JP2021156220A - ターボ圧縮機およびこれを備えたターボ冷凍機 - Google Patents

ターボ圧縮機およびこれを備えたターボ冷凍機 Download PDF

Info

Publication number
JP2021156220A
JP2021156220A JP2020057837A JP2020057837A JP2021156220A JP 2021156220 A JP2021156220 A JP 2021156220A JP 2020057837 A JP2020057837 A JP 2020057837A JP 2020057837 A JP2020057837 A JP 2020057837A JP 2021156220 A JP2021156220 A JP 2021156220A
Authority
JP
Japan
Prior art keywords
magnetic bearing
casing
refrigerant
cooling
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020057837A
Other languages
English (en)
Inventor
泰士 長谷川
Hiroshi Hasegawa
泰士 長谷川
直樹 八幡
Naoki Hachiman
直樹 八幡
貴夫 桜井
Takao Sakurai
貴夫 桜井
泰憲 時政
Yasunori Tokimasa
泰憲 時政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2020057837A priority Critical patent/JP2021156220A/ja
Publication of JP2021156220A publication Critical patent/JP2021156220A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】簡便な構造で磁気軸受駆動基板を適正な温度で冷却することができるターボ圧縮機を提供する。【解決手段】ターボ圧縮機3は、冷媒を圧縮する羽根車と、羽根車を回転させる軸部と、軸部を回転駆動する電動モータと、電動モータを収容するケーシング12と、ケーシング12内に冷却用の冷媒を導く冷却用冷媒供給部と、軸部のラジアル方向及びスラスト方向を支持する磁気軸受と、磁気軸受を駆動する電子部品を有する磁気軸受駆動基板35と、を備えている。磁気軸受駆動基板35は、ケーシング12の外部に取り付けられている。【選択図】図3

Description

本開示は、磁気軸受を備えたターボ圧縮機およびこれを備えたターボ冷凍機に関するものである。
電動モータで羽根車を駆動する圧縮機を備えたターボ冷凍機が知られている。この種のターボ冷凍機では、電動モータを駆動するインバータを冷却するために、冷媒を用いて冷却することが下記特許文献1及び2に開示されている。
特開2012−149835号公報 特開2013−213670号公報
一方、羽根車を回転させる軸部のラジアル方向やスラスト方向を支持するために、磁気軸受が用いられることがある。磁気軸受を駆動する電子部品を備えた駆動基板は、発熱体となるため冷却する必要がある。駆動基板を冷却する場合、各上記特許文献のように冷媒を用いて冷却することが考えられる。しかし、冷媒による冷却では、過剰に冷却して電子部品に結露が生じてしまうおそれがある。
また、駆動基板を送風機によって冷却することが考えられる。しかし、送風機のメンテナンス等が必要となるという問題がある。
また、十分な放熱面積を確保して自然対流によって駆動基板を冷却することが考えられる。しかし、構造が大型化してしまうという問題がある。
本開示は、このような事情に鑑みてなされたものであって、簡便な構造で磁気軸受駆動基板を適正な温度で冷却することができるターボ圧縮機およびこれを備えたターボ冷凍機を提供することを目的とする。
本開示の一態様に係るターボ圧縮機は、冷媒を圧縮する羽根車と、前記羽根車を回転させる軸部と、前記軸部を回転駆動する電動モータと、前記電動モータを収容するケーシングと、前記ケーシング内に冷却用の冷媒を導く冷却用冷媒供給部と、前記軸部のラジアル方向及び/又はスラスト方向を支持する磁気軸受と、前記磁気軸受を駆動する電子部品を有する磁気軸受駆動基板と、を備え、前記磁気軸受駆動基板は、前記ケーシングの外部に取り付けられている。
ターボ圧縮機の羽根車を駆動する電動モータは、ケーシング内に導かれる冷却用冷媒によって冷却される。これに伴い、電動モータを収容するケーシングも冷却用冷媒によって冷却される。このケーシングの外部に、磁気軸受を駆動する磁気軸受駆動基板を取り付けることとした。これにより、発熱量が電動モータほど大きくない磁気軸受駆動基板であっても適切に冷却することができる。また、ケーシングをヒートシンクとして用いることとしたので、磁気軸受駆動基板を冷却するための特別な冷却装置を設ける必要がないので、簡便な構造でかつ安価に構成することができる。
特に、磁気軸受駆動基板がケーシングの外部に取り付けられていても、ケーシングは電動モータほど冷却されないので、磁気軸受駆動基板が結露することを抑制することができる。
さらに、本開示の一態様に係るターボ圧縮機では、前記磁気軸受駆動基板の発熱量は、前記電動モータの発熱量の10分の1以下とされている。
磁気軸受駆動基板の発熱量は電動モータの発熱量の10分の1以下とされているので、ケーシングの外部に取り付けることによって適切に冷却することができる。例えば、磁気軸受駆動基板の発熱量は、100W以上300W以下とされる。より好ましくは、磁気軸受駆動基板の発熱量は電動モータの発熱量の15分の1以下とされる。また、例えば、磁気軸受駆動基板の発熱量は電動モータの発熱量の40分の1以上とされる。
さらに、本開示の一態様に係るターボ圧縮機では、前記冷却用冷媒供給部からガス冷媒が供給される。
冷却用冷媒供給部からガス冷媒を供給することとしたので、液冷媒を供給する場合に比べて過剰に冷却するおそれがない。したがって、磁気軸受駆動基板を過剰に冷却して結露させることを可及的に回避することができる。
なお、ケーシングが過剰に冷却されないように、ケーシングを冷却する冷媒としてガス冷媒を用い、多くの冷却量を必要とする電動モータには液冷媒を供給するようにしても良い。
さらに、本開示の一態様に係るターボ圧縮機では、前記冷却用冷媒供給部へ供給する冷媒流量を調整する冷却用冷媒調整弁と、前記ケーシングの温度を計測するケーシング温度センサと、前記ケーシング温度センサの出力に基づいて前記冷却用冷媒調整弁を制御する制御部と、を備えている。
ケーシング温度に基づいて冷却用冷媒の流量を調整することとした。これにより、磁気軸受駆動基板が結露する温度まで低下しないようにケーシング温度を制御することができる。
さらに、本開示の一態様に係るターボ圧縮機では、前記電動モータのコイルの温度を計測する電動モータコイル温度センサと、前記磁気軸受のコイルの温度を計測する磁気軸受コイル温度センサと、を備え、前記制御部は、前記電動モータコイル温度センサ及び前記磁気軸受コイル温度センサの出力に基づいて、前記冷却用冷媒調整弁を制御する。
電動モータコイル温度センサ及び磁気軸受コイル温度センサの出力に基づいて冷却用冷媒調整弁を制御することとした。これにより、磁気軸受駆動基板の結露を抑制しつつ、電動モータ及び磁気軸受の過熱を抑制することができる。
また、本開示の一態様に係るターボ冷凍機は、上記のいずれかに記載のターボ圧縮機と、前記ターボ圧縮機から吐出された冷媒を凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁から導かれた冷媒を蒸発させる蒸発器と、を備えている。
電動モータを収容するケーシングをヒートシンクとして用いることとしたので、簡便な構造で磁気軸受駆動基板を適正な温度で冷却することができる。
本開示の一実施形態に係るターボ冷凍機を示した概略構成図である。 図1のターボ圧縮機を示した側断面図である。 図1のターボ圧縮機の側面図である。 図3のターボ圧縮機の背面図である。 図1の変形例1を示した概略構成図である。 図1の変形例2を示した概略構成図である。 図1の変形例3を示した概略構成図である。
以下に、本開示に係る一実施形態について、図面を参照して説明する。
図1には、ターボ冷凍機1の概略構成が示されている。
ターボ冷凍機1は、冷媒を圧縮するターボ圧縮機3と、ターボ圧縮機3によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器5と、凝縮器5からの液冷媒を膨張させる膨張弁7と、膨張弁7によって膨張させられた液冷媒を蒸発させる蒸発器9とを備えている。
ターボ圧縮機3は、2つの羽根車13a,13bを備えた遠心式の2段圧縮機であり、図示しないインバータ装置によって回転数制御された電動モータ10によって駆動される。インバータ装置は、図示しない制御部によってその出力が制御されている。なお、羽根車の数は限定されるものではなく、羽根車を1つとして1段圧縮機としても良い。
ターボ圧縮機3の羽根車13a,13bの冷媒吸入口には、吸入冷媒流量を制御するインレットガイドベーン(図示せず)が設けられており、ターボ冷凍機1の容量制御が可能となっている。
ターボ圧縮機3及び電動モータ10は、ケーシング12内に密閉状態で収容されている。ケーシング12は、例えばアルミ系合金等の金属製とされている。ケーシング12は、メンテナンス等のために開閉可能となっている。このように、ターボ圧縮機3は、密閉開放可能なケーシング12内に電動モータ10と共に収容された半密閉式電動圧縮機となっている。したがって、冷媒は、ケーシング12内を流れることができるようになっている。具体的には、凝縮器5から冷却用冷媒供給配管(冷却用冷媒供給部)14を介して、例えばケーシング12の上方からケーシング12内へ供給されるようになっている。冷却用冷媒供給配管14には、冷却用冷媒調整弁16が設けられている。冷却用冷媒調整弁16の開度は、図示しない制御部によって制御される。ケーシング12内で各発熱部の冷却を終えた冷媒は、例えばケーシング12の下方から冷却用冷媒戻り配管18を介して蒸発器9へと戻される。
電動モータ10は、中心軸周りに回転するロータ20と、このロータ20の周囲に所定のギャップを有して設けられた概略円筒形状のステータ22とを備えている。ロータ20の回転出力は、回転シャフト(軸部)24を介して羽根車13a,13bへと伝達される。
凝縮器5では、ターボ圧縮機3から導かれた高温高圧の冷媒が凝縮する。凝縮器5には、冷媒を冷却するための冷却水が流れる冷却伝熱管26が挿通されている。冷却水は、図示しない冷却塔において外部へと排熱された後に、再び凝縮器5へと導かれるようになっている。
蒸発器9には、膨張弁7で絞られた冷媒が導かれ、内部で蒸発する。蒸発器9において吸熱されることによって定格温度(例えば7℃)の冷水が得られる。蒸発器9には、外部負荷へ供給される冷水を冷却するための冷水伝熱管28が挿通されている。
図2には、ターボ圧縮機3の具体的構成が示されている。ターボ圧縮機3の回転シャフト24は、磁気軸受30によって回転自在に支持されている。
電動モータ10の羽根車13a,13b側には、磁気軸受30の第1ラジアル磁気軸受コイル30aが設けられ、電動モータ10の羽根車13a,13bとは反対側には、磁気軸受30の第2ラジアル磁気軸受コイル30bが設けられている。第1ラジアル磁気軸受コイル30a及び第2ラジアル磁気軸受コイル30bによって、回転シャフト24のラジアル方向が支持されている。
第1ラジアル磁気軸受コイル30aには、第1ラジアル磁気軸受コイル30aの温度を計測する第1コイル温度センサTc1が設けられている。第1コイル温度センサTc1の出力は、制御部へと送られる。
第2ラジアル磁気軸受コイル30bには、第2ラジアル磁気軸受コイル30bの温度を計測する第2コイル温度センサTc2が設けられている。第2コイル温度センサTc2の出力は、制御部へと送られる。
第1ラジアル磁気軸受コイル30aの電動モータ10側には、回転シャフト24と第1ラジアル磁気軸受コイル30aとの間の間隔(ギャップ)を計測する第1ギャップセンサG1が設けられている。第1ギャップセンサG1の出力は、制御部へと送られる。
第2ラジアル磁気軸受コイル30bの電動モータ10側には、回転シャフト24と第2ラジアル磁気軸受コイル30bとの間の間隔(ギャップ)を計測する第2ギャップセンサG2が設けられている。第2ギャップセンサG2の出力は、制御部へと送られる。
第1ラジアル磁気軸受コイル30aと羽根車13a,13bとの間には、第1補助ベアリング32aが設けられている。第2ラジアル磁気軸受コイル30bの羽根車13a,13bとは反対側には、第2補助ベアリング32bが設けられている。第1補助ベアリング32a及び第2補助ベアリング32bは、例えば玉軸受とされており、磁気軸受30が正常に駆動されている場合には回転シャフト24に対して所定のクリアランスが設けられている。これら補助ベアリング32a,32bは、トラブル等によって磁気軸受30が駆動していない場合に回転シャフト24に接触して回転自在に支持するものである。
回転シャフト24の羽根車13a,13bとは反対側の端部(図2において左端)には、円板24aが固定されている。円板24aの両側には、複数対のスラスト磁気軸受コイル30cが設けられている。複数対のスラスト磁気軸受コイル30cによって円板24aが浮上した状態でスラスト方向の位置決めがなされる。これにより、回転シャフト24及び羽根車13a,13bのスラスト方向の位置が正確に決められるようになっている。
スラスト磁気軸受コイル30cには、スラスト磁気軸受コイル30cの温度を計測する第3コイル温度センサTc3が設けられている。第3コイル温度センサTc3の出力は、制御部へと送られる。
電動モータ10のステータ22には、ステータ22のコイルエンド温度を計測するモータ温度センサTm1が設けられている。モータ温度センサTm1の出力は、制御部へと送られる。
ケーシング12には、ケーシング12の温度を計測するケーシング温度センサTcs1が取り付けられている。ケーシング温度センサTcs1の出力は、制御部へと送られる。
冷却用冷媒供給配管14には、ケーシング12内へ供給される冷媒温度を計測する冷却用冷媒入口温度センサTinが設けられている。冷却用冷媒入口温度センサTinの出力は、制御部へと送られる。
冷却用冷媒戻り配管18には、ケーシング12外へ排出される冷媒温度を計測する冷却用冷媒出口温度センサToutが設けられている。冷却用冷媒出口温度センサToutの出力は、制御部へと送られる。
制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。
制御部は、磁気軸受30を駆動するための電子部品を有する磁気軸受駆動基板35を備えている。磁気軸受駆動基板35は、例えば、ギャップセンサG1,G2からの出力が入力され、この出力信号に基づいて各磁気軸受コイル30a,30b,30cに駆動電力を出力する。
磁気軸受駆動基板35は、図3及び図4に示すように、ケーシング12に対して固定されている。具体的には、略円筒形とされたケーシング12の外周面に設けられた平面部12aに固定されている。平面部12aは、平坦な面とされており、磁気軸受駆動基板35よりも大きな面積を有している。平面部12aは、ケーシング12の側周面に一体的に固定されたブロック体12bの幅広面に形成されている。ブロック体12bは、略直方体形状とされており、このブロック体12bがヒートシンクとして用いられる。なお、平面部12aは、ケーシング12の側周面を部分的に平面状に切削して形成しても良いし、略円筒状とされたケーシング12の端面に設けても良い。
磁気軸受駆動基板35は、平面部12aに対して面接触するように固定される。磁気軸受駆動基板35が取り付けられる平面部12aは、研磨等によって面粗度を調整して熱伝導性を向上させても良い。また、磁気軸受駆動基板35と平面部12aとの間にグリス等を介在させることによって熱伝導性を向上させても良い。
磁気軸受駆動基板35の発熱量は、例えば、電動モータ10の発熱量の10分の1以下(好ましくは15分の1以下)でかつ40分の1以上の発熱量とされている。より具体的には、磁気軸受駆動基板35の発熱量は、例えば100W以上300W以下とされる。
なお、他の制御部を構成する電子機器やこれを備えた基板についても、磁気軸受駆動基板35に加えて、平面部12aに対して固定しても良い。
磁気軸受駆動基板35の周囲には、磁気軸受駆動基板35の周囲温度を計測する基板周囲温度センサTb1が設けられている。基板周囲温度センサTb1の出力は、制御部へと送られる。
<ターボ冷凍機1の動作>
次に、上記構成のターボ冷凍機1の動作について説明する。
ターボ圧縮機3は、蒸発器9からのガス冷媒を吸い込み、羽根車13a,13bにて圧縮を行う。圧縮されたガス冷媒は、凝縮器5へと送られ、冷却伝熱管26によって凝縮熱が除去されることによって凝縮する。凝縮後の液冷媒は、膨張弁7へと流れる。
膨張弁7へと流れた液冷媒は、膨張弁7にて膨張した後、蒸発器9へと送られる。蒸発器9にて、液冷媒は、冷水伝熱管28内を流れる冷水から蒸発潜熱を奪うことによって蒸発気化する。このように冷却された冷水は、図示しない外部負荷へと送られる。蒸発器9にて気化したガス冷媒は、再びターボ圧縮機3へと送られる。
<冷媒冷却>
冷却用冷媒供給配管14からケーシング12内に導かれた冷媒による冷却は、以下のように行われる。
冷却用冷媒供給配管14を介して、高圧の液冷媒がケーシング12内へと送られる。この際に、冷却用冷媒調整弁16によってケーシング12へと送られる液冷媒の流量が制御されるとともに、液冷媒の膨張が行われる。ケーシング12内へと流れ込んだ液冷媒は、ケーシング12内で蒸発することによって電動モータ10の熱を奪い、電動モータ10の冷却を行う。これと同時にケーシング12も冷媒によって冷却されるので、ケーシング12の平面部12aに取り付けられた磁気軸受駆動基板35も冷却される。
電動モータ10の冷却を終えたガス冷媒は、冷却用冷媒戻り配管18を介して、低圧とされている蒸発器9へと返送される。
<冷却用冷媒調整弁16の制御>
冷却用冷媒調整弁16の制御は、制御部によって以下のように行われる。
冷却用冷媒調整弁16は、磁気軸受駆動基板35に結露が生じないように調整される。具体的には、ケーシング温度センサTcs1によって得られるケーシング温度がケーシング温度設定値を下回らないように、冷却用冷媒調整弁16の開度を制御部によってPID制御を行う。ケーシング温度設定値は、基板周囲温度センサTb1によって得られる基板周囲温度に基づいて決定される。すなわち、基板周囲温度のケーシング12周りの温度及び湿度から露点を演算し、この露点に基づいて決定される。ただし、ケーシング12の周囲環境が予め予測できる場合は、基板周囲温度に対してケーシング温度設定値を一義的に定めておいても良い。例えば、ケーシング温度設定値を基板周囲温度に所定温度(例えば3℃)加えた温度としても良い。
また、制御部は、電動モータ10の温度及び磁気軸受30の温度が所定値以下となるように、冷却用冷媒調整弁16の開度を制御する。すなわち、制御部は、モータ温度センサTm1によって得られるコイルエンド温度が設定値以下となるように、かつ、磁気軸受30の各コイル温度センサTc1,Tc2,Tc3によって得られるコイル温度が設定値以下となるように、冷却用冷媒調整弁16の開度を制御する。この制御は、上述のケーシング温度設定値に基づく制御によって得られた弁開度に加算して行う。
また、各制御が競合する場合は、モータ温度センサTm1及びコイル温度センサTc1,Tc2,Tc3に基づく制御は、保護制御として、ケーシング温度設定値に対して行う制御よりも優先して行う。
本実施形態によれば、以下の作用効果を奏する。
ターボ圧縮機3の羽根車13a,13bを駆動する電動モータ10は、ケーシング12内に導かれる冷媒によって冷却される。これに伴い、電動モータ10を収容するケーシング12も冷媒によって冷却される。このケーシング12の外部に、磁気軸受30を駆動する磁気軸受駆動基板35を取り付けることとした。これにより、発熱量が電動モータ10ほど大きくない磁気軸受駆動基板35であっても適切に冷却することができる。また、ケーシング12をヒートシンクとして用いることとしたので、磁気軸受駆動基板を35冷却するための特別な冷却装置を設ける必要がないので、簡便な構造でかつ安価に構成することができる。
特に、磁気軸受駆動基板35がケーシング12の外部に取り付けられていても、ケーシング12は電動モータ10ほど冷却されないので、磁気軸受駆動基板35が結露することを抑制することができる。
ケーシング温度センサTcs1によって得られるケーシング温度に基づいて冷却用冷媒の流量を調整することとした。これにより、磁気軸受駆動基板35が結露する温度まで低下しないようにケーシング温度を制御することができる。
モータ温度センサTm1及び磁気軸受30のコイル温度センサTc1,Tc2,Tc3の出力に基づいて冷却用冷媒調整弁16の開度を制御することとした。これにより、磁気軸受駆動基板35の結露を抑制しつつ、電動モータ10及び磁気軸受30の過熱を抑制することができる。
なお、本実施形態は、以下のように変形することができる。
<変形例1>
図5に示すように、凝縮器5の気相部とケーシング12とを接続する冷却用ガス冷媒供給配管37と、ケーシング12と蒸発器9の気相部とを接続する冷却用ガス冷媒戻り配管39とを設ける。そして、冷却用ガス冷媒供給配管37に、冷却用ガス冷媒調整弁38を設ける。冷却用ガス冷媒調整弁38は、制御部によって駆動される。
冷却用ガス冷媒供給配管37からケーシング12内に導かれたガス冷媒は、磁気軸受駆動基板35が位置するケーシング12の内壁面に向かって流れるように供給される。これにより、液冷媒を供給して冷却する場合に比べて過剰に冷却するおそれがないので、磁気軸受駆動基板35を過剰に冷却して結露させることを可及的に回避することができる。
一方、冷却用冷媒供給配管14からケーシング12内に導かれた液冷媒は、磁気軸受駆動基板35側へは流さずに、主として電動モータ10や磁気軸受30のコイル30a,30b,30cを冷却するように流される。
<変形例2>
図6に示すように、図1に示した構成に代えて、中間冷却器40を有する二段膨張の冷媒回路としても良い。中間冷却器40と凝縮器5との間には第1膨張弁7aが設けられ、中間冷却器40と蒸発器9との間には第2膨張弁7bが設けられている。中間冷却器40と2段目の羽根車13bの吸入側とを接続する中間圧ガス冷媒配管42が設けられている。本変形例では、冷却用冷媒供給配管14aは、中間冷却器40から液冷媒をケーシング12へ導くようになっている。
<変形例3>
図7に示すように、図6に示した構成に加えて、冷却用ガス冷媒を供給する図5のように、冷却用ガス冷媒供給配管37を設けても良い。本変形例では、ガス冷媒は、中間冷却器40からケーシング12内に供給するようになっている。
1 ターボ冷凍機
3 ターボ圧縮機
5 凝縮器
7 膨張弁
9 蒸発器
10 電動モータ
12 ケーシング
12a 平面部
12b ブロック体
13a,13b 羽根車
14,14a 冷却用冷媒供給配管(冷却用冷媒供給部)
16 冷却用冷媒調整弁
18 冷却用冷媒戻り配管
20 ロータ
22 ステータ
24 回転シャフト(軸部)
24a 円板
26 冷却伝熱管
28 冷水伝熱管
30 磁気軸受
30a 第1ラジアル磁気軸受コイル
30b 第2ラジアル磁気軸受コイル
30c スラスト磁気軸受コイル
32a 第1補助ベアリング
32b 第2補助ベアリング
35 磁気軸受駆動基板
37 冷却用ガス冷媒供給配管
38 冷却用ガス冷媒調整弁
39 冷却用ガス冷媒戻り配管
40 中間冷却器
42 中間圧ガス冷媒配管
G1 第1ギャップセンサ
G2 第2ギャップセンサ
Tb1 基板周囲温度センサ
Tc1 第1コイル温度センサ(磁気軸受コイル温度センサ)
Tc2 第2コイル温度センサ(磁気軸受コイル温度センサ)
Tc3 第3コイル温度センサ(磁気軸受コイル温度センサ)
Tcs1 ケーシング温度センサ
Tin 冷却用冷媒入口温度センサ
Tm1 モータ温度センサ(電動モータコイル温度センサ)
Tout 冷却用冷媒出口温度センサ

Claims (6)

  1. 冷媒を圧縮する羽根車と、
    前記羽根車を回転させる軸部と、
    前記軸部を回転駆動する電動モータと、
    前記電動モータを収容するケーシングと、
    前記ケーシング内に冷却用の冷媒を導く冷却用冷媒供給部と、
    前記軸部のラジアル方向及び/又はスラスト方向を支持する磁気軸受と、
    前記磁気軸受を駆動する電子部品を有する磁気軸受駆動基板と、
    を備え、
    前記磁気軸受駆動基板は、前記ケーシングの外部に取り付けられているターボ圧縮機。
  2. 前記磁気軸受駆動基板の発熱量は、前記電動モータの発熱量の10分の1以下とされている請求項1に記載のターボ圧縮機。
  3. 前記冷却用冷媒供給部からガス冷媒が供給される請求項1又は2に記載のターボ圧縮機。
  4. 前記冷却用冷媒供給部へ供給する冷媒流量を調整する冷却用冷媒調整弁と、
    前記ケーシングの温度を計測するケーシング温度センサと、
    前記ケーシング温度センサの出力に基づいて前記冷却用冷媒調整弁を制御する制御部と、
    を備えている請求項1から3のいずれかに記載のターボ圧縮機。
  5. 前記電動モータのコイルの温度を計測する電動モータコイル温度センサと、
    前記磁気軸受のコイルの温度を計測する磁気軸受コイル温度センサと、
    を備え、
    前記制御部は、前記電動モータコイル温度センサ及び前記磁気軸受コイル温度センサの出力に基づいて、前記冷却用冷媒調整弁を制御する請求項4に記載のターボ圧縮機。
  6. 請求項1から5のいずれかに記載のターボ圧縮機と、
    前記ターボ圧縮機から吐出された冷媒を凝縮させる凝縮器と、
    前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
    前記膨張弁から導かれた冷媒を蒸発させる蒸発器と、
    を備えているターボ冷凍機。
JP2020057837A 2020-03-27 2020-03-27 ターボ圧縮機およびこれを備えたターボ冷凍機 Pending JP2021156220A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020057837A JP2021156220A (ja) 2020-03-27 2020-03-27 ターボ圧縮機およびこれを備えたターボ冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020057837A JP2021156220A (ja) 2020-03-27 2020-03-27 ターボ圧縮機およびこれを備えたターボ冷凍機

Publications (1)

Publication Number Publication Date
JP2021156220A true JP2021156220A (ja) 2021-10-07

Family

ID=77917658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020057837A Pending JP2021156220A (ja) 2020-03-27 2020-03-27 ターボ圧縮機およびこれを備えたターボ冷凍機

Country Status (1)

Country Link
JP (1) JP2021156220A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029097A1 (ja) * 2022-08-05 2024-02-08 三菱重工サーマルシステムズ株式会社 ターボ圧縮機、及びこれを備えているターボ冷凍機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029097A1 (ja) * 2022-08-05 2024-02-08 三菱重工サーマルシステムズ株式会社 ターボ圧縮機、及びこれを備えているターボ冷凍機
JP7460705B2 (ja) 2022-08-05 2024-04-02 三菱重工サーマルシステムズ株式会社 ターボ圧縮機、及びこれを備えているターボ冷凍機

Similar Documents

Publication Publication Date Title
KR101723385B1 (ko) 모터 하우징 온도 제어장치
JP5455431B2 (ja) インバータ冷却装置およびインバータ冷却方法ならびに冷凍機
CN107923663B (zh) 低容量、低gwp的hvac系统
JP5495526B2 (ja) 熱源システムおよびその制御方法
US20170009775A1 (en) Capacity control system and method for multi-stage centrifugal compressor
WO2020195816A1 (ja) ターボ冷凍機
WO2003095906A1 (fr) Refrigerateur a appareil frigorifique a thermosiphon prevu pour etre utilise dans le secteur froid
WO2006011501A1 (ja) 空気冷媒式冷却装置と空気冷媒式冷却装置を用いた空気冷媒冷熱システム
WO2008041737A1 (en) Cooling apparatus
US20220220976A1 (en) Cooling system for centrifugal compressor and refrigeration system including same
JP5041343B2 (ja) 電子機器の冷却システム
JP4167190B2 (ja) 冷凍システムおよびその運転方法
JP2005345084A (ja) 排熱回収冷凍空調システム
WO2009135297A1 (en) Multiple mode refrigeration
JP2021156220A (ja) ターボ圧縮機およびこれを備えたターボ冷凍機
JP2000346466A (ja) 蒸気圧縮式冷凍サイクル
JP2014190614A (ja) ターボ冷凍機
JP2015169402A (ja) 空気調和機
JP6004004B2 (ja) ターボ冷凍機
JP2012146331A (ja) 電子機器の冷却システム
JP6698312B2 (ja) 制御装置、制御方法、及び熱源システム
WO2019078138A1 (ja) 冷凍サイクルの制御装置、熱源装置、及びその制御方法
JP2008089222A (ja) ターボ冷凍機の制御方法
JP2009162464A (ja) 空気サイクル冷凍装置
JP7460705B2 (ja) ターボ圧縮機、及びこれを備えているターボ冷凍機

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20221031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240307

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240405