JP2021170610A - Method of manufacturing light emitting device and method of manufacturing light emitting module - Google Patents

Method of manufacturing light emitting device and method of manufacturing light emitting module Download PDF

Info

Publication number
JP2021170610A
JP2021170610A JP2020073743A JP2020073743A JP2021170610A JP 2021170610 A JP2021170610 A JP 2021170610A JP 2020073743 A JP2020073743 A JP 2020073743A JP 2020073743 A JP2020073743 A JP 2020073743A JP 2021170610 A JP2021170610 A JP 2021170610A
Authority
JP
Japan
Prior art keywords
light emitting
wavelength conversion
light
emitting device
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020073743A
Other languages
Japanese (ja)
Other versions
JP7193740B2 (en
Inventor
広樹 由宇
hiroki Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2020073743A priority Critical patent/JP7193740B2/en
Publication of JP2021170610A publication Critical patent/JP2021170610A/en
Application granted granted Critical
Publication of JP7193740B2 publication Critical patent/JP7193740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

To provide a light emitting device with reduced variation in chromaticity.SOLUTION: A method of manufacturing a light emitting device is provided, including the steps of: preparing a light emitting element 10 that includes a semiconductor laminate 11 having a first face, a second face opposite to the first face, and lateral faces between the first face and the second face, and an electrode 12 arranged on the second face; preparing a cured first wavelength conversion member 21; arranging a semi-cured second wavelength conversion material on the first wavelength conversion member; placing the light emitting element on the second wavelength conversion material in such a manner that an upper face of the second wavelength conversion material and the first face of the light emitting element are opposed to each other; applying a load to the light emitting element in such a manner that at least a part of the semiconductor laminate is buried in the second wavelength conversion material while the electrode is exposed; and curing the second wavelength conversion material thereby forming a second wavelength conversion member 22.SELECTED DRAWING: Figure 1

Description

本開示は、発光装置の製造方法及び発光モジュールの製造方法に関する。 The present disclosure relates to a method for manufacturing a light emitting device and a method for manufacturing a light emitting module.

半導体発光素子を用いた発光装置や発光モジュールが知られている。 Light emitting devices and light emitting modules using semiconductor light emitting elements are known.

特開2017−228657号公報JP-A-2017-228657 特開2018−133304号公報Japanese Unexamined Patent Publication No. 2018-133304

色度のバラツキを低減した発光装置及び色度分布のバラツキを低下した発光モジュールの製造方法を提供することを目的とする。 It is an object of the present invention to provide a light emitting device having reduced chromaticity variation and a method for manufacturing a light emitting module having reduced chromaticity distribution variation.

本開示にかかる発光装置の製造方法は、以下の構成を備える。
第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面の間の側面と、を備える半導体積層体と、前記第2面に配置される電極と、を含む発光素子を準備する工程と、
硬化状態の第1波長変換部材を準備する工程と、
前記第1波長変換部材上に、半硬化状態の第2波長変換材料を配置する工程と、
前記第2波長変換材料の上面と、前記発光素子の前記第1面とが対向するように、前記第2波長変換材料上に前記発光素子を載置する工程と、
前記第2波長変換材料の内部に前記半導体積層体の少なくとも一部が埋設されるとともに前記電極が露出されるように、前記発光素子に荷重をかける工程と、
前記第2波長変換材料を硬化して第2波長変換部材とする工程と、
を含む発光装置の製造方法。
The method for manufacturing a light emitting device according to the present disclosure includes the following configurations.
A semiconductor laminate including a first surface, a second surface opposite to the first surface, and a side surface between the first surface and the second surface, and an electrode arranged on the second surface. And the process of preparing a light emitting element including
The process of preparing the first wavelength conversion member in a cured state and
A step of arranging the second wavelength conversion material in a semi-cured state on the first wavelength conversion member, and
A step of placing the light emitting element on the second wavelength conversion material so that the upper surface of the second wavelength conversion material and the first surface of the light emitting element face each other.
A step of applying a load to the light emitting element so that at least a part of the semiconductor laminate is embedded in the second wavelength conversion material and the electrodes are exposed.
A step of curing the second wavelength conversion material to obtain a second wavelength conversion member, and
A method for manufacturing a light emitting device including.

これにより、色度のバラツキを低減した発光装置及び色度分布のバラツキを低減した発光モジュールを提供することができる。 Thereby, it is possible to provide a light emitting device having reduced chromaticity variation and a light emitting module having reduced chromaticity distribution variation.

実施形態にかかる発光装置一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光装置の製造工程の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the manufacturing process of the light emitting device which concerns on embodiment. 実施形態にかかる発光モジュールの模式平面図、模式下面図及び断面図である。It is a schematic plan view, a schematic bottom view and a sectional view of the light emitting module which concerns on embodiment. 図7Aに示すVIIB線における模式断面図及び一部拡大断面図である。FIG. 7A is a schematic cross-sectional view and a partially enlarged cross-sectional view taken along the line VIIB shown in FIG. 7A. 実施形態にかかる発光モジュールの模式平面図である。It is a schematic plan view of the light emitting module which concerns on embodiment. 図8Aに示すVIIIB線における模式断面図及び一部拡大図である。It is a schematic cross-sectional view and a partially enlarged view in line VIIIB shown in FIG. 8A.

以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。また、各部材は、例えば硬化の前後において、また、切断の前後等において、状態や形状等が異なる場合であっても同じ名称を用いるものとする。 Hereinafter, the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction or position (for example, "upper", "lower", and other terms including those terms) are used as necessary, but the use of these terms is used. This is for facilitating the understanding of the invention with reference to the drawings, and the meaning of these terms does not limit the technical scope of the present invention. Further, the parts having the same reference numerals appearing in a plurality of drawings indicate the same or equivalent parts or members. Further, each member shall use the same name even if the state, shape, etc. are different before and after curing, before and after cutting, and the like.

さらに以下に示す実施形態は、本発明の技術思想を具体化するための発光モジュールを例示するものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態において説明する内容は、他の実施の形態にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。 Further, the embodiments shown below exemplify a light emitting module for embodying the technical idea of the present invention, and do not limit the present invention to the following. In addition, the dimensions, materials, shapes, relative arrangements, etc. of the components described below are not intended to limit the scope of the present invention to the specific description, but are exemplified. It was intended. Further, the contents described in one embodiment can be applied to other embodiments. In addition, the size and positional relationship of the members shown in the drawings may be exaggerated in order to clarify the explanation.

<実施形態1>
図1は、本実施形態にかかる発光装置の製造方法で得られる発光装置の一例を示す模式断面図である。発光装置100は、発光素子10と、波長変換部材20と、を備える。発光素子10は、図2Aに示すように、第1面111と、第1面111の反対側の第2面112と、第1面111と第2面112の間の側面113と、を備える。第2面112には、正負一対の電極12を備える。波長変換部材20は、半導体積層体11の第1面111を覆う第1波長変換部材21と、半導体積層体11の側面113を覆う第2波長変換部材22と、を備える。
<Embodiment 1>
FIG. 1 is a schematic cross-sectional view showing an example of a light emitting device obtained by the method for manufacturing a light emitting device according to the present embodiment. The light emitting device 100 includes a light emitting element 10 and a wavelength conversion member 20. As shown in FIG. 2A, the light emitting element 10 includes a first surface 111, a second surface 112 on the opposite side of the first surface 111, and a side surface 113 between the first surface 111 and the second surface 112. .. The second surface 112 includes a pair of positive and negative electrodes 12. The wavelength conversion member 20 includes a first wavelength conversion member 21 that covers the first surface 111 of the semiconductor laminate 11, and a second wavelength conversion member 22 that covers the side surface 113 of the semiconductor laminate 11.

このような発光装置100の製造方法は、以下の工程を備える。
(1)第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面の間の側面と、を備える半導体積層体と、前記第2面に配置される電極と、を含む発光素子を準備する工程
(2)硬化状態の第1波長変換部材を準備する工程
(3)前記第1波長変換部材上に、半硬化状態の第2波長変換材料を配置する工程
(4)前記第2波長変換材料の上面と、前記発光素子の前記第1面とが対向するように、前記第2波長変換材料上に前記発光素子を載置する工程
(5)前記第2波長変換材料の内部に前記半導体積層体の少なくとも一部が埋設されるとともに前記電極が露出されるように、前記発光素子に荷重をかける工程
(6)前記第2波長変換材料を硬化して第2波長変換部材とする工程
Such a method for manufacturing the light emitting device 100 includes the following steps.
(1) A semiconductor laminate having a first surface, a second surface opposite to the first surface, and a side surface between the first surface and the second surface, and arranged on the second surface. Step of preparing a light emitting element including an electrode (2) Step of preparing a first wavelength conversion member in a cured state (3) A second wavelength conversion material in a semi-cured state is arranged on the first wavelength conversion member. (4) The step of placing the light emitting element on the second wavelength conversion material so that the upper surface of the second wavelength conversion material and the first surface of the light emitting element face each other (5). A step of applying a load to the light emitting element so that at least a part of the semiconductor laminate is embedded in the second wavelength conversion material and the electrodes are exposed. (6) The second wavelength conversion material is cured. The process of using the second wavelength conversion member

以下、各工程について詳説する。 Hereinafter, each process will be described in detail.

(1)発光素子を準備する工程
複数の発光素子10準備する。発光モジュール100の大きさや目的とする光学特性に応じて、必要な数以上の発光素子10を準備する。図2Aに示すように、発光素子10は、半導体積層体11と、正負一対の電極12と、を備える。半導体積層体11は、第1面111と、第1面111の反対側の第2面112と、第1面111と第2面112の間の側面113と、を備える。電極12は、第2面112に配置される。
(1) Step of preparing light emitting elements A plurality of light emitting elements 10 are prepared. A required number or more of the light emitting elements 10 are prepared according to the size of the light emitting module 100 and the target optical characteristics. As shown in FIG. 2A, the light emitting element 10 includes a semiconductor laminate 11 and a pair of positive and negative electrodes 12. The semiconductor laminate 11 includes a first surface 111, a second surface 112 on the opposite side of the first surface 111, and a side surface 113 between the first surface 111 and the second surface 112. The electrode 12 is arranged on the second surface 112.

このような発光素子10は、購入して準備することができる。あるいは、ウエハ状の成長基板上に半導体層を積層させて半導体積層体を形成する工程、半導体積層体に電極を形成する工程、個片化する工程などの発光素子10の製造工程の一部又は全部を実施して準備することができる。 Such a light emitting element 10 can be purchased and prepared. Alternatively, a part of the manufacturing process of the light emitting element 10, such as a step of laminating a semiconductor layer on a wafer-like growth substrate to form a semiconductor laminate, a step of forming an electrode on the semiconductor laminate, a step of individualizing, or the like. You can do everything and get ready.

(2)第1波長変換部材を準備する工程
図2Bに示すように、シート状の第1波長変換部材21を準備する。硬化状態の第1波長変換部材21は、透光性の樹脂と、波長変換物質である蛍光体の粒子と、を含む。液状の樹脂中に蛍光体を分散させた第1波長変換材料を、塗工などの印刷法、又はスプレー法等の方法で支持台上に配置し、加熱して硬化させることで準備することができる。あるいは、硬化状態の第1波長変換部材21を購入して準備してもよい。
(2) Step of Preparing First Wavelength Conversion Member As shown in FIG. 2B, a sheet-shaped first wavelength conversion member 21 is prepared. The cured first wavelength conversion member 21 includes a translucent resin and particles of a phosphor which is a wavelength conversion substance. A first wavelength conversion material in which a phosphor is dispersed in a liquid resin can be prepared by arranging it on a support base by a printing method such as coating or a spray method, and heating and curing it. can. Alternatively, the cured first wavelength conversion member 21 may be purchased and prepared.

硬化状態の第1波長変換部材21は、厚みが均等になるように調整されている。例えば、第1波長変換部材21の膜厚は、例えば、30μm〜100μmであり、厚みの差が5μm程度以下であるものを、均等な厚みとする。 The first wavelength conversion member 21 in the cured state is adjusted so that the thickness is uniform. For example, the film thickness of the first wavelength conversion member 21 is, for example, 30 μm to 100 μm, and a thickness difference of about 5 μm or less is defined as a uniform thickness.

(3)第1波長変換部材上に第2波長変換材料を配置する工程
第2波長変換材料22aは、硬化させることで第2波長変換部材22となる。第2波長変換材料22は、透光性の樹脂と、波長変換物質である蛍光体の粒子と、を含む。樹脂と蛍光体とを含む混合液を第1波長変換部材21上に配置する。混合液には、溶剤等を含んでいてもよい。配置する方法としては、塗工などの印刷法、又はスプレー法等から選択される方法が挙げられる。
(3) Step of Arranging the Second Wavelength Conversion Material on the First Wavelength Conversion Member The second wavelength conversion material 22a becomes the second wavelength conversion member 22 by being cured. The second wavelength conversion material 22 contains a translucent resin and particles of a phosphor which is a wavelength conversion substance. A mixed liquid containing the resin and the phosphor is arranged on the first wavelength conversion member 21. The mixed solution may contain a solvent or the like. Examples of the method of arranging include a printing method such as coating, a method selected from a spraying method, and the like.

混合液が溶剤を含む場合は、溶剤を蒸発(揮発)させることで半硬化状態とすることができる。溶剤を蒸発させる温度は、常温以上であり、好ましくは、50℃〜100℃程度、より好ましくは60℃〜80℃程度である。このような温度に加熱することで、半硬化状態とすることができる。これにより、図2Cに示すように、第1波長変換部材21上に半硬化状態の第2波長変換材料22aが配置された積層体が得られる。第2波長変換材料22aの厚みは、発光素子10の半導体積層体11の厚みと同じかそれよりも薄い厚みとなるように調整する。 When the mixed liquid contains a solvent, it can be made into a semi-cured state by evaporating (volatilizing) the solvent. The temperature at which the solvent is evaporated is at room temperature or higher, preferably about 50 ° C. to 100 ° C., and more preferably about 60 ° C. to 80 ° C. By heating to such a temperature, a semi-cured state can be obtained. As a result, as shown in FIG. 2C, a laminated body in which the second wavelength conversion material 22a in the semi-cured state is arranged on the first wavelength conversion member 21 is obtained. The thickness of the second wavelength conversion material 22a is adjusted so as to be the same as or thinner than the thickness of the semiconductor laminate 11 of the light emitting element 10.

(4)第2波長変換材料上に発光素子を載置する工程
次に、図2Dに示すように、第2波長変換材料22a上に発光素子10を載置する。発光素子10の半導体積層体11の第1面111と、第2波長変換材料22aの上面とが対向するように、発光素子10を配置する。発光素子10を配置する際に、発光素子10を1つずつ載置してもよく、あるいは、複数の発光素子10をウエハシートや基板等に貼り付けた状態で一括して載置することができる。
(4) Step of placing the light emitting element on the second wavelength conversion material Next, as shown in FIG. 2D, the light emitting element 10 is placed on the second wavelength conversion material 22a. The light emitting element 10 is arranged so that the first surface 111 of the semiconductor laminate 11 of the light emitting element 10 and the upper surface of the second wavelength conversion material 22a face each other. When arranging the light emitting elements 10, the light emitting elements 10 may be placed one by one, or a plurality of light emitting elements 10 may be placed together in a state of being attached to a wafer sheet, a substrate, or the like. can.

(5)発光素子に荷重をかける工程
次に、図2Eに示すように、押圧部材300を用いて発光素子10を上方から押圧して荷重をかける。これにより、図2Fに示すように、発光素子10の半導体積層体11を第2波長変換材料22a内に埋設させる。このとき、半導体積層体11の第1面111が、第1波長変換部材21の上面と接するまで、又は、所定の押し込み荷重に達するまで発光素子10に荷重をかける。荷重をかける方法としては、例えば、バネ荷重、電気荷重等が挙げられる。発光素子1にかける荷重は、例えば、5gf〜60gfとすることができる。荷重は第2波長変換材料22aの弾性力によって調整することができる。このように発光素子10に荷重をかけても、第1波長変換部材21は硬化されているため、半導体積層体11の第1面111の下方に位置する第1波長変換部材21の厚みは変化しない。
(5) Step of applying a load to the light emitting element Next, as shown in FIG. 2E, the light emitting element 10 is pressed from above by using the pressing member 300 to apply a load. As a result, as shown in FIG. 2F, the semiconductor laminate 11 of the light emitting element 10 is embedded in the second wavelength conversion material 22a. At this time, a load is applied to the light emitting element 10 until the first surface 111 of the semiconductor laminate 11 comes into contact with the upper surface of the first wavelength conversion member 21 or reaches a predetermined pushing load. Examples of the method of applying the load include a spring load, an electric load, and the like. The load applied to the light emitting element 1 can be, for example, 5 gf to 60 gf. The load can be adjusted by the elastic force of the second wavelength conversion material 22a. Since the first wavelength conversion member 21 is cured even when the light emitting element 10 is loaded in this way, the thickness of the first wavelength conversion member 21 located below the first surface 111 of the semiconductor laminate 11 changes. do not.

(6)第2波長変換材料を硬化して第2波長変換部材とする工程
次に、加熱により第2波長変換材料22aを硬化させて、第2波長変換部材22とする。その後、図2Gに示すように、発光素子10を少なくとも1つ含むように第1波長変換部材21及び第2波長変換部材22を切断する。発光素子10を1つ含むように切断することで、図1に示す発光装置100を得ることができる。
(6) Step of Curing the Second Wavelength Conversion Material to Form a Second Wavelength Conversion Member Next, the second wavelength conversion material 22a is cured by heating to form a second wavelength conversion member 22. After that, as shown in FIG. 2G, the first wavelength conversion member 21 and the second wavelength conversion member 22 are cut so as to include at least one light emitting element 10. The light emitting device 100 shown in FIG. 1 can be obtained by cutting so as to include one light emitting element 10.

<実施形態2>
図3に示す発光装置100Aは、波長変換部材20の上に、光調整部材30を備える。その他の構成は、図1に示す発光装置100と同じである。光調整部材30は、発光素子10からの光を50%〜90%反射する。光調整部材30の反射率を調整することで、発光装置100Aの配光特性を調整することができる。
<Embodiment 2>
The light emitting device 100A shown in FIG. 3 includes a light adjusting member 30 on the wavelength conversion member 20. Other configurations are the same as those of the light emitting device 100 shown in FIG. The light adjusting member 30 reflects 50% to 90% of the light from the light emitting element 10. By adjusting the reflectance of the light adjusting member 30, the light distribution characteristic of the light emitting device 100A can be adjusted.

このような発光装置100Aの製造方法は、硬化状態の第1波長変換部材21を準備する工程において、硬化状態の光調整部材30上に第1波長変換部材21が積層された積層構造体を準備する工程を含んでもよい。このような積層構造体は、硬化状態の光調整部材30上に硬化状態の第1波長変換部材21を配置する工程を含んでもよい。また、硬化状態の光調整部材30上に、液体状の第1波長変換材料を配置し、加熱して硬化状態の第1波長変換部材21とする工程を含んでもよい。あるいは、硬化状態の第1波長変換部材21上に硬化状態の光調整部材30を配置する工程を含んでもよい。または、硬化状態の第1波長変換部材21上に、液状の光調整材料を配置した後、加熱して硬化状態の光調整部材30としてもよい。 In such a manufacturing method of the light emitting device 100A, in the step of preparing the first wavelength conversion member 21 in the cured state, a laminated structure in which the first wavelength conversion member 21 is laminated on the light adjusting member 30 in the cured state is prepared. It may include a step of performing. Such a laminated structure may include a step of arranging the first wavelength conversion member 21 in the cured state on the light adjusting member 30 in the cured state. Further, a step of arranging a liquid first wavelength conversion material on the cured light adjusting member 30 and heating the first wavelength conversion member 21 in a cured state may be included. Alternatively, a step of arranging the cured light adjusting member 30 on the cured first wavelength conversion member 21 may be included. Alternatively, the light adjusting member 30 in the cured state may be obtained by arranging the liquid light adjusting material on the first wavelength conversion member 21 in the cured state and then heating the material.

次に、図4Aに示すように、光調整部材30上に第1波長変換部材21が配置され、その上に半硬化状態の第2波長変換材料22aが配置される。その上に発光素子10を載置し、図4Bに示すように、押圧部材300で押圧して荷重をかける。その他の工程は、実施形態1と同様に行うことができる。 Next, as shown in FIG. 4A, the first wavelength conversion member 21 is arranged on the light adjusting member 30, and the second wavelength conversion material 22a in a semi-cured state is arranged on the first wavelength conversion member 21. The light emitting element 10 is placed on the light emitting element 10, and as shown in FIG. 4B, the light emitting element 10 is pressed by the pressing member 300 to apply a load. Other steps can be performed in the same manner as in the first embodiment.

硬化状態の光調整部材30は、透光性の樹脂と、光反射物質の粒子と、を含む。液状の樹脂中に光反射物質を分散させた混合物を、塗工などの印刷法、又はスプレー法等の方法で支持台上に配置し、加熱して硬化させることで準備することができる。あるいは、硬化状態の光調整部材30を購入して準備してもよい。 The cured light adjusting member 30 includes a translucent resin and particles of a light reflecting substance. It can be prepared by arranging a mixture in which a light reflecting substance is dispersed in a liquid resin on a support base by a printing method such as coating or a spraying method, and heating and curing the mixture. Alternatively, the cured light adjusting member 30 may be purchased and prepared.

<実施形態3>
図5に示す発光装置100Bは、波長変換部材20の下に、光調整部材31(第2光調整部材31)を備える。光調整部材31は、発光素子10の半導体積層体11の第2面112と、電極12の側面を覆う。その他の構成は、図3に示す発光装置100Aと同じである。
<Embodiment 3>
The light emitting device 100B shown in FIG. 5 includes a light adjusting member 31 (second light adjusting member 31) under the wavelength conversion member 20. The light adjusting member 31 covers the second surface 112 of the semiconductor laminate 11 of the light emitting element 10 and the side surface of the electrode 12. Other configurations are the same as those of the light emitting device 100A shown in FIG.

光調整部材31は、発光素子10からの光を70%〜99%反射する。光調整部材31を備えることで、発光素子10からの光が発光装置100Bの下方に漏れることを低減することができる。 The light adjusting member 31 reflects 70% to 99% of the light from the light emitting element 10. By providing the light adjusting member 31, it is possible to reduce the leakage of light from the light emitting element 10 below the light emitting device 100B.

このような光調整部材31は、図4Bに示すように、第2波長変換材料22a内に半導体積層体11を埋設させた後、図6Aに示すように、電極12が埋まるような厚みで配置する。光調整部材31は、液状の光調整部材の材料を半硬化状態の第2波長変換材料22a上に配置し、その後、加熱によりそれぞれ硬化状態の光調整部材31及び硬化状態の第2波長変換部材22とすることができる。あるいは、第2波長変換部材22aを加熱して硬化状態の光反射部材22とした後、その上に光反射材料を配置して硬化させて光調整部材31としてもよい。 As shown in FIG. 4B, such an optical adjusting member 31 is arranged with a thickness such that the electrode 12 is embedded after the semiconductor laminate 11 is embedded in the second wavelength conversion material 22a, as shown in FIG. 6A. do. The light adjusting member 31 arranges the material of the liquid light adjusting member on the second wavelength conversion material 22a in the semi-cured state, and then heats the light adjusting member 31 in the cured state and the second wavelength conversion member in the cured state, respectively. It can be 22. Alternatively, the second wavelength conversion member 22a may be heated to form a cured light-reflecting member 22, and then a light-reflecting material may be arranged on the light-reflecting member 22a and cured to form the light adjusting member 31.

液状の光調整部材の材料は、塗工などの印刷法、又はスプレー法等から選択される方法で配置することができる。また、光調性部材31は半硬化状態又は硬化状態のシート状又は板状の光調整部材を用いて、ラミネート法などによって第2波長変換部材22aと貼り合わせることで配置することができる。その後、図6Bに示すように、電極12が露出するまで光調整部材31の一部を除去する。光調性部材31の一部を除去する方法は、砥石等を用いた研削や、ブラストが挙げられる。その他の工程は、他の実施形態と同様である。 The material of the liquid light adjusting member can be arranged by a printing method such as coating, a method selected from a spraying method, or the like. Further, the light tonality member 31 can be arranged by using a semi-cured or cured sheet-shaped or plate-shaped light adjusting member and laminating it with the second wavelength conversion member 22a by a laminating method or the like. Then, as shown in FIG. 6B, a part of the light adjusting member 31 is removed until the electrode 12 is exposed. Examples of the method for removing a part of the phototonal member 31 include grinding with a grindstone and blasting. Other steps are the same as in other embodiments.

(発光モジュール)
各実施形態にかかる製造方法で得られる発光装置は、発光モジュールの光源として用いることができる。図7A及び図7Bは、発光装置100Bを用いた発光モジュールの一例である。ここでは、4つの発光装置100Bが2行2列に配置されている。縦に並んだ2つの発光装置100Bが直列に接続され、それらがさらに並列に接続されている。そして、外部接続端子251及び252から給電され、4つの発光装置100Bが同時に点灯する。発光装置100Bの接続はこれに限らず、任意の数の発光装置を直列又は並列に接続することができる。また、1つずつ個別に駆動可能なように接続することができる。
(Light emitting module)
The light emitting device obtained by the manufacturing method according to each embodiment can be used as a light source of the light emitting module. 7A and 7B are examples of a light emitting module using the light emitting device 100B. Here, four light emitting devices 100B are arranged in 2 rows and 2 columns. Two vertically arranged light emitting devices 100B are connected in series, and they are further connected in parallel. Then, power is supplied from the external connection terminals 251 and 252, and the four light emitting devices 100B are turned on at the same time. The connection of the light emitting device 100B is not limited to this, and any number of light emitting devices can be connected in series or in parallel. In addition, they can be connected so that they can be individually driven one by one.

発光モジュール200は、導光板210と、導光板210に接合された複数の発光装置100Bと、被覆部材220と、を備える。導光板10は、光取り出し面となる第1主面211と、第1主面211と反対側の第2主面212と、を備える。導光板210は第2主面212に行列状に配置される複数の第1凹部212aを備えている。発光装置100Bは、導光板210の第1凹部212a1の底面の上に、透光性部材230によって接合されている。被覆部材220は、発光装置100Bと導光板210の第2主面212と覆うように配置される。 The light emitting module 200 includes a light guide plate 210, a plurality of light emitting devices 100B joined to the light guide plate 210, and a covering member 220. The light guide plate 10 includes a first main surface 211 that serves as a light extraction surface, and a second main surface 212 that is opposite to the first main surface 211. The light guide plate 210 includes a plurality of first recesses 212a arranged in a matrix on the second main surface 212. The light emitting device 100B is joined by a translucent member 230 on the bottom surface of the first recess 212a1 of the light guide plate 210. The covering member 220 is arranged so as to cover the light emitting device 100B and the second main surface 212 of the light guide plate 210.

発光素子10から出射された光の一部は、第1波長変換部材21又は第2波長変換部材22によって波長変換される。そして、これらの変換された光と発光素子10からの光の混合光が、発光装置100Bからの光として出射される。発光装置100Bから出射された光は、透光性部材230を通過して導光板210の内部に入射される。 A part of the light emitted from the light emitting element 10 is wavelength-converted by the first wavelength conversion member 21 or the second wavelength conversion member 22. Then, the mixed light of the converted light and the light from the light emitting element 10 is emitted as the light from the light emitting device 100B. The light emitted from the light emitting device 100B passes through the translucent member 230 and is incident inside the light guide plate 210.

発光装置100Bの第1波長変換部材21は厚みが均等になるように調整された硬化状態のものを用いている。そのため、第1波長変換部材21によって変換される光の量は、発光装置100Bごとに色度のバラツキが少ない。そのため、発光モジュール200において、面内の色度分布のバラツキを低減することができる。 The first wavelength conversion member 21 of the light emitting device 100B is in a cured state adjusted so that the thickness is uniform. Therefore, the amount of light converted by the first wavelength conversion member 21 has little variation in chromaticity for each light emitting device 100B. Therefore, in the light emitting module 200, it is possible to reduce the variation in the in-plane chromaticity distribution.

このような発光モジュール200は、導光板210の第1主面211側に光学機能部211aを備える。光学機能部211aは、例えば、図7Bに示すように導光板210の凹部212aの直上に配置された凹みである。光学機能部211aの側面によって発光装置100Bからの光を面内に広げることができる。また、図7Bに示す例では、光学機能部211a内に、光調整部材240が配置されている。光調整部材240は、発光装置100Bからの光の少なくとも一部を反射する部材であり、発光装置100Bからの光を効率よく面内に広げるように反射させる機能を備える。発光装置100Bからの光の色度のバラツキが低減されていることで、光学機能部211aや光調整部材240で色度のバラツキの少ない光を、さらに、輝度のバラツキを低減した面状の光として出射することできる。 Such a light emitting module 200 includes an optical function unit 211a on the first main surface 211 side of the light guide plate 210. The optical function unit 211a is, for example, a recess arranged directly above the recess 212a of the light guide plate 210 as shown in FIG. 7B. The side surface of the optical function unit 211a allows the light from the light emitting device 100B to be spread in the plane. Further, in the example shown in FIG. 7B, the optical adjusting member 240 is arranged in the optical functional unit 211a. The light adjusting member 240 is a member that reflects at least a part of the light from the light emitting device 100B, and has a function of reflecting the light from the light emitting device 100B so as to efficiently spread it in the plane. By reducing the variation in the chromaticity of the light from the light emitting device 100B, the optical function unit 211a and the light adjusting member 240 provide light with little variation in chromaticity, and planar light with reduced variation in brightness. Can be emitted as.

導光板210の第2主面212は、平面視において第1凹部212aを取り囲むように配置される第2凹部212bを備えることができる。第2凹部212bの側面は、発光装置から出射される光を、第1主面211側に反射させるリフレクタとして機能させることができる。第2凹部212bの側面は、断面視において直線又は曲面とすることができ、さらには、これらを組み合わせてもよい。また、溝の側面を曲面とする場合、その曲率は一定でもよく、また、位置によって任意の曲率を有することもできる。 The second main surface 212 of the light guide plate 210 can include a second recess 212b arranged so as to surround the first recess 212a in a plan view. The side surface of the second recess 212b can function as a reflector that reflects the light emitted from the light emitting device toward the first main surface 211. The side surface of the second recess 212b may be a straight line or a curved surface in a cross-sectional view, and further, these may be combined. Further, when the side surface of the groove is a curved surface, the curvature may be constant, and it may have an arbitrary curvature depending on the position.

このような発光モジュール200の製造方法の一例として、以下の工程を挙げることができる。
(1)発光装置を準備する工程
(2)光取り出し面となる第1主面と、第1主面と反対側の第2主面であって、複数の凹部を備える導光板を準備する工程
(3)凹部内に透光性部材及び発光装置を配置する工程
(4)発光装置と第2主面とを被覆する被覆部材を配置する工程
(5)配線層を配置する工程
The following steps can be mentioned as an example of such a method for manufacturing the light emitting module 200.
(1) Step of preparing a light emitting device (2) Step of preparing a light guide plate having a first main surface to be a light extraction surface and a second main surface opposite to the first main surface and having a plurality of recesses. (3) Step of arranging the translucent member and the light emitting device in the recess (4) Step of arranging the covering member covering the light emitting device and the second main surface (5) Step of arranging the wiring layer

図8A及び図8Bは、発光モジュールの別の一例である。ここでも、光源として発光装置100Bを用いた例を示す。 8A and 8B are another example of the light emitting module. Here, too, an example in which the light emitting device 100B is used as the light source is shown.

発光モジュール200Aは、導光板210と、導光板210に接合された複数の発光装置100Bと、被覆部材220と、を備える。導光板210は、光取り出し面となる第1主面211と、第1主面211と反対側の第2主面212と、を備える。さらに、第1主面211から第2主面212まで貫通する貫通孔213を複数備える。導光板210の貫通孔213内には、光反射性の被覆部材220が配置される。被覆部材220は孔部を有しており、その内部に導電部材270が配置される。導電部材270は、配線層250と電気的に接続されている。配線層250は、基板260で覆われている。発光装置100Bは、貫通孔213内において、導電部材270と電気的に接続されている。貫通孔213内には、発光装置100Bを覆うように透光性部材230が配置されている。 The light emitting module 200A includes a light guide plate 210, a plurality of light emitting devices 100B joined to the light guide plate 210, and a covering member 220. The light guide plate 210 includes a first main surface 211 that serves as a light extraction surface, and a second main surface 212 that is opposite to the first main surface 211. Further, a plurality of through holes 213 penetrating from the first main surface 211 to the second main surface 212 are provided. A light-reflecting covering member 220 is arranged in the through hole 213 of the light guide plate 210. The covering member 220 has a hole, and the conductive member 270 is arranged inside the hole. The conductive member 270 is electrically connected to the wiring layer 250. The wiring layer 250 is covered with a substrate 260. The light emitting device 100B is electrically connected to the conductive member 270 in the through hole 213. A translucent member 230 is arranged in the through hole 213 so as to cover the light emitting device 100B.

発光モジュール200と同様に、色度のバラツキの少ない発光装置100Bを用いることで、発光モジュール200Aにおいても、面内の色度分布のバラツキを低減することができる。 Similar to the light emitting module 200, by using the light emitting device 100B having a small variation in chromaticity, it is possible to reduce the variation in the in-plane chromaticity distribution also in the light emitting module 200A.

発光モジュール200Aは、透光性部材230上に、光調整部材240(第3光調整部材240)が配置されている。これにより、発光装置100Bからの光がその直上に強く出射されることを抑制できる。これにより、発光装置100Bから出射される色度のバラツキの少ない光を、輝度分布のバラツキを低減した面状の光として出射することできる。 In the light emitting module 200A, a light adjusting member 240 (third light adjusting member 240) is arranged on the translucent member 230. As a result, it is possible to prevent the light from the light emitting device 100B from being strongly emitted directly above the light emitting device 100B. As a result, the light emitted from the light emitting device 100B with little variation in chromaticity can be emitted as planar light with reduced variation in luminance distribution.

複数の発光装置100Bは、ローカルディミング可能な発光モジュールとすることができる。例えば、1つの発光領域は、それぞれが独立駆動可能な1つの発光装置100Bを備えることができる。あるいは、1つの発光領域は、複数の発光装置100Bを1つのグループとして備えることができる。その場合、1つのグループ内の複数の発光装置100B同士を直列又は並列に電気的に接続することで同じ回路に接続し、同時発光が可能である。 The plurality of light emitting devices 100B can be locally dimmable light emitting modules. For example, one light emitting region may include one light emitting device 100B, each of which can be independently driven. Alternatively, one light emitting region can include a plurality of light emitting devices 100B as one group. In that case, a plurality of light emitting devices 100B in one group can be electrically connected to the same circuit by electrically connecting them in series or in parallel, and simultaneous light emission is possible.

このように、ローカルディミング可能な発光モジュールの場合、隣接する発光領域に光が伝搬しないようにすることが好ましい。発光モジュール200Aは、導光板210の第1主面211側において、貫通孔213を取り囲む画溝211bを備える。図8Aに示す例では、平面視において四角形の区画溝211bを備える。このような区画溝211bにより、隣接する発光領域に光が伝搬することを抑制することができる。さらに、区画溝211b内には、区画部材280を配置することができる。区画部材280は、例えば、光反射性の部材を用いることができる。これにより、効率よく、光の伝搬を抑制することができる。 In this way, in the case of a locally dimmable light emitting module, it is preferable to prevent light from propagating to adjacent light emitting regions. The light emitting module 200A includes a picture groove 211b surrounding the through hole 213 on the first main surface 211 side of the light guide plate 210. In the example shown in FIG. 8A, a quadrangular partition groove 211b is provided in a plan view. With such a partition groove 211b, it is possible to suppress the propagation of light to the adjacent light emitting region. Further, the partition member 280 can be arranged in the partition groove 211b. As the partition member 280, for example, a light-reflecting member can be used. This makes it possible to efficiently suppress the propagation of light.

このような発光モジュール200Aの製造方法の一例として、以下の工程を挙げることができる。
(1)発光装置を準備する工程
(2)光取り出し面となる第1主面と、第1主面と反対側の第2主面と、第1主面から第2主面まで貫通する貫通孔を複数備える導光板を準備する工程
(3)配線基板上に発光装置を配置する工程
(4)貫通孔内に発光装置が配置されるように、配線基板上に導光板を配置する工程
(5)貫通孔内に透光性部材を配置する工程
(6)透光性部材上に光調整部材を配置する工程
The following steps can be mentioned as an example of such a method for manufacturing the light emitting module 200A.
(1) Step of preparing a light emitting device (2) Penetration through the first main surface to be the light extraction surface, the second main surface opposite to the first main surface, and the first main surface to the second main surface. Step of preparing a light guide plate having a plurality of holes (3) Step of arranging a light emitting device on a wiring board (4) A process of arranging a light guide plate on a wiring board so that a light emitting device is arranged in a through hole (4) 5) Step of arranging the translucent member in the through hole (6) Step of arranging the light adjusting member on the translucent member

発光装置及び発光モジュールを構成する各部材について、以下に詳述する。 Each member constituting the light emitting device and the light emitting module will be described in detail below.

[発光装置]
発光装置は、発光素子と、波長変換部材と、を備える。また、発光装置は、さらに光調整部材又は光反射部材を備えることができる。
[Light emitting device]
The light emitting device includes a light emitting element and a wavelength conversion member. Further, the light emitting device may further include a light adjusting member or a light reflecting member.

(発光素子)
発光素子は、公知の半導体発光素子を利用することができる。本実施形態においては、発光素子として発光ダイオードを例示する。
(Light emitting element)
As the light emitting element, a known semiconductor light emitting element can be used. In this embodiment, a light emitting diode is exemplified as a light emitting element.

発光素子は、例えば、サファイア等の透光性の素子基板と、素子基板の上に積層された半導体層とを備えた半導体積層体を備える。発光素子は、任意の波長の光を出射する素子を選択することができる。例えば、青色、緑色の光を出射する素子としては、窒化物系半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)を用いた発光素子を用いることができる。半導体積層体の材料およびその混晶度によって発光波長を種々選択することができる。用いる発光素子の組成、発光色、大きさ、個数などは、目的に応じて適宜選択すればよい。発光素子は、波長変換部材を効率良く励起できる短波長の光を出射することが可能な窒化物半導体(InAlGa1−x−yN、0≦X、0≦Y、X+Y≦1)を備えることが好ましい。 The light emitting device includes, for example, a semiconductor laminate including a translucent element substrate such as sapphire and a semiconductor layer laminated on the element substrate. As the light emitting element, an element that emits light having an arbitrary wavelength can be selected. For example, blue, as the device that emits green light, using the light emitting device using nitride semiconductor (In x Al y Ga 1- x-y N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) be able to. Various emission wavelengths can be selected depending on the material of the semiconductor laminate and its mixed crystallinity. The composition, emission color, size, number, etc. of the light emitting element to be used may be appropriately selected according to the purpose. The light emitting device is a nitride semiconductor (In x Al y Ga 1-xy N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) capable of emitting short-wavelength light capable of efficiently exciting a wavelength conversion member. ) Is preferably provided.

発光素子の平面視における形状は、正方形、長方形等の四角形や、三角形、六角形等の多角形とすることができる。発光素子の大きさは、例えば、平面視において縦および横の寸法が1000μm以下とすることが好ましく、より好ましくは縦および横の寸法が500μm以下であり、さらに好ましくは、縦および横の寸法が200μm以下である。 The shape of the light emitting element in a plan view can be a quadrangle such as a square or a rectangle, or a polygon such as a triangle or a hexagon. The size of the light emitting element is, for example, preferably 1000 μm or less in the vertical and horizontal dimensions in a plan view, more preferably 500 μm or less in the vertical and horizontal dimensions, and further preferably the vertical and horizontal dimensions. It is 200 μm or less.

(波長変換部材/第1波長変換部材/第2波長変換部材)
波長変換部材は、発光素子から出射される光の波長を、異なる波長の光に変換する蛍光体等の波長変換物質を含む。波長変換部材は、母材として透光性材料と、波長変換物質として粒子状の蛍光体と、を含む。波長変換部材は、発光素子の半導体積層体の第1面を覆う第1波長変換部材と、半導体積層体の側面を覆う第2波長変換部材と、を備える。第1波長変換部材と第2波長変換部材に含まれる母材及び蛍光体は、それぞれ同じものであってもよく、異なるものであってもよい。
(Wavelength conversion member / first wavelength conversion member / second wavelength conversion member)
The wavelength conversion member includes a wavelength conversion substance such as a phosphor that converts the wavelength of light emitted from a light emitting element into light having a different wavelength. The wavelength conversion member includes a translucent material as a base material and a particulate phosphor as a wavelength conversion substance. The wavelength conversion member includes a first wavelength conversion member that covers the first surface of the semiconductor laminate of the light emitting element, and a second wavelength conversion member that covers the side surface of the semiconductor laminate. The base material and the phosphor contained in the first wavelength conversion member and the second wavelength conversion member may be the same or different from each other.

透光性材料は、少なくとも発光素子からの光を透過させる透光性であり、発光素子から出射される光の60%以上を透過し、好ましくは90%以上を透過する。波長変換部材の材料としては、エポキシ樹脂、シリコーン樹脂等の透光性の熱硬化性の樹脂材料等を用いることができる。 The translucent material has at least a translucent property that allows light from the light emitting element to be transmitted, and transmits 60% or more of the light emitted from the light emitting element, preferably 90% or more. As the material of the wavelength conversion member, a translucent thermosetting resin material such as an epoxy resin or a silicone resin can be used.

蛍光体としては、例えば、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb(Al,Ga)12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)が挙げられる。さらに、窒化物系蛍光体として、βサイアロン系蛍光体(例えばSi6−zAl8−z:Eu(0<z<4.2))、αサイアロン系蛍光体(例えばMz(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。一般式(I)MaMbAl:Euで表される蛍光体(ただし、上記一般式(I))中、Maは、Ca、Sr及びBaからなる群から選択される少なくとも1種の元素であり、Mbは、Li、Na及びKからなる群から選択される少なくとも1種の元素であり、x、y及びzはそれぞれ、0.5≦x≦1.5、0.5≦y≦1.2、及び3.5≦z≦4.5を満たす)、が挙げられる。さらに、SGS系蛍光体(例えばSrGa:Eu)が挙げられる。このほか、マンガン賦活フッ化物系蛍光体(一般式(II)A[M1−aMn]で表される蛍光体(但し、上記一般式(II)中、Aは、K、Li、Na、Rb、Cs及びNHからなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))が挙げられる。このマンガン賦活フッ化物系蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSF(KSiF:Mn))がある。 Examples of the phosphor include an yttrium aluminum garnet type phosphor (for example, Y 3 (Al, Ga) 5 O 12 : Ce) and a lutetium aluminum garnet type phosphor (for example, Lu 3 (Al, Ga) 5 O). 12 : Ce), terbium aluminum garnet-based phosphor (for example, Tb 3 (Al, Ga) 5 O 12 : Ce) -based phosphor, silicate-based phosphor (for example, (Ba, Sr) 2 SiO 4 : Eu), Examples thereof include chlorosilicate-based phosphors (for example, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu). Further, as the nitride-based phosphor, a β-sialone-based phosphor (for example, Si 6-z Al z Oz N 8-z : Eu (0 <z <4.2)) and an α-sialon-based phosphor (for example, Mz (for example)) Si, Al) 12 (O, N) 16 (where 0 <z ≦ 2, M is a lanthanide element excluding Li, Mg, Ca, Y, and La and Ce), nitrogen-containing calcium aluminosilicate (CASN or SCASN) phosphor (e.g. (Sr, Ca) AlSiN 3: . Eu) and the like general formula (I) Ma x Mb y Al 3 N z: phosphor represented by Eu (provided that the general formula ( In I)), Ma is at least one element selected from the group consisting of Ca, Sr and Ba, and Mb is at least one element selected from the group consisting of Li, Na and K. , X, y and z satisfy 0.5 ≦ x ≦ 1.5, 0.5 ≦ y ≦ 1.2 and 3.5 ≦ z ≦ 4.5, respectively). Further, SGS-based phosphors (for example, SrGa 2 S 4 : Eu) can be mentioned. In addition, a manganese-activated fluoride-based phosphor represented by a manganese-activated fluoride-based phosphor (general formula (II) A 2 [M 1-a Mn a F 6 ] (however, in the above general formula (II), A is K, At least one element selected from the group consisting of Li, Na, Rb, Cs and NH 4 , M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a is 0 <a <0.2 is satisfied)). Typical examples of the manganese-activated fluoride phosphors, phosphor manganese-activated fluoride potassium silicate (e.g. KSF (K 2 SiF 6: Mn )) is.

1つの波長変換部材に、1種類又は複数種類の蛍光体を含むことができる。複数種類の蛍光体は、混合させて用いてもよく、あるいは積層させて用いてもよい。例えば、青色系の光を出射する発光素子を用い、蛍光体として緑色系の発光をするβサイアロン蛍光体と赤色系の発光をするKSF蛍光体等のフッ化物系蛍光体とを含むことができる。このような2種類の蛍光体を用いることで、発光モジュールの色再現範囲を広げることができる。また、蛍光体は量子ドットであってもよい。 One wavelength conversion member may contain one or more types of phosphors. The plurality of types of phosphors may be used in a mixed manner, or may be used in a laminated manner. For example, a light emitting element that emits blue-based light can be used, and as a phosphor, a β-sialone phosphor that emits green-based light and a fluoride-based phosphor such as a KSF phosphor that emits red-based light can be included. .. By using these two types of phosphors, the color reproduction range of the light emitting module can be expanded. Further, the phosphor may be a quantum dot.

蛍光体は、波長変換部材の内部においてどのように配置されていてもよい。例えば、蛍光体は、波長変換部材の内部において略均一に分布していてもよく、一部に偏在してもよい。 The phosphor may be arranged in any way inside the wavelength conversion member. For example, the phosphors may be distributed substantially uniformly inside the wavelength conversion member, or may be unevenly distributed in a part thereof.

波長変換部材は、光拡散物質を含んでいてもよい。光拡散物質としては、例えばSiO、TiO、Al、ZnO等の微粒子が挙げられる。 The wavelength conversion member may contain a light diffusing substance. Examples of the light diffusing substance include fine particles such as SiO 2 , TiO 2 , Al 2 O 3, and ZnO.

第1波長変換部材の厚みは、5μm〜200μmとすることができる。また、第2波長変換部材の厚みは、半導体積層体と同じ厚みとすることができる。また、第2波長変換部材の厚みは、半導体積層体の厚みよりも厚くすることができる。 The thickness of the first wavelength conversion member can be 5 μm to 200 μm. Further, the thickness of the second wavelength conversion member can be the same as that of the semiconductor laminate. Further, the thickness of the second wavelength conversion member can be made thicker than the thickness of the semiconductor laminate.

第2波長変換部材の厚みは、半導体積層体と同じ厚みとすることができる。この場合は、半導体積層体の第2面及び電極は、第2波長変換部材から露出される。そして、発光装置が第2光調性部材を備える場合、第2光調性部材が半導体積層体の第2面及び電極の側面を被覆することができる。 The thickness of the second wavelength conversion member can be the same as that of the semiconductor laminate. In this case, the second surface and the electrodes of the semiconductor laminate are exposed from the second wavelength conversion member. When the light emitting device includes the second phototuning member, the second phototuning member can cover the second surface of the semiconductor laminate and the side surface of the electrode.

また、第2波長変換部材の厚みは、半導体積層体の厚みよりも厚くすることができる。この場合は、半導体積層体の側面及び第2面が第2波長変換部材で被覆される。 Further, the thickness of the second wavelength conversion member can be made thicker than the thickness of the semiconductor laminate. In this case, the side surface and the second surface of the semiconductor laminate are covered with the second wavelength conversion member.

あるいは、第2波長変換部材の厚みは、半導体積層体の厚みよりも薄くすることができる。その場合、半導体積層体の側面の一部及び第2面は、第2波長変換部材から露出される。そして、発光装置が第2光調性部材を備える場合、半導体積層体の側面及び第2面を、第2光調性部材で被覆することができる。つまり、第2光調性部材の厚みを厚くすることができるため、発光装置の下面側から光が漏れることを低減することができる。 Alternatively, the thickness of the second wavelength conversion member can be made thinner than the thickness of the semiconductor laminate. In that case, a part of the side surface and the second surface of the semiconductor laminate are exposed from the second wavelength conversion member. When the light emitting device includes the second phototuning member, the side surface and the second surface of the semiconductor laminate can be covered with the second phototuning member. That is, since the thickness of the second phototuning member can be increased, it is possible to reduce the leakage of light from the lower surface side of the light emitting device.

(光調整部材/第1光調整部材/第2光調整部材)
光調整部材(第1光調整部材又は第2光調整部材)は、波長変換部材の上に配置される。光調整部材は、発光素子からの光の一部を反射する機能を備えることが好ましい。例えば、発光素子から出射される光に対して50%〜90%の反射率を有し、好ましくは60%〜80%の反射率を有する。光調整部材の材料は、例えば、白色の樹脂材料を用いることができる。光調整部材の材料は、特に、白色の樹脂材料が好ましい。白色の樹脂材料としては、例えば、光反射性物質としてSiO、TiO、Al、ZnO等を含む樹脂材料が挙げ有られる。樹脂材料としては、エポキシ樹脂、シリコーン樹脂等の透光性の熱硬化性の樹脂材料等を用いることができる。
(Light adjustment member / 1st light adjustment member / 2nd light adjustment member)
The light adjusting member (first light adjusting member or second light adjusting member) is arranged on the wavelength conversion member. The light adjusting member preferably has a function of reflecting a part of the light from the light emitting element. For example, it has a reflectance of 50% to 90%, preferably 60% to 80% with respect to the light emitted from the light emitting element. As the material of the light adjusting member, for example, a white resin material can be used. As the material of the light adjusting member, a white resin material is particularly preferable. Examples of the white resin material include resin materials containing SiO 2 , TiO 2 , Al 2 O 3 , ZnO, and the like as light-reflecting substances. As the resin material, a translucent thermosetting resin material such as an epoxy resin or a silicone resin can be used.

(押圧部材)
押圧部材としては、例えば、金属板、セラミック、超硬合金等の固い部材が挙げられる。押圧部材は板状のものを用いて、複数の発光素子に対して同時に荷重をかけることができる。あるいは、コレット等を用いて、個々の発光素子に対して荷重をかけることができる。また、荷重をかける際の荷重は、例えば5gf〜60gfとすることができる。
(Pressing member)
Examples of the pressing member include a hard member such as a metal plate, ceramic, or cemented carbide. A plate-shaped pressing member can be used, and a load can be applied to a plurality of light emitting elements at the same time. Alternatively, a load can be applied to each light emitting element by using a collet or the like. Further, the load when applying the load can be, for example, 5 gf to 60 gf.

[発光モジュール]
発光モジュールは、透光性の導光板と、光反射性の被覆部材と、発光装置と導光板との間に配置される透光性部材と、発光装置に給電するための配線層と、を備える。さらに、光調整部材、基板、導電部材、区画部材等を備えることができる。
[Light emitting module]
The light emitting module includes a translucent light guide plate, a light reflective coating member, a translucent member arranged between the light emitting device and the light guide plate, and a wiring layer for supplying power to the light emitting device. Be prepared. Further, a light adjusting member, a substrate, a conductive member, a partition member and the like can be provided.

導光板は、発光装置から出射される光を面状に広げる透光性の部材である。導光板の材料としては、アクリル、ポリカーボネート、環状ポリオレフィン、ポリエチレンテレフタレート、ポリエステル等の熱可塑性樹脂、エポキシ、シリコーン等の熱硬化性樹脂等の樹脂材料やガラスなどの光学的に透明な材料を用いることができる。特に、熱可塑性の樹脂材料は、射出成型によって効率よく製造することができるため、好ましい。 The light guide plate is a translucent member that spreads the light emitted from the light emitting device in a plane shape. As the material of the light guide plate, a thermoplastic resin such as acrylic, polycarbonate, cyclic polyolefin, polyethylene terephthalate and polyester, a resin material such as a thermosetting resin such as epoxy and silicone, and an optically transparent material such as glass should be used. Can be done. In particular, a thermoplastic resin material is preferable because it can be efficiently produced by injection molding.

被覆部材は、複数の発光装置と導光板の第2主面とを被覆する光反射性の部材である。被覆部材は、光源から出射される光に対して60%以上の反射率を有し、好ましくは90%以上の反射率を有する。被覆部材の材料は、例えば、金属や、白色の樹脂材料等を用いることができる。また、被覆部材としてDBR膜を用いることができる。被覆部材の材料は、特に、白色の樹脂材料が好ましい。白色の樹脂材料としては、例えば、光反射性物質としてSiO、TiO、Al、ZnO等を含む樹脂材料や、発泡樹脂材料等が挙げ有られる。樹脂材料としては、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート等の透光性の熱硬化性の樹脂材料等を用いることができる。区画部材は、被覆部材と同じ材料と用いることができる。 The covering member is a light-reflecting member that covers the plurality of light emitting devices and the second main surface of the light guide plate. The covering member has a reflectance of 60% or more, preferably 90% or more, with respect to the light emitted from the light source. As the material of the covering member, for example, a metal, a white resin material, or the like can be used. Further, a DBR film can be used as the covering member. As the material of the covering member, a white resin material is particularly preferable. Examples of the white resin material include a resin material containing SiO 2 , TiO 2 , Al 2 O 3 , ZnO and the like as a light-reflecting substance, a foamed resin material and the like. As the resin material, a translucent thermosetting resin material such as an epoxy resin, a silicone resin, or polyethylene terephthalate can be used. The partition member can be used with the same material as the covering member.

透光性部材は、導光板の第1凹部又は貫通孔内に配置において、発光装置と導光板との間に配置される。透光性部材は、発光装置から出射される光を透過させる透光性である。透光性部材は、発光装置から出射される光の60%以上を透過し、好ましくは90%以上を透過する。透光性部材は、導光板の材料と同程度の屈折率を有する材料が好ましい。例えば、母材の材料として、エポキシ樹脂、シリコーン樹脂、これらを混合した樹脂、または、ガラスなどの透光性材料を用いることができる。 The translucent member is arranged between the light emitting device and the light guide plate in the arrangement in the first recess or the through hole of the light guide plate. The translucent member is translucent to transmit the light emitted from the light emitting device. The translucent member transmits 60% or more, preferably 90% or more of the light emitted from the light emitting device. The translucent member is preferably a material having a refractive index comparable to that of the light guide plate material. For example, as the material of the base material, an epoxy resin, a silicone resin, a resin in which these are mixed, or a translucent material such as glass can be used.

配線層は、発光装置に給電するための導電部材である。配線層としては、例えば、Ag、Ag/Cu、Ni/Au等を用いることができる。あるいは、Cu等を含有する導電性ペースト等を用いることができる。配線層は、これらの材料を単独で用いてもよく、あるいは、複数の材料を含む合金や、積層構造とすることができる。配線層の厚みは、例えば、5μm〜50μmとすることができる。 The wiring layer is a conductive member for supplying power to the light emitting device. As the wiring layer, for example, Ag, Ag / Cu, Ni / Au and the like can be used. Alternatively, a conductive paste or the like containing Cu or the like can be used. The wiring layer may use these materials alone, or may have an alloy containing a plurality of materials or a laminated structure. The thickness of the wiring layer can be, for example, 5 μm to 50 μm.

光調整部材(第3光調整部材)は、導光板の光学機能部内又は貫通孔内に配置される。光調整部材は、光源からの光の一部を反射する機能を備えることが好ましい。例えば、光源から出射される光に対して50%〜90%の反射率を有し、好ましくは60%〜80%の反射率を有する。光調整部材の材料は、例えば、白色の樹脂材料を用いることができる。光調整部材の材料は、特に、白色の樹脂材料が好ましい。白色の樹脂材料としては、例えば、光反射性物質としてSiO、TiO、Al、ZnO等を含む樹脂材料や、発泡樹脂材料等が挙げ有られる。樹脂材料としては、エポキシ樹脂、シリコーン樹脂、ポリエチレンテレフタレート等の透光性の熱硬化性の樹脂材料等を用いることができる。 The light adjusting member (third light adjusting member) is arranged in the optical function portion of the light guide plate or in the through hole. The light adjusting member preferably has a function of reflecting a part of the light from the light source. For example, it has a reflectance of 50% to 90%, preferably 60% to 80% with respect to the light emitted from the light source. As the material of the light adjusting member, for example, a white resin material can be used. As the material of the light adjusting member, a white resin material is particularly preferable. Examples of the white resin material include a resin material containing SiO 2 , TiO 2 , Al 2 O 3 , ZnO and the like as a light-reflecting substance, a foamed resin material and the like. As the resin material, a translucent thermosetting resin material such as an epoxy resin, a silicone resin, or polyethylene terephthalate can be used.

配線基板は、絶縁性の基材と、配線とを備える。配線は、複数の発光装置と電気的に接続される。配線基板として、表面に絶縁層が設けられた金属板を用いてもよい。また、配線基板は複数のTFT(Thin−Film Transistor)を有するTFT基板であってもよい。配線基板の基材の材料としては、例えば、セラミックス又は樹脂を用いることができる。低コストおよび成形容易性の点から、樹脂を基材の材料として選択してもよい。樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン、ポリフタルアミド(PPA)、ポリエチレンテレフタレート(PET)、不飽和ポリエステル、ガラスエポキシ等の複合材料等を挙げることができる。また、リジッド基板であってもよく、フレキシブル基板であってもよい。 The wiring board includes an insulating base material and wiring. The wiring is electrically connected to a plurality of light emitting devices. As the wiring board, a metal plate having an insulating layer on its surface may be used. Further, the wiring board may be a TFT board having a plurality of TFTs (Thin-Film Transistors). As the material of the base material of the wiring board, for example, ceramics or resin can be used. Resin may be selected as the material of the base material from the viewpoint of low cost and ease of molding. Examples of the resin include composite materials such as phenol resin, epoxy resin, polyimide resin, BT resin, polyphthalamide (PPA), polyethylene terephthalate (PET), unsaturated polyester, and glass epoxy. Further, it may be a rigid substrate or a flexible substrate.

配線は、例えば、基材上に設けられた導電箔(導体層)であり、複数の光源と電気的に接続される。配線の材料は、高い熱伝導性を有していることが好ましい。このような材料として、例えば銅などの導電材料が挙げられる。また、配線は、メッキや導電性ペーストの塗布、印刷などで形成することができ、配線の厚みは、例えば、5〜50μm程度である。 The wiring is, for example, a conductive foil (conductor layer) provided on the base material, and is electrically connected to a plurality of light sources. The wiring material preferably has high thermal conductivity. Examples of such a material include a conductive material such as copper. Further, the wiring can be formed by plating, coating of a conductive paste, printing, or the like, and the thickness of the wiring is, for example, about 5 to 50 μm.

本開示に係る発光モジュールは、例えば、液晶ディスプレイ装置のバックライトや、表示装置として利用することができる。 The light emitting module according to the present disclosure can be used, for example, as a backlight of a liquid crystal display device or a display device.

100…発光装置
10…発光素子
11…半導体積層体
111…第1面
112…第2面
113…側面
12…電極
20…波長変換部材
21…第1波長変換部材
22…第2波長変換部材
22a…第2波長変換材料
30…光調整部材(第1光調整部材)
31…光調整部材(第2光調整部材)
200…発光モジュール
210…導光板
211…第1主面(光取り出し面)
211a…光学機能部
211b…区画溝
212…第2主面
212a…第1凹部
212b…第2凹部
213…貫通孔
220…被覆部材
230…透光性部材
240…光調整部材(第3光調整部材)
250…配線層
251、252…外部接続端子
260…基板
270…導電部材
280…区画部材
300…押圧部材
100 ... Light emitting device 10 ... Light emitting element 11 ... Semiconductor laminate 111 ... First surface 112 ... Second surface 113 ... Side surface 12 ... Electrode 20 ... Wavelength conversion member 21 ... First wavelength conversion member 22 ... Second wavelength conversion member 22a ... Second wavelength conversion material 30 ... Light adjustment member (first light adjustment member)
31 ... Light adjustment member (second light adjustment member)
200 ... Light emitting module 210 ... Light guide plate 211 ... First main surface (light extraction surface)
211a ... Optical function unit 211b ... Partition groove 212 ... Second main surface 212a ... First recess 212b ... Second recess 213 ... Through hole 220 ... Covering member 230 ... Translucent member 240 ... Light adjusting member (third light adjusting member) )
250 ... Wiring layer 251, 252 ... External connection terminal 260 ... Substrate 270 ... Conductive member 280 ... Partition member 300 ... Pressing member

Claims (5)

第1面と、前記第1面の反対側の第2面と、前記第1面と前記第2面の間の側面と、を備える半導体積層体と、前記第2面に配置される電極と、を含む発光素子を準備する工程と、
硬化状態の第1波長変換部材を準備する工程と、
前記第1波長変換部材上に、半硬化状態の第2波長変換材料を配置する工程と、
前記第2波長変換材料の上面と、前記発光素子の前記第1面とが対向するように、前記第2波長変換材料上に前記発光素子を載置する工程と、
前記第2波長変換材料の内部に前記半導体積層体の少なくとも一部が埋設されるとともに前記電極が露出されるように、前記発光素子に荷重をかける工程と、
前記第2波長変換材料を硬化して第2波長変換部材とする工程と、
を含む発光装置の製造方法。
A semiconductor laminate including a first surface, a second surface opposite to the first surface, and a side surface between the first surface and the second surface, and an electrode arranged on the second surface. And the process of preparing a light emitting element including
The process of preparing the first wavelength conversion member in a cured state and
A step of arranging the second wavelength conversion material in a semi-cured state on the first wavelength conversion member, and
A step of placing the light emitting element on the second wavelength conversion material so that the upper surface of the second wavelength conversion material and the first surface of the light emitting element face each other.
A step of applying a load to the light emitting element so that at least a part of the semiconductor laminate is embedded in the second wavelength conversion material and the electrodes are exposed.
A step of curing the second wavelength conversion material to form a second wavelength conversion member, and
A method for manufacturing a light emitting device including.
前記硬化状態の第1波長変換部材を準備する工程は、硬化状態の第1光調整部材と硬化状態の第1波長変換部材とが積層された積層構造体を準備する工程を含む、請求項1に記載の発光装置の製造方法。 The step of preparing the first wavelength conversion member in a cured state includes a step of preparing a laminated structure in which a first light adjusting member in a cured state and a first wavelength conversion member in a cured state are laminated. The method for manufacturing a light emitting device according to the above. 前記第2波長変換部材を形成した後、前記第2波長変換部材上に第2光調整部材を配置する工程を含む、請求項1又は請求項2に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1 or 2, further comprising a step of arranging a second light adjusting member on the second wavelength conversion member after forming the second wavelength conversion member. 請求項1〜請求項3のいずれか1項に記載の発光装置を準備する工程と、
光取り出し面となる第1主面と、前記第1主面の反対側の第2主面と、前記第2主面に配置される複数の凹部を備える導光板を準備する工程と、
前記凹部内に透光性部材及び前記発光装置を配置する工程と、
前記発光装置及び前記第2主面を覆う被覆部材を配置する工程と、
前記発光装置と接続される配線層を配置する工程と、
を備える発光モジュールの製造方法。
The step of preparing the light emitting device according to any one of claims 1 to 3, and the step of preparing the light emitting device.
A step of preparing a light guide plate provided with a first main surface to be a light extraction surface, a second main surface opposite to the first main surface, and a plurality of recesses arranged on the second main surface.
A step of arranging the translucent member and the light emitting device in the recess, and
The step of arranging the light emitting device and the covering member covering the second main surface, and
The process of arranging the wiring layer connected to the light emitting device, and
A method of manufacturing a light emitting module comprising.
請求項1〜請求項3のいずれか1項に記載の発光装置を準備する工程と、
光取り出し面となる第1主面と、第1主面と反対側の第2主面と、第1主面から第2主面まで貫通する貫通孔を複数備える導光板を準備する工程と、
配線基板上に前記発光装置を配置する工程と、
前記貫通孔内に前記発光装置が配置されるように、前記配線基板上に前記導光板を配置する工程と、
前記貫通孔内に透光性部材を配置する工程と、
前記透光性部材上に光調整部材を配置する工程と、
を備える発光モジュールの製造方法。
The step of preparing the light emitting device according to any one of claims 1 to 3, and the step of preparing the light emitting device.
A step of preparing a light guide plate provided with a first main surface to be a light extraction surface, a second main surface opposite to the first main surface, and a plurality of through holes penetrating from the first main surface to the second main surface.
The process of arranging the light emitting device on the wiring board and
A step of arranging the light guide plate on the wiring board so that the light emitting device is arranged in the through hole, and
The step of arranging the translucent member in the through hole and
The step of arranging the light adjusting member on the translucent member and
A method of manufacturing a light emitting module comprising.
JP2020073743A 2020-04-17 2020-04-17 Method for manufacturing light-emitting device and method for manufacturing light-emitting module Active JP7193740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020073743A JP7193740B2 (en) 2020-04-17 2020-04-17 Method for manufacturing light-emitting device and method for manufacturing light-emitting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020073743A JP7193740B2 (en) 2020-04-17 2020-04-17 Method for manufacturing light-emitting device and method for manufacturing light-emitting module

Publications (2)

Publication Number Publication Date
JP2021170610A true JP2021170610A (en) 2021-10-28
JP7193740B2 JP7193740B2 (en) 2022-12-21

Family

ID=78119433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073743A Active JP7193740B2 (en) 2020-04-17 2020-04-17 Method for manufacturing light-emitting device and method for manufacturing light-emitting module

Country Status (1)

Country Link
JP (1) JP7193740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709312B2 (en) 2021-07-19 2023-07-25 Nichia Corporation Planar light source including light adjustment members

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073084A (en) * 2003-08-26 2005-03-17 Ricoh Co Ltd Communication terminal device
JP2011204566A (en) * 2010-03-26 2011-10-13 Sumita Optical Glass Inc Light-emitting device
US20120261680A1 (en) * 2011-04-18 2012-10-18 Randolph Cary Demuynck LED Array Having Embedded LED and Method Therefor
JP2013012607A (en) * 2011-06-29 2013-01-17 Toyoda Gosei Co Ltd Light-emitting device
JP2013042095A (en) * 2011-08-19 2013-02-28 Citizen Electronics Co Ltd Semiconductor light emitting device
JP2013089645A (en) * 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013149906A (en) * 2012-01-23 2013-08-01 Stanley Electric Co Ltd Light emitting device, lighting fixture for vehicle, and manufacturing method of light emitting device
JP2014096491A (en) * 2012-11-09 2014-05-22 Nitto Denko Corp Semiconductor element covered with phosphor layer and method for manufacturing the same, and semiconductor device and method for manufacturing the same
JP2017228657A (en) * 2016-06-22 2017-12-28 日東電工株式会社 Optical semiconductor device with phosphor layer
JP2019029478A (en) * 2017-07-28 2019-02-21 日亜化学工業株式会社 Manufacturing method of light emitting device
JP2020057748A (en) * 2018-09-28 2020-04-09 日亜化学工業株式会社 Manufacturing method of light-emitting module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073084A (en) * 2003-08-26 2005-03-17 Ricoh Co Ltd Communication terminal device
JP2011204566A (en) * 2010-03-26 2011-10-13 Sumita Optical Glass Inc Light-emitting device
US20120261680A1 (en) * 2011-04-18 2012-10-18 Randolph Cary Demuynck LED Array Having Embedded LED and Method Therefor
JP2013012607A (en) * 2011-06-29 2013-01-17 Toyoda Gosei Co Ltd Light-emitting device
JP2013042095A (en) * 2011-08-19 2013-02-28 Citizen Electronics Co Ltd Semiconductor light emitting device
JP2013089645A (en) * 2011-10-13 2013-05-13 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013149906A (en) * 2012-01-23 2013-08-01 Stanley Electric Co Ltd Light emitting device, lighting fixture for vehicle, and manufacturing method of light emitting device
JP2014096491A (en) * 2012-11-09 2014-05-22 Nitto Denko Corp Semiconductor element covered with phosphor layer and method for manufacturing the same, and semiconductor device and method for manufacturing the same
JP2017228657A (en) * 2016-06-22 2017-12-28 日東電工株式会社 Optical semiconductor device with phosphor layer
JP2019029478A (en) * 2017-07-28 2019-02-21 日亜化学工業株式会社 Manufacturing method of light emitting device
JP2020057748A (en) * 2018-09-28 2020-04-09 日亜化学工業株式会社 Manufacturing method of light-emitting module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11709312B2 (en) 2021-07-19 2023-07-25 Nichia Corporation Planar light source including light adjustment members

Also Published As

Publication number Publication date
JP7193740B2 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
JP6717421B1 (en) Light emitting module
US11073654B2 (en) Light emitting module with recesses in light guide plate
US7538359B2 (en) Backlight including side-emitting semiconductor light emitting devices
KR20180072582A (en) Method for manufacturing light emitting device
TWI767942B (en) Method for manufacturing a linear lighting device and linear lighting device
JP2014086549A (en) Semiconductor light-emitting device and manufacturing method of the same
JP7116331B2 (en) Light-emitting module manufacturing method and light-emitting module
JP2021093533A (en) Semiconductor module, display device, and manufacturing method of semiconductor module
JPWO2020067495A1 (en) Light emitting module and its manufacturing method
JP7193740B2 (en) Method for manufacturing light-emitting device and method for manufacturing light-emitting module
US11194089B2 (en) Method for manufacturing light emitting module
US11536892B2 (en) Method for manufacturing light-emitting module
JP6963183B2 (en) Manufacturing method of light emitting module
JP7111993B2 (en) Method for manufacturing light-emitting module
JP2021136119A (en) Manufacturing method of light-emitting module
JP7121302B2 (en) Method for manufacturing light-emitting module
JP7140987B2 (en) Light-emitting module and method for manufacturing light-emitting module
JP6933817B2 (en) Manufacturing method of light emitting device
JP2021131932A (en) Manufacturing method of light-emitting module and light-emitting module
JP2017069378A (en) Light-emitting device
JP2023081081A (en) Manufacturing method of planer light source and planer light source
JP2023087742A (en) Manufacturing method of surface light source
JP2021168374A (en) Light-emitting device, light-emitting module, and manufacturing method of the light-emitting module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R151 Written notification of patent or utility model registration

Ref document number: 7193740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151