JP7384110B2 - intake device - Google Patents

intake device Download PDF

Info

Publication number
JP7384110B2
JP7384110B2 JP2020086720A JP2020086720A JP7384110B2 JP 7384110 B2 JP7384110 B2 JP 7384110B2 JP 2020086720 A JP2020086720 A JP 2020086720A JP 2020086720 A JP2020086720 A JP 2020086720A JP 7384110 B2 JP7384110 B2 JP 7384110B2
Authority
JP
Japan
Prior art keywords
curvature
radius
intake air
cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020086720A
Other languages
Japanese (ja)
Other versions
JP2021181759A (en
Inventor
将人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2020086720A priority Critical patent/JP7384110B2/en
Publication of JP2021181759A publication Critical patent/JP2021181759A/en
Application granted granted Critical
Publication of JP7384110B2 publication Critical patent/JP7384110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

本発明は、内燃機関の吸気装置に関する。 The present invention relates to an intake system for an internal combustion engine.

従来、この種の吸気装置として、例えば特許文献1に示すものが知られている。こうした吸気装置は、吸気を流入させる開口部を有したサージタンク(収容部)と、サージタンクに接続されてサージタンク内の吸気を内燃機関の複数の気筒に分配してそれぞれ供給する複数の吸気管(供給管)とを備えている。各吸気管は、経路の途中が所定の曲率半径を有して湾曲した構成になっている。 Conventionally, as this type of intake device, the one shown in Patent Document 1, for example, is known. Such an intake device consists of a surge tank (accommodation part) that has an opening through which intake air flows, and a plurality of intake air units that are connected to the surge tank and distribute the intake air in the surge tank to multiple cylinders of an internal combustion engine and supply them to each cylinder. pipe (supply pipe). Each intake pipe has a curved portion with a predetermined radius of curvature.

特許第6394154号公報Patent No. 6394154

ところで、上述のような吸気装置では、各吸気管の湾曲下流部の断面において、湾曲内側の吸気通路内面に接する2つの円弧形状部(コーナー部)の曲率半径を、湾曲外側の吸気通路内面に接する2つの円弧形状部(コーナー部)の曲率半径よりも小さくすることで、各吸気管内の湾曲内側と湾曲外側との間での吸気の流速差を減少させて湾曲下流部を流れる吸気の圧力損失を低減するようにしている。 By the way, in the above-mentioned intake device, in the cross section of the curved downstream part of each intake pipe, the radius of curvature of the two circular arc-shaped parts (corner parts) that contact the inner surface of the intake passage on the inner side of the curve is set to the inner surface of the intake passage on the outer side of the curve. By making the radius of curvature smaller than the radius of curvature of the two contacting arc-shaped parts (corner parts), the difference in flow velocity of intake air between the inside curve and the outside curve in each intake pipe is reduced, and the pressure of the intake air flowing in the downstream part of the curve is reduced. We are trying to reduce losses.

しかしながら、上述のような吸気装置では、吸気がサージタンクから各吸気管へ流れる際の圧力損失を低減する工夫が特になされていないため、吸気がサージタンクから各吸気管へ流れる際の圧力損失を低減する上では改善の余地を残すものとなっている。 However, in the above-mentioned intake device, no particular measures have been taken to reduce the pressure loss when the intake air flows from the surge tank to each intake pipe. There is still room for improvement in terms of reduction.

本発明は、このような従来技術に存在する問題点に着目してなされた。その目的は、吸気が収容部から供給管へ流れる際の圧力損失を効果的に低減できる吸気装置を提供することにある。 The present invention was made by focusing on the problems existing in the prior art. The purpose is to provide an intake device that can effectively reduce pressure loss when intake air flows from the storage section to the supply pipe.

以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する吸気装置は、吸気を収容可能な収容部と、前記収容部に接続され、前記吸気を前記収容部内に流入させる流入管と、前記収容部における前記流入管と対向しない位置に接続され、前記流入管から前記収容部内に流入した前記吸気を内燃機関側へ供給する供給管と、を備え、前記供給管における前記供給管が延びる方向と直交する断面は、コーナー部が円弧状をなす多角形状をなしており、前記供給管における前記収容部との接続部の断面の複数の前記コーナー部のうち、前記流入管からの前記吸気が前記供給管に流れてくる側に位置する前記コーナー部の曲率半径は、他の前記コーナー部の曲率半径よりも小さくなっていることを要旨とする。
Below, means for solving the above problems and their effects will be described.
An intake device that solves the above problem includes a storage section that can accommodate intake air, an inflow pipe that is connected to the storage section and allows the intake air to flow into the storage section, and a position in the storage section that does not face the inflow pipe. a supply pipe that is connected to the inflow pipe and supplies the intake air that has flowed into the housing portion from the inflow pipe to the internal combustion engine side, and a cross section of the supply pipe perpendicular to the direction in which the supply pipe extends has a corner portion shaped like an arc. It has a polygonal shape, and is located on the side where the intake from the inflow pipe flows into the supply pipe, among the plurality of corner parts of the cross section of the connection part with the storage part of the supply pipe. The gist is that the radius of curvature of the corner portion is smaller than the radius of curvature of the other corner portions.

この構成によれば、供給管の接続部の断面における流入管からの吸気が流れてくる側のコーナー部の曲率半径を小さくすることで、接続部における曲率半径を小さくしたコーナー部側、すなわち流入管からの吸気が流れてくる側の流路断面積を稼ぐことができる。このため、流入管から収容部内に流入した吸気が供給管内に円滑に流れるため、接続部での乱流の発生が抑制される。したがって、吸気が収容部から供給管へ流れる際の圧力損失を効果的に低減できる。 According to this configuration, by reducing the radius of curvature of the corner part of the cross section of the connection part of the supply pipe on the side where the intake air from the inflow pipe flows, The cross-sectional area of the flow path on the side where the intake air flows from the pipe can be increased. Therefore, the intake air that has flowed into the storage section from the inflow pipe flows smoothly into the supply pipe, so that generation of turbulent flow at the connection part is suppressed. Therefore, the pressure loss when the intake air flows from the storage section to the supply pipe can be effectively reduced.

一実施形態のインテークマニホールドの側面図。FIG. 2 is a side view of an intake manifold of one embodiment. 図1の平面図。Top view of Figure 1. 図2の3-3線矢視断面図。A sectional view taken along the line 3-3 in FIG. 2. 図1の4-4線矢視断面図。A sectional view taken along the line 4-4 in FIG. 1. 図3の5-5線矢視断面図。FIG. 4 is a sectional view taken along the line 5-5 in FIG. 3. 図3の6-6線矢視断面図。FIG. 4 is a sectional view taken along the line 6-6 in FIG. 3. 変更例の吸気装置を示す断面模式図。FIG. 7 is a schematic cross-sectional view showing a modified example of the intake device.

以下、吸気装置をインテークマニホールドに具体化した一実施形態を図面に従って説明する。
図1及び図2に示すように、吸気装置の一例としてのインテークマニホールド11は、合成樹脂などによって構成され、例えば直列4気筒の車載用の内燃機関12に取り付けられる。インテークマニホールド11は、吸気を収容可能な収容部の一例としてのサージタンク13と、サージタンク13に接続されて吸気をサージタンク13内に流入させる流入管14と、流入管14からサージタンク13内に流入した吸気を内燃機関12側へ分配して供給する例えば4つの供給管の一例としての分岐管15とを備えている。
An embodiment in which an intake device is implemented as an intake manifold will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, an intake manifold 11 as an example of an intake device is made of synthetic resin or the like, and is attached to, for example, an in-line four-cylinder internal combustion engine 12 for use in a vehicle. The intake manifold 11 includes a surge tank 13 serving as an example of a storage section capable of accommodating intake air, an inflow pipe 14 connected to the surge tank 13 to allow intake air to flow into the surge tank 13, and an inflow pipe 14 that connects the intake air into the surge tank 13. For example, a branch pipe 15 is provided as an example of four supply pipes for distributing and supplying intake air flowing into the internal combustion engine 12 to the internal combustion engine 12 side.

4つの分岐管15は、サージタンク13における流入管14と対向しない位置に、互いに並ぶようにそれぞれ一端側が接続されている。本実施形態において、4つの分岐管15の並ぶ方向は並び方向Xとされ、並び方向Xは図1における紙面と直交する方向及び図2における左右方向とそれぞれ一致している。 The four branch pipes 15 are each connected at one end to a position in the surge tank 13 that does not face the inflow pipe 14 so as to be lined up with each other. In this embodiment, the direction in which the four branch pipes 15 are lined up is the line direction X, which coincides with the direction perpendicular to the plane of paper in FIG. 1 and the left-right direction in FIG. 2, respectively.

流入管14は、並び方向Xにおけるサージタンク13の一端側に接続されている。流入管14におけるサージタンク13側とは反対側の端部には、外周側に突出するフランジ部16が設けられている。フランジ部16には、複数の挿通孔16aが形成されている。図示は省略するが、流入管14におけるサージタンク13側とは反対側の端部は、フランジ部16において各挿通孔16aに挿通されるボルトにより、スロットルバルブを有したスロットルボディに固定されている。また、図示は省略するが、サージタンク13には、内燃機関12の運転に伴って発生するブローバイガスをサージタンク13内に導入するガス導入部が設けられている。 The inflow pipe 14 is connected to one end of the surge tank 13 in the arrangement direction X. A flange portion 16 that protrudes toward the outer circumference is provided at the end of the inflow pipe 14 on the side opposite to the surge tank 13 side. A plurality of insertion holes 16a are formed in the flange portion 16. Although not shown, the end of the inflow pipe 14 on the side opposite to the surge tank 13 is fixed to a throttle body having a throttle valve by bolts inserted into each insertion hole 16a in the flange portion 16. . Further, although not shown, the surge tank 13 is provided with a gas introduction portion that introduces blow-by gas generated during operation of the internal combustion engine 12 into the surge tank 13.

各分岐管15は、サージタンク13の下方側から上方側に向かってサージタンク13の外周を囲むように湾曲して延びている。すなわち、各分岐管15は、湾曲部17を形成するように延びている。各分岐管15の先端には、外周側に突出する共通のフランジ部18が設けられている。 Each branch pipe 15 extends in a curved manner from the lower side of the surge tank 13 toward the upper side so as to surround the outer periphery of the surge tank 13. That is, each branch pipe 15 extends so as to form a curved portion 17. A common flange portion 18 protruding toward the outer circumference is provided at the tip of each branch pipe 15.

フランジ部18には、複数の挿通孔18aが形成されている。図示は省略するが、各分岐管15におけるサージタンク13側とは反対側の端部は、フランジ部18において各挿通孔18aに挿通されるボルトにより、内燃機関12のシリンダヘッドに固定されている。これにより、各分岐管15が内燃機関12における各気筒の燃焼室に連通される。 A plurality of insertion holes 18a are formed in the flange portion 18. Although not shown, the end of each branch pipe 15 on the side opposite to the surge tank 13 is fixed to the cylinder head of the internal combustion engine 12 by bolts inserted into the respective insertion holes 18a in the flange portion 18. . Thereby, each branch pipe 15 is communicated with the combustion chamber of each cylinder in the internal combustion engine 12.

図3及び図4に示すように、各分岐管15における分岐管15が延びる方向と直交する断面は、4つのコーナー部19が円弧状をなす略矩形状をなしている。すなわち、各分岐管15は、サージタンク13との接続部20及び接続部20よりも内燃機関12側に位置する湾曲部17を含むほぼ全体の断面が略矩形状をなしている。各分岐管15が接続部20においてサージタンク13内に開口する方向と、流入管14からサージタンク13内に吸気が流入する方向とは、ほぼ直交している。 As shown in FIGS. 3 and 4, the cross section of each branch pipe 15 perpendicular to the direction in which the branch pipe 15 extends has a substantially rectangular shape with four corner portions 19 having arcuate shapes. That is, each branch pipe 15 has a substantially rectangular cross section over the entirety thereof, including the connecting portion 20 with the surge tank 13 and the curved portion 17 located closer to the internal combustion engine 12 than the connecting portion 20 . The direction in which each branch pipe 15 opens into the surge tank 13 at the connecting portion 20 and the direction in which intake air flows into the surge tank 13 from the inflow pipe 14 are substantially orthogonal.

図3~図5に示すように、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21~24のうち、流入管14からの吸気が各分岐管15に流れてくる側に位置する2つのコーナー部21,22の曲率半径は、他の2つのコーナー部23,24の曲率半径よりも小さくなっている。 As shown in FIGS. 3 to 5, intake air from the inflow pipe 14 flows into each branch pipe 15 among the four corner parts 21 to 24 of the cross section of the connection part 20 with the surge tank 13 in each branch pipe 15. The radius of curvature of the two corner portions 21 and 22 located on the opposite side is smaller than the radius of curvature of the other two corner portions 23 and 24.

すなわち、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21~24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径よりも小さくなっている。 That is, among the four corner parts 21 to 24 of the cross section of the connection part 20 with the surge tank 13 in each branch pipe 15, the radius of curvature of the two corner parts 21 and 22 located on the inflow pipe 14 side in the arrangement direction X is , is smaller than the radius of curvature of the two corner portions 23 and 24 located on the opposite side to the inflow pipe 14 side in the arrangement direction X.

この場合、各分岐管15の接続部20の断面の4つのコーナー部21~24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は互いに同じになっており、且つ並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径は互いに同じになっている。 In this case, among the four corner parts 21 to 24 of the cross section of the connecting part 20 of each branch pipe 15, the two corner parts 21 and 22 located on the inflow pipe 14 side in the arrangement direction X have the same radius of curvature. The radii of curvature of the two corner portions 23 and 24 located on the side opposite to the inflow pipe 14 side in the arrangement direction X are the same.

図3及び図6に示すように、各分岐管15の湾曲部17の断面における4つのコーナー部25~28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている。この場合、内周側に位置する2つコーナー部25,26の曲率半径は互いに同じになっており、且つ外周側に位置する2つのコーナー部27,28の曲率半径は互いに同じになっている。 As shown in FIGS. 3 and 6, among the four corner sections 25 to 28 in the cross section of the curved section 17 of each branch pipe 15, the radius of curvature of the two corner sections 25 and 26 located on the inner circumferential side is The radius of curvature is smaller than the radius of curvature of the two corner portions 27 and 28 located on the sides. In this case, the radii of curvature of the two corner portions 25 and 26 located on the inner periphery side are the same, and the radii of curvature of the two corner portions 27 and 28 located on the outer periphery side are the same as each other. .

なお、各分岐管15の断面における4つのコーナー部19の曲率半径は、接続部20から湾曲部17に向かって徐々に変化している。すなわち、接続部20の断面におけるコーナー部21,22,23,24の曲率半径は、湾曲部17に向かうにつれて湾曲部17の断面におけるコーナー部25,27,26,28の曲率半径へとそれぞれ徐々に変化する。図5では、上側が各分岐管15の湾曲部17の内周側に対応し、下側が各分岐管15の湾曲部17の外周側に対応する。 Note that the radius of curvature of the four corner portions 19 in the cross section of each branch pipe 15 gradually changes from the connecting portion 20 toward the curved portion 17. That is, the radius of curvature of the corner parts 21, 22, 23, 24 in the cross section of the connecting part 20 gradually becomes the radius of curvature of the corner parts 25, 27, 26, 28 in the cross section of the curved part 17 as it approaches the curved part 17. Changes to In FIG. 5, the upper side corresponds to the inner circumferential side of the curved part 17 of each branch pipe 15, and the lower side corresponds to the outer circumferential side of the curved part 17 of each branch pipe 15.

次に、インテークマニホールド11の作用について説明する。
図4及び図5に示すように、流入管14からサージタンク13内に流入した吸気は、サージタンク13内から4つの分岐管15に対して接続部20からそれぞれ流れ込むことで分配される。このとき、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21~24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径よりも小さくなっている。
Next, the function of the intake manifold 11 will be explained.
As shown in FIGS. 4 and 5, the intake air that has flowed into the surge tank 13 from the inflow pipe 14 is distributed by flowing into the four branch pipes 15 from the surge tank 13 through the connecting portions 20, respectively. At this time, the radius of curvature of two corner parts 21 and 22 located on the inflow pipe 14 side in the arrangement direction is smaller than the radius of curvature of the two corner portions 23 and 24 located on the side opposite to the inflow pipe 14 side in the arrangement direction X.

このため、各分岐管15の接続部20における吸気の流路断面積は、流入管14からの吸気が流れてくる側の方が、流入管14からの吸気が流れてくる側とは反対側よりも大きくなる。したがって、流入管14からサージタンク13内に流入した吸気の主流が接続部20から各分岐管15内に円滑に流れ込むため、接続部20での乱流の発生が抑制される。この結果、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失が効果的に低減される。 Therefore, the cross-sectional area of the intake air flow path at the connection portion 20 of each branch pipe 15 is such that the side where the intake air from the inflow pipe 14 flows is opposite to the side where the intake air from the inflow pipe 14 flows. becomes larger than Therefore, the main flow of intake air that has flowed into the surge tank 13 from the inflow pipe 14 smoothly flows into each branch pipe 15 from the connection part 20, so that the occurrence of turbulence at the connection part 20 is suppressed. As a result, pressure loss when intake air flows from the surge tank 13 to each branch pipe 15 is effectively reduced.

図3及び図6に示すように、サージタンク13から各分岐管15へ流れ込んだ吸気は、湾曲部17内を通って内燃機関12側へ流れる。このとき、湾曲部17内を流れる吸気の流速は、通常、内周側の方が外周側よりも速くなる。この点、本実施形態の各分岐管15の湾曲部17の断面における4つのコーナー部25~28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている。 As shown in FIGS. 3 and 6, the intake air that has flowed from the surge tank 13 into each branch pipe 15 passes through the curved portion 17 and flows toward the internal combustion engine 12. At this time, the flow velocity of the intake air flowing inside the curved portion 17 is normally faster on the inner circumferential side than on the outer circumferential side. In this respect, among the four corner parts 25 to 28 in the cross section of the curved part 17 of each branch pipe 15 in this embodiment, the radius of curvature of the two corner parts 25 and 26 located on the inner peripheral side is The radius of curvature of the two corner portions 27 and 28 is smaller than that of the two corner portions 27 and 28.

このため、湾曲部17内においては内周側の方が外周側よりも流路断面積が大きくなるので、湾曲部17内の内周側を流れる吸気の流速を下げることができる。したがって、湾曲部17内の内周側を流れる吸気と湾曲部17内の外周側を流れる吸気との流速差が小さくなって乱流の発生が抑制されるので、湾曲部17内を流れる吸気の圧力損失が効果的に低減される。 Therefore, within the curved portion 17, the flow passage cross-sectional area is larger on the inner circumferential side than on the outer circumferential side, so that the flow velocity of the intake air flowing on the inner circumferential side within the curved portion 17 can be lowered. Therefore, the difference in flow velocity between the intake air flowing on the inner circumferential side of the curved portion 17 and the intake air flowing on the outer circumferential side of the curved portion 17 is reduced, and the generation of turbulence is suppressed. Pressure loss is effectively reduced.

さらに、各分岐管15の断面におけるコーナー部19の曲率半径は、接続部20から湾曲部17に向かって徐々に変化している。このため、各分岐管15は、接続部20から湾曲部17にかけての部位において、吸気の圧力損失の低減に対して有利となる。すなわち、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失、湾曲部17内を流れる吸気の圧力損失、及び接続部20から湾曲部17にかけての部位を流れる吸気の圧力損失が低減される。 Furthermore, the radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 gradually changes from the connecting portion 20 toward the curved portion 17. For this reason, each branch pipe 15 is advantageous in reducing the pressure loss of intake air in the region from the connecting portion 20 to the curved portion 17. That is, the pressure loss when the intake air flows from the surge tank 13 to each branch pipe 15, the pressure loss of the intake air flowing inside the curved portion 17, and the pressure loss of the intake air flowing through the portion from the connecting portion 20 to the curved portion 17 are reduced. Ru.

以上詳述した実施形態によれば、次のような効果が発揮される。
(1)インテークマニホールド11において、各分岐管15におけるサージタンク13との接続部20の断面の4つのコーナー部21~24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径よりも小さくなっている。この構成によれば、各分岐管15の接続部20の断面における流入管からの吸気が流れてくる側の2つのコーナー部21,22の曲率半径を小さくすることで、接続部20における曲率半径を小さくした2つのコーナー部21,22側、すなわち流入管14からの吸気が流れてくる側の流路断面積を稼ぐことができる。このため、流入管14からサージタンク13内に流入した吸気が各分岐管15内に円滑に流れるため、接続部20での乱流の発生が抑制される。したがって、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失を効果的に低減できる。
According to the embodiment described in detail above, the following effects are exhibited.
(1) In the intake manifold 11, among the four corner parts 21 to 24 of the cross section of the connection part 20 with the surge tank 13 in each branch pipe 15, two corner parts 21 located on the inflow pipe 14 side in the arrangement direction X , 22 is smaller than the radius of curvature of the two corner portions 23 and 24 located on the side opposite to the inflow pipe 14 side in the arrangement direction X. According to this configuration, by reducing the radius of curvature of the two corner portions 21 and 22 on the side where the intake air from the inflow pipe flows in the cross section of the connecting portion 20 of each branch pipe 15, the radius of curvature at the connecting portion 20 is reduced. The cross-sectional area of the flow path on the two corner portions 21 and 22 sides, that is, on the side from which the intake air from the inflow pipe 14 flows, can be increased by making the size smaller. Therefore, the intake air that has flowed into the surge tank 13 from the inflow pipe 14 flows smoothly into each branch pipe 15, so that the occurrence of turbulent flow at the connection portion 20 is suppressed. Therefore, pressure loss when intake air flows from the surge tank 13 to each branch pipe 15 can be effectively reduced.

(2)インテークマニホールド11において、各分岐管15の湾曲部17の断面における4つのコーナー部25~28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている。通常、湾曲部17内を流れる吸気の流速は、内周側の方が外周側よりも速くなる。この点、この構成によれば、湾曲部17内の内周側の方が外周側よりも流路断面積が大きくなるので、湾曲部17内の内周側を流れる吸気の流速を下げることができる。このため、湾曲部17内の内周側を流れる吸気と湾曲部17内の外周側を流れる吸気との流速差が小さくなって乱流の発生が抑制されるので、湾曲部17内を流れる吸気の圧力損失を効果的に低減できる。 (2) In the intake manifold 11, among the four corner parts 25 to 28 in the cross section of the curved part 17 of each branch pipe 15, the radius of curvature of the two corner parts 25 and 26 located on the inner circumference side is It is smaller than the radius of curvature of the two corner portions 27 and 28 located therein. Normally, the flow velocity of the intake air flowing inside the curved portion 17 is faster on the inner circumferential side than on the outer circumferential side. In this regard, according to this configuration, the flow passage cross-sectional area is larger on the inner circumferential side of the curved portion 17 than on the outer circumferential side, so it is possible to reduce the flow velocity of the intake air flowing on the inner circumferential side of the curved portion 17. can. Therefore, the difference in flow velocity between the intake air flowing on the inner circumferential side of the curved portion 17 and the intake air flowing on the outer circumferential side of the curved portion 17 becomes small, and the generation of turbulence is suppressed, so that the intake air flowing inside the curved portion 17 pressure loss can be effectively reduced.

(3)インテークマニホールド11において、各分岐管15の断面におけるコーナー部19の曲率半径は、接続部20から湾曲部17に向かって徐々に変化している。この構成によれば、吸気がサージタンク13から各分岐管15へ流れる際の圧力損失、湾曲部17内を流れる吸気の圧力損失、及び接続部20から湾曲部17にかけての部位を流れる吸気の圧力損失を低減できる。 (3) In the intake manifold 11, the radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 gradually changes from the connecting portion 20 toward the curved portion 17. According to this configuration, the pressure loss when the intake air flows from the surge tank 13 to each branch pipe 15, the pressure loss of the intake air flowing inside the curved part 17, and the pressure of the intake air flowing through the region from the connecting part 20 to the curved part 17. Loss can be reduced.

(変更例)
なお、上記実施形態は次のように変更してもよい。
・各分岐管15の断面におけるコーナー部19の曲率半径は、必ずしも接続部20から湾曲部17に向かって徐々に変化している必要はない。すなわち、各分岐管15の断面におけるコーナー部19の曲率半径は、接続部20から湾曲部17に向かって急激に変化していてもよい。
(Example of change)
Note that the above embodiment may be modified as follows.
- The radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 does not necessarily need to gradually change from the connecting portion 20 toward the curved portion 17. That is, the radius of curvature of the corner portion 19 in the cross section of each branch pipe 15 may change rapidly from the connecting portion 20 toward the curved portion 17.

・各分岐管15の湾曲部17の断面における4つのコーナー部25~28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、必ずしも外周側に位置する2つのコーナー部27,28の曲率半径よりも小さくなっている必要はない。すなわち、各分岐管15の湾曲部17の断面における4つのコーナー部25~28のうち、内周側に位置する2つコーナー部25,26の曲率半径は、外周側に位置する2つのコーナー部27,28の曲率半径以上にしてもよい。 - Among the four corner parts 25 to 28 in the cross section of the curved part 17 of each branch pipe 15, the radius of curvature of the two corner parts 25 and 26 located on the inner peripheral side is not necessarily the same as that of the two corner parts located on the outer peripheral side. It is not necessary that the radius of curvature is smaller than 27 and 28. That is, among the four corner parts 25 to 28 in the cross section of the curved part 17 of each branch pipe 15, the radius of curvature of the two corner parts 25 and 26 located on the inner peripheral side is equal to that of the two corner parts located on the outer peripheral side. The radius of curvature may be greater than 27 or 28.

・各分岐管15の接続部20の断面の4つのコーナー部21~24のうち、並び方向Xにおける流入管14側に位置する2つのコーナー部21,22の曲率半径は互いに異なっていてもよいし、並び方向Xにおける流入管14側とは反対側に位置する2つのコーナー部23,24の曲率半径は互いに異なっていてもよい。 - Among the four corner parts 21 to 24 of the cross section of the connecting part 20 of each branch pipe 15, the radii of curvature of the two corner parts 21 and 22 located on the inflow pipe 14 side in the arrangement direction X may be different from each other. However, the radii of curvature of the two corner portions 23 and 24 located on the side opposite to the inflow pipe 14 side in the arrangement direction X may be different from each other.

・各分岐管15の湾曲部17の断面の4つのコーナー部25~28のうち、内周側に位置する2つコーナー部25,26の曲率半径は互いに異なっていてもよいし、外周側に位置する2つのコーナー部27,28の曲率半径は互いに異なっていてもよい。 - Among the four corner parts 25 to 28 of the cross section of the curved part 17 of each branch pipe 15, the two corner parts 25 and 26 located on the inner circumference side may have different radii of curvature, or The two corner portions 27 and 28 may have different radii of curvature.

・各分岐管15において接続部20以外の部位が全て湾曲部17である場合には、各分岐管15の断面における4つのコーナー部19の曲率半径は、接続部20から湾曲部17における一定の距離の中で徐々に変化させるようにしてもよい。 - If all parts of each branch pipe 15 other than the connecting part 20 are curved parts 17, the radii of curvature of the four corner parts 19 in the cross section of each branch pipe 15 are constant from the connecting part 20 to the curved part 17. It may also be changed gradually over a distance.

・各分岐管15の断面形状は、コーナー部が円弧状をなす矩形状(四角形状)以外の多角形状であってもよい。すなわち、各分岐管15の断面形状は、コーナー部が円弧状をなしていれば、例えば三角形状や五角形状、あるいは六角形状であってもよい。 - The cross-sectional shape of each branch pipe 15 may be a polygonal shape other than a rectangular shape (square shape) in which the corner portions are arcuate. That is, the cross-sectional shape of each branch pipe 15 may be triangular, pentagonal, or hexagonal, for example, as long as the corner portions are arcuate.

・各分岐管15は、必ずしも湾曲部17を有している必要はない。すなわち、各分岐管15は、例えばサージタンク13から内燃機関12に向かって直線状に延びるように構成されていてもよい。 - Each branch pipe 15 does not necessarily need to have the curved part 17. That is, each branch pipe 15 may be configured to extend linearly from the surge tank 13 toward the internal combustion engine 12, for example.

・本実施形態のインテークマニホールド11は、直列4気筒の車載用の内燃機関12に適用したが、直列3気筒や直列6気筒などの車載用の内燃機関に対して適用してもよい。
・図7に示すように、吸気装置は、インテークマニホールド11に限らず、インレット30が設けられたケース31とアウトレット32が設けられたキャップ33とでフィルタエレメント34が挟持された構成のエアクリーナ35であってもよい。この場合、インレット30が流入管を構成し、ケース31及びキャップ33が収容部を構成し、アウトレット32が供給管を構成する。
- Although the intake manifold 11 of the present embodiment is applied to an in-line four-cylinder in-vehicle internal combustion engine 12, it may also be applied to in-line three-cylinder, in-line six-cylinder, or other in-line in-vehicle internal combustion engines.
- As shown in FIG. 7, the intake device is not limited to the intake manifold 11, but also includes an air cleaner 35 having a configuration in which a filter element 34 is sandwiched between a case 31 provided with an inlet 30 and a cap 33 provided with an outlet 32. There may be. In this case, the inlet 30 constitutes an inflow pipe, the case 31 and the cap 33 constitute a housing part, and the outlet 32 constitutes a supply pipe.

11…吸気装置の一例としてのインテークマニホールド
12…内燃機関
13…収容部の一例としてのサージタンク
14…流入管
15…供給管の一例としての分岐管
16,18…フランジ部
16a,18a…挿通孔
17…湾曲部
19,21~28…コーナー部
20…接続部
30…流入管を構成するインレット
31…収容部を構成するケース
32…供給管を構成するアウトレット
33…収容部を構成するキャップ
34…フィルタエレメント
35…吸気装置の一例としてのエアクリーナ
X…並び方向
DESCRIPTION OF SYMBOLS 11... Intake manifold as an example of an intake device 12... Internal combustion engine 13... Surge tank as an example of a storage part 14... Inflow pipe 15... Branch pipe as an example of a supply pipe 16, 18... Flange part 16a, 18a... Insertion hole 17... Curved part 19, 21-28... Corner part 20... Connecting part 30... Inlet forming an inflow pipe 31... Case forming a housing part 32... Outlet forming a supply pipe 33... Cap forming a housing part 34... Filter element 35... Air cleaner as an example of an intake device X... Arrangement direction

Claims (3)

吸気を収容可能な収容部と、
前記収容部に接続され、前記吸気を前記収容部内に流入させる流入管と、
前記収容部における前記流入管と対向しない位置に接続され、前記流入管から前記収容部内に流入した前記吸気を内燃機関側へ供給する供給管と、を備え、
前記供給管における前記供給管が延びる方向と直交する断面は、コーナー部が円弧状をなす角形状をなしており、
前記供給管における前記収容部との接続部の断面の4つの前記コーナー部のうち、前記流入管からの前記吸気が前記供給管に流れてくる側に位置する2つの前記コーナー部の曲率半径は、他の2つの前記コーナー部の曲率半径よりも小さくなっていることを特徴とする吸気装置。
a storage section capable of accommodating intake air;
an inflow pipe connected to the housing part and causing the intake air to flow into the housing part;
a supply pipe connected to a position not facing the inflow pipe in the accommodating part and supplying the intake air that has flowed into the accommodating part from the inflow pipe to the internal combustion engine side,
A cross section of the supply pipe perpendicular to the direction in which the supply pipe extends has a rectangular shape with arcuate corners;
The radius of curvature of two corner portions located on the side from which the intake air from the inflow pipe flows into the supply pipe, among the four corner parts of the cross section of the connection part with the storage part in the supply pipe. is smaller than the radius of curvature of the other two corner portions.
前記供給管は、前記接続部よりも前記内燃機関側の位置に、湾曲するように延びる湾曲部を有しており、
前記湾曲部の断面における4つの前記コーナー部のうち、内周側に位置する2つの前記コーナー部の曲率半径は、外周側に位置する2つの前記コーナー部の曲率半径よりも小さくなっていることを特徴とする請求項1に記載の吸気装置。
The supply pipe has a curved portion extending in a curved manner at a position closer to the internal combustion engine than the connecting portion,
Among the four corner portions in the cross section of the curved portion, the radius of curvature of the two corner portions located on the inner peripheral side is smaller than the radius of curvature of the two corner portions located on the outer peripheral side. The intake device according to claim 1, characterized in that:
前記供給管の断面における前記コーナー部の曲率半径は、前記接続部から前記湾曲部に向かって徐々に変化していることを特徴とする請求項2に記載の吸気装置。 The intake device according to claim 2, wherein a radius of curvature of the corner portion in the cross section of the supply pipe gradually changes from the connecting portion toward the curved portion.
JP2020086720A 2020-05-18 2020-05-18 intake device Active JP7384110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020086720A JP7384110B2 (en) 2020-05-18 2020-05-18 intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020086720A JP7384110B2 (en) 2020-05-18 2020-05-18 intake device

Publications (2)

Publication Number Publication Date
JP2021181759A JP2021181759A (en) 2021-11-25
JP7384110B2 true JP7384110B2 (en) 2023-11-21

Family

ID=78606171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020086720A Active JP7384110B2 (en) 2020-05-18 2020-05-18 intake device

Country Status (1)

Country Link
JP (1) JP7384110B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209762A (en) 2008-03-04 2009-09-17 Aisan Ind Co Ltd Resin-made intake manifold
JP2016191363A (en) 2015-03-31 2016-11-10 ダイハツ工業株式会社 Intake manifold of internal combustion engine
JP2017223142A (en) 2016-06-14 2017-12-21 愛三工業株式会社 Intake manifold
JP6394154B2 (en) 2014-07-30 2018-09-26 アイシン精機株式会社 Intake device
US20190219011A1 (en) 2018-01-15 2019-07-18 Ford Global Technologies, Llc Fluid delivery port of an integral intake manifold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3153583B2 (en) * 1991-09-30 2001-04-09 マツダ株式会社 Engine intake passage structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209762A (en) 2008-03-04 2009-09-17 Aisan Ind Co Ltd Resin-made intake manifold
JP6394154B2 (en) 2014-07-30 2018-09-26 アイシン精機株式会社 Intake device
JP2016191363A (en) 2015-03-31 2016-11-10 ダイハツ工業株式会社 Intake manifold of internal combustion engine
JP2017223142A (en) 2016-06-14 2017-12-21 愛三工業株式会社 Intake manifold
US20190219011A1 (en) 2018-01-15 2019-07-18 Ford Global Technologies, Llc Fluid delivery port of an integral intake manifold

Also Published As

Publication number Publication date
JP2021181759A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US10174726B2 (en) Intake manifold
US20210123398A1 (en) Air Intake Apparatus
US20100018192A1 (en) Exhaust manifold for multi-cylinder engine
JP7384110B2 (en) intake device
EP2123896B1 (en) Intake manifold for multi-cylinder internal combustion engine
JP2006207469A (en) Intake manifold for internal combustion engine
JP2009013901A (en) Intake device for multiple cylinder internal combustion engine
US7946267B2 (en) Intake device of internal combustion engine
JP7058911B2 (en) Recirculation exhaust gas introduction structure of intake manifold
JP7384104B2 (en) intake device
JP5938975B2 (en) Venturi
JP7139958B2 (en) Intake manifold
JPH0614051Y2 (en) Internal combustion engine intake manifold
JP7124573B2 (en) intake manifold
US9238992B2 (en) Exhaust system having a flow rotation element and method for operation of an exhaust system
KR100527981B1 (en) Inertia and Feed Intake Manifold Structure in a Multi-cylinder Internal Combustion Engine
JPH0216004Y2 (en)
JP7310958B1 (en) Intake manifold connection structure
JP7540252B2 (en) Intake manifold
JP7251465B2 (en) Intake manifold
JP7003680B2 (en) Fuel injection structure of internal combustion engine
JP2000199460A (en) Intake manifold
JP3387193B2 (en) Exhaust gas recirculation device
JP4305710B2 (en) Fuel distribution pipe
JPH0942083A (en) Inertia supercharging intake device in multicylinder internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7384110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151