JP2021158200A - Semiconductor device and method for manufacturing semiconductor device - Google Patents

Semiconductor device and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2021158200A
JP2021158200A JP2020056293A JP2020056293A JP2021158200A JP 2021158200 A JP2021158200 A JP 2021158200A JP 2020056293 A JP2020056293 A JP 2020056293A JP 2020056293 A JP2020056293 A JP 2020056293A JP 2021158200 A JP2021158200 A JP 2021158200A
Authority
JP
Japan
Prior art keywords
wiring board
sealing resin
wiring
semiconductor element
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020056293A
Other languages
Japanese (ja)
Inventor
将士 澤田石
Masashi Sawadaishi
将士 澤田石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2020056293A priority Critical patent/JP2021158200A/en
Publication of JP2021158200A publication Critical patent/JP2021158200A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a semiconductor device and a method for manufacturing the semiconductor device that can be manufactured with high yields.SOLUTION: At least one semiconductor device is mounted on a second circuit board laminated on a support, and after sealing with a first sealing resin and a second sealing resin, the support and a release layer are removed, solder is formed on the second circuit board at an electrode for bonding with the first circuit board, the second circuit board is mounted on the first circuit board and soldered together, and the second circuit board is sealed with a third sealing resin.SELECTED DRAWING: Figure 1

Description

本発明は半導体装置、及び半導体装置の製造方法に関する。 The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.

近年半導体装置の高速、高集積化が進む中で、FC−BGA(Flip Chip−Ball Grid Array)用配線基板に対しても、半導体素子との接続端子の狭ピッチ化、基板配線の微細化が求められている。一方、FC−BGA用配線基板とマザーボードとの接続は、従来とほぼ変わらないピッチの接続端子での接続が要求されている。この半導体素子との接続端子の狭ピッチ化、基板配線の微細化のため、シリコン上に配線を形成して半導体素子接続用の基板(シリコンインターポーザ)とし、これをFC−BGA用配線基板に接続する方式が知られている。例えば、特許文献1には、シリコンからなる基板に逆テーパー状の穴を設け、基板表面に形成された径が大きい方の開口部内に導体ボールを設けたインターポーザが記載されている。また、特許文献2には、配線基板の表面をCMP(Chemical Mechanical Polishing、化学機械研磨)等で平坦化してから微細配線を形成することが記載されている。また、支持基板の上に微細な配線層を形成しFC−BGA用配線基板に搭載した後、支持基板を剥離することで狭ピッチな配線基板を形成する方法も知られている。 In recent years, with the progress of high speed and high integration of semiconductor devices, the pitch of connection terminals with semiconductor elements has been narrowed and the board wiring has become finer for FC-BGA (Flip Chip-Ball Grid Array) wiring boards. It has been demanded. On the other hand, the connection between the FC-BGA wiring board and the motherboard is required to be connected with connection terminals having a pitch that is almost the same as the conventional one. In order to narrow the pitch of the connection terminals with the semiconductor element and miniaturize the board wiring, a wiring is formed on silicon to form a substrate (silicon interposer) for connecting the semiconductor element, and this is connected to the FC-BGA wiring board. The method of doing is known. For example, Patent Document 1 describes an interposer in which a reverse-tapered hole is provided in a substrate made of silicon, and a conductor ball is provided in an opening having a larger diameter formed on the surface of the substrate. Further, Patent Document 2 describes that the surface of a wiring board is flattened by CMP (Chemical Mechanical Polishing) or the like to form fine wiring. Further, there is also known a method of forming a fine wiring layer on a support substrate, mounting it on a wiring board for FC-BGA, and then peeling off the support substrate to form a wiring board having a narrow pitch.

特開2002―280490号公報Japanese Unexamined Patent Publication No. 2002-280490 特開2014―225671号公報Japanese Unexamined Patent Publication No. 2014-225671

シリコンインターポーザは、シリコンウェハを利用して、半導体前工程用の設備を用いて製作されている。シリコンウェハは形状、サイズに制限があり、1枚のウエハから製作できるインターポーザの数が少なく、製造設備も高価であるため、インターポーザも高価となる。また、シリコンウェハが半導体であることから、伝送特性も劣化するという問題がある。 The silicon interposer is manufactured by using a silicon wafer and using equipment for a semiconductor front-end process. Silicon wafers are limited in shape and size, the number of interposers that can be manufactured from a single wafer is small, and the manufacturing equipment is expensive, so the interposers are also expensive. Further, since the silicon wafer is a semiconductor, there is a problem that the transmission characteristics are also deteriorated.

また、FC−BGA用配線基板の表面の平坦化を行いその上に微細配線層を形成する方式においては、シリコンインターポーザに見られる伝送特性劣化は小さいが、FC−BGA用配線基板の製造不良と、難易度の高い微細配線形成時の不良との通算で同一基板面内収率が低下する問題や、FC−BGA用配線基板の反り、歪みに起因した半導体素子の実装における問題がある。 Further, in the method of flattening the surface of the FC-BGA wiring board and forming a fine wiring layer on the surface, the deterioration of the transmission characteristics seen in the silicon interposer is small, but the manufacturing defect of the FC-BGA wiring board is caused. There is a problem that the in-plane yield of the same substrate is lowered due to a total of defects at the time of forming fine wiring with a high degree of difficulty, and there is a problem in mounting a semiconductor element due to warpage and distortion of the wiring board for FC-BGA.

一方、支持基板の上に微細な配線層を形成し、これをFC−BGA用配線基板に搭載しようとすると、次のような問題があった。すなわち、FC−BGA用配線基板に搭載した後に支持基板を剥離するため、搭載時の封止樹脂が支持基板まで濡れ上がって支持基板の剥離を妨げる問題と、剥離時にかかる力や内部に貯蔵されている応力で配線基板全体が反るため、半導体素子を実装する際に不具合を生じる問題である。 On the other hand, when a fine wiring layer is formed on the support substrate and this is mounted on the FC-BGA wiring board, there are the following problems. That is, since the support substrate is peeled off after being mounted on the FC-BGA wiring board, the sealing resin at the time of mounting wets up to the support substrate and hinders the peeling of the support substrate. This is a problem that causes a problem when mounting a semiconductor element because the entire wiring board is warped by the stress.

そこで本発明は、上記問題に鑑みなされたものであり、歩留まり良く安価に製造できる半導体措置及び半導体装置の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor measure and a method for manufacturing a semiconductor device, which can be manufactured at a low yield and at low cost.

上記の課題を解決するために、本発明に係る半導体装置は、第一配線基板と、第一配線基板の主面上に搭載され、第一配線基板とは逆側の面に半導体素子実装用のパッドを有する第二配線基板と、第二配線基板上に搭載された少なくとも1つの半導体素子とを備え、第一配線基板と第二配線基板の配線層は1層以上で、有機絶縁樹脂と銅配線で構成されており、第一配線基板の配線幅が、第二配線基板の配線幅より大きく、第二配線基板と半導体素子の間に第一封止樹脂が充填されており、半導体素子の側面は第一封止樹脂とは異なる第二封止樹脂で封止されており、第一配線基板と第二配線基板は、はんだ接合で電気的に導通しており、第一配線基板と第二配線基板の間には、第三封止樹脂が充填され、第三封止樹脂は第二配線基板と第二封止樹脂の界面を保護するように封止されているものである。 In order to solve the above problems, the semiconductor device according to the present invention is mounted on the first wiring board and the main surface of the first wiring board, and for mounting the semiconductor element on the surface opposite to the first wiring board. A second wiring board having the above pad and at least one semiconductor element mounted on the second wiring board are provided, and the wiring layers of the first wiring board and the second wiring board are one or more layers, and the organic insulating resin is used. It is composed of copper wiring, the wiring width of the first wiring board is larger than the wiring width of the second wiring board, and the first sealing resin is filled between the second wiring board and the semiconductor element, and the semiconductor element. The side surface of is sealed with a second sealing resin different from the first sealing resin, and the first wiring board and the second wiring board are electrically conductive by solder bonding, and are connected to the first wiring board. A third sealing resin is filled between the second wiring boards, and the third sealing resin is sealed so as to protect the interface between the second wiring board and the second sealing resin.

また、本発明に係る半導体装置の製造方法は、ビルドアップ基板からなる第一配線基板と、第一配線基板と接合される第二配線基板とを備える半導体装置の製造方法であって、支持体の主面上に剥離層を形成し、剥離層上に第一配線基板と接合するための電極を含む配線層を形成する工程と、半導体素子と電気的に接合するための電極を形成する工程と、を含む第二配線基板を形成する工程と、第二配線基板上に少なくとも一つの半導体素子を搭載する工程と、第二配線基板と半導体素子の間を第一封止樹脂で封止する工程と、第二配線基板と半導体素子を第二封止樹脂で封止する工程と、第二配線基板の支持体及び剥離層を除去する工程と、第一配線基板との接合面の電極にはんだを形成する工程と、第二配線基板を個片化する工程と第一配線基板を第二配線基板にはんだ接続する工程と、第一配線基板と第二配線基板の間に第三封止樹脂を充填する工程とを含むものである。 Further, the method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device including a first wiring board made of a build-up board and a second wiring board joined to the first wiring board, and is a support. A step of forming a release layer on the main surface of the surface and forming a wiring layer on the release layer including an electrode for joining with the first wiring board, and a step of forming an electrode for electrically joining with a semiconductor element. The step of forming the second wiring board including the above, the step of mounting at least one semiconductor element on the second wiring board, and sealing between the second wiring board and the semiconductor element with the first sealing resin. The process, the process of sealing the second wiring board and the semiconductor element with the second sealing resin, the process of removing the support and the peeling layer of the second wiring board, and the electrode on the joint surface between the first wiring board and the first wiring board. The process of forming solder, the process of separating the second wiring board into pieces, the process of soldering the first wiring board to the second wiring board, and the third sealing between the first wiring board and the second wiring board. It includes a step of filling a resin.

本発明によれば、平滑性の高い配線基板上に半導体素子を実装でき、支持基板の剥離時の不具合を避けることが可能となる。また、半導体素子と第二配線基板は一括で第一配線基板に搭載できることから、実装工程での収率を向上させることができる。 According to the present invention, the semiconductor element can be mounted on a wiring board having high smoothness, and it is possible to avoid a defect at the time of peeling of the support board. Further, since the semiconductor element and the second wiring board can be mounted on the first wiring board at once, the yield in the mounting process can be improved.

上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかとする。 Issues, configurations and effects other than those mentioned above will be clarified by the description of the embodiments for carrying out the following.

本発明の一実施形態に係る複合配線基板からなる半導体装置Aの一例を示す断面図である。It is sectional drawing which shows an example of the semiconductor device A which consists of the composite wiring board which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2を支持体100上に形成する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of forming the 2nd wiring board 2 which concerns on one Embodiment of this invention on a support 100. 本発明の一実施形態に係る第二配線基板2を支持体100上に形成する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of forming the 2nd wiring board 2 which concerns on one Embodiment of this invention on a support 100. 本発明の一実施形態に係る第二配線基板2を支持体100上に形成する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of forming the 2nd wiring board 2 which concerns on one Embodiment of this invention on a support 100. 本発明の一実施形態に係る第二配線基板2への半導体素子3を搭載する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of mounting the semiconductor element 3 on the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2への半導体素子3を搭載する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of mounting the semiconductor element 3 on the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2への半導体素子3を搭載する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of mounting the semiconductor element 3 on the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2への半導体素子3を搭載する工程の一例を示す工程図である。It is a process drawing which shows an example of the process of mounting the semiconductor element 3 on the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2からの支持体100、剥離層101除去の工程の一例を示す工程図である。It is a process drawing which shows an example of the process of removing the support 100 and the release layer 101 from the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2からの支持体100、剥離層101除去の工程の一例を示す工程図である。It is a process drawing which shows an example of the process of removing the support 100 and the release layer 101 from the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2からの支持体100、剥離層101除去の工程の一例を示す工程図である。It is a process drawing which shows an example of the process of removing the support 100 and the release layer 101 from the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第二配線基板2へのボール形成を示す工程図である。It is a process drawing which shows the ball formation on the 2nd wiring board 2 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る第一配線基板1と半導体素子3を搭載した第二配線基板2の搭載を示す工程図である。It is a process drawing which shows the mounting of the 2nd wiring board 2 which mounted the 1st wiring board 1 and the semiconductor element 3 which concerns on one Embodiment of this invention. 本発明の一実施形態に係る複合配線基板からなる半導体装置Aへの第三封止樹脂13の注入を示す工程図である。It is a process drawing which shows the injection of the 3rd sealing resin 13 into the semiconductor device A which consists of the composite wiring board which concerns on one Embodiment of this invention.

以下に、本発明の実施形態について図面を参照し説明する。本実施形態は、第一配線基板、第二配線基板を含む複合配線基板からなる半導体装置に関する。なお、この実施形態により本発明が限定されるものではない。ただし、以下に説明する各図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適宜省略する。また、各図面は説明を容易にするために適宜誇張して表現している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present embodiment relates to a semiconductor device including a first wiring board and a composite wiring board including a second wiring board. The present invention is not limited to this embodiment. However, in each of the figures described below, the parts corresponding to each other are designated by the same reference numerals, and the description below will be omitted as appropriate in the overlapping parts. In addition, each drawing is exaggerated as appropriate for ease of explanation.

図1は本発明に係る複合配線基板からなる半導体装置Aの一例を示す断面図である。 FIG. 1 is a cross-sectional view showing an example of a semiconductor device A composed of a composite wiring board according to the present invention.

本発明の一実施形態に係る複合配線基板からなる半導体装置Aは、第一配線基板1の一方の面に、有機絶縁樹脂14と銅配線で形成された第二配線基板2が搭載されており、第二配線基板2上に少なくとも一つの半導体素子3が搭載されている。第一配線基板1と第二配線基板2の配線幅の関係は、第一配線基板1>第二配線基板2であり、半導体素子3間を導通するとともに、半導体素子3の信号はFan Outする構造となる。 In the semiconductor device A composed of the composite wiring board according to the embodiment of the present invention, the second wiring board 2 formed of the organic insulating resin 14 and the copper wiring is mounted on one surface of the first wiring board 1. , At least one semiconductor element 3 is mounted on the second wiring board 2. The relationship between the wiring widths of the first wiring board 1 and the second wiring board 2 is that the first wiring board 1> the second wiring board 2 conducts between the semiconductor elements 3 and the signal of the semiconductor element 3 is Fan Out. It becomes a structure.

第二配線基板2の配線幅は、一例としてLine/Space=1/1〜5/5μmであり、第一配線基板1の線幅は、一例としてLine/Space=8/8〜25/25μmである。第二配線基板2では、少なくとも一つの搭載されている半導体素子3の信号線を引き回すことが可能ではあれば、適宜配線幅を変更して構わない。 The wiring width of the second wiring board 2 is Line / Space = 1/1 to 5/5 μm as an example, and the line width of the first wiring board 1 is Line / Space = 8/8 to 25/25 μm as an example. be. In the second wiring board 2, the wiring width may be appropriately changed as long as it is possible to route the signal lines of at least one mounted semiconductor element 3.

また、第二配線基板2に使用される有機絶縁樹脂14は感光性材料であり、感光性のエポキシ系樹脂、ポリイミド、ポリアミド系の少なくとも一種が使用されており、所望の配線幅を得ることが可能であれば、配線形成方法は、Damascene:ダマシン、SAP: Semi Additive Process等の方式から適宜プロセスを選択してよい。 Further, the organic insulating resin 14 used for the second wiring substrate 2 is a photosensitive material, and at least one of a photosensitive epoxy resin, polyimide, and polyamide is used, so that a desired wiring width can be obtained. If possible, as the wiring forming method, a process may be appropriately selected from methods such as Polyamide: Damascene and SAP: Semi Adaptive Process.

第二配線基板2の第一配線基板1への接続用電極21は第二配線基板2の有機絶縁樹脂14と面一構造となっており、第一配線基板1との接合用はんだ接合面積を確保することが容易であり、第二配線基板2と第一配線基板1との接合性を確保することが容易となる。 The connection electrode 21 of the second wiring board 2 to the first wiring board 1 has a flush structure with the organic insulating resin 14 of the second wiring board 2, and has a solder joint area for joining with the first wiring board 1. It is easy to secure, and it is easy to secure the bondability between the second wiring board 2 and the first wiring board 1.

次に、第二配線基板2に搭載された半導体素子3は、はんだ接合されており、第二配線基板2と半導体素子3の間を封止する第一封止樹脂11が充填されており、半導体素子3の側面は第一封止樹脂11とは異なる第二封止樹脂12で封止されている。 Next, the semiconductor element 3 mounted on the second wiring board 2 is solder-bonded, and is filled with the first sealing resin 11 that seals between the second wiring board 2 and the semiconductor element 3. The side surface of the semiconductor element 3 is sealed with a second sealing resin 12 different from the first sealing resin 11.

第二配線基板2と半導体素子3の間を封止する第一封止樹脂11は、第二配線基板2と半導体素子3のはんだ接合部30を保護する材料であり、液状樹脂を毛細間現象で注入するアンダーフィル材、もしくは、接合前にシート状樹脂をあらかじめ配置し接合時に空間を充填する異方性導電フィルム(ACF)または、フィルム状接続材料(NCF)や、接合前に液状の樹脂を予め配置し接合時に空間を充填する非導電ペースト(NCP)などを用いてもよい。 The first sealing resin 11 that seals between the second wiring board 2 and the semiconductor element 3 is a material that protects the solder joint portion 30 between the second wiring board 2 and the semiconductor element 3, and causes the liquid resin to form a capillary phenomenon. An anisotropic conductive film (ACF) or a film-like connecting material (NCF) in which a sheet-like resin is placed in advance to fill the space at the time of joining, or a liquid resin before joining. You may use a non-conductive paste (NCP) or the like which is arranged in advance and fills the space at the time of joining.

第一封止樹脂11の構成材料については、例えば、エポキシ樹脂、ウレタン樹脂、シリコン樹脂、ポリエステル樹脂、オキセタン樹脂、及びポリアミド樹脂の1種又はこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等が加えられた材料が用いられる。 Regarding the constituent material of the first sealing resin 11, for example, one of epoxy resin, urethane resin, silicon resin, polyester resin, oxetane resin, and polyamide resin, or a resin in which two or more of these resins are mixed is used. A material to which silica, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide or the like is added as a filler is used.

第一封止樹脂11に、弾性率が6〜11GPaの範囲であり、かつ、線膨張係数が11〜30ppm/Deg.Cの範囲の樹脂材料を用いることで、半導体素子3と第二配線基板2との線膨張係数差による応力を抑制でき、高い接合性を確保することができる。 The first sealing resin 11 has an elastic modulus in the range of 6 to 11 GPa and a linear expansion coefficient of 11 to 30 ppm / deg. By using the resin material in the range of C, the stress due to the difference in the coefficient of linear expansion between the semiconductor element 3 and the second wiring board 2 can be suppressed, and high bondability can be ensured.

半導体素子3の側面を封止する第二封止樹脂12は、第一封止樹脂11とは異なる材料であり、エポキシ樹脂、シリコン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、オキセタン樹脂の1種又はこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等が加えられた材料が使用され、コンプレッションモールド、トランスファーモールド等によって形成される。 The second sealing resin 12 that seals the side surface of the semiconductor element 3 is a material different from the first sealing resin 11, and is one of epoxy resin, silicon resin, acrylic resin, urethane resin, polyester resin, and oxetane resin. Alternatively, a material obtained by adding silica, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, or the like as a filler to a resin obtained by mixing two or more of these resins is used, and is formed by a compression mold, a transfer mold, or the like. Will be done.

また、第二封止樹脂12に、弾性率が11〜20GPaの範囲であり、かつ線膨張係数が6〜10ppm/Deg.Cの範囲の樹脂材料を用いることで第二配線基板2の反り抑制が可能となり、第一配線基板1への搭載が容易となる。 Further, the second sealing resin 12 has an elastic modulus in the range of 11 to 20 GPa and a linear expansion coefficient of 6 to 10 ppm / deg. By using the resin material in the range of C, the warp of the second wiring board 2 can be suppressed, and the mounting on the first wiring board 1 becomes easy.

第一配線基板1と第二配線基板2は、はんだ接合部31で電気的に導通しており、第一配線基板1と第二配線基板2の隙間には、第三封止樹脂13が充填され、第三封止樹脂13は第二配線基板2と第二封止樹脂12の界面を保護するように封止されている。 The first wiring board 1 and the second wiring board 2 are electrically conductive at the solder joint portion 31, and the gap between the first wiring board 1 and the second wiring board 2 is filled with the third sealing resin 13. The third sealing resin 13 is sealed so as to protect the interface between the second wiring board 2 and the second sealing resin 12.

第一配線基板1と第二配線基板2のはんだ接合部31を保護する第三封止樹脂13については、第一配線基板1と第二配線基板2の隙間にボイドなく封止することが可能であれば、第一封止樹脂11と同様の材料、同様の方式を使用しても構わない。また、第一封止樹脂11あに使用される材料の範囲内で、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等のフィラー材料の粒径、充填量を適宜変更しても構わない。 The third sealing resin 13 that protects the solder joint portion 31 of the first wiring board 1 and the second wiring board 2 can be sealed in the gap between the first wiring board 1 and the second wiring board 2 without voids. If so, the same material and the same method as the first sealing resin 11 may be used. Further, within the range of the material used for the first sealing resin 11, the particle size and filling amount of the filler material such as silica, titanium oxide, aluminum oxide, magnesium oxide, or zinc oxide as the filler are appropriately changed. It doesn't matter.

また、第三封止樹脂13に、弾性率が6〜11GPaの範囲であり、かつ、線膨張係数が11〜30ppm/Deg.Cの範囲の樹脂材料を用いることで、半導体素子3と第二配線基板2との線膨張係数差による応力を抑制でき、第二配線基板2と第一配線基板1の線膨張係数差による応力を抑制でき、高い接合信頼性を確保することが可能となる。 Further, the third sealing resin 13 has an elastic modulus in the range of 6 to 11 GPa and a linear expansion coefficient of 11 to 30 ppm / deg. By using a resin material in the range of C, the stress due to the difference in the coefficient of linear expansion between the semiconductor element 3 and the second wiring board 2 can be suppressed, and the stress due to the difference in the coefficient of linear expansion between the second wiring board 2 and the first wiring board 1 can be suppressed. Can be suppressed, and high joining reliability can be ensured.

第三封止樹脂13については、第二配線基板2と第二封止樹脂12の界面を保護するように封止形成することで、半導体素子3、第二配線基板2、第二封止樹脂12とのCTE(coefficient of thermal expansion、熱膨張率)差による応力による剥離を抑制し、高い信頼性を確保することができる。 The third sealing resin 13 is sealed so as to protect the interface between the second wiring substrate 2 and the second sealing resin 12, so that the semiconductor element 3, the second wiring substrate 2, and the second sealing resin 12 are sealed. High reliability can be ensured by suppressing peeling due to stress due to the difference in CTE (coefficient of thermal expansion, thermal expansion coefficient) from 12.

次に、図2から図6を用いて、本発明の一実施形態に係る複合基板を備える半導体装置Aの製造工程の一例を説明する。 Next, an example of a manufacturing process of the semiconductor device A including the composite substrate according to the embodiment of the present invention will be described with reference to FIGS. 2 to 6.

まず、図2Aに示すように、支持体100の一方の面に、後の工程で支持体100を剥離するために必要な剥離層101を形成する。 First, as shown in FIG. 2A, a peeling layer 101 necessary for peeling the support 100 in a later step is formed on one surface of the support 100.

剥離層101は、例えば、UV光などの光を吸収して発熱、昇華、または変質によって剥離可能となる樹脂でもよく、熱によって発泡により剥離可能となる樹脂でもよい。 The peeling layer 101 may be, for example, a resin that absorbs light such as UV light and can be peeled off by heat generation, sublimation, or alteration, or a resin that can be peeled off by foaming due to heat.

UV光などの光によって剥離可能となる樹脂を用いる場合、剥離層101を設けた側とは反対側の面から支持体100に光を照射して、第二配線基板2から、支持体100を取り去る。この場合、支持体100は、透明性を有する必要があり、例えばガラスを用いることができる。ガラスは平坦性に優れており、第二配線基板2の微細なパターン形成に向いている。また、ガラスはCTEが小さく歪みにくいことから、パターン配置精度及び平坦性の確保に優れており、半導体素子3を搭載する際に位置ズレによる接合不良の抑制が可能となる。支持体100としてガラスを用いる場合、ガラスの厚さは、製造プロセスにおける反りの発生を抑制する観点から厚い方が望ましく、例えば0.4mm以上、好ましくは1.1mm以上の厚みであるが、製造工程での搬送等を考慮すると2.0mm以下のであることが望ましい。また、ガラスのCTEは3ppm以上15ppm以下が好ましく、半導体素子3のCTEの観点から9ppm程度がより好ましい。ここでは、支持体100として、例えばガラスを用いる。 When a resin that can be peeled off by light such as UV light is used, the support 100 is irradiated with light from the surface opposite to the side on which the peeling layer 101 is provided, and the support 100 is removed from the second wiring board 2. Remove. In this case, the support 100 needs to have transparency, and glass can be used, for example. The glass has excellent flatness and is suitable for forming a fine pattern of the second wiring board 2. In addition, since glass has a small CTE and is not easily distorted, it is excellent in ensuring pattern arrangement accuracy and flatness, and it is possible to suppress bonding defects due to misalignment when mounting the semiconductor element 3. When glass is used as the support 100, the thickness of the glass is preferably thick from the viewpoint of suppressing the occurrence of warpage in the manufacturing process, for example, 0.4 mm or more, preferably 1.1 mm or more, but it is manufactured. It is desirable that it is 2.0 mm or less in consideration of transportation in the process. The CTE of the glass is preferably 3 ppm or more and 15 ppm or less, and more preferably about 9 ppm from the viewpoint of the CTE of the semiconductor element 3. Here, for example, glass is used as the support 100.

一方、剥離層101に前記熱によって発泡する樹脂を用いた場合は、歪みの少ない例えばメタルやセラミックスなどを用いることができる。 On the other hand, when the resin that foams due to heat is used for the release layer 101, for example, metal or ceramics having less distortion can be used.

本発明の一実施形態では、剥離層101としてUV光を吸収して剥離可能となる樹脂を用い、支持体100にはガラスを用いる。 In one embodiment of the present invention, a resin capable of absorbing UV light and peeling is used as the peeling layer 101, and glass is used as the support 100.

次いで、図2Bに示すように、第二配線基板2を形成するにあたり、剥離層101上にシード層102を形成する。シード層102は配線形成において、電解めっきの給電層として作用する。シード層102については、例えば、例えば、スパッタ法、またはCVD法などにより形成され、例えば、Cu、Ni、Al、Ti、Cr、Mo、W、Ta、Au、Ir、Ru、Pd、Pt、AlSi、AlSiCu、AlCu、NiFe、ITO、IZO、AZO、ZnO、PZT、TiN、Cu、これらの単独もしくは複数組み合わせたものを適用することができる。本発明では、電気特性、製造の容易性の観点およびコスト面を考慮して、チタン層、続いて銅層を順次スパッタリング法で形成する。チタンと銅層の合計の膜厚は、電解めっきの給電層として1μm以下とするのが好ましい。本発明の一実施形態ではTi:50nm、Cu:300nmを形成した。 Next, as shown in FIG. 2B, in forming the second wiring board 2, the seed layer 102 is formed on the release layer 101. The seed layer 102 acts as a feeding layer for electrolytic plating in wiring formation. The seed layer 102 is formed by, for example, a sputtering method or a CVD method, and is, for example, Cu, Ni, Al, Ti, Cr, Mo, W, Ta, Au, Ir, Ru, Pd, Pt, AlSi. it can be applied AlSiCu, AlCu, NiFe, ITO, IZO, AZO, ZnO, PZT, TiN, Cu 3 N 4, a combination of these alone or a plurality. In the present invention, the titanium layer and then the copper layer are sequentially formed by a sputtering method in consideration of electrical characteristics, ease of manufacture, and cost. The total film thickness of the titanium and copper layers is preferably 1 μm or less as the feeding layer for electrolytic plating. In one embodiment of the present invention, Ti: 50 nm and Cu: 300 nm were formed.

次に、図2Cに示すようにシード層102上に第二配線基板2を形成する。第二配線基板2の形成については、Damascene:ダマシン、SAP: Semi Additive Process等の方式から適宜プロセスを選択してよい。Damascene:ダマシン工法の場合は、有機絶縁樹脂14を積層後にフォトリソグラフィーよりパターン形成、シード形成した後に電解銅めっき処理を行う。電解銅めっき処理後は、CMP:Chemical Mechanical Polishingによって平坦化処理をおこなう。SAP工法の場合はレジスト積層し、フォトリソグラフィーよりパターン形成、電解銅めっき処理をした後にレジストパターンを除去し、有機絶縁樹脂14を積層する。第二配線基板2の層数は1層以上であり、第二配線基板2の線幅に応じて、適宜設定して構わない。本発明では、第二配線基板2の線幅はLine/Space:2/2μmとし、層数を4層とし、SAP工法で形成している。 Next, as shown in FIG. 2C, the second wiring board 2 is formed on the seed layer 102. For the formation of the second wiring board 2, a process may be appropriately selected from methods such as Damascene: Damascene and SAP: Semi Adaptive Process. Damascene: In the case of the damascene method, after laminating the organic insulating resin 14, pattern formation is performed by photolithography, seed formation is performed, and then electrolytic copper plating treatment is performed. After the electrolytic copper plating treatment, a flattening treatment is performed by CMP: Chemical Mechanical Polishing. In the case of the SAP method, resists are laminated, a pattern is formed by photolithography, electrolytic copper plating is performed, the resist pattern is removed, and the organic insulating resin 14 is laminated. The number of layers of the second wiring board 2 is one or more, and may be appropriately set according to the line width of the second wiring board 2. In the present invention, the line width of the second wiring board 2 is Line / Space: 2/2 μm, the number of layers is 4, and the second wiring board 2 is formed by the SAP method.

有機絶縁樹脂14は、感光性のエポキシ系樹脂、ポリイミド、ポリアミド系の少なくとも一つの材料を用いて、スピンコート法により形成する。本実施形態では、有機絶縁樹脂14として例えば、感光性のエポキシ系樹脂をスピンコート法により形成する。感光性のエポキシ樹脂は比較的低温で硬化することができ、形成後の硬化による収縮が少ないため、その後の微細パターン形成に優れる。 The organic insulating resin 14 is formed by a spin coating method using at least one photosensitive epoxy resin, polyimide, or polyamide material. In the present embodiment, for example, a photosensitive epoxy resin is formed as the organic insulating resin 14 by a spin coating method. The photosensitive epoxy resin can be cured at a relatively low temperature, and shrinkage due to curing after formation is small, so that it is excellent in subsequent fine pattern formation.

有機絶縁樹脂14としては、感光性のエポキシ系樹脂を用いてスピンコート法により形成する他、絶縁樹脂フィルムを、真空ラミネータを用いて、真空下で加熱・加圧を行って形成することも可能であり、この場合は平坦性の良い絶縁膜を形成することができる。 The organic insulating resin 14 can be formed by a spin coating method using a photosensitive epoxy resin, or can also be formed by heating and pressurizing an insulating resin film under a vacuum using a vacuum laminator. In this case, an insulating film having good flatness can be formed.

第二配線基板2の半導体素子搭載用電極20については、必要層数を形成後に表面処理を実施することにより形成できる。表面処理については、電解めっきとして、Sn、SnAg、Ni/Sn、Ni/SnAg、Ni/Cu/Sn、Ni/Cu/SnAg、Ni/Au、Ni/Pd/Au、無電解めっきとしてはOSP(Organic Solderability Preservative、水溶性プレフラックス)による表面処理、Ni/Au、Ni/Pd/Au、錫等の表面処理を、半導体素子3の接続端子のはんだ種にあわせて、適宜実施して良い。本発明では電解Ni/SnAg処理を使用している。 The semiconductor element mounting electrode 20 of the second wiring board 2 can be formed by performing surface treatment after forming the required number of layers. Regarding the surface treatment, Sn, SnAg, Ni / Sn, Ni / SnAg, Ni / Cu / Sn, Ni / Cu / SnAg, Ni / Au, Ni / Pd / Au as electrolytic plating, and OSP (OSP) as electroless plating. Surface treatment by Organic Copperlicity Presservative (water-soluble preflux) and surface treatment of Ni / Au, Ni / Pd / Au, tin, etc. may be appropriately performed according to the solder type of the connection terminal of the semiconductor element 3. In the present invention, electrolytic Ni / SnAg treatment is used.

次に図3A〜図3Cに示す半導体素子3の搭載工程を説明する。 Next, the mounting process of the semiconductor element 3 shown in FIGS. 3A to 3C will be described.

図3Aに示す、第二配線基板2への半導体素子3の搭載は、マウント&リフロー、TCB(Thermal Compression Bonding)などを利用して行う。TCBについては、はんだ接合後に第一封止樹脂11を毛細間現象で注入するTC−CUF、NCP:Non Conductive Pasteを載せいてから半導体素子3を搭載するTC−NCP、半導体素子3にフィルム状の樹脂を先乗せしてから、第二配線基板2とはんだ接合を行うTC−NCF、TC−ACF方式がある。 The semiconductor element 3 is mounted on the second wiring board 2 shown in FIG. 3A by using mount & reflow, TCB (Thermal Compression Bonding), or the like. Regarding TCB, TC-CUF in which the first sealing resin 11 is injected by a capillary phenomenon after solder bonding, TC-NCP on which the semiconductor element 3 is mounted after mounting NCP: Non Conducive Paste, and film-like on the semiconductor element 3. There are TC-NCF and TC-ACF methods in which the resin is first placed and then soldered to the second wiring board 2.

本発明では、図3Bに示すように、はんだ接合後に第一封止樹脂11を毛細間現象で注入するTC−CUFを使用している。半導体素子3の搭載方法については、半導体素子3のサイズ、搭載に使用する設備の観点から、適宜変更しても良い。ただし、第二配線基板2と、半導体素子3の接合ピッチがファインである場合、TCBのいずれかを選択することが好ましい。 In the present invention, as shown in FIG. 3B, TC-CUF is used in which the first sealing resin 11 is injected by a capillary phenomenon after solder joining. The mounting method of the semiconductor element 3 may be appropriately changed from the viewpoint of the size of the semiconductor element 3 and the equipment used for mounting. However, when the bonding pitch between the second wiring board 2 and the semiconductor element 3 is fine, it is preferable to select either TCB.

次に、図3Cに示すように、半導体素子3の側面を保護するために第二封止樹脂12で封止を行う。第二封止樹脂12で使用される材料は、顆粒、液状、タブレット形状であり、エポキシ樹脂、シリコン樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、オキセタン樹脂の1種又はこれらの樹脂の2種類以上が混合された樹脂に、フィラーとしてのシリカ、酸化チタン、酸化アルミニウム、酸化マグネシウム、又は酸化亜鉛等が加えられた材料が使用されおり、コンプレッションモールド、もしくはトランスファーモールドによって形成される。樹脂形状、組成、形成方法については、支持体100への第二配線基板2の面付によって、適宜設定して構わない。本発明では、液状のエポキシ樹脂を使用し、コンプレッションモールドで成形している。 Next, as shown in FIG. 3C, sealing is performed with the second sealing resin 12 in order to protect the side surface of the semiconductor element 3. The material used in the second sealing resin 12 is a granule, a liquid, or a tablet shape, and is one kind of epoxy resin, silicon resin, acrylic resin, urethane resin, polyester resin, oxetane resin, or two or more kinds of these resins. A material in which silica, titanium oxide, aluminum oxide, magnesium oxide, zinc oxide, or the like as a filler is added to the resin mixed with the above is used, and is formed by a compression mold or a transfer mold. The resin shape, composition, and forming method may be appropriately set depending on the imposition of the second wiring board 2 on the support 100. In the present invention, a liquid epoxy resin is used and molded by a compression mold.

次に、図3Dに示すように第二封止樹脂12で封止した第二配線基板2に対し、半導体素子3の上面の第二封止樹脂12を除去する。半導体素子3上の第二封止樹脂12があると第二封止樹脂12のCTEの影響により反りの発生、場合によって、第二配線基板2と第二封止樹脂12の界面で剥離が発生する可能性がある。半導体素子3上の第二封止樹脂12の除去はCMP、グラインド加工等によって除去を行う。本発明ではグラインド加工によって半導体素子3上の第二封止樹脂12の除去を行っている。 Next, as shown in FIG. 3D, the second sealing resin 12 on the upper surface of the semiconductor element 3 is removed from the second wiring board 2 sealed with the second sealing resin 12. If there is a second sealing resin 12 on the semiconductor element 3, warpage occurs due to the influence of the CTE of the second sealing resin 12, and in some cases, peeling occurs at the interface between the second wiring substrate 2 and the second sealing resin 12. there's a possibility that. The second sealing resin 12 on the semiconductor element 3 is removed by CMP, grind processing, or the like. In the present invention, the second sealing resin 12 on the semiconductor element 3 is removed by grind processing.

次に、図4A〜図4Cに示す、支持体100、並びに剥離層101、シード層102の除去工程について説明する。 Next, the steps of removing the support 100, the release layer 101, and the seed layer 102 shown in FIGS. 4A to 4C will be described.

図4Aに示すように、支持体100の除去については、第二配線基板2とは対となる面より、レーザ光103を剥離層101に照射する。レーザ光103により剥離層101は支持体との密着性が低下し図4Bに示すように、支持体100の除去が可能となる。 As shown in FIG. 4A, for the removal of the support 100, the release layer 101 is irradiated with the laser beam 103 from the surface paired with the second wiring board 2. The laser beam 103 reduces the adhesion of the release layer 101 to the support, and as shown in FIG. 4B, the support 100 can be removed.

次に、剥離層101をドライエッチング、溶剤洗浄、超音波洗浄等によって除去する。ドライエッチングを使用する場合、使用するガスはO、Ar、CF等のガス種を少なくとも一種のガスを使用しエッチングを行う。溶剤洗浄の場合は、アセトン、トルエン、MEK、メタノール等の溶剤を使用する。超音波洗浄の場合は、発振周波数28kHz〜1MHzの範囲で除去を行う。剥離層101の除去については、これらの除去方法をいずれか一つ以上を組み合わせて行ってもよい。 Next, the release layer 101 is removed by dry etching, solvent cleaning, ultrasonic cleaning, or the like. When dry etching is used, etching is performed using at least one type of gas such as O 2 , Ar, and CF 4 as the gas to be used. In the case of solvent cleaning, a solvent such as acetone, toluene, MEK, and methanol is used. In the case of ultrasonic cleaning, removal is performed in the oscillation frequency range of 28 kHz to 1 MHz. Regarding the removal of the release layer 101, any one or more of these removal methods may be combined.

シード層102の除去について説明する。本発明の実施形態では、剥離層101側から順にチタンと銅を用いており、それぞれアルカリ系のエッチング剤と、酸系のエッチング剤にて溶解除去することで、図4Cに示すように第一配線基板1との接続用電極21を露出させることが可能となる。 The removal of the seed layer 102 will be described. In the embodiment of the present invention, titanium and copper are used in order from the release layer 101 side, and by dissolving and removing them with an alkaline etching agent and an acid etching agent, respectively, as shown in FIG. 4C, the first The connection electrode 21 with the wiring board 1 can be exposed.

次に図5に示すように、第一配線基板1との接続用電極21上に、はんだ形成を行う。はんだ形成については、第一配線基板1との接続用電極21に無電解めっき処理にてOSP(Organic Solderability Preservative 水溶性プレフラックスによる表面処理)膜、Ni/Au、Ni/Pd/Au、錫を形成した後にフラックス印刷をし、はんだボールを搭載しリフロー、もしくは電解めっき処理でSn、SnAg、Ni/Sn、Ni/SnAg、Ni/Cu/Sn、Ni/Cu/SnAg、Snフラックスを印刷した後にはんだボールを搭載する方法、もしくは、電解めっき処理にてSn、SnAg、Ni/Sn、Ni/SnAg、Ni/Cu/Sn、Ni/Cu/SnAgを形成してリフロー、または、直接印刷ではんだペーストを印刷しリフローを行う方法がある。本発明の実施形態では、無電解めっき処理にてフラックス印刷をし、はんだボールを搭載しリフローを行っている。 Next, as shown in FIG. 5, solder is formed on the connection electrode 21 with the first wiring board 1. For solder formation, the connection electrode 21 with the first wiring substrate 1 is subjected to electroless plating treatment to apply an OSP (Organic Copperlicity Preservative) film, Ni / Au, Ni / Pd / Au, and tin. After forming, flux printing is performed, solder balls are mounted, and after printing Sn, SnAg, Ni / Sn, Ni / SnAg, Ni / Cu / Sn, Ni / Cu / SnAg, Sn flux by reflow or electrolytic plating. Solder paste by forming solder balls or forming Sn, SnAg, Ni / Sn, Ni / SnAg, Ni / Cu / Sn, Ni / Cu / SnAg by electrolytic plating, or by direct printing. There is a method of printing and reflowing. In the embodiment of the present invention, flux printing is performed by electroless plating, and solder balls are mounted to perform reflow.

ボール搭載後の第二配線基板2については、ウエハ、もしくはパネル形状より、ピースサイズに個片化を行う。個片化方式についてはブレードダイシング、レーザダイシング、プラズマダイシング等の方式が挙げられるが、方式については適宜設定して良い。本発明では、ブレードダイシングを使用しピースサイズに個片化を行っている。 The second wiring board 2 after the balls are mounted is individualized to a piece size based on the shape of the wafer or the panel. Examples of the individualization method include blade dicing, laser dicing, plasma dicing, and the like, but the method may be appropriately set. In the present invention, blade dicing is used to separate pieces into piece sizes.

次に図6に示す、第一配線基板1と半導体素子3を搭載した第二配線基板2の搭載について説明をする。第一配線基板1と半導体素子3を搭載した第二配線基板2の搭載はマウント&リフロー、TCBなどを使用して搭載する。TCBについては、はんだ接合後に第一封止樹脂11を毛細間現象で注入するTC−CUF、NCP:Non Conductive Pasteを載せいてから半導体素子3を搭載するTC−NCP、半導体素子3にフィルム状の樹脂を先乗せしてから、第二配線基板2とはんだ接合を行うTC−NCF、TC−ACF方式がある。 Next, mounting of the second wiring board 2 on which the first wiring board 1 and the semiconductor element 3 are mounted, which is shown in FIG. 6, will be described. The second wiring board 2 on which the first wiring board 1 and the semiconductor element 3 are mounted is mounted by using mount & reflow, TCB, or the like. Regarding TCB, TC-CUF in which the first sealing resin 11 is injected by a capillary phenomenon after solder bonding, TC-NCP on which the semiconductor element 3 is mounted after mounting NCP: Non Conducive Paste, and film-like on the semiconductor element 3. There are TC-NCF and TC-ACF methods in which the resin is first placed and then soldered to the second wiring board 2.

本発明の実施形態では、第一配線基板1に、半導体素子3を搭載した第二配線基板2を搭載しマウント&リフロー方式で第一配線基板1と半導体素子3を搭載した第二配線基板2とのはんだ接合を行い、図7に示すように第三封止樹脂13を毛細管現象で第一配線基板1と第二配線基板2の隙間に注入することで、複合配線基板を備える半導体装置Aを得ることができる。 In the embodiment of the present invention, the second wiring board 2 on which the semiconductor element 3 is mounted is mounted on the first wiring board 1, and the second wiring board 2 on which the first wiring board 1 and the semiconductor element 3 are mounted by the mount & reflow method. As shown in FIG. 7, the semiconductor device A provided with the composite wiring board is formed by injecting the third sealing resin 13 into the gap between the first wiring board 1 and the second wiring board 2 by a capillary phenomenon. Can be obtained.

以上、本発明の一実施形態を例示したが、本発明は上記実施形態に限定されたものではなく、本発明の実施形態の技術的思想が逸脱しない限り、配線基板としての用途を考慮し、要求される他の物性である剛性、強度、耐衝撃性などを向上する目的で、他の層や構造を任意に形成できることはいうまでもない。 Although one embodiment of the present invention has been illustrated above, the present invention is not limited to the above embodiment, and as long as the technical idea of the embodiment of the present invention is not deviated, the use as a wiring substrate is considered. Needless to say, other layers and structures can be arbitrarily formed for the purpose of improving other required physical properties such as rigidity, strength, and impact resistance.

本発明によれば、平滑性の高い配線基板上に半導体素子を実装でき、支持基板の剥離時の不具合を避けることが可能となる。また、半導体素子と第二配線基板は一括で第一配線基板に搭載できることから、実装工程での収率を向上させることができ、安価に提供することが可能となる。 According to the present invention, the semiconductor element can be mounted on a wiring board having high smoothness, and it is possible to avoid a defect at the time of peeling of the support board. Further, since the semiconductor element and the second wiring board can be mounted on the first wiring board at once, the yield in the mounting process can be improved and the second wiring board can be provided at low cost.

本発明は、複合配線基板を備えた半導体装置及びその製造方法として利用できる。 The present invention can be used as a semiconductor device provided with a composite wiring board and a method for manufacturing the same.

A : 複合配線基板からなる半導体装置
1 : 第一配線基板(FC−BGA)
2 : 第二配線基板(インターポーザ)
3 : 半導体素子
11 : 第一封止樹脂
12 : 第二封止樹脂
13 : 第三封止樹脂
14 : 有機絶縁樹脂材料
20 : 半導体素子搭載用電極
21 : 第一配線基板接合用電極
30 : はんだ接合部
31 : はんだ接合部
100: 支持体
101: 剥離層
102: シード層
103: レーザ光
A: Semiconductor device consisting of a composite wiring board 1: First wiring board (FC-BGA)
2: Second wiring board (interposer)
3: Semiconductor element 11: First sealing resin 12: Second sealing resin 13: Third sealing resin 14: Organic insulating resin material 20: Electrode for mounting semiconductor element 21: Electrode for joining first wiring board 30: Solder Joint portion 31: Solder joint portion 100: Support 101: Release layer 102: Seed layer 103: Laser light

Claims (7)

第一配線基板と、
前記第一配線基板の主面上に搭載され、前記第一配線基板とは逆側の面に半導体素子実装用のパッドを有する第二配線基板と、
前記第二配線基板上に搭載された少なくとも1つの半導体素子とを備え、
前記第一配線基板と前記第二配線基板の配線層は1層以上で、有機絶縁樹脂と銅配線で構成されており、
前記第一配線基板の配線幅が、前記第二配線基板の配線幅より大きく、
前記第二配線基板と前記半導体素子の間に第一封止樹脂が充填されており、前記半導体素子の側面は前記第一封止樹脂とは異なる第二封止樹脂で封止されており、
前記第一配線基板と前記第二配線基板は、はんだ接合で電気的に導通しており、
前記第一配線基板と前記第二配線基板の間には、第三封止樹脂が充填され、
前記第三封止樹脂は前記第二配線基板と前記第二封止樹脂の界面を保護するように封止されていることを特徴とする、半導体装置。
The first wiring board and
A second wiring board mounted on the main surface of the first wiring board and having a pad for mounting a semiconductor element on the surface opposite to the first wiring board.
It is provided with at least one semiconductor element mounted on the second wiring board.
The wiring layer of the first wiring board and the second wiring board is one or more layers, and is composed of an organic insulating resin and copper wiring.
The wiring width of the first wiring board is larger than the wiring width of the second wiring board.
The first sealing resin is filled between the second wiring board and the semiconductor element, and the side surface of the semiconductor element is sealed with a second sealing resin different from the first sealing resin.
The first wiring board and the second wiring board are electrically conductive by solder joining.
A third sealing resin is filled between the first wiring board and the second wiring board.
A semiconductor device, wherein the third sealing resin is sealed so as to protect the interface between the second wiring board and the second sealing resin.
前記第一封止樹脂及び前記第三封止樹脂の弾性率は6〜11GPaの範囲であり、かつ、線膨張係数は11〜30ppm/Deg.Cの範囲であり、前記第二封止樹脂の弾性率は11〜20GPaの範囲であり、かつ線膨張係数は6〜10ppm/Deg.Cの範囲であることを特徴とする、請求項1に記載の半導体装置。 The elastic modulus of the first sealing resin and the third sealing resin is in the range of 6 to 11 GPa, and the coefficient of linear expansion is 11 to 30 ppm / Deg. It is in the range of C, the elastic modulus of the second sealing resin is in the range of 11 to 20 GPa, and the coefficient of linear expansion is 6 to 10 ppm / Deg. The semiconductor device according to claim 1, wherein the semiconductor device is in the range of C. 前記第二配線基板に設けられる、前記第一配線基板との接合用の電極は、前記第二配線基板の有機絶縁樹脂と面一構造となっていることを特徴とする、請求項1または2に記載の半導体装置。 Claim 1 or 2 characterized in that the electrode for joining to the first wiring board provided on the second wiring board has a flush structure with the organic insulating resin of the second wiring board. The semiconductor device described in 1. 前記第一配線基板はFC−BGA用配線基板であり、前記第二基板はインターポーザであることを特徴とする、請求項1〜3のいずれかに記載の複合配線基板からなる半導体装置。 The semiconductor device according to any one of claims 1 to 3, wherein the first wiring board is a wiring board for FC-BGA, and the second board is an interposer. ビルドアップ基板からなる第一配線基板と、前記第一配線基板と接合される第二配線基板とを備える半導体装置の製造方法であって、
支持体の主面上に剥離層を形成し、前記剥離層上に前記第一配線基板と接合するための電極を含む配線層を形成する工程と、半導体素子と電気的に接合するための電極を形成する工程と、を含む前記第二配線基板を形成する工程と、
前記第二配線基板上に少なくとも一つの半導体素子を搭載する工程と、前記第二配線基板と半導体素子の間を第一封止樹脂で封止する工程と、
前記第二配線基板と半導体素子を第二封止樹脂で封止する工程と、
前記第二配線基板の支持体及び剥離層を除去する工程と、
前記第一配線基板との接合面の電極にはんだを形成する工程と、第二配線基板を個片化する工程と
前記第一配線基板を前記第二配線基板にはんだ接続する工程と、
前記第一配線基板と前記第二配線基板の間に第三封止樹脂を充填する工程とを含むことを特徴とする、半導体装置の製造方法。
A method for manufacturing a semiconductor device including a first wiring board made of a build-up board and a second wiring board joined to the first wiring board.
A step of forming a release layer on the main surface of the support and forming a wiring layer on the release layer including an electrode for joining with the first wiring substrate, and an electrode for electrically joining with a semiconductor element. And the step of forming the second wiring substrate including
A step of mounting at least one semiconductor element on the second wiring board, and a step of sealing between the second wiring board and the semiconductor element with the first sealing resin.
The process of sealing the second wiring board and the semiconductor element with the second sealing resin,
The step of removing the support and the peeling layer of the second wiring board, and
A step of forming solder on an electrode on a joint surface with the first wiring board, a step of disassembling the second wiring board, and a step of soldering the first wiring board to the second wiring board.
A method for manufacturing a semiconductor device, which comprises a step of filling a third sealing resin between the first wiring board and the second wiring board.
前記支持体の厚みが0.4mm以上、2.0mm以下であることを特徴とする、請求項5に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 5, wherein the thickness of the support is 0.4 mm or more and 2.0 mm or less. 前記支持体がガラスであることを特徴とする、請求項5または6に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 5 or 6, wherein the support is made of glass.
JP2020056293A 2020-03-26 2020-03-26 Semiconductor device and method for manufacturing semiconductor device Pending JP2021158200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020056293A JP2021158200A (en) 2020-03-26 2020-03-26 Semiconductor device and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056293A JP2021158200A (en) 2020-03-26 2020-03-26 Semiconductor device and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2021158200A true JP2021158200A (en) 2021-10-07

Family

ID=77918293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056293A Pending JP2021158200A (en) 2020-03-26 2020-03-26 Semiconductor device and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2021158200A (en)

Similar Documents

Publication Publication Date Title
JP2004335641A (en) Method of manufacturing substrate having built-in semiconductor element
JPWO2018047861A1 (en) Wiring board and method of manufacturing wiring board
JP2022040197A (en) Manufacturing method of wiring board
US20230395395A1 (en) Board unit with support, board unit, and method of producing board unit with support
JP7351107B2 (en) Wiring board and wiring board manufacturing method
WO2020090601A1 (en) Semiconductor packaging wiring substrate and method of manufacturing semiconductor packaging wiring substrate
JP2021125565A (en) Wiring board and method for manufacturing wiring board
JP2021114534A (en) Wiring board and manufacturing method for wiring board
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP7472484B2 (en) Composite wiring board and method for manufacturing the same
JP2021158200A (en) Semiconductor device and method for manufacturing semiconductor device
JP7052464B2 (en) Manufacturing method of coreless substrate with fine wiring layer and manufacturing method of semiconductor package
US11974404B2 (en) Method of producing circuit boards
JP2020202343A (en) Wiring board and method for manufacturing the same
JP2020077696A (en) Wiring board and semiconductor device using the same
JP2021190473A (en) Substrate unit, manufacturing method thereof, and manufacturing method of semiconductor device
JP7087369B2 (en) Manufacturing method of carrier substrate with fine wiring layer and semiconductor package substrate with fine wiring layer
JP2021197484A (en) Wiring board with support, wiring board and semiconductor device
JP2020191397A (en) Composite wiring board and method for manufacturing the same
JP2022092505A (en) Substrate unit, manufacturing method for the same, and manufacturing method for semiconductor device
US20230254983A1 (en) Wiring board and method of producing wiring board
JP2021158306A (en) Wiring board and manufacturing method thereof
JP2021125507A (en) Wiring board and method for manufacturing wiring board
JP2021197403A (en) Multilayer wiring board and manufacturing method of the same
JP2020191380A (en) Method for manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325