JP2021178518A - Fiber reinforced molded article and housing for electronic device - Google Patents

Fiber reinforced molded article and housing for electronic device Download PDF

Info

Publication number
JP2021178518A
JP2021178518A JP2021134004A JP2021134004A JP2021178518A JP 2021178518 A JP2021178518 A JP 2021178518A JP 2021134004 A JP2021134004 A JP 2021134004A JP 2021134004 A JP2021134004 A JP 2021134004A JP 2021178518 A JP2021178518 A JP 2021178518A
Authority
JP
Japan
Prior art keywords
carbon fiber
thermosetting resin
foam
resin layer
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021134004A
Other languages
Japanese (ja)
Inventor
優 中村
Yu Nakamura
淳 大藪
Atsushi Oyabu
好典 杉浦
Yoshinori Sugiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2021134004A priority Critical patent/JP2021178518A/en
Publication of JP2021178518A publication Critical patent/JP2021178518A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fiber reinforced molded article having a conductivity in a thickness direction without having any projection on a surface such as a bolt for ensuring conductivity.SOLUTION: A fiber reinforced molded article 10 comprises carbon fiber reinforced layers 21 and 21 which are integrally laminated on both sides of a resin layer 11 consisting of a foam body impregnated with a thermosetting resin and cured in a compressed state, in which a metal block 31 is embedded and penetrates through the resin layer 11 in the thickness direction, and the metal block 31 embedded in the resin layer 11 is in contact with the carbon fiber reinforced layers 21 and 21 on both sides of the resin layer 11, and a good conductivity between the carbon fiber reinforced layers 21 and 21 on both sides of the resin layer 11 is ensured by the metal block 31 embedded in the resin layer 11.SELECTED DRAWING: Figure 2

Description

本発明は、樹脂層の両側に炭素繊維強化層を積層一体化した繊維強化成形体及びその製造方法に関する。 The present invention relates to a fiber-reinforced molded body in which carbon fiber-reinforced layers are laminated and integrated on both sides of a resin layer, and a method for producing the same.

従来、軽量及び高剛性が要求される部材として、樹脂層の両側に炭素繊維強化層を積層一体化した繊維強化成形体がある(特許文献1)。
しかし、従来の繊維強化成形体は、樹脂層を構成する発泡体が絶縁性のため、導電性を有する炭素繊維強化層が絶縁性の発泡体で分離された状態になっており、厚み方向の導電性を確保できなかった。
そのため、従来の繊維強化成形体は、厚み方向の導電性が求められる用途には適さなかった。
Conventionally, as a member that is required to be lightweight and highly rigid, there is a fiber-reinforced molded body in which carbon fiber-reinforced layers are laminated and integrated on both sides of a resin layer (Patent Document 1).
However, in the conventional fiber reinforced molded body, since the foam constituting the resin layer is insulating, the conductive carbon fiber reinforced layer is separated by the insulating foam, and is in the thickness direction. Conduction could not be ensured.
Therefore, the conventional fiber-reinforced molded product is not suitable for applications that require conductivity in the thickness direction.

なお、炭素繊維強化プラスチック構造体において厚み方向の導電性を確保する方法として、金属製のボルトを炭素繊維強化プラスチック構造体の厚み方向に貫通させ、ボルトの両端を炭素繊維強化プラスチック構造体の両面で突出させたものがある(特許文献2、3)。 As a method of ensuring conductivity in the thickness direction of the carbon fiber reinforced plastic structure, a metal bolt is penetrated in the thickness direction of the carbon fiber reinforced plastic structure, and both ends of the bolt are both sides of the carbon fiber reinforced plastic structure. (Patent Documents 2 and 3).

特開2011−93175号公報Japanese Unexamined Patent Publication No. 2011-93175 特開2012−166506号公報Japanese Unexamined Patent Publication No. 2012-166506 特開2016−154091号公報Japanese Unexamined Patent Publication No. 2016-154091

しかし、金属製のボルトを炭素繊維強化プラスチック構造体の厚み方向に貫通させたものは、表面にボルトの頭などの突部が存在して美観が損なわれるため、意匠面及び加飾面には、使用できないという問題がある。 However, when a metal bolt is penetrated in the thickness direction of a carbon fiber reinforced plastic structure, the appearance is spoiled due to the presence of protrusions such as the head of the bolt on the surface, so the design surface and decorative surface are , There is a problem that it cannot be used.

本発明は、前記の点に鑑みなされたものであり、厚み方向に導電性を有し、導電性確保のためのボルトの頭などによる突部が表面に存在しない、意匠面に加飾等が付与できる繊維強化成形体及びその製造方法の提供を目的とする。 The present invention has been made in view of the above points, has conductivity in the thickness direction, has no protrusion due to a bolt head or the like for ensuring conductivity on the surface, and has decorations on the design surface. An object of the present invention is to provide a fiber-reinforced molded body that can be imparted and a method for producing the same.

第1の発明の態様は、樹脂層の両面に炭素繊維強化層を積層一体化した繊維強化成形体であって、前記樹脂層には該樹脂層の厚み方向に金属塊が貫通して埋設され、前記金属塊が前記樹脂層の両面で前記炭素繊維強化層と接触していることを特徴とする。 The first aspect of the invention is a fiber reinforced molded body in which carbon fiber reinforced layers are laminated and integrated on both sides of a resin layer, and a metal lump penetrates and is embedded in the resin layer in the thickness direction of the resin layer. The metal ingot is in contact with the carbon fiber reinforced layer on both sides of the resin layer.

第2の発明の態様は、第1の発明の態様において、前記金属塊は、スズを含む合金であって、前記樹脂層の複数箇所に設けられていることを特徴とする。 A second aspect of the invention is characterized in that, in the first aspect of the invention, the metal ingot is an alloy containing tin and is provided at a plurality of positions in the resin layer.

第3の発明の態様は、第1または第2の発明の態様において、前記樹脂層は、熱硬化性樹脂が含浸した発泡体が圧縮された状態で硬化してなることを特徴とする。 A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the resin layer is cured in a compressed state of a foam impregnated with a thermosetting resin.

第4の発明の態様は、熱硬化性樹脂が含浸した発泡体の両面に炭素繊維プリプレグを配置して圧縮及び加熱することにより、前記熱硬化性樹脂が含浸した発泡体が圧縮された状態で硬化してなる樹脂層の両面に、前記炭素繊維プリプレグが硬化してなる炭素繊維強化層を積層一体化した繊維強化成形体の製造方法において、前記熱硬化性樹脂が含浸した発泡体の両面に前記炭素繊維プリプレグを配置して圧縮及び加熱する際に、前記熱硬化性樹脂が含浸した発泡体と前記炭素繊維プリプレグとの間の少なくとも1箇所に金属塊を配置し、前記圧縮及び加熱を行うことにより、前記熱硬化性樹脂が含浸した発泡体に前記金属塊を押し込み、前記熱硬化性樹脂が含浸した発泡体の両面で前記金属塊と前記炭素繊維プリプレグが接触した状態にして、前記熱硬化性樹脂が含浸した発泡体及び前記炭素繊維プリプレグを硬化させることを特徴とする。 In the fourth aspect of the present invention, carbon fiber prepregs are arranged on both sides of a foam impregnated with a thermosetting resin to be compressed and heated so that the foam impregnated with the thermosetting resin is compressed. In a method for producing a fiber-reinforced molded body in which a carbon fiber reinforced layer formed by curing a carbon fiber prepreg is laminated and integrated on both sides of a cured resin layer, both sides of a foam impregnated with the thermosetting resin are used. When the carbon fiber prepreg is arranged and compressed and heated, a metal block is arranged at at least one place between the foam impregnated with the thermosetting resin and the carbon fiber prepreg, and the compression and heating are performed. Thereby, the metal ingot is pushed into the foam impregnated with the thermosetting resin so that the metal ingot and the carbon fiber prepreg are in contact with each other on both sides of the foam impregnated with the thermosetting resin. It is characterized by curing a foam impregnated with a curable resin and the carbon fiber prepreg.

第5の発明の態様は、熱硬化性樹脂が含浸した発泡体の両面に炭素繊維プリプレグを配置して圧縮及び加熱することにより、前記熱硬化性樹脂が含浸した発泡体が圧縮された状態で硬化してなる樹脂層の両面に、前記炭素繊維プリプレグが硬化してなる炭素繊維強化層を積層一体化した繊維強化成形体の製造方法において、前記熱硬化性樹脂が含浸した発泡体の両面に前記炭素繊維プリプレグを配置して圧縮及び加熱する際に、前記熱硬化性樹脂が含浸した発泡体の少なくとも1箇所に金属塊を埋設し、前記圧縮及び加熱を行うことにより、前記熱硬化性樹脂が含浸した発泡体の両面で前記金属塊と前記炭素繊維プリプレグが接触した状態にして、前記熱硬化性樹脂が含浸した発泡体及び前記炭素繊維プリプレグを硬化させることを特徴とする。 In the fifth aspect of the invention, the carbon fiber prepregs are arranged on both sides of the foam impregnated with the thermosetting resin and compressed and heated so that the foam impregnated with the thermosetting resin is compressed. In a method for producing a fiber-reinforced molded body in which a carbon fiber reinforced layer formed by curing a carbon fiber prepreg is laminated and integrated on both sides of a cured resin layer, both sides of a foam impregnated with the thermosetting resin are used. When the carbon fiber prepreg is arranged and compressed and heated, the thermosetting resin is formed by embedding a metal block in at least one place of the foam impregnated with the thermosetting resin and performing the compression and heating. It is characterized in that the foam impregnated with the thermosetting resin and the carbon fiber prepreg are cured by keeping the metal block and the carbon fiber prepreg in contact with each other on both sides of the foam impregnated with the thermosetting resin.

第6の発明の態様は、第5の発明の態様において、前記熱硬化性樹脂が含浸した発泡体の少なくとも1箇所に切り込みを設け、前記切り込みに前記金属塊を挿入して埋設することを特徴とする。 A sixth aspect of the invention is characterized in that, in the fifth aspect of the invention, a notch is provided in at least one position of the foam impregnated with the thermosetting resin, and the metal block is inserted into the notch and embedded. And.

第7の発明の態様は、第4から第6の発明の態様の何れか一において、前記金属塊はスズを含む合金からなることを特徴とする。 A seventh aspect of the invention is characterized in that, in any one of the fourth to sixth aspects of the invention, the metal ingot is made of an alloy containing tin.

本発明の繊維強化成形体は、樹脂層に埋設された金属塊が樹脂層の両面で炭素繊維強化層と接触しているため、樹脂層の両面の炭素繊維強化層間の導電性が樹脂層に埋設された金属塊で確保でき、かつ表面に突部が存在せず、厚み方向の導電性及び表面の美観が求められる用途に好適である。
また、本発明の製造方法によれば、厚み方向に導電性を有し、かつ表面に突部が存在しない繊維強化成形体を容易に製造することができる。
In the fiber-reinforced molded body of the present invention, the metal lumps embedded in the resin layer are in contact with the carbon fiber-reinforced layers on both sides of the resin layer, so that the conductivity between the carbon fiber-reinforced layers on both sides of the resin layer becomes the resin layer. It is suitable for applications where it can be secured by an embedded metal block, there are no protrusions on the surface, and conductivity in the thickness direction and aesthetic appearance of the surface are required.
Further, according to the manufacturing method of the present invention, it is possible to easily manufacture a fiber-reinforced molded product having conductivity in the thickness direction and having no protrusion on the surface.

本発明における繊維強化成形体の一実施形態の平面図である。It is a top view of one Embodiment of the fiber reinforced molded article in this invention. 図1の2−2断面図である。It is a cross-sectional view of 2-2 of FIG. 本発明の製造方法におけるプリプレグ作製工程及び発泡体への含浸工程を示す図である。It is a figure which shows the prepreg manufacturing process and the impregnation process to the foam in the production method of this invention. 本発明の製造方法の第一実施形態における積層配置工程と圧縮加熱工程を示す図である。It is a figure which shows the stacking arrangement process and compression heating process in 1st Embodiment of the manufacturing method of this invention. 本発明の製造方法の第二実施形態における金属塊埋設工程、積層配置工程及び圧縮加熱工程を示す図である。It is a figure which shows the metal block embedding process, the laminated arrangement process, and the compression heating process in the 2nd Embodiment of the manufacturing method of this invention. 実施例における切り込みの位置を示す平面図である。It is a top view which shows the position of the cut in an Example. 実施例における導電性の測定位置を示す平面図である。It is a top view which shows the measurement position of the conductivity in an Example. 実施例・比較例の構成及び導電性等の測定結果を示す表である。It is a table which shows the composition of Example and the comparative example, and the measurement result of the conductivity and the like.

以下、本発明の繊維強化成形体及びその製造方法について図面を用いて説明する。
図1及び図2に示す本発明の一実施形態に係る繊維強化成形体10は、樹脂層11の両面に炭素繊維強化層21、21を積層一体化した繊維強化成形体であり、厚み方向に導電性を有し、かつ導電性確保のためのボルトの頭などによる突部が表面に存在しない良好な美観を有するものであり、タブレットやノートパソコン等の携帯機器の筐体などに好適である。前記繊維強化成形体10の厚みは、0.3〜3.0mmが好ましい。なお、図示の例の繊維強化成形体10は、長方形の板状からなるが、用途に応じた形状に成形される。
Hereinafter, the fiber-reinforced molded product of the present invention and a method for producing the same will be described with reference to the drawings.
The fiber-reinforced molded body 10 according to the embodiment of the present invention shown in FIGS. 1 and 2 is a fiber-reinforced molded body in which carbon fiber-reinforced layers 21 and 21 are laminated and integrated on both sides of the resin layer 11, and is formed in the thickness direction. It has conductivity and has a good appearance that the protrusions due to the heads of bolts for ensuring conductivity do not exist on the surface, and is suitable for housings of portable devices such as tablets and notebook computers. .. The thickness of the fiber-reinforced molded product 10 is preferably 0.3 to 3.0 mm. The fiber-reinforced molded body 10 in the illustrated example has a rectangular plate shape, but is molded into a shape suitable for the intended use.

前記樹脂層11は、熱硬化性樹脂が含浸した発泡体を圧縮した状態で前記熱硬化性樹脂を硬化させたものが好ましい。前記発泡体は、特に限定されるものではなく、例えば、連続気泡構造を有する発泡体、具体的にはメラミン発泡体又はウレタン発泡体が好適である。特にメラミン発泡体を圧縮する場合には、金属塊によってメラミン発泡体が座屈し、樹脂層に金属塊が埋設しやすく好適である。前記繊維強化成形体10に難燃性が求められる場合には、前記発泡体としては難燃性のものが好ましく、メラミン発泡体は樹脂単体が良好な難燃性を有するため好適なものである。また、前記発泡体を圧縮した状態で前記熱硬化性樹脂が硬化することにより、前記繊維強化成形体10の薄肉化と剛性の向上を図ることができる。 The resin layer 11 is preferably one obtained by curing the thermosetting resin in a compressed state of the foam impregnated with the thermosetting resin. The foam is not particularly limited, and for example, a foam having an open cell structure, specifically a melamine foam or a urethane foam is suitable. In particular, when the melamine foam is compressed, the melamine foam buckles due to the metal lump, and the metal lump is easily embedded in the resin layer, which is suitable. When the fiber-reinforced molded product 10 is required to have flame retardancy, the foam is preferably flame-retardant, and the melamine foam is suitable because the resin alone has good flame retardancy. .. Further, by curing the thermosetting resin in a compressed state of the foam, it is possible to reduce the thickness and improve the rigidity of the fiber-reinforced molded product 10.

前記樹脂層11用の発泡体の圧縮前の元厚みは、圧縮率により異なるが、例えば、厚さ3mm以下の繊維強化成形体を得ようとする場合、元厚み1〜25mmが好ましい。この範囲に元厚みがあると、適度な量の熱硬化性樹脂を含浸でき、加熱圧縮後の歩留まりも良い。元厚みが1mmより薄いと、含浸した熱硬化性樹脂を発泡体中に保持できず、含浸比率がばらついて品質が一定しなくなる。一方、元厚みが25mmより厚いと、厚さ3mm以下の繊維強化成形体を得ようとした場合、圧縮が困難で、均一な厚みの繊維強化成形体が得られない。また、前記樹脂層11用の発泡体は、圧縮容易性、含浸性、軽量性、剛性の点から、圧縮前の密度が5〜80kg/mのものが好ましい。 The original thickness of the foam for the resin layer 11 before compression varies depending on the compressibility, but for example, when a fiber-reinforced molded product having a thickness of 3 mm or less is to be obtained, the original thickness is preferably 1 to 25 mm. If the original thickness is within this range, an appropriate amount of thermosetting resin can be impregnated, and the yield after heat compression is good. If the original thickness is thinner than 1 mm, the impregnated thermosetting resin cannot be retained in the foam, the impregnation ratio varies, and the quality becomes inconsistent. On the other hand, if the original thickness is thicker than 25 mm, when an attempt is made to obtain a fiber-reinforced molded product having a thickness of 3 mm or less, compression is difficult and a fiber-reinforced molded product having a uniform thickness cannot be obtained. Further, the foam for the resin layer 11 preferably has a density of 5 to 80 kg / m 3 before compression from the viewpoint of ease of compression, impregnation property, light weight, and rigidity.

前記樹脂層11用の発泡体に含浸する熱硬化性樹脂は、特に限定されないが、前記繊維強化成形体10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記繊維強化成形体10に難燃性が求められる場合、前記熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は良好な難燃性を有するため、前記発泡体に含浸させる熱硬化性樹脂として好適である。 The thermosetting resin impregnated in the foam for the resin layer 11 is not particularly limited, but the thermosetting resin itself needs to have a certain degree of rigidity in order to increase the rigidity of the fiber-reinforced molded body 10. , Epoxy resin, phenol resin, and a mixture of epoxy resin and phenol resin can be selected from the group. Further, when the fiber reinforced molded product 10 is required to have flame retardancy, the thermosetting resin is preferably flame retardant. Since the phenol resin has good flame retardancy, it is suitable as a thermosetting resin to be impregnated in the foam.

前記樹脂層11の一部には、該樹脂層11の厚み方向に金属塊31、31が貫通して埋設される。前記金属塊31、31は、前記樹脂層11の両面で前記炭素繊維強化層21、21の内面と接触している。すなわち、前記金属塊31、31は、前記樹脂層11と前記炭素繊維強化層21とのふたつの界面で接触している。前記金属塊31、31は、前記繊維強化成形体10を製造する際の圧縮加熱によって変形可能な融点、例えば130〜270℃の融点を有する金属が好ましい。具体的には、スズ(Sn)を含む合金が好ましい。スズ(Sn)を含む合金としては、スズ(Sn)とビスマス(Bi)の合金、スズ(Sn)と鉛(Pb)の合金、スズ(Sn)と銀(Ag)と銅(Cu)の合金などが挙げられる。 Metal lumps 31 and 31 are embedded in a part of the resin layer 11 in the thickness direction of the resin layer 11. The metal lumps 31 and 31 are in contact with the inner surfaces of the carbon fiber reinforced layers 21 and 21 on both sides of the resin layer 11. That is, the metal lumps 31 and 31 are in contact with each other at the two interfaces of the resin layer 11 and the carbon fiber reinforced layer 21. The metal ingots 31 and 31 are preferably metals having a melting point that can be deformed by compression heating when the fiber-reinforced molded product 10 is manufactured, for example, a melting point of 130 to 270 ° C. Specifically, an alloy containing tin (Sn) is preferable. Alloys containing tin (Sn) include tin (Sn) and bismuth (Bi) alloys, tin (Sn) and lead (Pb) alloys, tin (Sn) and silver (Ag) and copper (Cu) alloys. And so on.

前記金属塊31、31の成形前の大きさおよび形状は、特に限定されないが、炭素繊維強化層21、21と金属塊31、31の接触を確実にするために、繊維強化成形体10の樹脂層11の厚み以上の直径を有する線状または棒状の金属塊が好ましい。線状または棒状の金属塊は、前記繊維強化成形体11に対して寝させた(横にした)状態で前記樹脂層11に埋設される。なお、線状または棒状の金属塊を寝させて埋設する場合、金属塊の直径が金属塊の厚み(繊維強化成形体10の厚み方向と同じ方向)となる。 The size and shape of the metal ingots 31 and 31 before molding are not particularly limited, but the resin of the fiber reinforced molded body 10 is used to ensure contact between the carbon fiber reinforced layers 21 and 21 and the metal ingots 31 and 31. A linear or rod-shaped metal block having a diameter equal to or larger than the thickness of the layer 11 is preferable. The linear or rod-shaped metal block is embedded in the resin layer 11 in a state of being laid down (laid down) on the fiber-reinforced molded body 11. When a linear or rod-shaped metal block is laid down and buried, the diameter of the metal block is the thickness of the metal block (the same direction as the thickness direction of the fiber-reinforced molded body 10).

線状または棒状の金属塊を使用する場合、成形前の金属塊の厚み(直径)は、成形後の繊維強化成形体10の全体厚みより、わずかに大きいか、小さいのが好ましい。成形後の繊維強化成形体10の全体厚みより、わずかに大きいとは、成形の際に金属塊が圧縮及び加熱されることにより、軟化変形することを意味する。すなわち、成形後の繊維強化成形体10の意匠面に、当該金属塊の存在による突起が現れず、目視判定で突起が視認できなければ、外観不良とはならない。許容される成形前の金属塊の厚みは、成形後の繊維強化成形体10の厚みに対して、120%以下の厚みである。しかも、成形前の金属塊の厚みは成形後の樹脂層の厚みよりも大きくなければならない。成形前の金属塊の厚み(直径)が、成形後の繊維強化成形体10の全体厚みより小さいとは、成形後の繊維強化成形体10の全体厚みから炭素繊維強化層21、21の厚みを除いた厚みを、成形前の金属塊の厚み(直径)が占めることを意味する。樹脂層の厚み(C1)に対する成形前の金属塊の厚み(Φ1)の倍率(Φ1/C1)は、1倍から28倍、より好ましくは3倍から25倍である。 When a linear or rod-shaped metal block is used, the thickness (diameter) of the metal block before molding is preferably slightly larger or smaller than the total thickness of the fiber-reinforced molded body 10 after molding. Slightly larger than the total thickness of the fiber-reinforced molded body 10 after molding means that the metal ingot is softened and deformed by being compressed and heated during molding. That is, if the protrusions due to the presence of the metal lump do not appear on the design surface of the fiber-reinforced molded body 10 after molding and the protrusions cannot be visually determined by visual determination, the appearance is not poor. The allowable thickness of the metal ingot before molding is 120% or less with respect to the thickness of the fiber-reinforced molded body 10 after molding. Moreover, the thickness of the metal ingot before molding must be larger than the thickness of the resin layer after molding. The thickness (diameter) of the metal ingot before molding is smaller than the total thickness of the fiber-reinforced molded body 10 after molding. It means that the thickness (diameter) of the metal ingot before molding occupies the excluded thickness. The ratio (Φ1 / C1) of the thickness (Φ1) of the metal block before molding to the thickness (C1) of the resin layer is 1 to 28 times, more preferably 3 to 25 times.

また、前記金属塊31、31の埋設数及び埋設位置は特に限定されないが、安定した導電性を得るためには、前記樹脂層11内で水平方向に離れた複数箇所に金属塊を埋設するのが好ましい。図示の例では、前記樹脂層11の短辺側の略中央位置にそれぞれ1個、合計2個埋設されている。 The number and position of the metal ingots 31 and 31 to be buried are not particularly limited, but in order to obtain stable conductivity, the metal ingots are embedded in a plurality of horizontally separated places in the resin layer 11. Is preferable. In the illustrated example, one is embedded in each of the resin layers 11 at substantially the center position on the short side side, for a total of two.

前記炭素繊維強化層21、21は、炭素繊維に熱硬化性樹脂が含浸して硬化したものからなり、炭素繊維によって導電性を有する。前記炭素繊維としては、炭素繊維織物が、軽量及び高剛性に優れるために好ましい。さらに、前記炭素繊維には、長繊維が同一方向に並列に配列されたものも含まれるが、いわゆる織物が好ましく、例えば、縦糸と横糸で構成される平織、綾織、朱子織及び3方向の糸で構成される三軸織などが、成形体の強度等を得るのに好適である。また、炭素繊維織物は、熱硬化性樹脂の含浸及び剛性の点から、繊維重さが90〜400g/mのものが好ましい。 The carbon fiber reinforcing layers 21 and 21 are made of carbon fibers impregnated with a thermosetting resin and cured, and have conductivity due to the carbon fibers. As the carbon fiber, a carbon fiber woven fabric is preferable because it is excellent in light weight and high rigidity. Further, the carbon fibers include those in which long fibers are arranged in parallel in the same direction, but so-called woven fabrics are preferable. A triaxial weave composed of the above is suitable for obtaining the strength of the molded body and the like. The carbon fiber woven fabric preferably has a fiber weight of 90 to 400 g / m 2 from the viewpoint of impregnation with a thermosetting resin and rigidity.

前記炭素繊維に含浸する熱硬化性樹脂は、特に限定されないが、前記繊維強化成形体10の剛性を高めるためには、熱硬化性樹脂自体がある程度の剛性を有する必要があり、エポキシ樹脂、フェノール樹脂、エポキシ樹脂とフェノール樹脂の混合物からなる群より選択することができる。また、前記繊維強化成形体10に難燃性が求められる場合、前記繊維織物に含浸する熱硬化性樹脂は難燃性のものが好ましい。フェノール樹脂は良好な難燃性を有するため、前記炭素繊維に含浸させる熱硬化性樹脂として好適である。 The thermosetting resin impregnated in the carbon fibers is not particularly limited, but in order to increase the rigidity of the fiber-reinforced molded body 10, the thermosetting resin itself needs to have a certain degree of rigidity, and the epoxy resin and phenol It can be selected from the group consisting of a resin, a mixture of an epoxy resin and a phenol resin. When the fiber-reinforced molded product 10 is required to have flame-retardant properties, the thermosetting resin impregnated in the fiber woven fabric is preferably flame-retardant. Since the phenol resin has good flame retardancy, it is suitable as a thermosetting resin to be impregnated into the carbon fibers.

また、前記炭素繊維強化層21、21は、前記樹脂層11の両側に各1層ずつに限られず、前記樹脂層11の一側または両側において2層以上の積層数としてもよい。 Further, the carbon fiber reinforced layers 21 and 21 are not limited to one layer on each side of the resin layer 11, and may be two or more layers on one side or both sides of the resin layer 11.

前記繊維強化成形体10は、前記樹脂層11を貫通した前記金属塊31、31が、前記樹脂層11の両面で前記炭素繊維強化層21、21と接触しているため、前記樹脂層11の両面の前記炭素繊維強化層21、21間に前記金属塊31を介して導電通路を構成し、前記繊維強化成形体10の厚み方向に導電性を有するものとなる。さらに、繊維強化成形体10の厚み方向の導電性を高めるために、意匠面を研磨し、表層の樹脂を除去し、炭素繊維が意匠表面に現れるようにしてもよい。 In the fiber reinforced molded body 10, the metal lumps 31 and 31 penetrating the resin layer 11 are in contact with the carbon fiber reinforced layers 21 and 21 on both sides of the resin layer 11, so that the resin layer 11 has. A conductive passage is formed between the carbon fiber reinforced layers 21 and 21 on both sides via the metal block 31, and the fiber reinforced molded body 10 has conductivity in the thickness direction. Further, in order to increase the conductivity in the thickness direction of the fiber-reinforced molded body 10, the design surface may be polished to remove the resin on the surface layer so that the carbon fibers appear on the design surface.

次に、本発明の繊維強化成形体の製造方法について、第一の実施形態を、前記繊維強化成形体10の製造を例にして説明する。前記繊維強化成形体10の製造方法は、プリプレグ作製工程、発泡体への含浸工程、積層配置工程、圧縮加熱工程とからなる。 Next, the first embodiment of the method for producing a fiber-reinforced molded product of the present invention will be described by taking the production of the fiber-reinforced molded product 10 as an example. The method for producing the fiber-reinforced molded product 10 includes a prepreg manufacturing step, an impregnation step for the foam, a laminated arrangement step, and a compression heating step.

プリプレグ作製工程では、図3の(3−1)に示すように、繊維織物等からなる炭素繊維21Aに熱硬化性樹脂21Bを含浸、乾燥させて炭素繊維プリプレグ(含浸済み炭素繊維)21Cを必要数形成する。前記炭素繊維21A及び前記熱硬化性樹脂21Bは、前記繊維強化成形体10において説明したとおりである。含浸に用いる熱硬化性樹脂21Bは、未硬化の液状からなる。また、含浸を容易にするためには、前記熱硬化性樹脂21Bは溶剤に溶かしたものが好ましく、含浸後に、前記炭素繊維プリプレグ21Cを前記熱硬化性樹脂の硬化反応を生じない温度で乾燥させることにより溶剤を除去する。含浸手段は、液状の熱硬化性樹脂21Bを収容した槽に前記炭素繊維21Aを浸ける方法、スプレーにより塗布する方法、ロールコータにより塗布する方法等、適宜の方法により行うことができる。 In the prepreg manufacturing step, as shown in (3-1) of FIG. 3, a carbon fiber prepreg (impregnated carbon fiber) 21C is required by impregnating a carbon fiber 21A made of a fiber fabric or the like with a thermosetting resin 21B and drying it. Form a number. The carbon fiber 21A and the thermosetting resin 21B are as described in the fiber reinforced molded product 10. The thermosetting resin 21B used for impregnation is an uncured liquid. Further, in order to facilitate impregnation, the thermosetting resin 21B is preferably dissolved in a solvent, and after impregnation, the carbon fiber prepreg 21C is dried at a temperature at which the curing reaction of the thermosetting resin does not occur. This removes the solvent. The impregnation means can be performed by an appropriate method such as a method of immersing the carbon fiber 21A in a tank containing a liquid thermosetting resin 21B, a method of applying by spraying, a method of applying by a roll coater, or the like.

発泡体への含浸工程では、図3の(3−2)に示すように、メラミン発泡体等からなる発泡体11Aに熱硬化性樹脂11Bを含浸させ、含浸済み発泡体11Cを得る。前記発泡体11A、前記熱硬化性樹脂11Bは、前記繊維強化成形体10において説明したとおりである。含浸に用いる熱硬化性樹脂11Bは、未硬化の液状からなる。また、含浸を容易にするため、前記熱硬化性樹脂11Bは溶剤に溶かしたものが好ましく、含浸後に、含浸済み発泡体11Cを、前記熱硬化性樹脂の硬化反応を生じない温度で乾燥させて含浸済み発泡体11Cから溶剤を除去する。含浸手段は、液状の熱硬化性樹脂を収容した槽に前記発泡体を浸ける方法、スプレーにより塗布する方法、ロールコータにより塗布する方法等、適宜の方法により行うことができる。
なお、前記プリプレグ作製工程と発泡体への含浸工程は、何れを先に行ってもよい。
In the step of impregnating the foam, as shown in (3-2) of FIG. 3, the foam 11A made of a melamine foam or the like is impregnated with the thermosetting resin 11B to obtain the impregnated foam 11C. The foam 11A and the thermosetting resin 11B are as described in the fiber reinforced molded product 10. The thermosetting resin 11B used for impregnation is made of an uncured liquid. Further, in order to facilitate impregnation, the thermosetting resin 11B is preferably dissolved in a solvent, and after impregnation, the impregnated foam 11C is dried at a temperature at which the curing reaction of the thermosetting resin does not occur. The solvent is removed from the impregnated foam 11C. The impregnation means can be performed by an appropriate method such as a method of immersing the foam in a tank containing a liquid thermosetting resin, a method of applying by spraying, a method of applying by a roll coater, or the like.
Either of the prepreg producing step and the impregnation step of the foam may be performed first.

積層配置工程では、図4の(4−1)に示すように、プレス成形用下型41の型面に、前記炭素繊維プリプレグ21C、前記含浸済み発泡体11C、前記金属塊31、31、前記炭素繊維プリプレグ21Cの順に積層する。前記金属塊31は、図示の例では、前記含浸済み発泡体11Cの上面に配置したが、前記含浸済み発泡体11Cの下面側の前記炭素繊維プリプレグ21Cの上面に配置してもよい。また、前記金属塊31の配置は、前記含浸済み発泡体11Cの片面において一箇所、あるいは片面または両面において複数箇所とされる。また、前記炭素繊維プリプレグ21Cは、前記含浸済み発泡体11Cの片側あるいは両側において複数積層してもよい。符号43はプレス成形用上型である。 In the laminating arrangement step, as shown in (4-1) of FIG. 4, the carbon fiber prepreg 21C, the impregnated foam 11C, the metal lumps 31, 31 and the above are formed on the mold surface of the lower mold 41 for press molding. The carbon fiber prepreg 21C is laminated in this order. In the illustrated example, the metal block 31 is arranged on the upper surface of the impregnated foam 11C, but may be arranged on the upper surface of the carbon fiber prepreg 21C on the lower surface side of the impregnated foam 11C. Further, the metal ingot 31 is arranged at one place on one side of the impregnated foam 11C, or at a plurality of places on one side or both sides. Further, the carbon fiber prepreg 21C may be laminated on one side or both sides of the impregnated foam 11C. Reference numeral 43 is an upper mold for press molding.

圧縮加熱工程では、図4の(4−2)に示すように、前記積層工程で積層した前記炭素繊維プリプレグ21C、前記含浸済み発泡体11C、前記金属塊31及び前記炭素繊維プリプレグ21Cからなる積層体を、前記プレス成形用下型41と前記プレス成形用上型43により圧縮すると共に加熱する。圧縮は前記積層体の厚みが0.3〜3.0mmとなるようにするのが好ましい。前記圧縮加熱工程時、前記プレス成形用下型41と上型43間には適宜の位置にスペーサを設置して、前記プレス成形用下型41と上型43間が所定間隔(積層体の圧縮厚み)となるようにされる。また、加熱方法は特に限定されないが、前記プレス成形用下型41と上型43にヒータ等の加熱手段を設けて、前記プレス成形用下型41と上型43を介して加熱するのが簡単である。加熱温度は、前記含浸している熱硬化性樹脂の硬化反応温度以上とされる。また、加熱温度と前記金属塊31の融点との関係は、前記金属塊31の融点が前記プレス成形用下型41及び上型43の加熱温度以上であるのが好ましい。前記プレス成形用下型41及び上型43の加熱温度は、前記熱硬化性樹脂11Bの成形温度であり、この成形温度が金属塊31の融点に近いほど、金属塊31は軟化変形しやすく、加工しやすいため、融点の低い合金が、金属塊として好ましい。 In the compression heating step, as shown in (4-2) of FIG. 4, the laminate composed of the carbon fiber prepreg 21C, the impregnated foam 11C, the metal block 31, and the carbon fiber prepreg 21C laminated in the lamination step. The body is compressed and heated by the press-molding lower die 41 and the press-molding upper die 43. The compression is preferably such that the thickness of the laminate is 0.3 to 3.0 mm. During the compression heating step, spacers are installed at appropriate positions between the lower die 41 for press molding and the upper die 43, and the space between the lower die 41 for press molding and the upper die 43 is set at a predetermined interval (compression of the laminate). Thickness). Further, the heating method is not particularly limited, but it is easy to provide a heating means such as a heater on the press molding lower mold 41 and the upper mold 43 and heat the press molding through the lower mold 41 and the upper mold 43. Is. The heating temperature is set to be equal to or higher than the curing reaction temperature of the impregnated thermosetting resin. Further, regarding the relationship between the heating temperature and the melting point of the metal ingot 31, it is preferable that the melting point of the metal ingot 31 is equal to or higher than the heating temperature of the lower mold 41 and the upper mold 43 for press molding. The heating temperature of the lower mold 41 and the upper mold 43 for press molding is the molding temperature of the thermosetting resin 11B, and the closer the molding temperature is to the melting point of the metal ingot 31, the more easily the metal ingot 31 is softened and deformed. An alloy having a low melting point is preferable as a metal ingot because it is easy to process.

前記圧縮加熱工程時、前記含浸済み発泡体11Cの表面に配置されている前記金属塊31は、前記含浸済み発泡体11C内に押し込まれて埋設され、前記含浸済み発泡体11Cの両面で前記炭素繊維プリプレグ21C、21Cと接触する。さらに、前記金属塊31は、加熱された状態で前記含浸済み発泡体11C及び前記炭素繊維プリプレグ21C,21Cと共に圧縮され、前記含浸済み発泡体11Cの圧縮厚みに変形する。また、前記含浸済み発泡体11Cの熱硬化性樹脂及び前記炭素繊維プリプレグ21C、21Cの熱硬化性樹脂が、加熱により硬化反応を開始し、前記炭素繊維プリプレグ21Cと、前記金属塊31が埋設された含浸済み発泡体11Cと、前記炭素繊維プリプレグ21Cが、積層及び圧縮状態で硬化して一体化し、前記繊維強化成形体10が形成される。なお、前記硬化によって、前記含浸済み発泡体11Cは、熱硬化性樹脂からなる中実の前記樹脂層11になり、また、前記炭素繊維プリプレグ21C、21Cは、熱硬化性樹脂をマトリクスとする前記炭素繊維強化層21、21になる。その後、前記プレス成形用下型41と前記プレス成形用上型43を開き、前記繊維強化成形体10を取り出す。 During the compression heating step, the metal block 31 arranged on the surface of the impregnated foam 11C is pushed into the impregnated foam 11C and embedded, and the carbon is formed on both sides of the impregnated foam 11C. Contact with fiber prepregs 21C, 21C. Further, the metal block 31 is compressed together with the impregnated foam 11C and the carbon fiber prepregs 21C and 21C in a heated state, and is deformed to the compressed thickness of the impregnated foam 11C. Further, the thermosetting resin of the impregnated foam 11C and the thermosetting resins of the carbon fiber prepregs 21C and 21C start a curing reaction by heating, and the carbon fiber prepreg 21C and the metal block 31 are embedded. The impregnated foam 11C and the carbon fiber prepreg 21C are cured and integrated in a laminated and compressed state to form the fiber reinforced molded body 10. By the curing, the impregnated foam 11C becomes the solid resin layer 11 made of a thermosetting resin, and the carbon fiber prepregs 21C and 21C have the thermosetting resin as a matrix. The carbon fiber reinforced layers 21 and 21 are formed. After that, the lower die 41 for press molding and the upper die 43 for press molding are opened, and the fiber-reinforced molded body 10 is taken out.

前記繊維強化成形体の製造方法について第二の実施形態を説明する。製造方法の第二の実施形態は、プリプレグ作製工程、発泡体への含浸工程、金属塊埋設工程、積層配置工程、圧縮加熱工程とからなる。 A second embodiment of the method for manufacturing the fiber-reinforced molded product will be described. The second embodiment of the manufacturing method includes a prepreg manufacturing step, an impregnation step in a foam, a metal block burying step, a laminated placement step, and a compression heating step.

第二実施形態におけるプリプレグ作製工程及び発泡体への含浸工程は、第一の実施形態と同様である。
金属塊埋設工程では、図5の(5−1)に示すように、前記含浸済み発泡体11Cの所定箇所に前記金属塊31を埋設する。前記含浸済み発泡体11Cにおける前記金属塊31の埋設箇所には、前記含浸済み発泡体11Cの表面にスリット等からなる切り込みを形成し、前記切り込みに前記金属塊31を挿入して埋設する。これにより、正しい位置に容易に前記金属塊31を埋設できる。また、前記切り込みは、前記含浸済み発泡体11Cの片面のみに設けてもよく、あるいは両面に設けたり、あるいは両面間を貫通して設けたりしてもよい。なお、前記切り込みの形成は、熱硬化性樹脂含浸前の発泡体あるいは、含浸済みの発泡体の何れに対して行ってもよい。
The prepreg producing step and the foam impregnation step in the second embodiment are the same as those in the first embodiment.
In the metal ingot burying step, as shown in FIG. 5 (5-1), the metal ingot 31 is embedded in a predetermined position of the impregnated foam 11C. A notch made of a slit or the like is formed on the surface of the impregnated foam 11C at the place where the metal ingot 31 is embedded in the impregnated foam 11C, and the metal ingot 31 is inserted into the notch and embedded. As a result, the metal block 31 can be easily embedded in the correct position. Further, the notch may be provided only on one side of the impregnated foam 11C, may be provided on both sides, or may be provided so as to penetrate between both sides. The notch may be formed on either the foam before the thermosetting resin impregnation or the impregnated foam.

積層配置工程では、図5の(5−2)に示すように、プレス成形用下型41の型面に、前記炭素繊維プリプレグ21C、前記金属塊31が埋設された含浸済み発泡体11C、前記炭素繊維プリプレグ21Cの順に積層することにより、前記熱硬化性樹脂が含浸して前記金属塊31が埋設された発泡体11Cの両面に前記炭素繊維プリプレグ21C、21Cを配置した積層体を形成する。なお、前記金属塊31が埋設された含浸済み発泡体11Cの片側あるいは両側で、前記炭素繊維プリプレグ21Cを複数層積層してもよい。符号43はプレス成形用上型である。 In the laminating arrangement step, as shown in FIG. 5 (5-2), the carbon fiber prepreg 21C, the impregnated foam 11C in which the metal ingot 31 is embedded, and the above By laminating the carbon fiber prepregs 21C in this order, a laminated body in which the carbon fiber prepregs 21C and 21C are arranged on both sides of the foam 11C in which the thermosetting resin is impregnated and the metal lump 31 is embedded is formed. In addition, the carbon fiber prepreg 21C may be laminated in a plurality of layers on one side or both sides of the impregnated foam 11C in which the metal block 31 is embedded. Reference numeral 43 is an upper mold for press molding.

圧縮加熱工程では、図5の(5−3)に示すように、前記積層工程で積層した前記炭素繊維プリプレグ21C、前記金属塊31が埋設された含浸済み発泡体11C及び前記炭素繊維プリプレグ21Cの積層体を、前記プレス成形用下型41と前記プレス成形用上型43により圧縮すると共に加熱する。圧縮は前記積層体の厚みが0.3〜3.0mmとなるようにするのが好ましい。前記圧縮加熱工程時、前記プレス成形用下型41と上型43間には適宜の位置にスペーサを設置して、前記プレス成形用下型41と上型43間が所定間隔(積層体の圧縮厚み)となるようにされる。加熱方法、加熱温度と前記金属塊31の融点との関係等は、第一の実施形態と同様である。 In the compression heating step, as shown in FIG. 5 (5-3), the carbon fiber prepreg 21C laminated in the laminating step, the impregnated foam 11C in which the metal block 31 is embedded, and the carbon fiber prepreg 21C are used. The laminate is compressed and heated by the press forming lower die 41 and the press forming upper die 43. The compression is preferably such that the thickness of the laminate is 0.3 to 3.0 mm. During the compression heating step, spacers are installed at appropriate positions between the lower die 41 for press molding and the upper die 43, and the space between the lower die 41 for press molding and the upper die 43 is set at a predetermined interval (compression of the laminate). Thickness). The heating method, the relationship between the heating temperature and the melting point of the metal block 31, and the like are the same as in the first embodiment.

前記圧縮加熱工程時、前記含浸済み発泡体11Cに埋設されている前記金属塊31は、加熱により軟化した状態で前記含浸済み発泡体11Cと共に圧縮され、前記含浸済み発泡体11Cの圧縮厚みに変形し、前記含浸済み発泡体11Cの両面で前記炭素繊維プリプレグ21C、21Cと接触する。また、前記含浸済み発泡体11Cの熱硬化性樹脂及び前記炭素繊維プリプレグ21C、21Cの熱硬化性樹脂が、加熱により硬化反応を開始し、前記炭素繊維プリプレグ21Cと、前記金属塊31が埋設された含浸済み発泡体11Cと、前記炭素繊維プリプレグ21Cが、積層及び圧縮状態で硬化して一体化し、前記繊維強化成形体10が形成される。その後、前記プレス成形用下型41と前記プレス成形用上型43を開き、前記繊維強化成形体10を取り出す。 During the compression heating step, the metal block 31 embedded in the impregnated foam 11C is compressed together with the impregnated foam 11C in a state of being softened by heating, and is deformed to the compressed thickness of the impregnated foam 11C. Then, both sides of the impregnated foam 11C come into contact with the carbon fiber prepregs 21C and 21C. Further, the thermosetting resin of the impregnated foam 11C and the thermosetting resins of the carbon fiber prepregs 21C and 21C start a curing reaction by heating, and the carbon fiber prepreg 21C and the metal block 31 are embedded. The impregnated foam 11C and the carbon fiber prepreg 21C are cured and integrated in a laminated and compressed state to form the fiber reinforced molded body 10. After that, the lower die 41 for press molding and the upper die 43 for press molding are opened, and the fiber-reinforced molded body 10 is taken out.

熱硬化性樹脂としてフェノール樹脂(住友ベークライト株式会社製、品名:PR−55791B、樹脂濃度60wt%エタノール溶液)中に、炭素繊維として綾織の炭素繊維織物(東邦テナックス株式会社製、品名:W−3161、繊維重さ200g/m)を漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて炭素繊維プリプレグ(含浸済み炭素繊維)を必要数形成した。炭素繊維織物は、200×300mmの平面サイズに裁断したもの(重量12g/枚)を使用した。乾燥後の炭素繊維プリプレグ(含浸済み繊維)は1枚あたり28gであった。 Ayaori carbon fiber woven fabric (manufactured by Toho Tenax Co., Ltd., product name: W-3161) in a phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name: PR-55791B, resin concentration 60 wt% ethanol solution) as a thermosetting resin. , Fiber weight 200 g / m 2 ) is soaked, taken out, naturally dried at room temperature of 25 ° C. for 2 hours, and further dried in an atmosphere of 60 ° C. for 1 hour to obtain carbon fiber prepreg (impregnated carbon fiber). The required number was formed. As the carbon fiber woven fabric, one cut into a flat size of 200 × 300 mm (weight 12 g / sheet) was used. The amount of carbon fiber prepreg (impregnated fiber) after drying was 28 g per sheet.

また、発泡体として、厚み5mm、平面サイズ200×300mm(重量2.7g)に切り出したメラミン発泡体(BASF社製、品名:バソテクトV3012、密度9kg/m)を、炭素繊維織物と同様にしてフェノール樹脂に漬け、取り出した後に25℃の室温にて2時間自然乾燥し、更に60℃の雰囲気下にて1時間乾燥させて含浸済み発泡体を形成した。乾燥後の含浸済み発泡体の重量は27gであった。 Further, as the foam, a melamine foam (manufactured by BASF, product name: Basotect V3012, density 9 kg / m 3 ) cut into a thickness of 5 mm and a plane size of 200 × 300 mm (weight 2.7 g) was used in the same manner as the carbon fiber woven fabric. After being immersed in a phenol resin and taken out, it was naturally dried at room temperature of 25 ° C. for 2 hours, and further dried in an atmosphere of 60 ° C. for 1 hour to form an impregnated foam. The weight of the impregnated foam after drying was 27 g.

次に、実施例6及び比較例1を除き、図6に示すように、含浸済み発泡体において一組の対向する角部の表面に切り込みを入れ、その切り込みに金属塊を挿入して含浸済み発泡体に埋設した。使用した金属塊は線状であり、含浸済み発泡体に対して寝させた状態(含浸済み発泡体の表面とほぼ平行の状態)で挿入した。金属塊の材質、直径及び長さは、図8の表に示す通りである。 Next, except for Example 6 and Comparative Example 1, as shown in FIG. 6, a notch is made in the surface of a set of opposite corners in the impregnated foam, and a metal block is inserted into the notch and impregnated. It was buried in a foam. The metal ingot used was linear and was inserted in a state of lying down on the impregnated foam (a state substantially parallel to the surface of the impregnated foam). The material, diameter and length of the metal block are as shown in the table of FIG.

次に、予め離型剤を表面に塗布したSUS製のプレス成形用の下型(平板状)の上に、炭素繊維プリプレグの必要数、金属塊が挿入された含浸済み発泡体、炭素繊維プリプレグの必要数の順に重ねて配置し、積層体を形成した。前記炭素繊維プリプレグの全数は図7の表における「ply数」の欄に示す通りである。
なお、実施例6については、予め離型剤を表面に塗布したSUS製のプレス成形用の下型(平板状)の上に、炭素繊維プリプレグの必要数、含浸済み発泡体、金属塊、炭素繊維プリプレグの必要数の順に重ねて配置し、積層体を形成した。
Next, the required number of carbon fiber prepregs, the impregnated foam in which the metal lumps are inserted, and the carbon fiber prepregs are placed on a SUS press-molding lower mold (flat plate) to which a mold release agent is previously applied to the surface. The layers were arranged in the order of the required number to form a laminated body. The total number of the carbon fiber prepregs is as shown in the column of "ply number" in the table of FIG. 7.
In Example 6, a required number of carbon fiber prepregs, an impregnated foam, a metal block, and carbon were placed on a SUS press-molding lower mold (flat plate) to which a mold release agent was previously applied to the surface. The fiber prepregs were arranged in the required number in order to form a laminated body.

前記プレス成形用下型上の前記積層体を、150℃で10分間、10MPaの面圧をかけてプレス成形用上型(平板状)で押圧することにより圧縮及び加熱を行ない、前記圧縮状態でフェノール樹脂を反応硬化させた。その際の積層体の加熱は、上下のプレス型に取り付けられた鋳込みヒータにより行なった。また、プレス成形用下型とプレス成形用上型間には製品板厚に設定したSUS製スペーサを介在させて下型と上型間の間隔、すなわち積層体の圧縮厚みを調整した。その後、プレス成形用下型とプレス成形用上型を室温で冷却させた後にプレス成形用下型とプレス成形用上型を開き、各実施例及び各比較例の繊維強化成形体を得た。 The laminate on the lower die for press molding is compressed and heated by applying a surface pressure of 10 MPa at 150 ° C. for 10 minutes with the upper die for press molding (flat plate), and in the compressed state. The phenolic resin was reaction-cured. At that time, the laminated body was heated by the cast heaters attached to the upper and lower press molds. Further, a SUS spacer set to the product plate thickness was interposed between the lower mold for press molding and the upper mold for press molding to adjust the distance between the lower mold and the upper mold, that is, the compression thickness of the laminate. Then, after cooling the lower mold for press molding and the upper mold for press molding at room temperature, the lower mold for press molding and the upper mold for press molding were opened to obtain fiber-reinforced molded products of each Example and each comparative example.

各実施例及び各比較例の繊維強化成形体について、外観判断と厚み方向の抵抗値及び曲げ弾性率の測定を行った。
外観判断は、目視および触感により突部の存在を判定した。金属塊の埋設部分に、触診および視認により突起が全く見られない場合に「◎」、目視では分からないが触診にて触感としてわずかに突起を感じる場合に「〇」、目視および触感共に突起を感じる場合に「×」とした。
厚み方向の抵抗値は、デジタルマルチメーター(日置電機株式会社製:DT4281)を用い、図7に示すように、繊維強化成形体の一方の面における「*1」の位置と、反対面における「*2」の位置間の抵抗値を測定した。
曲げ弾性率は、JIS K7074−1988A法に準拠して行った。
外観の判断結果及び抵抗値と曲げ弾性率の測定結果を図8の表に示す。
なお、図8の表における「金属塊の硬度(Hv)」は、JIS Z 2244−ビッカース硬さ試験に準拠して測定した値である。
また、図8の表における、「ply数」は炭素繊維強化層(炭素繊維プリプレグ)の全積層数であり、「全体厚み」は繊維強化成形体の厚み(スペーサの厚みと同一)である。「樹脂層厚み(mm)C1」は、「全体厚み」から使用した炭素繊維織物の全厚み(合計厚み)を減算して得られた値で代用した。
For the fiber-reinforced molded bodies of each Example and each Comparative Example, the appearance was judged and the resistance value and the flexural modulus in the thickness direction were measured.
In the appearance judgment, the presence of the protrusion was judged by visual inspection and tactile sensation. "◎" when no protrusions can be seen by palpation or visual inspection in the buried part of the metal block, "○" when a slight protrusion is felt by palpation, although it is not visible by palpation. When it feels, it is marked as "x".
For the resistance value in the thickness direction, a digital multimeter (manufactured by Hioki Electric Co., Ltd .: DT4281) was used, and as shown in FIG. 7, the position of "* 1" on one surface of the fiber reinforced molded body and the "* 1" position on the opposite surface. The resistance value between the positions of "* 2" was measured.
The flexural modulus was determined according to the JIS K7074-1988A method.
The appearance judgment result and the measurement result of the resistance value and the bending elastic modulus are shown in the table of FIG.
The "hardness (Hv) of the metal block" in the table of FIG. 8 is a value measured according to the JIS Z 2244-Vickers hardness test.
Further, in the table of FIG. 8, the “ply number” is the total number of laminated carbon fiber reinforced layers (carbon fiber prepregs), and the “overall thickness” is the thickness of the fiber reinforced molded body (same as the thickness of the spacer). The "resin layer thickness (mm) C1" was substituted by a value obtained by subtracting the total thickness (total thickness) of the carbon fiber woven fabric used from the "total thickness".

実施例1は、金属塊として、スズとビスマスの合金(金属比率42/58)、直径(Φ1)0.6mm、長さ10mmを使用し、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数が2、全体厚みが0.6mm、樹脂層厚み(C1)が0.12mmの例である。実施例1は、Φ1/C1の値が5.00、外観が「◎」、厚み方向の抵抗値が53Ω、曲げ弾性率が31GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有する。 In Example 1, an alloy of tin and bismuth (metal ratio 42/58), a diameter (Φ1) of 0.6 mm, and a length of 10 mm are used as the metal ingots, and the carbon fiber reinforced layer (carbon fiber prepreg) is fully laminated (the carbon fiber prepreg). This is an example in which the number of ply) is 2, the total thickness is 0.6 mm, and the resin layer thickness (C1) is 0.12 mm. In Example 1, the value of Φ1 / C1 is 5.00, the appearance is "◎", the resistance value in the thickness direction is 53Ω, the flexural modulus in the bending direction is 31 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. Has conductivity.

実施例2は、金属塊として、スズと鉛の合金(金属比率60/40)、直径(Φ1)1.0mm、長さ10mmを使用し、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数が2、全体厚みが1.0mm、樹脂層厚み(C1)が0.52mmの例である。実施例2は、Φ1/C1の値が1.92、外観が「◎」、厚み方向の抵抗値が12MΩ、曲げ弾性率が45GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 In Example 2, a tin-lead alloy (metal ratio 60/40), a diameter (Φ1) of 1.0 mm, and a length of 10 mm are used as the metal ingots, and the carbon fiber reinforced layer (carbon fiber prepreg) is fully laminated (the carbon fiber prepreg). This is an example in which the number of ply) is 2, the total thickness is 1.0 mm, and the resin layer thickness (C1) is 0.52 mm. In Example 2, the value of Φ1 / C1 is 1.92, the appearance is “◎”, the resistance value in the thickness direction is 12 MΩ, the flexural modulus in the bending elasticity is 45 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例3は、実施例2における金属塊の直径を0.6mm、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数を4、全体厚みを1.0mm、樹脂層厚み(C1)を0.04mmとした例である。実施例3は、Φ1/C1の値が15.00、外観が「◎」、厚み方向の抵抗値が10Ω、曲げ弾性率が45GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 In Example 3, the diameter of the metal block in Example 2 is 0.6 mm, the total number of laminated carbon fiber reinforced layers (carbon fiber prepregs) is 4, the total thickness is 1.0 mm, and the resin layer thickness (C1). Is an example of 0.04 mm. In Example 3, the value of Φ1 / C1 is 15.00, the appearance is "◎", the resistance value in the thickness direction is 10Ω, the flexural modulus in the bending direction is 45 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例4は、実施例3における金属塊の直径(Φ1)を1.0mmとした例である。実施例4は、Φ1/C1の値が25.00、外観が「〇」、厚み方向の抵抗値が12Ω、曲げ弾性率が46GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 Example 4 is an example in which the diameter (Φ1) of the metal block in Example 3 is 1.0 mm. In Example 4, the value of Φ1 / C1 is 25.00, the appearance is "○", the resistance value in the thickness direction is 12Ω, the flexural modulus in the bending elasticity is 46 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例5は、実施例4における金属塊の直径を0.6mm、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数を6、全体厚みを2.0mm、樹脂層厚み(C1)を0.56mmとした例である。実施例5は、Φ1/C1の値が1.07、外観が「◎」、厚み方向の抵抗値が42Ω、曲げ弾性率が40GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 In Example 5, the diameter of the metal block in Example 4 is 0.6 mm, the total number of laminated carbon fiber reinforced layers (carbon fiber prepregs) is 6, the total thickness is 2.0 mm, and the resin layer thickness (C1). Is an example of 0.56 mm. In Example 5, the value of Φ1 / C1 is 1.07, the appearance is “◎”, the resistance value in the thickness direction is 42Ω, the flexural modulus in the bending direction is 40 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例6は、実施例2における全体厚みを0.8mm、樹脂層厚み(C1)を0.32mmに設定し、スリットのない含浸済み発泡体の上面所定位置に、金属塊を載置し、その後、圧縮加熱工程を行った例である。実施例6は、Φ1/C1の値が3.13、外観が「◎」、厚み方向の抵抗値が12Ω、曲げ弾性率が46GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 In Example 6, the overall thickness in Example 2 is set to 0.8 mm, the resin layer thickness (C1) is set to 0.32 mm, and a metal block is placed at a predetermined position on the upper surface of the impregnated foam without slits. After that, it is an example of performing a compression heating step. In Example 6, the value of Φ1 / C1 is 3.13, the appearance is “◎”, the resistance value in the thickness direction is 12Ω, the flexural modulus in the bending direction is 46 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例7は、実施例6において含浸済み発泡体にスリットを形成して金属塊を埋設した以外、他の構成を実施例6と同一にした例である。実施例7は、Φ1/C1の値が3.13、外観が「◎」、厚み方向の抵抗値が10Ω、曲げ弾性率が47GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。スリットの有無に関係なく、実施例6と実施例7では、抵抗値、曲げ弾性率、外観が変わらなかった。 Example 7 is an example in which other configurations are the same as those of Example 6 except that a slit is formed in the impregnated foam in Example 6 and a metal block is embedded. In Example 7, the value of Φ1 / C1 is 3.13, the appearance is “◎”, the resistance value in the thickness direction is 10Ω, the flexural modulus in the bending direction is 47 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity. The resistance value, flexural modulus, and appearance did not change between Example 6 and Example 7 regardless of the presence or absence of the slit.

実施例8は、実施例2における全体厚みを0.6mm、樹脂層厚み(C1)を0.12mmとした例である。実施例8は、Φ1/C1の値が8.33、外観が「◎」、厚み方向の抵抗値が11Ω、曲げ弾性率が48GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 Example 8 is an example in which the total thickness in Example 2 is 0.6 mm and the resin layer thickness (C1) is 0.12 mm. In Example 8, the value of Φ1 / C1 is 8.33, the appearance is “◎”, the resistance value in the thickness direction is 11Ω, the bending elasticity is 48 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例9は、実施例2における金属塊の直径(Φ1)を2.0mm、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数を10、全体厚みを3.0mm、樹脂層厚み(C1)を0.6mmとした例である。実施例9は、Φ1/C1の値が3.33、外観が「◎」、厚み方向の抵抗値が12Ω、曲げ弾性率が44GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有している。 In Example 9, the diameter (Φ1) of the metal block in Example 2 is 2.0 mm, the total number of laminated carbon fiber reinforced layers (carbon fiber prepregs) is 10, the total thickness is 3.0 mm, and the resin layer thickness. This is an example in which (C1) is 0.6 mm. In Example 9, the value of Φ1 / C1 is 3.33, the appearance is “◎”, the resistance value in the thickness direction is 12Ω, the flexural modulus in the bending direction is 44 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. It has conductivity.

実施例10は、金属塊として、スズと銀と銅の合金(金属比率96.5/3/0.5)、直径(Φ1)1.0mm、長さ10mmを使用し、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数が2、全体厚みが0.8mm、樹脂層厚み(C1)が0.32mmの例である。実施例10は、Φ1/C1の値が3.13、外観が「〇」、厚み方向の抵抗値が25Ω、曲げ弾性率が45GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有する。 In Example 10, a carbon fiber reinforced layer (metal ratio 96.5/3 / 0.5), a diameter (Φ1) of 1.0 mm, and a length of 10 mm was used as the metal ingot. This is an example in which the total number of laminated carbon fibers (prepregs) is 2, the total thickness is 0.8 mm, and the resin layer thickness (C1) is 0.32 mm. In Example 10, the value of Φ1 / C1 is 3.13, the appearance is "○", the resistance value in the thickness direction is 25Ω, the flexural modulus in the bending direction is 45 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. Has conductivity.

実施例11は、金属塊として、スズと鉛の合金(金属比率10/90)、直径(Φ1)1.0mm、長さ10mmを使用し、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数が2、全体厚みが0.8mm、樹脂層厚み(C1)が0.32mmの例である。実施例14は、Φ1/C1の値が3.13、外観が「〇」、厚み方向の抵抗値が14Ω、曲げ弾性率が45GPaであり、厚み方向の抵抗値が小さく、厚み方向に良好な導電性を有する。 In Example 11, a tin-lead alloy (metal ratio 10/90), a diameter (Φ1) of 1.0 mm, and a length of 10 mm are used as the metal ingots, and the carbon fiber reinforced layer (carbon fiber prepreg) is fully laminated (the carbon fiber prepreg). This is an example in which the number of ply) is 2, the total thickness is 0.8 mm, and the resin layer thickness (C1) is 0.32 mm. In Example 14, the value of Φ1 / C1 is 3.13, the appearance is "○", the resistance value in the thickness direction is 14Ω, the flexural modulus in the bending direction is 45 GPa, the resistance value in the thickness direction is small, and the resistance value in the thickness direction is good. Has conductivity.

比較例1は、金属塊を埋設しない例であり、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数が2、全体厚みが0.8mm、樹脂層厚み(C1)が0.32mmである。比較例は、外観が「◎」、厚み方向の抵抗値が5.2MΩ、曲げ弾性率が45GPaであり、厚み方向の抵抗値が大きく、厚み方向の導電性が低いものである。 Comparative Example 1 is an example in which the metal ingot is not embedded, and the total number of laminated carbon fiber reinforced layers (carbon fiber prepregs) is 2, the total thickness is 0.8 mm, and the resin layer thickness (C1) is 0.32 mm. Is. In the comparative example, the appearance is “⊚”, the resistance value in the thickness direction is 5.2 MΩ, the flexural modulus is 45 GPa, the resistance value in the thickness direction is large, and the conductivity in the thickness direction is low.

比較例2は、金属塊として、スズと鉛の合金(金属比率60/40)、直径(Φ1)0.6mm、長さ10mmを使用し、炭素繊維強化層(炭素繊維プリプレグ)の全積層(ply)数が2、全体厚みが1.2mm、樹脂層厚み(C1)が0.72mmの例である。比較例2は、Φ1/C1の値が0.83、外観が「◎」、厚み方向の抵抗値が2.9MΩ、曲げ弾性率が42GPaであり、厚み方向の抵抗値が高くなった。比較例2は、成形後の樹脂層の厚みが、成形前の金属塊の直径よりも大きく、圧縮加熱工程を行っても、実質的に炭素繊維に接触しなかった。 In Comparative Example 2, a tin-lead alloy (metal ratio 60/40), a diameter (Φ1) of 0.6 mm, and a length of 10 mm were used as the metal ingots, and the carbon fiber reinforced layer (carbon fiber prepreg) was fully laminated (the carbon fiber prepreg). This is an example in which the number of ply) is 2, the total thickness is 1.2 mm, and the thickness of the resin layer (C1) is 0.72 mm. In Comparative Example 2, the value of Φ1 / C1 was 0.83, the appearance was “⊚”, the resistance value in the thickness direction was 2.9 MΩ, the flexural modulus was 42 GPa, and the resistance value in the thickness direction was high. In Comparative Example 2, the thickness of the resin layer after molding was larger than the diameter of the metal block before molding, and even when the compression heating step was performed, the resin layer did not substantially come into contact with the carbon fibers.

このように、本発明の繊維強化成形体は、厚み方向に導電性を有し、かつ樹脂層に埋設した金属塊に起因する突部や変形が表面に存在しないものであり、厚み方向の導電性及び表面の美観が求められる用途に好適なものである。

As described above, the fiber-reinforced molded product of the present invention has conductivity in the thickness direction, and has no protrusions or deformations due to the metal lumps embedded in the resin layer on the surface, and is conductive in the thickness direction. It is suitable for applications that require aesthetics and surface aesthetics.

10 繊維強化成形体
11 樹脂層
11A 発泡体
11B 熱硬化性樹脂
11C 含浸済み発泡体
21 炭素繊維強化層
21A 炭素繊維
21B 熱硬化性樹脂
21C 炭素繊維プリプレグ
31 金属塊
41 プレス成形用下型
43 プレス成形用上型
10 Fiber reinforced plastic 11 Resin layer 11A Foam 11B Thermosetting resin 11C Impregnated foam 21 Carbon fiber reinforced layer 21A Carbon fiber 21B Thermosetting resin 21C Carbon fiber prepreg 31 Metal ingot 41 Press molding lower mold 43 Press molding Top type

Claims (7)

樹脂層の両面に炭素繊維強化層を積層一体化した繊維強化成形体であって、
前記樹脂層には該樹脂層の厚み方向に金属塊が貫通して埋設され、
前記金属塊が前記樹脂層の両面で前記炭素繊維強化層と接触していることを特徴とする繊維強化成形体。
It is a fiber reinforced molded product in which carbon fiber reinforced layers are laminated and integrated on both sides of the resin layer.
A metal block penetrates and is embedded in the resin layer in the thickness direction of the resin layer.
A fiber-reinforced molded product, wherein the metal lump is in contact with the carbon fiber reinforced layer on both sides of the resin layer.
前記金属塊は、スズを含む合金であって、前記樹脂層の少なくとも一箇所に設けられていることを特徴とする請求項1に記載の繊維強化成形体。 The fiber-reinforced molded product according to claim 1, wherein the metal ingot is an alloy containing tin and is provided at at least one position in the resin layer. 前記樹脂層は、熱硬化性樹脂が含浸した発泡体が圧縮された状態で硬化してなることを特徴とする請求項1または2に記載の繊維強化成形体。 The fiber-reinforced molded product according to claim 1 or 2, wherein the resin layer is formed by curing a foam impregnated with a thermosetting resin in a compressed state. 熱硬化性樹脂が含浸した発泡体の両面に炭素繊維プリプレグを配置して圧縮及び加熱することにより、前記熱硬化性樹脂が含浸した発泡体が圧縮された状態で硬化してなる樹脂層の両面に、前記炭素繊維プリプレグが硬化してなる炭素繊維強化層を積層一体化した繊維強化成形体の製造方法において、
前記熱硬化性樹脂が含浸した発泡体の両面に前記炭素繊維プリプレグを配置して圧縮及び加熱する際に、
前記熱硬化性樹脂が含浸した発泡体の片面と前記炭素繊維プリプレグとの間の少なくとも1箇所に金属塊を配置し、
前記圧縮及び加熱を行うことにより、前記熱硬化性樹脂が含浸した発泡体に前記金属塊を押し込み、前記熱硬化性樹脂が含浸した発泡体の両面で前記金属塊と前記炭素繊維プリプレグが接触した状態にして、前記熱硬化性樹脂が含浸した発泡体及び前記炭素繊維プリプレグを硬化させることを特徴とする繊維強化成形体の製造方法。
By arranging carbon fiber prepregs on both sides of the foam impregnated with the thermosetting resin and compressing and heating, both sides of the resin layer formed by curing the foam impregnated with the thermosetting resin in a compressed state. In addition, in the method for producing a fiber-reinforced molded body in which a carbon fiber-reinforced layer formed by curing the carbon fiber prepreg is laminated and integrated.
When the carbon fiber prepreg is arranged on both sides of the foam impregnated with the thermosetting resin to be compressed and heated,
A metal block is placed at least one place between one side of the foam impregnated with the thermosetting resin and the carbon fiber prepreg.
By performing the compression and heating, the metal ingot was pushed into the foam impregnated with the thermosetting resin, and the metal ingot and the carbon fiber prepreg came into contact with each other on both sides of the foam impregnated with the thermosetting resin. A method for producing a fiber-reinforced molded product, which comprises curing a foam impregnated with the thermosetting resin and the carbon fiber prepreg in a state.
熱硬化性樹脂が含浸した発泡体の両面に炭素繊維プリプレグを配置して圧縮及び加熱することにより、前記熱硬化性樹脂が含浸した発泡体が圧縮された状態で硬化してなる樹脂層の両面に、前記炭素繊維プリプレグが硬化してなる炭素繊維強化層を積層一体化した繊維強化成形体の製造方法において、
前記熱硬化性樹脂が含浸した発泡体の両面に前記炭素繊維プリプレグを配置して圧縮及び加熱する際に、
前記熱硬化性樹脂が含浸した発泡体の少なくとも1箇所に金属塊を埋設し、
前記圧縮及び加熱を行うことにより、前記熱硬化性樹脂が含浸した発泡体の両面で前記金属塊と前記炭素繊維プリプレグが接触した状態にして、前記熱硬化性樹脂が含浸した発泡体及び前記炭素繊維プリプレグを硬化させることを特徴とする繊維強化成形体の製造方法。
By arranging carbon fiber prepregs on both sides of the foam impregnated with the thermosetting resin and compressing and heating, both sides of the resin layer formed by curing the foam impregnated with the thermosetting resin in a compressed state. In addition, in the method for producing a fiber-reinforced molded body in which a carbon fiber-reinforced layer formed by curing the carbon fiber prepreg is laminated and integrated.
When the carbon fiber prepreg is arranged on both sides of the foam impregnated with the thermosetting resin to be compressed and heated,
A metal block is embedded in at least one place of the foam impregnated with the thermosetting resin.
By performing the compression and heating, the metal ingot and the carbon fiber prepreg are brought into contact with each other on both sides of the foam impregnated with the thermosetting resin, and the foam impregnated with the thermosetting resin and the carbon are brought into contact with each other. A method for producing a fiber-reinforced molded body, which comprises curing a fiber prepreg.
前記熱硬化性樹脂が含浸した発泡体の少なくとも1箇所に切り込みを設け、前記切り込みに前記金属塊を挿入して埋設することを特徴とする請求項5に記載の繊維強化成形体の製造方法。 The method for producing a fiber-reinforced molded product according to claim 5, wherein a notch is provided in at least one position of the foam impregnated with the thermosetting resin, and the metal block is inserted and embedded in the notch. 前記金属塊はスズを含む合金からなることを特徴とする請求項4から6の何れか一項に記載の繊維強化成形体の製造方法。 The method for producing a fiber-reinforced molded product according to any one of claims 4 to 6, wherein the metal ingot is made of an alloy containing tin.
JP2021134004A 2017-08-31 2021-08-19 Fiber reinforced molded article and housing for electronic device Pending JP2021178518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021134004A JP2021178518A (en) 2017-08-31 2021-08-19 Fiber reinforced molded article and housing for electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017166570A JP7149693B2 (en) 2017-08-31 2017-08-31 Fiber-reinforced molded article and method for producing the same
JP2021134004A JP2021178518A (en) 2017-08-31 2021-08-19 Fiber reinforced molded article and housing for electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017166570A Division JP7149693B2 (en) 2017-08-31 2017-08-31 Fiber-reinforced molded article and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021178518A true JP2021178518A (en) 2021-11-18

Family

ID=65816015

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017166570A Active JP7149693B2 (en) 2017-08-31 2017-08-31 Fiber-reinforced molded article and method for producing the same
JP2021134004A Pending JP2021178518A (en) 2017-08-31 2021-08-19 Fiber reinforced molded article and housing for electronic device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017166570A Active JP7149693B2 (en) 2017-08-31 2017-08-31 Fiber-reinforced molded article and method for producing the same

Country Status (1)

Country Link
JP (2) JP7149693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531914A (en) * 2020-05-09 2020-08-14 长沙博兴汽车科技有限公司 Preparation technology of carbon fiber reinforced composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289591A (en) * 2005-04-14 2006-10-26 Sankyo Seisakusho:Kk Pipe-embedded type robot hand and its molding method
JP2007031165A (en) * 2005-07-22 2007-02-08 Yokohama Rubber Co Ltd:The Electrical bonding structure of carbon fiber-reinforced plastic product, and its production method
JP2017047522A (en) * 2015-09-03 2017-03-09 積水化成品工業株式会社 Robot arm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236374A (en) 2008-03-26 2009-10-15 Daikin Ind Ltd Heat transfer tube for hot water supply
JP6537917B2 (en) * 2015-07-29 2019-07-03 株式会社イノアックコーポレーション Carbon fiber composite material and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289591A (en) * 2005-04-14 2006-10-26 Sankyo Seisakusho:Kk Pipe-embedded type robot hand and its molding method
JP2007031165A (en) * 2005-07-22 2007-02-08 Yokohama Rubber Co Ltd:The Electrical bonding structure of carbon fiber-reinforced plastic product, and its production method
JP2017047522A (en) * 2015-09-03 2017-03-09 積水化成品工業株式会社 Robot arm

Also Published As

Publication number Publication date
JP7149693B2 (en) 2022-10-07
JP2019042975A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4558091B1 (en) Fiber-reinforced molded body and method for producing the same
EP3147108B1 (en) Carbon fiber composite material
TW201536907A (en) Thermally conductive composite material, and manufacturing method therefor
CN204414676U (en) A kind of composite board and electronic equipment
CN103129042A (en) Carbon fiber base fabric composite material and preparation method and application thereof
JP2021178518A (en) Fiber reinforced molded article and housing for electronic device
CN102019656B (en) Laminated plate for composite die and composite die
JP2019043143A (en) Carbon fiber composite material and production method thereof
CN106739245A (en) Electronic product casing and its manufacture method
TWI556701B (en) Method for manufacturing double-sided metal foil laminated board, method for manufacturing printed circuit board, method for manufacturing multilayer laminated sheet, and method for manufacturing multilayer printed circuit board
JP6389654B2 (en) Method for producing carbon fiber composite material
JP2023018687A (en) Carbon fiber-reinforced molded body
KR20130102812A (en) Window bracket for protecting display panel and method for producing the same
CN204109491U (en) Multilayer composite material
JP6752612B2 (en) Fiber reinforced molded product and its manufacturing method
CN115703279A (en) Thermoplastic composite board for product structure molding and manufacturing method thereof
JP6823738B2 (en) Fiber reinforced molded product and its manufacturing method
JPH0866989A (en) Irregular shape fiber reinforced plastic and its manufacture
JP2004128086A (en) Electromagnetic wave shield member and its manufacturing method
JP7419291B2 (en) Method for manufacturing fiber-reinforced molded body, resin sheet, and method for manufacturing resin sheet
JP7144881B1 (en) Laminates for pressing and pressed laminates
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
CN111452443A (en) Light notebook computer shell and manufacturing method thereof
CN111452444A (en) Thermosetting light composite material plate, manufacturing method and corresponding product thereof
JP2023029580A (en) Method for manufacturing honeycomb laminate, honeycomb laminate, and polygonal laminate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230425