portion 20 toward the curved portion 17. That is, the radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 may change sharply from the connecting portion 20 toward the curved portion 17.

・各分岐管15の湾曲部17の断面における4つのコーナー部25〜28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、必ずしも外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている必要はない。すなわち、各分岐管15の湾曲部17の断面における4つのコーナー部25〜28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径以上にしてもよい。 -Of the four corners 25 to 28 in the cross section of the curved portion 17 of each branch pipe 15, the radius of curvature of the two corners 25 and 26 located on the inner peripheral side is not necessarily the two corners located on the outer peripheral side. It does not have to be smaller than the radius of curvature of 27,28. That is, of the four corner portions 25 to 28 in the cross section of the curved portion 17 of each branch pipe 15, the radius of curvature of the two corner portions 25 and 26 located on the inner peripheral side is the two corner portions located on the outer peripheral side. It may be greater than or equal to the radius of curvature of 27, 28.

・各分岐管15の接続部20の断面の4つのコーナー部21〜24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は互いに異なっていてもよいし、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径は互いに異なっていてもよい。 Of the four corners 21 to 24 of the cross section of the connection portion 20 of each branch pipe 15, the radii of curvature of the two corner portions 21 and 22 located on the inflow pipe 14 side in the arrangement direction X may be different from each other. However, the radii of curvature of the two corner portions 23, 24 located on the side opposite to the inflow pipe 14 side in the alignment direction X may be different from each other.

・各分岐管15の湾曲部17の断面の4つのコーナー部25〜28のうち、内周側に位置する2つコーナー部25,26の曲率半径は互いに異なっていてもよいし、外周側に位置する2つのコーナー部27,28の曲率半径は互いに異なっていてもよい。 -Of the four corners 25 to 28 of the cross section of the curved portion 17 of each branch pipe 15, the radii of curvature of the two corners 25 and 26 located on the inner peripheral side may be different from each other, or may be on the outer peripheral side. The radii of curvature of the two located corners 27, 28 may be different from each other.

・各分岐管15において接続部20以外の部位が全て湾曲部17である場合には、各分岐管15の断面における4つのコーナー部19の曲率半径は、接続部20から湾曲部17における一定の距離の中で徐々に変化させるようにしてもよい。 When all the parts other than the connecting portion 20 in each branch pipe 15 are curved portions 17, the radius of curvature of the four corner portions 19 in the cross section of each branch pipe 15 is constant from the connecting portion 20 to the curved portion 17. It may be changed gradually within the distance.

・各分岐管15の断面形状は、コーナー部が円弧状をなす矩形状(四角形状)以外の多角形状であってもよい。すなわち、各分岐管15の断面形状は、コーナー部が円弧状をなしていれば、例えば三角形状や五角形状、あるいは六角形状であってもよい。 The cross-sectional shape of each branch pipe 15 may be a polygonal shape other than a rectangular shape (square shape) in which the corners are arcuate. That is, the cross-sectional shape of each branch pipe 15 may be, for example, a triangular shape, a pentagonal shape, or a hexagonal shape as long as the corner portion has an arc shape.

・各分岐管15は、必ずしも湾曲部17を有している必要はない。すなわち、各分岐管15は、例えばサージタンク13から内燃機関12に向かって直線状に延びるように構成されていてもよい。 -Each branch pipe 15 does not necessarily have to have a curved portion 17. That is, each branch pipe 15 may be configured to extend linearly from, for example, the surge tank 13 toward the internal combustion engine 12.

・本実施形態のインテークマニホールド11は、直列4気筒の車載用の内燃機関12に適用したが、直列3気筒や直列6気筒などの車載用の内燃機関に対して適用してもよい。
・図7に示すように、吸気装置は、インテークマニホールド11に限らず、インレット30が設けられたケース31とアウトレット32が設けられたキャップ33とでフィルタエレメント34が挟持された構成のエアクリーナ35であってもよい。この場合、インレット30が流入管を構成し、ケース31及びキャップ33が収容部を構成し、アウトレット32が供給管を構成する。
The intake manifold 11 of the present embodiment is applied to an in-line 4-cylinder in-vehicle internal combustion engine 12, but may be applied to an in-line 3-cylinder or in-line 6-cylinder in-vehicle internal combustion engine.
As shown in FIG. 7, the intake device is not limited to the intake manifold 11, but is an air cleaner 35 having a configuration in which a filter element 34 is sandwiched between a case 31 provided with an inlet 30 and a cap 33 provided with an outlet 32. There may be. In this case, the inlet 30 constitutes the inflow pipe, the case 31 and the cap 33 form the accommodating portion, and the outlet 32 constitutes the supply pipe.

11…吸気装置の一例としてのインテークマニホールド
12…内燃機関
13…収容部の一例としてのサージタンク
14…流入管
15…供給管の一例としての分岐管
16,18…フランジ部
16a,18a…挿通孔
17…湾曲部
19,21〜28…コーナー部
20…接続部
30…流入管を構成するインレット
31…収容部を構成するケース
32…供給管を構成するアウトレット
33…収容部を構成するキャップ
34…フィルタエレメント
35…吸気装置の一例としてのエアクリーナ
X…並び方向
11 ... Intake manifold as an example of intake device 12 ... Internal combustion engine 13 ... Surge tank as an example of accommodating part 14 ... Inflow pipe 15 ... Branch pipe as an example of supply pipe 16, 18 ... Flange part 16a, 18a ... Insertion hole 17 ... Curved part 19, 21-28 ... Corner part 20 ... Connection part 30 ... Inlet 31 ... Containing part Case 32 ... Outlet 33 ... Containing part Cap 34 ... Filter element 35 ... Air cleaner as an example of intake device X ... Arrangement direction

Claims (3)

吸気を収容可能な収容部と、
前記収容部に接続され、前記吸気を前記収容部内に流入させる流入管と、
前記収容部における前記流入管と対向しない位置に接続され、前記流入管から前記収容部内に流入した前記吸気を内燃機関側へ供給する供給管と、
を備え、
前記供給管における前記供給管が延びる方向と直交する断面は、コーナー部が円弧状をなす多角形状をなしており、
前記供給管における前記収容部との接続部の断面の複数の前記コーナー部のうち、前記流入管からの前記吸気が前記供給管に流れてくる側に位置する前記コーナー部の曲率半径は、他の前記コーナー部の曲率半径よりも小さくなっていることを特徴とする吸気装置。
A containment unit that can accommodate intake air,
An inflow pipe connected to the accommodating portion and allowing the intake air to flow into the accommodating portion.
A supply pipe connected to a position not facing the inflow pipe in the accommodating portion and supplying the intake air that has flowed into the accommodating portion from the inflow pipe to the internal combustion engine side.
Equipped with
The cross section of the supply pipe orthogonal to the direction in which the supply pipe extends has a polygonal shape with arcuate corners.
Of the plurality of corner portions in the cross section of the connection portion with the accommodating portion in the supply pipe, the radius of curvature of the corner portion located on the side where the intake air from the inflow pipe flows into the supply pipe is the other. An intake device characterized in that it is smaller than the radius of curvature of the corner portion of the above.
前記供給管は、前記接続部よりも前記内燃機関側の位置に、湾曲するように延びる湾曲部を有しており、
前記湾曲部の断面における複数の前記コーナー部のうち、内周側に位置する前記コーナー部の曲率半径は、外周側に位置する前記コーナー部の曲率半径よりも小さくなっていることを特徴とする請求項1に記載の吸気装置。
The supply pipe has a curved portion extending so as to be curved at a position on the internal combustion engine side of the connection portion.
Among the plurality of corner portions in the cross section of the curved portion, the radius of curvature of the corner portion located on the inner peripheral side is smaller than the radius of curvature of the corner portion located on the outer peripheral side. The intake device according to claim 1.
前記供給管の断面における前記コーナー部の曲率半径は、前記接続部から前記湾曲部に向かって徐々に変化していることを特徴とする請求項2に記載の吸気装置。 The intake device according to claim 2, wherein the radius of curvature of the corner portion in the cross section of the supply pipe gradually changes from the connection portion toward the curved portion.
JP2020086720A 2020-05-18 2020-05-18 intake device Active JP7384110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020086720A JP7384110B2 (en) 2020-05-18 2020-05-18 intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020086720A JP7384110B2 (en) 2020-05-18 2020-05-18 intake device

Publications (2)

Publication Number Publication Date
JP2021181759A true JP2021181759A (en) 2021-11-25
JP7384110B2 JP7384110B2 (en) 2023-11-21

Family

ID=78606171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020086720A Active JP7384110B2 (en) 2020-05-18 2020-05-18 intake device

Country Status (1)

Country Link
JP (1) JP7384110B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5027014B2 (en) 2008-03-04 2012-09-19 愛三工業株式会社 Resin intake manifold
JP6394154B2 (en) 2014-07-30 2018-09-26 アイシン精機株式会社 Intake device
JP6510858B2 (en) 2015-03-31 2019-05-08 ダイハツ工業株式会社 Intake manifold
JP6612185B2 (en) 2016-06-14 2019-11-27 愛三工業株式会社 Intake manifold
US10626832B2 (en) 2018-01-15 2020-04-21 Ford Global Technologies Llc Fluid delivery port of an integral intake manifold

Also Published As

Publication number Publication date
JP7384110B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP2009074401A (en) Intake manifold
JP5626597B2 (en) Intake manifold
JP5994482B2 (en) Intake device for internal combustion engine
JP2017141675A (en) Gas distribution device
JPWO2005100776A1 (en) Fuel supply apparatus and vehicle equipped with the same
JP2007291922A (en) Evaporated fuel adsorption mechanism for internal combustion engine
JP5983365B2 (en) Evaporative fuel purge device
JP2021181759A (en) Intake device
JP2006207469A (en) Intake manifold for internal combustion engine
JP5006559B2 (en) EGR device for multi-cylinder internal combustion engine
US7603993B2 (en) Intake module
KR0173355B1 (en) Intake manifold unit of an internal combustion engine
JP7384104B2 (en) intake device
JP2010084641A (en) Surge tank of internal combustion engine and intake manifold
KR100527981B1 (en) Inertia and Feed Intake Manifold Structure in a Multi-cylinder Internal Combustion Engine
JP5227702B2 (en) Intake manifold
JP6563362B2 (en) Intake device for internal combustion engine
JPH0614051Y2 (en) Internal combustion engine intake manifold
JP2020033929A (en) Intake manifold
JP2021099047A (en) Intake manifold
JP2012062902A (en) Intake path gas introducing structure and intake manifold
CN111749822B (en) Air inlet pipe structure of engine
JP7310958B1 (en) Intake manifold connection structure
JP6411260B2 (en) Gas fuel supply passage structure
JP2010053833A (en) Intake manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7384110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151