JP2021154932A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2021154932A
JP2021154932A JP2020058648A JP2020058648A JP2021154932A JP 2021154932 A JP2021154932 A JP 2021154932A JP 2020058648 A JP2020058648 A JP 2020058648A JP 2020058648 A JP2020058648 A JP 2020058648A JP 2021154932 A JP2021154932 A JP 2021154932A
Authority
JP
Japan
Prior art keywords
electric machine
torque
transmission
rotary electric
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020058648A
Other languages
English (en)
Inventor
耕平 津田
Kohei Tsuda
耕平 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Corp filed Critical Aisin Corp
Priority to JP2020058648A priority Critical patent/JP2021154932A/ja
Publication of JP2021154932A publication Critical patent/JP2021154932A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】第1変速機の変速比を維持しながら第2変速機のダウンシフト動作を行う場合に、第2車輪の駆動力の急激な低下を伴わないようなダウンシフト動作を行いやすい技術を実現する。【解決手段】制御装置は、第2車輪に前進加速方向のトルクである正トルクが伝達されている状態で、第1変速機の変速比を維持しながら、第2変速機TM2の変速比を第1変速比から第1変速比より大きい第2変速比に変更するダウンシフトの動作制御を実行する場合に、ダウンシフト調整制御を実行する。ダウンシフト調整制御は、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を増加させる発電量増加制御を実行し、発電量増加制御の実行中に、ダウンシフトの動作を進行させるための第2変速機TM2の入力回転速度N2の上昇を行う制御である。【選択図】図7

Description

本発明は、内燃機関及び第1回転電機と第1車輪とを結ぶ動力伝達経路に変速比を変更可能な第1変速機を備え、第2回転電機と第2車輪とを結ぶ動力伝達経路に変速比を変更可能な第2変速機を備えた車両用駆動装置を制御対象とする制御装置に関する。
第1駆動力源と第1車輪とを結ぶ動力伝達経路に変速比を変更可能な第1変速機を備え、第2駆動力源と第2車輪とを結ぶ動力伝達経路に変速比を変更可能な第2変速機を備えた車両用駆動装置の一例が、特開2011−51460号公報(特許文献1)に開示されている。以下、背景技術の説明において括弧内に示す符号は特許文献1のものである。特許文献1の車両用駆動装置は、前輪(111,113)を第1車輪とし、後輪(121,123)を第2車輪とする車両用駆動装置であり、第1駆動力源としてのエンジン(101)と、第1変速機としてのトランスミッション(103)と、第2駆動力源としてのモータ/ジェネレータ(5)と、第2変速機としてのプラネタリーギヤ機構(7)と、を備えている。
特開2011−51460号公報
ところで、変速機のダウンシフト動作時には、一般に、変速機の入力回転速度を上昇させる期間において、変速機の入力回転速度を変化させるためのイナーシャトルクの分、変速機の側から車輪に伝達されるトルクが低下して、車輪の駆動力が低下する。車輪の駆動力の急激な低下は、駆動力抜けを運転者に感じさせるため、特にダウンシフト動作がオンダウンシフト動作(車輪に前進加速方向のトルクが伝達されている状態でのダウンシフト動作)である場合には、車輪の駆動力の急激な低下を伴わないようにダウンシフト動作を行えることが望ましい。上記のように第1変速機及び第2変速機を備えた車両用駆動装置においては、エネルギ効率の観点から内燃機関の回転速度を維持したまま第1車輪及び第2車輪の総駆動力を増加させたい場合等に、第1変速機の変速比を維持しながら第2変速機のダウンシフト動作を行う場合がある。この場合においても、第2車輪の駆動力の急激な低下を伴わないようなダウンシフト動作を行えることが望ましいが、特許文献1にはこの点についての記載はない。
そこで、第1変速機の変速比を維持しながら第2変速機のダウンシフト動作を行う場合に、第2車輪の駆動力の急激な低下を伴わないようなダウンシフト動作を行いやすい技術の実現が望まれる。
本開示に係る制御装置は、内燃機関及び第1回転電機と第1車輪とを結ぶ第1動力伝達経路に、変速比を変更可能な第1変速機を備え、第2回転電機と第2車輪とを結び且つ前記第1動力伝達経路とは分離した第2動力伝達経路に、変速比を変更可能な第2変速機を備えた車両用駆動装置を制御対象とする制御装置であって、前記第2車輪に前進加速方向のトルクである正トルクが伝達されている状態で、前記第1変速機の変速比を維持しながら、前記第2変速機の変速比を第1変速比から前記第1変速比より大きい第2変速比に変更するダウンシフトの動作制御を実行する場合に、ダウンシフト調整制御を実行し、前記ダウンシフト調整制御は、前記内燃機関のトルクを用いた前記第1回転電機による発電量を増加させる発電量増加制御を実行し、前記発電量増加制御の実行中に、前記ダウンシフトの動作を進行させるための前記第2変速機の入力回転速度の上昇を行う制御である。
本構成によれば、第1変速機の変速比を維持しながら第2変速機のダウンシフト動作を行う場合に、第2変速機の入力回転速度の上昇が、内燃機関のトルクを用いた第1回転電機による発電量を増加させる発電量増加制御の実行中に行われる。第2変速機の入力回転速度の上昇が行われるイナーシャ期間での、イナーシャトルクに起因する第2車輪の駆動力の低下は、第2回転電機の出力トルクを増大させることで抑制できるが、蓄電装置の出力制限を超えるために第2回転電機の出力トルクを増大させることができない場合がある。しかし、本構成によれば、発電量増加制御により第1回転電機による発電量が増加されるため、第1回転電機により発電された電力を用いて蓄電装置の出力制限を超える電力を第2回転電機に供給することができる。そのため、第2変速機の入力回転速度の上昇が、発電量増加制御の実行中に行われない場合に比べて、イナーシャ期間において第2回転電機の出力トルクの増大量を大きく確保しやすくなっており、これにより、第2車輪の駆動力の急激な低下を伴わないようなダウンシフト動作を行いやすくなっている。
制御装置の更なる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
実施形態に係る車両の模式図 実施形態に係る車両用駆動装置の一部の模式図 実施形態に係る車両用駆動装置の別の一部の模式図 ダウンシフトの動作制御時の制御フローの一例を示すフローチャート アップシフトの動作制御時の制御フローの一例を示すフローチャート 比較例に係るダウンシフトの制御挙動の一例を示すタイムチャート 実施形態に係るダウンシフトの制御挙動の一例を示すタイムチャート 比較例に係るアップシフトの制御挙動の一例を示すタイムチャート 実施形態に係るアップシフトの制御挙動の一例を示すタイムチャート
制御装置の実施形態について、図面を参照して説明する。なお、本明細書では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。また、本明細書では、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材(例えば、軸、歯車機構、ベルト、チェーン等)が含まれる。なお、伝動部材として、回転及び駆動力を選択的に伝達する係合装置(例えば、摩擦係合装置、噛み合い式係合装置等)が含まれていてもよい。
制御装置30は、車両用駆動装置90を制御対象とする制御装置である。図1〜図3に示すように、制御装置30による制御対象の車両用駆動装置90は、第1駆動力源1と第1車輪W1とを結ぶ第1動力伝達経路T1に、変速比を変更可能な第1変速機TM1を備え、第2駆動力源2と第2車輪W2とを結び且つ第1動力伝達経路T1とは分離した第2動力伝達経路T2に、変速比を変更可能な第2変速機TM2を備えている。すなわち、車両用駆動装置90は、第1車輪W1を駆動する第1駆動ユニット91と、第2車輪W2を駆動する第2駆動ユニット92と、を備えている。第2車輪W2は、第1車輪W1とは独立に回転可能な車輪である。ここでは、第1車輪W1及び第2車輪W2の一方が、車両用駆動装置90が搭載される車両100の前輪とされ、第1車輪W1及び第2車輪W2の他方が、車両100の後輪とされる。本実施形態では、第1車輪W1は、車両100の前輪であり、第2車輪W2は、車両100の後輪である。
本明細書では、数を明記している場合や単数と複数を区別している場合を除き、「車輪」は単数及び複数のいずれをも含む概念として用いている。図1〜図3に示すように、本実施形態では、第1車輪W1は、一対の第1車輪W1(ここでは、左右一対の前輪)であり、第2車輪W2は、一対の第2車輪W2(ここでは、左右一対の後輪)である。すなわち、本実施形態では、車両用駆動装置90は、左右一対の前輪及び左右一対の後輪を駆動する4輪駆動方式の駆動装置である。
図1及び図2に示すように、第1駆動ユニット91は、第1駆動力源1と、第1駆動力源1と第1車輪W1との間で駆動力を伝達する第1伝達装置11と、を備えている。第1伝達装置11は、第1変速機TM1を備えている。本実施形態では、第1動力伝達経路T1は、第1駆動力源1と一対の第1車輪W1とを結ぶ動力伝達経路であり、第1伝達装置11は、第1駆動力源1と一対の第1車輪W1との間で駆動力を伝達する。そのため、図2に示すように、第1伝達装置11は、第1変速機TM1と一対の第1車輪W1との間の動力伝達経路に、第1変速機TM1の側(言い換えれば、第1駆動力源1の側)から伝達される回転を一対の第1車輪W1に分配する第1出力用差動歯車装置71を備えている。第1出力用差動歯車装置71は、第1差動入力ギヤ71Aを備えており、第1変速機TM1の側から第1差動入力ギヤ71Aに入力される回転を一対の第1車輪W1に分配する。第1出力用差動歯車装置71は、例えば、傘歯車式又は遊星歯車式の差動歯車機構とされる。図2に示す例では、第1伝達装置11は、第1変速機TM1と第1出力用差動歯車装置71との間の動力伝達経路に、カウンタギヤ機構70を備えている。
図1及び図3に示すように、第2駆動ユニット92は、第2駆動力源2と、第2駆動力源2と第2車輪W2との間で駆動力を伝達する第2伝達装置12と、を備えている。第2伝達装置12は、第2変速機TM2を備えている。本実施形態では、第2動力伝達経路T2は、第2駆動力源2と一対の第2車輪W2とを結ぶ動力伝達経路であり、第2伝達装置12は、第2駆動力源2と一対の第2車輪W2との間で駆動力を伝達する。そのため、図3に示すように、第2伝達装置12は、第2変速機TM2と一対の第2車輪W2との間の動力伝達経路に、第2変速機TM2の側(言い換えれば、第2駆動力源2の側)から伝達される回転を一対の第2車輪W2に分配する第2出力用差動歯車装置72を備えている。第2出力用差動歯車装置72は、第2差動入力ギヤ72Aを備えており、第2変速機TM2の側から第2差動入力ギヤ72Aに入力される回転を一対の第2車輪W2に分配する。第2出力用差動歯車装置72は、例えば、傘歯車式又は遊星歯車式の差動歯車機構とされる。
第1駆動力源1及び第2駆動力源2のそれぞれは、駆動力を出力する装置を1つ以上含む。駆動力を出力する装置は、例えば、回転電機や内燃機関とされる。ここで、内燃機関は、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機(例えば、ガソリンエンジン、ディーゼルエンジン等)である。図2及び図3に示すように、第1駆動力源1は、内燃機関EG及び第1回転電機MG1を含み、第2駆動力源2は、第2回転電機MG2を含んでいる。すなわち、第1動力伝達経路T1は、内燃機関EG及び第1回転電機MG1と第1車輪W1とを結ぶ動力伝達経路であり、第2動力伝達経路T2は、第2回転電機MG2と第2車輪W2とを結ぶ動力伝達経路である。第2回転電機MG2は、第1回転電機MG1とは独立に回転可能な回転電機である。第1駆動ユニット91は、内燃機関EG及び第1回転電機MG1の少なくとも一方の出力トルクを第1車輪W1に伝達させ、第2駆動ユニット92は、第2回転電機MG2の出力トルクを第2車輪W2に伝達させる。本明細書では、第1回転電機MG1の出力トルクや第2回転電機MG2の出力トルク等のトルクの正負について、車両100を前進させる方向のトルクを正トルクとし、正トルクとは反対方向のトルクを負トルクとする。また、本明細書では、トルクの大きさを、絶対値ではなく符号(正負)を考慮した大きさとする。よって、回転電機が出力可能な最小トルクは、絶対値が最大となる負トルクであり、回転電機が出力可能な最大トルクは、絶対値が最大となる正トルクである。また、回転電機の出力トルクを増大させるとは、回転電機が正トルクを出力している状態では、当該正トルクの絶対値を大きくすることを意味し、回転電機が負トルクを出力している状態では、当該負トルクの絶対値を小さくすることを意味する。回転電機の出力トルクを低下させるとは、回転電機が正トルクを出力している状態では、当該正トルクの絶対値を小さくすることを意味し、回転電機が負トルクを出力している状態では、当該負トルクの絶対値を大きくすること(すなわち、回生トルクを増大させること)を意味する。
第1回転電機MG1及び第2回転電機MG2は、バッテリやキャパシタ等の蓄電装置3(図1参照)と電気的に接続されており、蓄電装置3から電力の供給を受けて力行し、或いは、内燃機関EGの出力トルクや車両100の慣性力により発電した電力を蓄電装置3に供給して蓄電させる。第1回転電機MG1及び第2回転電機MG2は、共通の蓄電装置3に電気的に接続されている。そして、第1回転電機MG1及び第2回転電機MG2の一方が発電した電力によって他方を力行させることが可能となっている。例えば、第1回転電機MG1及び第2回転電機MG2として、3相交流(多相交流の一例)で駆動される交流回転電機を用いることができる。
図2に示すように、第1変速機TM1は、第1変速入力部材81Aの回転を変速して第1変速出力部材81Bに伝達する。第1変速入力部材81Aは、第1駆動力源1の側から第1変速機TM1に回転を入力するための部材であり、第1変速出力部材81Bは、第1車輪W1の側に第1変速機TM1から回転を出力するための部材である。図2に示す例では、第1変速入力部材81Aは軸部材とされ、第1変速出力部材81Bは歯車部材とされている。第1変速機TM1は、第1変速機TM1の変速比(具体的には、第1変速出力部材81Bの回転速度に対する第1変速入力部材81Aの回転速度の比)を変更可能に構成されている。
図2に示す例では、第1回転電機MG1は、第1変速入力部材81Aと一体的に回転するように連結され、内燃機関EGは、クラッチK0を介して第1変速入力部材81Aに連結されている。クラッチK0は、内燃機関EGと第1変速入力部材81Aとを選択的に連結する(すなわち、連結又は連結解除する)。クラッチK0は、内燃機関EGを第1車輪W1から切り離す機能を有する。このような構成に代えて、例えば、クラッチK0が設けられない構成、第1回転電機MG1がクラッチを介して第1変速入力部材81Aに連結される構成、第1駆動力源1と第1変速機TM1との間の動力伝達経路に流体伝動装置(例えば、ロックアップクラッチ付きのトルクコンバータ)が設けられる構成、或いは、これらを組み合わせた構成とすることもできる。また、図2に示す例では、第1変速出力部材81Bは、カウンタギヤ機構70を介して第1差動入力ギヤ71Aに連結されている。このような構成に代えて、例えば、カウンタギヤ機構70が設けられず、第1変速出力部材81Bが第1差動入力ギヤ71Aに噛み合う構成とすることもできる。
図3に示すように、第2変速機TM2は、第2変速入力部材82Aの回転を変速して第2変速出力部材82Bに伝達する。第2変速入力部材82Aは、第2駆動力源2の側から第2変速機TM2に回転を入力するための部材であり、第2変速出力部材82Bは、第2車輪W2の側に第2変速機TM2から回転を出力するための部材である。図2に示す例では、第2変速入力部材82Aは軸部材とされ、第2変速出力部材82Bは歯車部材とされている。第2変速機TM2は、第2変速機TM2の変速比(具体的には、第2変速出力部材82Bの回転速度に対する第2変速入力部材82Aの回転速度の比)を変更可能に構成されている。
図3に示す例では、第2回転電機MG2は、第2変速入力部材82Aと一体的に回転するように連結されている。このような構成に代えて、例えば、第2回転電機MG2がクラッチを介して第2変速入力部材82Aに連結される構成、第2駆動力源2と第2変速機TM2との間の動力伝達経路に流体伝動装置が設けられる構成、或いは、これらを組み合わせた構成とすることもできる。また、図3に示す例では、第2変速出力部材82Bは、第2差動入力ギヤ72Aに噛み合っている。このような構成に代えて、例えば、第2変速出力部材82Bがカウンタギヤ機構を介して第2差動入力ギヤ72Aに連結される構成とすることもできる。
第1変速機TM1及び第2変速機TM2として、変速比の異なる複数の変速段を切替可能な有段の自動変速機と、変速比を無段階に変更可能な無段の自動変速機とのいずれを用いてもよい。有段の自動変速機として、遊星歯車式の自動変速機、DCT(Dual Clutch Transmission)、AMT(Automated Manual Transmission)を例示することができる。また、無段の自動変速機として、ベルト式のCVT(Continuously Variable Transmission)を例示することができる。図2に示す例では、第1変速機TM1及び第2変速機TM2の双方が、遊星歯車式の自動変速機とされている。
図2に示す例では、第1変速機TM1は、変速比の異なる8つの前進用変速段と、1つの後進用変速段とを形成可能に構成されている。ここで、8つの前進用変速段を、変速比の大きい側から順に(すなわち、低速段側から順に)、第1段、第2段、第3段、第4段、第5段、第6段、第7段、及び第8段とする。第1変速機TM1は、複数の第1係合装置21を備えており、第1係合装置21のそれぞれの係合の状態に応じて、複数の変速段の中のいずれかの変速段が形成される。
図2に示す例では、第1変速機TM1は、第1遊星歯車機構PG1及び第2遊星歯車機構PG2の2つの遊星歯車機構を備えている。ここでは、第1遊星歯車機構PG1はダブルピニオン型の遊星歯車機構であり、第2遊星歯車機構PG2はラビニヨ型の遊星歯車機構である。第1変速機TM1が備える複数の第1係合装置21には、第1クラッチC1、第2クラッチC2、第3クラッチC3、第4クラッチC4、第1ブレーキB1、第2ブレーキB2、及びワンウェイクラッチF1が含まれている。クラッチ(C1〜C4)は、第1変速機TM1を構成する2つの回転要素を選択的に連結し、ブレーキ(B1,B2)は、第1変速機TM1を構成する回転要素を非回転部材(例えば、第1変速機TM1のケース)に選択的に固定する。また、ワンウェイクラッチF1は、第1変速機TM1を構成する回転要素の回転方向を一方向に規制する。第1係合装置21は、摩擦係合装置及び噛み合い式係合装置のいずれであってもよいが、例えば、全ての第1係合装置21(但し、ワンウェイクラッチF1は除く)を摩擦係合装置とすることができる。なお、ワンウェイクラッチF1は設けられていなくてもよい。
図2に示す例では、第1クラッチC1とワンウェイクラッチF1(又は第2ブレーキB2)とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第1段が形成される。また、第1クラッチC1と第1ブレーキB1とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第2段が形成される。また、第1クラッチC1と第3クラッチC3とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第3段が形成される。また、第1クラッチC1と第4クラッチC4とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第4段が形成される。また、第1クラッチC1と第2クラッチC2とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第5段が形成される。また、第2クラッチC2と第3クラッチC3とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第6段が形成される。また、第2クラッチC2と第4クラッチC4とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第7段が形成される。また、第2クラッチC2と第1ブレーキB1とが係合すると共にそれ以外の第1係合装置21が解放した状態で、第8段が形成される。また、第3クラッチC3と第2ブレーキB2とが係合すると共にそれ以外の第1係合装置21が解放した状態で、後進用変速段が形成される。
図3に示す例では、第2変速機TM2は、変速比の異なる2つの変速段を形成可能に構成されている。ここで、2つの変速段を、変速比の大きい側から順に、低速段及び高速段とする。第2変速機TM2は、複数の第2係合装置22を備えており、第2係合装置22のそれぞれの係合の状態に応じて、2つの変速段の中のいずれかの変速段が形成される。
図3に示す例では、第2変速機TM2は、第3遊星歯車機構PG3を備えている。ここでは、第3遊星歯車機構PG3はシングルピニオン型の遊星歯車機構である。第2変速機TM2が備える複数の第2係合装置22には、第5クラッチC5及び第3ブレーキB3が含まれている。第5クラッチC5は、第2変速機TM2を構成する2つの回転要素を選択的に連結し、第3ブレーキB3は、第2変速機TM2を構成する回転要素を非回転部材(例えば、第2変速機TM2のケース)に選択的に固定する。図3に示す例では、第3ブレーキB3が係合すると共に第5クラッチC5が解放した状態で低速段が形成され、第5クラッチC5が係合すると共に第3ブレーキB3が解放した状態で高速段が形成される。第2係合装置22は、摩擦係合装置及び噛み合い式係合装置のいずれであってもよいが、例えば、全ての第2係合装置22を摩擦係合装置とすることができる。
このように、本実施形態では、第1変速機TM1及び第2変速機TM2の双方が、変速比の異なる複数の変速段を切替可能な有段の自動変速機とされている。すなわち、第1変速機TM1及び第2変速機TM2のそれぞれは、変速比の異なる複数の変速段を形成可能に構成されている。そして、本実施形態では、第1変速機TM1が形成可能な変速段の段数が、第2変速機TM2が形成可能な変速段の段数よりも多くなっている。図2及び図3に示す例では、第1変速機TM1が形成可能な変速段の段数が「8」であり、第2変速機TM2が形成可能な変速段の段数である「2」よりも多くなっている。
次に、制御装置30の構成について説明する。制御装置30は、CPU(Central Processing Unit)等の演算処理装置を中核部材として備えると共に、RAM(Random Access Memory)やROM(Read Only Memory)等の当該演算処理装置が参照可能な記憶装置を備えている。そして、ROM等の記憶装置に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30の各機能が実現される。制御装置30が備える演算処理装置は、各プログラムを実行するコンピュータとして動作する。
車両100には各種センサが備えられており、制御装置30は、当該各種センサの検出情報(センサ検出情報)を取得可能に構成されている。センサ検出情報には、例えば、アクセル開度の情報、車速の情報、蓄電装置3の充電状態又は蓄電量の情報、蓄電装置3の温度の情報、第1変速入力部材81Aの回転速度の情報、第2変速入力部材82Aの回転速度の情報、車両100の運転者による変速段の変更操作(シフト操作)の情報が含まれる。本実施形態では、制御装置30が検出情報を取得可能なセンサには、第1変速入力部材81Aの回転速度を検出する第1センサS1(図2参照)と、第2変速入力部材82Aの回転速度を検出する第2センサS2(図3参照)とが含まれる。
図1に示すように、本実施形態では、制御装置30は、第1駆動制御部41と、第2駆動制御部42と、第1変速制御部51と、第2変速制御部52と、統合制御部60と、を備えている。制御装置30が備えるこれら複数の機能部は、互いに情報の受け渡しを行うことができるように構成されている。なお、制御装置30が備える複数の機能部は、少なくとも論理的に区別されるものであり、物理的には必ずしも区別される必要はない。また、制御装置30が備える複数の機能部は、共通のハードウェアで実現される必要はなく、互いに通信可能な複数のハードウェアに分かれて実現されてもよい。すなわち、制御装置30は、1つのハードウェアではなく、互いに通信可能な複数のハードウェアを用いて構成されてもよい。制御装置30が互いに通信可能な複数のハードウェアを用いて構成される場合に、制御装置30が、車両100に搭載される車内装置と、車両100の外部に設けられて車内装置と通信ネットワーク(例えば、インターネット等)を介して通信可能な車外装置とに分離され、制御装置30の少なくとも一部の機能が車外装置に設けられる構成とすることもできる。
統合制御部60は、第1変速制御部51及び第2変速制御部52を制御する機能部である。統合制御部60は、第1変速制御部51を制御することで第1変速機TM1の変速動作の開始時期を制御し、第2変速制御部52を制御することで第2変速機TM2の変速動作の開始時期を制御する。本実施形態では、統合制御部60は、車両100の全体を統合して制御する機能も有している。統合制御部60は、制御マップを参照する等して、センサ検出情報に基づいて、第1車輪W1に第1駆動力源1の側から伝達することが要求されるトルクの要求値である第1車輪要求トルクと、第2車輪W2に第2駆動力源2の側から伝達することが要求されるトルクの要求値である第2車輪要求トルクと、第1変速機TM1の目標変速比(本実施形態では、目標変速段)と、第2変速機TM2の目標変速比(本実施形態では、目標変速段)と、を決定する。なお、統合制御部60が有する機能のうちの、第1変速制御部51及び第2変速制御部52を制御する機能以外の機能は、制御装置30と通信可能な別の装置によって実現されてもよい。
第1駆動制御部41は、第1駆動力源1の動作制御を行う機能部である。統合制御部60は、第1駆動制御部41を介して(例えば、第1駆動制御部41に対して第1車輪要求トルクを指令して)、第1駆動力源1の動作制御を行う。第1駆動力源1が出力することを要求されるトルクを第1駆動力源要求トルクとして、第1駆動制御部41は、第1駆動力源要求トルクを出力するように第1駆動力源1を制御する。第1駆動力源要求トルクは、基本的に、第1車輪W1でのトルクに換算した第1駆動力源要求トルクが第1車輪要求トルクに等しくなるように決定される。
上述したように、第1駆動力源1は、内燃機関EG及び第1回転電機MG1を含んでいる。よって、第1駆動制御部41は、内燃機関EGの動作制御を行うと共に第1回転電機MG1の動作制御を行う。具体的には、内燃機関EGが出力することを要求されるトルクを内燃機関要求トルクとし、第1回転電機MG1が出力することを要求されるトルクを第1回転電機要求トルクとして、第1駆動制御部41は、内燃機関要求トルクを出力するように内燃機関EGを制御すると共に、第1回転電機要求トルクを出力するように第1回転電機MG1を制御する。内燃機関要求トルク及び第1回転電機要求トルクは、基本的に、第1車輪W1でのトルクに換算した内燃機関要求トルクと、第1車輪W1でのトルクに換算した第1回転電機要求トルクとの合成トルク(これら2つのトルクの正負を考慮した和)が、第1車輪要求トルクに等しくなるように決定される。内燃機関EGの出力トルクを用いずに第1車輪W1を駆動する場合には、内燃機関要求トルクはゼロに設定され、内燃機関EGは基本的に停止される。なお、内燃機関EGの動作制御を行う機能を有する内燃機関制御装置が、制御装置30とは別に設けられ、第1駆動制御部41が、内燃機関制御装置を介して(すなわち、内燃機関制御装置に対して内燃機関要求トルク、内燃機関EGの始動要求、内燃機関EGの停止要求等を指令することで)、内燃機関EGの動作制御を行う構成とすることもできる。
第2駆動制御部42は、第2駆動力源2の動作制御を行う機能部である。統合制御部60は、第2駆動制御部42を介して(例えば、第2駆動制御部42に対して第2車輪要求トルクを指令して)、第2駆動力源2の動作制御を行う。第2駆動力源2が出力することを要求されるトルクを第2駆動力源要求トルクとして、第2駆動制御部42は、第2駆動力源要求トルクを出力するように第2駆動力源2を制御する。第2駆動力源要求トルクは、基本的に、第2車輪W2でのトルクに換算した第2駆動力源要求トルクが第2車輪要求トルクに等しくなるように決定される。上述したように、第2駆動力源2は、第2回転電機MG2を含んでいる。よって、第2駆動制御部42は、第2回転電機MG2の動作制御を行う。具体的には、第2回転電機MG2が出力することを要求されるトルクを第2回転電機要求トルクとして、第2駆動制御部42は、第2回転電機要求トルクを出力するように第2回転電機MG2を制御する。第2回転電機要求トルクは、基本的に、第2車輪W2でのトルクに換算した第2回転電機要求トルクが第2車輪要求トルクに等しくなるように決定される。
図示は省略するが、第1駆動制御部41は、第1インバータ装置を介して第1回転電機MG1を制御し、第2駆動制御部42は、第2インバータ装置を介して第2回転電機MG2を制御する。なお、第1インバータ装置は、蓄電装置3に接続されていると共に第1回転電機MG1に接続され、第2インバータ装置は、蓄電装置3に接続されていると共に第2回転電機MG2に接続されている。すなわち、第1回転電機MG1は、第1インバータ装置を介して蓄電装置3に電気的に接続され、第2回転電機MG2は、第2インバータ装置を介して蓄電装置3に電気的に接続されている。第1駆動制御部41は、例えば、キャリア周波数に基づくパルス幅変調により、第1インバータ装置を介して第1回転電機MG1を制御する。また、第2駆動制御部42は、例えば、キャリア周波数に基づくパルス幅変調により、第2インバータ装置を介して第2回転電機MG2を制御する。
第1変速制御部51は、第1変速機TM1の変速動作を制御する機能部である。統合制御部60は、第1変速制御部51を介して(例えば、第1変速制御部51に対して第1変速機TM1の目標変速比や変速動作の開始等を指令して)、第1変速機TM1の変速動作を制御する。第1変速制御部51は、第1変速機TM1の変速比が目標変速比となるように、第1変速機TM1を制御する。本実施形態では、第1変速制御部51は、第1変速機TM1が目標変速段を形成するように、第1変速機TM1を制御する。上述したように、本実施形態では、第1変速機TM1は、複数の第1係合装置21を備えており、複数の第1係合装置21のうちの第1解放側係合装置21Rの解放と第1係合側係合装置21Eの係合とを行って変速比を変更するように構成されている。そのため、第1変速機TM1の変速動作の制御には、第1解放側係合装置21Rを解放させる制御と、第1係合側係合装置21Eを係合させる制御とが含まれる。なお、第1解放側係合装置21Rは、変速比を変更するために(言い換えれば、変速段を移行させるために)解放される第1係合装置21であり、第1係合側係合装置21Eは、変速比を変更するために係合される第1係合装置21である。例えば、図2に示す第1変速機TM1において、第2段から第3段に変速段を移行させる場合には、第1ブレーキB1が第1解放側係合装置21Rとなり、第3クラッチC3が第1係合側係合装置21Eとなる。
本実施形態では、第1係合装置21は、油圧駆動式の摩擦係合装置である。なお、全ての第1係合装置21が油圧駆動式の摩擦係合装置である必要はなく、例えば図2に示す例では、ワンウェイクラッチF1を除く第1係合装置21が、油圧駆動式の摩擦係合装置とされる。図示は省略するが、車両用駆動装置90(具体的には、第1駆動ユニット91)には、オイルポンプから吐出された油の油圧を制御して第1変速機TM1に供給する第1油圧制御装置が設けられている。第1変速制御部51は、第1係合装置21の油圧駆動部(油圧サーボ機構等)に供給される油圧(作動油圧)を、第1油圧制御装置を介して制御することで、第1係合装置21の係合の状態を制御する。第1係合装置21の係合の状態は、当該第1係合装置21に供給される油圧に応じて、直結係合状態、滑り係合状態、及び解放状態のいずれかに制御される。直結係合状態では、摩擦係合装置の係合部材間に回転速度差(滑り)がない状態で、静摩擦により係合部材間でトルクが伝達され、滑り係合状態では、摩擦係合装置の係合部材間に回転速度差がある状態で、動摩擦により係合部材間でトルクが伝達される。本実施形態では、第1係合装置21は、ノーマルオープン型の摩擦係合装置であり、作動油圧が供給されることで係合し、作動油圧の供給が停止されることで解放される。
第2変速制御部52は、第2変速機TM2の変速動作を制御する機能部である。統合制御部60は、第2変速制御部52を介して(例えば、第2変速制御部52に対して第2変速機TM2の目標変速比や変速動作の開始等を指令して)、第2変速機TM2の変速動作を制御する。第2変速制御部52は、第2変速機TM2の変速比が目標変速比となるように、第2変速機TM2を制御する。本実施形態では、第2変速制御部52は、第2変速機TM2が目標変速段を形成するように、第2変速機TM2を制御する。上述したように、本実施形態では、第2変速機TM2は、複数の第2係合装置22を備えており、複数の第2係合装置22のうちの第2解放側係合装置22Rの解放と第2係合側係合装置22Eの係合とを行って変速比を変更するように構成されている。そのため、第2変速機TM2の変速動作の制御には、第2解放側係合装置22Rを解放させる制御と、第2係合側係合装置22Eを係合させる制御とが含まれる。なお、第2解放側係合装置22Rは、変速比を変更するために(言い換えれば、変速段を移行させるために)解放される第2係合装置22であり、第2係合側係合装置22Eは、変速比を変更するために係合される第2係合装置22である。例えば、図3に示す第2変速機TM2において、第1段から第2段に変速段を移行させる場合には、第3ブレーキB3が第2解放側係合装置22Rとなり、第5クラッチC5が第2係合側係合装置22Eとなる。
本実施形態では、第2係合装置22は、油圧駆動式の摩擦係合装置である。なお、全ての第2係合装置22が油圧駆動式の摩擦係合装置である必要はない。図示は省略するが、車両用駆動装置90(具体的には、第2駆動ユニット92)には、オイルポンプから吐出された油の油圧を制御して第2変速機TM2に供給する第2油圧制御装置が設けられている。第2変速制御部52は、第2係合装置22の油圧駆動部(油圧サーボ機構等)に供給される油圧(作動油圧)を、第2油圧制御装置を介して制御することで、第2係合装置22の係合の状態を制御する。第2係合装置22の係合の状態は、当該第2係合装置22に供給される油圧に応じて、直結係合状態、滑り係合状態、及び解放状態のいずれかに制御される。本実施形態では、第2係合装置22は、ノーマルオープン型の摩擦係合装置であり、作動油圧が供給されることで係合し、作動油圧の供給が停止されることで解放される。
制御装置30(本実施形態では、統合制御部60)は、例えば、アクセル開度及び車速と、変速段との関係を規定した第1変速マップを参照して、第1変速機TM1の目標変速段を決定し、アクセル開度及び車速と、変速段との関係を規定した第2変速マップを参照して、第2変速機TM2の目標変速段を決定する。詳細は省略するが、第1変速マップや第2変速マップには、アップシフト線とダウンシフト線とが規定されており、制御装置30は、アクセル開度と車速とにより定まる動作点が変速マップ上でアップシフト線を跨いだ場合に、或いは跨ぐことが予測される場合に、目標変速段を高速段側に1段切り替え、アクセル開度と車速とにより定まる動作点が変速マップ上でダウンシフト線を跨いだ場合に、或いは跨ぐことが予測される場合に、目標変速段を低速段側に1段切り替える。なお、アップシフトとは、変速比を相対的に小さくする側(高速段側)への変速段の変更であり、ダウンシフトとは、変速比を相対的に大きくする側(低速段側)への変速段の変更である。制御装置30が、運転者によるシフト操作(アップシフト操作又はダウンシフト操作)に応じて、第1変速機TM1や第2変速機TM2の目標変速段を切り替える構成としてもよい。
制御装置30は、第2車輪W2に前進加速方向のトルクである正トルクが伝達されている状態(例えば、アクセルオン状態)で、第1変速機TM1の変速比を維持しながら、第2変速機TM2の変速比を第1変速比から第1変速比より大きい第2変速比に変更するダウンシフトの動作制御を実行する場合に、ダウンシフト調整制御を実行するように構成されている。すなわち、制御装置30は、第1変速機TM1の変速比を維持しながら第2変速機TM2のパワーオンダウンシフトの動作制御を実行する場合に、ダウンシフト調整制御を実行する。本実施形態では、第2変速機TM2のダウンシフトは、第2変速機TM2の変速段を、変速比が第1変速比となる第1変速段から、変速比が第2変速比となる第2変速段に切り替えるダウンシフトである。例えば、第2変速機TM2のダウンシフトは、第2変速機TM2の変速段を低速段側に1段切り替えるダウンシフトとされる。
ダウンシフト調整制御は、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を増加させる発電量増加制御を実行し、発電量増加制御の実行中に、第2変速機TM2のダウンシフトの動作(具体的には、後述するイナーシャ相P)を進行させるための第2入力回転速度N2の上昇を行う制御である。ここで、第2入力回転速度N2は、第2変速機TM2の入力回転速度である。具体的には、第2入力回転速度N2は、第2変速入力部材82Aの回転速度である。
制御装置30は、発電量増加制御では、第1回転電機MG1の出力トルクを低下させることで、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を増加させる。発電量増加制御での第1回転電機MG1の出力トルクの低下量は、例えば、後述する必要電力を第1回転電機MG1の回転速度で除算して得られる値に設定される。発電量増加制御の開始前に第1回転電機MG1が負トルク(回生トルク)を出力していない場合(すなわち、第1回転電機MG1による発電が行われていない場合)には、制御装置30は、第1回転電機MG1の出力トルクが負トルクとなるまで第1回転電機MG1の出力トルクを低下させる。この場合には、発電量増加制御の実行により、第1回転電機MG1による発電量がゼロから増加される。また、発電量増加制御の開始前に第1回転電機MG1が負トルク(回生トルク)を出力している場合(すなわち、第1回転電機MG1による発電が行われている場合)には、制御装置30は、第1回転電機MG1が出力する負トルクの絶対値が大きくなるように(すなわち、回生トルクが大きくなるように)、第1回転電機MG1の出力トルクを低下させる。この場合には、発電量増加制御の実行により、第1回転電機MG1による発電量がゼロより大きな値から増加される。
本実施形態では、制御装置30は、発電量増加制御では、第1回転電機MG1の出力トルクを低下させると共に内燃機関EGの出力トルクを増大させることで、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を増加させる。具体的には、制御装置30は、発電量増加制御では、第1変速入力部材81Aに入力される内燃機関EGと第1回転電機MG1との合成トルクを維持しつつ、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を増加させる。そのため、発電量増加制御では、第1回転電機MG1の出力トルクの低下に合わせて、内燃機関EGの出力トルクが増大される。このように合成トルクを維持することで、第1車輪W1に内燃機関EG及び第1回転電機MG1の側から伝達されるトルクを維持しながら発電量増加制御を行うことができる。
第2変速機TM2のダウンシフトの動作期間には、ダウンシフトの動作を進行させるための第2入力回転速度N2の上昇が行われるイナーシャ相P(図7参照)の期間が含まれる。イナーシャ相Pの期間において、第2入力回転速度N2は、第1回転速度N21から第2回転速度N22まで上昇する。ここで、第1回転速度N21は、第1変速比に応じた回転速度であり、第2回転速度N22は、第2変速比に応じた回転速度である。具体的には、第1回転速度N21は、第2変速出力部材82Bの回転速度に第1変速比を乗算した回転速度であり、第2回転速度N22は、第2変速出力部材82Bの回転速度に第2変速比を乗算した回転速度である。本実施形態では、制御装置30は、ダウンシフト調整制御では、発電量増加制御の実行中に、第2変速機TM2のダウンシフトの動作を進行させるために、第2入力回転速度N2を第1回転速度N21から第2回転速度N22まで上昇させる。
本実施形態では、制御装置30は、必要電力を蓄電装置3から第2回転電機MG2に供給することができないことを条件として、ダウンシフト調整制御を実行するように構成されている。必要電力は、第2入力回転速度N2を、規定時間で、第1回転速度N21から第2回転速度N22まで上昇させるために必要となる電力である。規定時間は、第2変速機TM2のダウンシフト動作の目標時間(具体的には、イナーシャ相Pの目標時間)である。
本実施形態では、制御装置30(具体的には、統合制御部60)は、第1基準トルクと第2回転速度N22との積が、蓄電装置3の第2回転電機MG2への出力制限値を超える場合に、必要電力を蓄電装置3から第2回転電機MG2に供給することができないと判定する。第1基準トルクは、第2回転電機MG2のベーストルクに、第2入力回転速度N2を規定時間で第1回転速度N21から第2回転速度N22まで上昇させるためのイナーシャトルクを加算したトルクである。以下に述べるように、これらのベーストルク及びイナーシャトルクはいずれも正トルクとなるため、第1基準トルクは、正トルクとされる。
第2回転電機MG2のベーストルクは、第2車輪W2に第2回転電機MG2の側から伝達することが要求されるトルク(すなわち、第2車輪要求トルク)に応じたトルクである。具体的には、ベーストルクは、第2車輪W2でのトルクに換算したベーストルクが第2車輪要求トルクに等しくなるように決定される。なお、この換算に用いられる第2変速機TM2のトルク比(第2変速出力部材82Bのトルクに対する第2変速入力部材82Aのトルクの比)は、第2変速機TM2のダウンシフト動作の開始前のトルク比とすることができる。ここでは、第2車輪W2に前進加速方向のトルクである正トルクが伝達されている状態を想定しているため、第2回転電機MG2のベーストルクは正トルクとなる。
第2入力回転速度N2を規定時間で第1回転速度N21から第2回転速度N22まで上昇させるためのイナーシャトルクは、第2入力回転速度N2を規定時間で第1回転速度N21から第2回転速度N22まで上昇させるための第2入力回転速度N2の時間変化率の目標値(回転加速度の目標値)に、第2変速入力部材82A及びそれと連動して回転する回転部材の総イナーシャを乗算して導出することができる。このイナーシャトルクは正トルクとなる。上記の総イナーシャの大部分は第2回転電機MG2のイナーシャであるため、上記のイナーシャトルクを、第2入力回転速度N2の時間変化率の目標値に第2回転電機MG2のイナーシャを乗算して導出することもできる。
蓄電装置3の第2回転電機MG2への出力制限値は、蓄電装置3の第2回転電機MG2への出力電力の上限値に基づき設定される。例えば、蓄電装置3の第2回転電機MG2への出力電力の上限値を、第2変速入力部材82Aの回転速度に対する第2回転電機MG2の回転速度の比で除算した値を、蓄電装置3の第2回転電機MG2への出力制限値に設定することができる。本実施形態では、第2回転電機MG2は、第2変速入力部材82Aと一体的に回転するように連結されている。そのため、上記の比は1となり、蓄電装置3の第2回転電機MG2への出力電力の上限値を、蓄電装置3の第2回転電機MG2への出力制限値に設定することができる。なお、蓄電装置3の第2回転電機MG2への出力電力の上限値は、例えば、蓄電装置3の定格出力に基づく固定値とし、或いは、蓄電装置3の充電状態(蓄電量)や蓄電装置3の温度等に応じて変化する可変値とすることができる。
本実施形態では、制御装置30は、必要電力を第1回転電機MG1により発電することができることを更なる条件として、ダウンシフト調整制御を実行する。すなわち、本実施形態では、制御装置30は、必要電力を蓄電装置3から第2回転電機MG2に供給することができないことに加えて、必要電力を第1回転電機MG1により発電することができることを条件として、ダウンシフト調整制御を実行する。
ここで、目標発電電力を第1回転電機MG1の回転速度で除算した大きさの負トルクを目標トルクとして、本実施形態では、制御装置30は、第1変速入力部材81Aに入力される内燃機関EGと第1回転電機MG1との合成トルクを維持しつつ、第1回転電機MG1の出力トルクを当該目標トルクまで低下させることができる場合に、必要電力を第1回転電機MG1により発電することができると判定する。よって、第1回転電機MG1の出力トルクを目標トルクまで低下させることができない場合には、必要電力を第1回転電機MG1により発電することができないと判定される。また、第1回転電機MG1の出力トルクを目標トルクまで低下させることができる場合であっても、上記の合成トルクを維持することができる程度に内燃機関EGの出力トルクを増大させることができない場合には、必要電力を第1回転電機MG1により発電することができないと判定される。発電量増加制御では、例えば、第1回転電機MG1の出力トルクがこの目標トルクまで低下される。なお、目標発電電力は、基本的に必要電力とされるが、第2変速機TM2のダウンシフトの動作制御の開始前に、第1回転電機MG1による発電が行われている場合には、第2変速機TM2のダウンシフトの動作制御の開始前における第1回転電機MG1による発電電力に必要電力を加算した電力を、目標発電電力とすることもできる。
本実施形態では、制御装置30は、第2車輪W2に正トルクとは反対方向の負トルクが伝達されている状態(例えば、アクセルオフ状態)で、第1変速機TM1の変速比を維持しながら、第2変速機TM2の変速比を第3変速比から第3変速比より小さい第4変速比に変更するアップシフトの動作制御を実行する場合に、アップシフト調整制御を実行するように構成されている。すなわち、制御装置30は、第1変速機TM1の変速比を維持しながら第2変速機TM2のパワーオフアップシフトの動作制御を実行する場合に、アップシフト調整制御を実行する。本実施形態では、第2変速機TM2のアップシフトは、第2変速機TM2の変速段を、変速比が第3変速比となる第3変速段から、変速比が第4変速比となる第4変速段に切り替えるアップシフトである。例えば、第2変速機TM2のアップシフトは、第2変速機TM2の変速段を高速段側に1段切り替えるアップシフトとされる。なお、制御装置30がアップシフト調整制御を実行しない構成とすることもできる。
アップシフト調整制御は、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を減少させる発電量減少制御を実行し、発電量減少制御の実行中に、第2変速機TM2のアップシフトの動作(具体的には、イナーシャ相P)を進行させるための第2入力回転速度N2の低下を行う制御である。アップシフト調整制御は、内燃機関EGのトルクを用いた第1回転電機MG1による発電が行われている場合に(すなわち、第1回転電機MG1が負トルクを出力している場合に)実行される。制御装置30は、発電量減少制御では、第1回転電機MG1の出力トルクを増大させる(すなわち、回生トルクを低下させる)ことで、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を減少させる。発電量減少制御での第1回転電機MG1の出力トルクの増大量は、例えば、後述する回生電力を第1回転電機MG1の回転速度で除算して得られる値に設定される。発電量減少制御において、第1回転電機MG1の出力トルクを、負トルクからゼロトルク又は正トルクとなるまで増大してもよく、この場合、第1回転電機MG1による発電量はゼロまで減少される。
本実施形態では、制御装置30は、発電量減少制御では、第1回転電機MG1の出力トルクを増大させると共に内燃機関EGの出力トルクを低下させることで、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を減少させる。具体的には、制御装置30は、発電量減少制御では、第1変速入力部材81Aに入力される内燃機関EGと第1回転電機MG1との合成トルクを維持しつつ、内燃機関EGのトルクを用いた第1回転電機MG1による発電量を減少させる。そのため、発電量減少制御では、第1回転電機MG1の出力トルクの増大に合わせて、内燃機関EGの出力トルクが低下される。このように合成トルクを維持することで、第1車輪W1に内燃機関EG及び第1回転電機MG1の側から伝達されるトルクを維持しながら発電量減少制御を行うことができる。
第2変速機TM2のアップシフトの動作期間には、アップシフトの動作を進行させるための第2入力回転速度N2の低下が行われるイナーシャ相P(図9参照)の期間が含まれる。イナーシャ相Pの期間において、第2入力回転速度N2は、第3回転速度N23から第4回転速度N24まで低下する。ここで、第3回転速度N23は、第3変速比に応じた回転速度であり、第4回転速度N24は、第4変速比に応じた回転速度である。具体的には、第3回転速度N23は、第2変速出力部材82Bの回転速度に第3変速比を乗算した回転速度であり、第4回転速度N24は、第2変速出力部材82Bの回転速度に第4変速比を乗算した回転速度である。本実施形態では、制御装置30は、アップシフト調整制御では、発電量減少制御の実行中に、第2変速機TM2のアップシフトの動作を進行させるために、第2入力回転速度N2を第3回転速度N23から第4回転速度N24まで低下させる。
本実施形態では、制御装置30は、回生電力を第2回転電機MG2から蓄電装置3に供給することができないことを条件として、アップシフト調整制御を実行するように構成されている。回生電力は、第2入力回転速度N2を、規定時間で、第3回転速度N23から第4回転速度N24まで低下させるために必要となる電力である。規定時間は、第2変速機TM2のアップシフト動作の目標時間(具体的には、イナーシャ相Pの目標時間)である。
本実施形態では、制御装置30(具体的には、統合制御部60)は、第2基準トルクの絶対値と第3回転速度N23との積が、蓄電装置3の第2回転電機MG2からの入力制限値を超える場合に、回生電力を第2回転電機MG2から蓄電装置3に供給することができないと判定する。第2基準トルクは、第2回転電機MG2のベーストルクから、第2入力回転速度N2を規定時間で第3回転速度N23から第4回転速度N24まで低下させるためのイナーシャトルクを減算したトルクである。以下に述べるように、これらのベーストルク及びイナーシャトルクはいずれも負トルクとなるため、第2基準トルクは、負トルクとされる。第2基準トルクの絶対値は、第2回転電機MG2のベーストルクの絶対値と、上記のイナーシャトルクの絶対値との和となる。
第2回転電機MG2のベーストルクは、第2車輪W2に第2回転電機MG2の側から伝達することが要求されるトルク(すなわち、第2車輪要求トルク)に応じたトルクである。具体的には、ベーストルクは、第2車輪W2でのトルクに換算したベーストルクが第2車輪要求トルクに等しくなるように決定される。なお、この換算に用いられる第2変速機TM2のトルク比(第2変速出力部材82Bのトルクに対する第2変速入力部材82Aのトルクの比)は、第2変速機TM2のアップシフト動作の完了後のトルク比とすることができる。ここでは、第2車輪W2に負トルクが伝達されている状態を想定しているため、第2回転電機MG2のベーストルクは負トルクとなる。
第2入力回転速度N2を規定時間で第3回転速度N23から第4回転速度N24まで低下させるためのイナーシャトルクは、第2入力回転速度N2を規定時間で第3回転速度N23から第4回転速度N24まで低下させるための第2入力回転速度N2の時間変化率の目標値(回転加速度の目標値)に、第2変速入力部材82A及びそれと連動して回転する回転部材の総イナーシャを乗算して導出することができる。このイナーシャトルクは負トルクとなる。上記の総イナーシャの大部分は第2回転電機MG2のイナーシャであるため、上記のイナーシャトルクを、第2入力回転速度N2の時間変化率の目標値に第2回転電機MG2のイナーシャを乗算して導出することもできる。
蓄電装置3の第2回転電機MG2からの入力制限値は、蓄電装置3の第2回転電機MG2からの入力電力の上限値に基づき設定される。例えば、蓄電装置3の第2回転電機MG2からの入力電力の上限値を、第2変速入力部材82Aの回転速度に対する第2回転電機MG2の回転速度の比で除算した値を、蓄電装置3の第2回転電機MG2からの入力制限値に設定することができる。本実施形態では、第2回転電機MG2は、第2変速入力部材82Aと一体的に回転するように連結されている。そのため、上記の比は1となり、蓄電装置3の第2回転電機MG2からの入力電力の上限値を、蓄電装置3の第2回転電機MG2からの入力制限値に設定することができる。なお、蓄電装置3の第2回転電機MG2からの入力電力の上限値は、例えば、蓄電装置3の定格出力に基づく固定値とし、或いは、蓄電装置3の充電状態(蓄電量)や蓄電装置3の温度等に応じて変化する可変値とすることができる。
本実施形態では、制御装置30は、第2車輪W2に正トルクが伝達されている状態で、第1変速機TM1のダウンシフト要求がなく、第2変速機TM2のダウンシフト要求があった場合に、図4に示す手順に沿って、第2変速機TM2のダウンシフト動作を開始する。すなわち、ここでは、第1変速機TM1のダウンシフト要求がないために、第1変速機TM1の変速比を維持しながら第2変速機TM2のダウンシフト動作を行う場合を想定している。
制御装置30は、第2変速機TM2のダウンシフト要求があるか否かを判定する(ステップ#1)。第2変速機TM2のダウンシフト要求は、例えば、アクセル開度と車速とにより定まる動作点が、第2変速マップ上でダウンシフト線を跨いだ場合に、或いは跨ぐことが予測される場合に発生する。第2変速機TM2のダウンシフト要求がある場合には(ステップ#1:Yes)、制御装置30は、必要電力を蓄電装置3から第2回転電機MG2に供給可能か否かを判定する(ステップ#2)。そして、制御装置30は、必要電力を蓄電装置3から第2回転電機MG2に供給できる場合には(ステップ#2:Yes)、第2変速機TM2のダウンシフト動作を開始させる(ステップ#5)。具体的には、第2変速制御部52が、統合制御部60からの第2変速機TM2のダウンシフト動作の開始指令に応じて、第2変速機TM2のダウンシフト動作を開始させる。この場合、必要電力を蓄電装置3から第2回転電機MG2に供給することができるため、イナーシャ相Pの期間でのイナーシャトルクに起因する第2車輪W2の駆動力の低下は、第2回転電機MG2の出力トルクを増大させることで抑制することができる。
制御装置30は、必要電力を蓄電装置3から第2回転電機MG2に供給できない場合には(ステップ#2:No)、必要電力を第1回転電機MG1により発電可能か否かを判定する(ステップ#3)。そして、制御装置30は、必要電力を第1回転電機MG1により発電できない場合には(ステップ#3:No)、第2変速機TM2の変速動作を開始させる(ステップ#5)。この場合、イナーシャ相Pの期間では、イナーシャトルクが適切に発生するように、第2係合装置22の係合圧PE(例えば、第2解放側係合装置22Rの係合圧PE)が制御される。一方、制御装置30は、必要電力を第1回転電機MG1により発電できる場合には(ステップ#3:Yes)、ダウンシフト調整制御を実行する。すなわち、制御装置30は、発電量増加制御を開始してから(ステップ#4)、第2変速機TM2のダウンシフト動作を開始させる(ステップ#5)。
本実施形態では、制御装置30は、第2車輪W2に負トルクが伝達されている共に第1回転電機MG1による発電が行われている状態で、第1変速機TM1のアップシフト要求がなく、第2変速機TM2のアップシフト要求があった場合に、図5に示す手順に沿って、第2変速機TM2のアップシフト動作を開始する。すなわち、ここでは、第1変速機TM1のアップシフト要求がないために、第1変速機TM1の変速比を維持しながら第2変速機TM2のアップシフト動作を行う場合を想定している。
制御装置30は、第2変速機TM2のアップシフト要求があるか否かを判定する(ステップ#10)。第2変速機TM2のアップシフト要求は、例えば、アクセル開度と車速とにより定まる動作点が、第2変速マップ上でアップシフト線を跨いだ場合に、或いは跨ぐことが予測される場合に発生する。第2変速機TM2のアップシフト要求がある場合には(ステップ#10:Yes)、制御装置30は、回生電力を第2回転電機MG2から蓄電装置3に供給可能か否かを判定する(ステップ#11)。そして、制御装置30は、回生電力を第2回転電機MG2から蓄電装置3に供給できる場合には(ステップ#11:Yes)、第2変速機TM2のアップシフト動作を開始させる(ステップ#13)。具体的には、第2変速制御部52が、統合制御部60からの第2変速機TM2のアップシフト動作の開始指令に応じて、第2変速機TM2のアップシフト動作を開始させる。この場合、回生電力を第2回転電機MG2から蓄電装置3に供給することができるため、イナーシャ相Pの期間でのイナーシャトルクに起因する第2車輪W2の駆動力の増加は、第2回転電機MG2の出力トルクを低下させることで(すなわち、第2回転電機MG2の回生トルクを増大させることで)抑制することができる。
一方、制御装置30は、回生電力を第2回転電機MG2から蓄電装置3に供給できない場合には(ステップ#11:No)、アップシフト調整制御を実行する。すなわち、制御装置30は、発電量減少制御を開始してから(ステップ#12)、第2変速機TM2のアップシフト動作を開始させる(ステップ#13)。
次に、図7に示すダウンシフト調整制御の具体例について、図6の比較例を参照して説明する。図6及び図7では、内燃機関EG及び第1回転電機MG1の出力トルクTのグラフ、第2回転電機MG2の出力トルクTのグラフ、第2入力回転速度N2のグラフ、第2解放側係合装置22R及び第2係合側係合装置22Eのそれぞれの係合圧PE(ここでは、油圧)の指令値のグラフ、及び、車両加速度G(車両全体の加速度)のグラフを、上から順に示している。車両加速度Gのグラフは、第1車輪W1及び第2車輪W2の総駆動力の変化に伴う車両全体の加速度の変動を示している。
図6及び図7では、第2車輪W2に正トルクが伝達されている状態で、第1変速機TM1の変速比を維持しながら第2変速機TM2のダウンシフトの動作制御を実行する状況を想定している。また、図6及び図7では、上述した必要電力を蓄電装置3から第2回転電機MG2に供給することができず、且つ、当該必要電力を第1回転電機MG1により発電することができる場合を想定している。
図6に示す比較例では、時刻t1において、第2入力回転速度N2を上昇させるために第2解放側係合装置22Rの係合圧PEを低下させる制御が開始される。そして、時刻t2において、第2入力回転速度N2の第1回転速度N21からの上昇が開始される。この例では、時刻t2において、第2係合側係合装置22Eの係合圧PEを上昇させるための準備を行う準備制御が開始される。ここでは、準備制御として、第2係合側係合装置22Eの油圧駆動部に対して作動油を予備充填する制御が行われる。時刻t3において、第2入力回転速度N2が第2回転速度N22に到達する。そして、時刻t3において、第2係合側係合装置22Eの係合圧PEを増大させると共に第2解放側係合装置22Rの係合圧PEを低下させる制御が開始され、これにより第2変速機TM2のトルク比が変速前の変速比に応じたトルク比から変速後の変速比に応じたトルク比に変化して、第2変速機TM2のダウンシフト動作が完了する。
時刻t2〜t3のイナーシャ相Pの期間では、滑り係合状態に制御されている第2解放側係合装置22Rの係合圧PEに応じたトルクが、第2変速出力部材82Bから第2車輪W2の側に出力される。そして、イナーシャ相Pの期間では、第2解放側係合装置22Rの係合圧PEは、第2入力回転速度N2を上昇させるためのイナーシャトルクが適切に発生するように制御される。そのため、イナーシャ相Pの期間では、基本的に、第2車輪W2の駆動力が、第2入力回転速度N2を上昇させるためのイナーシャトルクに起因して低下する。この結果、図6に示す比較例では、イナーシャ相Pの期間において、第2車輪W2の駆動力が低下することで車両加速度Gが低下している(車両加速度Gのグラフにおける下向き矢印参照)。
なお、第2回転電機MG2の出力トルクTを増大させる(例えば、上述したベーストルクに対して増大させる)ことで、イナーシャトルクに起因する第2車輪W2の駆動力の低下を抑制することも考えられる。しかしながら、ここでは、上述した必要電力を蓄電装置3から第2回転電機MG2に供給することができない場合を想定している。そのため、図6に示す比較例では、イナーシャ相Pの期間において、第2回転電機MG2の出力トルクTが、最大トルクTmaxの低下に合わせて低下しており、イナーシャトルクに起因する第2車輪W2の駆動力の低下を抑制することが困難となっている。ここで、最大トルクTmaxは、蓄電装置3の第2回転電機MG2への出力制限値に応じて定まる、第2回転電機MG2が出力可能な最大トルクであり、イナーシャ相Pの期間では、第2回転電機MG2の回転速度(ここでは、第2入力回転速度N2と同じ回転速度)が上昇するのに伴って低下する。
これに対して、以下に説明するように、図7に示すようにダウンシフト調整制御を実行した場合には、車両加速度Gの急激な低下を伴わないようにしつつ、第2変速機TM2のダウンシフト動作を行うことができる。
図7に示す例では、時刻t10において、発電量増加制御が開始される。具体的には、時刻t10において、第1回転電機MG1の出力トルクの低下が開始される。時刻t11において、第1回転電機MG1の出力トルクが、発電量増加制御での目標トルクまで低下し、時刻t11以降、第1回転電機MG1の出力トルクが当該目標トルクに維持される。本実施形態では、内燃機関EGの出力トルクは、第1変速入力部材81Aに入力される内燃機関EGと第1回転電機MG1との合成トルクが維持されるように制御される。そのため、時刻t10において、内燃機関EGの出力トルクの増大が開始され、時刻t11以降、内燃機関EGの出力トルクが維持される。図7に示す例では、時刻t10において、第2入力回転速度N2を上昇させるために第2解放側係合装置22Rの係合圧PEを低下させる制御も開始されている。
図7に示す例では、時刻t11において、第2入力回転速度N2の第1回転速度N21からの上昇が開始される。すなわち、この例では、第1回転電機MG1の出力トルクの目標トルクへの到達に合わせて、第2入力回転速度N2の第1回転速度N21からの上昇が開始される。そして、時刻t12において、第2入力回転速度N2が第2回転速度N22に到達すると、発電量増加制御が終了されると共に、第2係合側係合装置22Eの係合圧PEを増大させると共に第2解放側係合装置22Rの係合圧PEを低下させる制御が開始され、第2変速機TM2のダウンシフト動作が完了する。
図7に示す例では、仮に発電量増加制御を実行しなければ、イナーシャ相Pが開始する時刻t11において、第2回転電機MG2の出力トルクが最大トルクTmaxとなる状況を想定している。なお、図7の第2回転電機MG2の出力トルクTのグラフにおける破線は、発電量増加制御を実行しない図6に示す比較例での最大トルクTmaxを示している。図7に示す例では、発電量増加制御が実行されるため、発電量増加制御が実行されない場合に比べて、イナーシャ相Pの期間において最大トルクTmaxを大きくすることができる(図7において一点鎖線で示す最大トルクTmaxを参照)。そのため、発電量増加制御が実行されない場合に比べて、イナーシャ相Pの期間において第2回転電機MG2の出力トルクの増大量を大きく確保しやすくなっており、これにより、車両加速度Gの急激な低下を伴わないような第2変速機TM2のダウンシフト動作を行いやすくなっている。なお、図7の車両加速度Gのグラフにおける破線は、図6に示す比較例での車両加速度Gを示している。
次に、図9に示すアップシフト調整制御の具体例について、図8の比較例を参照して説明する。図8及び図9では、内燃機関EG及び第1回転電機MG1の出力トルクTのグラフ、第2回転電機MG2の出力トルクTのグラフ、第2入力回転速度N2のグラフ、第2解放側係合装置22R及び第2係合側係合装置22Eのそれぞれの係合圧PE(ここでは、油圧)の指令値のグラフ、及び、車両加速度G(車両全体の加速度)のグラフを、上から順に示している。車両加速度Gのグラフは、第1車輪W1及び第2車輪W2の総駆動力の変化に伴う車両全体の加速度の変動を示している。
図8及び図9では、第2車輪W2に負トルクが伝達されている共に第1回転電機MG1による発電が行われている状態で、第1変速機TM1の変速比を維持しながら第2変速機TM2のアップシフトの動作制御を実行する状況を想定している。また、図8及び図9では、上述した回生電力を第2回転電機MG2から蓄電装置3に供給することができない場合を想定している。
図8に示す比較例では、時刻t20において、第2係合側係合装置22Eの係合圧PEを上昇させるための準備を行う準備制御が開始される。ここでは、準備制御として、第2係合側係合装置22Eの油圧駆動部に対して作動油を予備充填する制御が行われる。その後、第2係合側係合装置22Eの係合圧PEを増大させると共に第2解放側係合装置22Rの係合圧PEを低下させる制御が行われる。図8に示す比較例では、時刻t21において、第2入力回転速度N2の第3回転速度N23からの低下が開始され、時刻t22において、第2入力回転速度N2が第4回転速度N24に到達して、第2変速機TM2のアップシフト動作が完了する。
時刻t21〜t22のイナーシャ相Pの期間では、滑り係合状態に制御されている第2係合側係合装置22Eの係合圧PEに応じたトルクが、第2変速出力部材82Bから第2車輪W2の側に出力される。そして、イナーシャ相Pの期間では、第2係合側係合装置22Eの係合圧PEは、第2入力回転速度N2を低下させるためのイナーシャトルクが適切に発生するように制御される。そのため、イナーシャ相Pの期間では、基本的に、第2車輪W2の駆動力が、第2入力回転速度N2を低下させるためのイナーシャトルクに起因して増加する。この結果、図8に示す比較例では、イナーシャ相Pの期間において、第2車輪W2の駆動力が増加することで車両加速度Gが上昇している(車両加速度Gのグラフにおける上向き矢印参照)。
なお、第2回転電機MG2の出力トルクTを低下させる(例えば、上述したベーストルクに対して低下させる)ことで、イナーシャトルクに起因する第2車輪W2の駆動力の増加を抑制することも考えられる。しかしながら、ここでは、上述した回生電力を第2回転電機MG2から蓄電装置3に供給することができない場合を想定している。そのため、図8に示す比較例では、イナーシャ相Pの期間において、最小トルクTminの制限により第2回転電機MG2の出力トルクTを大きく低下させることができず、イナーシャトルクに起因する第2車輪W2の駆動力の増加を抑制することが困難となっている。ここで、最小トルクTminは、蓄電装置3の第2回転電機MG2からの入力制限値に応じて定まる、第2回転電機MG2が出力可能な最小トルクである。
これに対して、以下に説明するように、図9に示すようにアップシフト調整制御を実行した場合には、車両加速度Gの急激な上昇を伴わないようにしつつ、第2変速機TM2のアップシフト動作を行うことができる。
図9に示す例では、時刻t30において、第2係合側係合装置22Eの係合圧PEを上昇させるための準備を行う準備制御が開始される。その後、第2係合側係合装置22Eの係合圧PEを増大させると共に第2解放側係合装置22Rの係合圧PEを低下させる制御が行われる。図9に示す例では、時刻t31において、第2入力回転速度N2の第3回転速度N23からの低下が開始され、時刻t32において、第2入力回転速度N2が第4回転速度N24に到達して、第2変速機TM2のアップシフト動作が完了する。
図9に示す例では、時刻t31において、発電量減少制御が開始される。具体的には、時刻t31において、第1回転電機MG1の出力トルクが、発電量減少制御での目標トルクまで増大され、時刻t31以降、第1回転電機MG1の出力トルクが当該目標トルクに維持される。本実施形態では、内燃機関EGの出力トルクは、第1変速入力部材81Aに入力される内燃機関EGと第1回転電機MG1との合成トルクが維持されるように制御される。そのため、時刻t31において、内燃機関EGの出力トルクが低下され、時刻t31以降、内燃機関EGの出力トルクが維持される。そして、時刻t32において、発電量減少制御が終了される。
図9に示す例では、発電量減少制御を実行することで蓄電装置3の第2回転電機MG2からの入力制限を緩和することができるため、発電量減少制御が実行されない場合に比べて、イナーシャ相Pの期間において最小トルクTminを小さくすることができる(図9において一点鎖線で示す最小トルクTminを参照)。なお、図9の第2回転電機MG2の出力トルクTのグラフにおける破線は、発電量減少制御を実行しない図8に示す比較例での最小トルクTminを示している。このようにイナーシャ相Pの期間において最小トルクTminを小さくできることで、イナーシャ相Pの期間において第2回転電機MG2の出力トルクの低下量(すなわち、第2回転電機MG2の回生トルクの増大量)を大きく確保しやすくなっている。これにより、図9の第2係合側係合装置22Eのグラフに示すように、イナーシャ相Pの期間において第2係合側係合装置22Eの係合圧PEを破線で示す圧まで上昇させなくても、第2入力回転速度N2を低下させるためのイナーシャトルクを適切に発生させることができ、車両加速度Gの急激な上昇を伴わないような第2変速機TM2のアップシフト動作を行いやすくなっている。なお、図9の車両加速度Gのグラフにおける破線は、図8に示す比較例での車両加速度Gを示している。
〔その他の実施形態〕
次に、制御装置のその他の実施形態について説明する。
(1)上記の実施形態では、制御装置30が、必要電力を蓄電装置3から第2回転電機MG2に供給することができないことに加えて、必要電力を第1回転電機MG1により発電することができることを条件として、ダウンシフト調整制御を実行する構成を例として説明した。しかし、本開示はそのような構成に限定されず、制御装置30が、必要電力を第1回転電機MG1により発電することができることを条件とせずに、ダウンシフト調整制御を実行する構成とすることもできる。必要電力の全てを第1回転電機MG1により発電することができない場合であっても、発電量増加制御により第1回転電機MG1による発電量が増加される分、第2回転電機MG2の出力トルクの増大量を大きく確保して、第2車輪W2の駆動力の低下を抑制することができる。
(2)上記の実施形態では、制御装置30が、必要電力を蓄電装置3から第2回転電機MG2に供給することができないことを条件に、ダウンシフト調整制御を実行する構成を例として説明した。しかし、本開示はそのような構成に限定されず、制御装置30が、必要電力を蓄電装置3から第2回転電機MG2に供給することができないことを条件とせずに、ダウンシフト調整制御を実行する構成とすることもできる。また、上記の実施形態では、制御装置30が、回生電力を第2回転電機MG2から蓄電装置3に供給することができないことを条件に、アップシフト調整制御を実行する構成を例として説明した。しかし、本開示はそのような構成に限定されず、制御装置30が、回生電力を第2回転電機MG2から蓄電装置3に供給することができないことを条件とせずに、アップシフト調整制御を実行する構成とすることもできる。
(3)上記の実施形態では、制御装置30が、統合制御部60に加えて、第1駆動制御部41と、第2駆動制御部42と、第1変速制御部51と、第2変速制御部52と、を備える構成を例として説明した。しかし、本開示はそのような構成に限定されず、第1駆動制御部41、第2駆動制御部42、第1変速制御部51、及び第2変速制御部52の少なくともいずれかが、制御装置30と通信可能な別の装置に設けられる構成とすることもできる。例えば、制御装置30が、統合制御部60、第1駆動制御部41、及び第1変速制御部51を備え、制御装置30と通信可能な別の装置が、第2駆動制御部42及び第2変速制御部52を備える構成とし、或いは、制御装置30が、統合制御部60、第2駆動制御部42、及び第2変速制御部52を備え、制御装置30と通信可能な別の装置が、第1駆動制御部41及び第1変速制御部51を備える構成とすることができる。
(4)上記の実施形態で示した制御装置30の各機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部を更に区分けしたりすることも可能である。
(5)上記の実施形態では、第1係合装置21及び第2係合装置22が、油圧駆動式の摩擦係合装置である構成を例として説明した。しかし、本開示はそのような構成に限定されず、第1係合装置21及び第2係合装置22の一方又は双方を、油圧駆動式以外の摩擦係合装置とすることもできる。油圧駆動式以外の摩擦係合装置として、電磁駆動式の摩擦係合装置や、モータ等により駆動される電動駆動式の摩擦係合装置を例示することができる。この場合、油圧の指令に代えて、電圧の指令や電流の指令を制御量とすることができる。このように、本明細書での係合圧PEには、油圧以外の駆動力(例えば、係合装置に締結力を発生させる推力)も含まれる。
(6)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
以下、上記において説明した制御装置の概要について説明する。
内燃機関(EG)及び第1回転電機(MG1)と第1車輪(W1)とを結ぶ第1動力伝達経路(T1)に、変速比を変更可能な第1変速機(TM1)を備え、第2回転電機(MG2)と第2車輪(W2)とを結び且つ前記第1動力伝達経路(T1)とは分離した第2動力伝達経路(T2)に、変速比を変更可能な第2変速機(TM2)を備えた車両用駆動装置(90)を制御対象とする制御装置(30)であって、前記第2車輪(W2)に前進加速方向のトルクである正トルクが伝達されている状態で、前記第1変速機(TM1)の変速比を維持しながら、前記第2変速機(TM2)の変速比を第1変速比から前記第1変速比より大きい第2変速比に変更するダウンシフトの動作制御を実行する場合に、ダウンシフト調整制御を実行し、前記ダウンシフト調整制御は、前記内燃機関(EG)のトルクを用いた前記第1回転電機(MG1)による発電量を増加させる発電量増加制御を実行し、前記発電量増加制御の実行中に、前記ダウンシフトの動作を進行させるための前記第2変速機(TM2)の入力回転速度(N2)の上昇を行う制御である。
本構成によれば、第1変速機(TM1)の変速比を維持しながら第2変速機(TM2)のダウンシフト動作を行う場合に、第2変速機(TM2)の入力回転速度(N2)の上昇が、内燃機関(EG)のトルクを用いた第1回転電機(MG1)による発電量を増加させる発電量増加制御の実行中に行われる。第2変速機(TM2)の入力回転速度(N2)の上昇が行われるイナーシャ期間(P)での、イナーシャトルクに起因する第2車輪(W2)の駆動力の低下は、第2回転電機(MG2)の出力トルクを増大させることで抑制できるが、蓄電装置(3)の出力制限を超えるために第2回転電機(MG2)の出力トルクを増大させることができない場合がある。しかし、本構成によれば、発電量増加制御により第1回転電機(MG1)による発電量が増加されるため、第1回転電機(MG1)により発電された電力を用いて蓄電装置(3)の出力制限を超える電力を第2回転電機(MG2)に供給することができる。そのため、第2変速機(TM2)の入力回転速度(N2)の上昇が、発電量増加制御の実行中に行われない場合に比べて、イナーシャ期間(P)において第2回転電機(MG2)の出力トルクの増大量を大きく確保しやすくなっており、これにより、第2車輪(W2)の駆動力の急激な低下を伴わないようなダウンシフト動作を行いやすくなっている。
ここで、前記第1回転電機(MG1)及び前記第2回転電機(MG2)は、蓄電装置(3)に電気的に接続され、前記第2変速機(TM2)の入力回転速度(N2)を、規定時間で、前記第1変速比に応じた第1回転速度(N21)から前記第2変速比に応じた第2回転速度(N22)まで上昇させるために必要となる必要電力を、前記蓄電装置(3)から前記第2回転電機(MG2)に供給することができないことを条件として、前記ダウンシフト調整制御を実行すると好適である。
上記の必要電力を蓄電装置(3)から第2回転電機(MG2)に供給することができる場合には、基本的に、上述した発電量増加制御を実行しなくとも、イナーシャ期間(P)において第2車輪(W2)の駆動力が急激に低下しないように、第2回転電機(MG2)の出力トルクを増大させることができる。本構成によれば、必要電力を蓄電装置(3)から第2回転電機(MG2)に供給することができる場合には、ダウンシフト調整制御が実行されないため、そのような場合において、ダウンシフトの動作制御の簡素化や制御期間の短縮を図りつつ、第2車輪(W2)の駆動力の急激な低下を伴わないようなダウンシフト動作を行うことができる。
上記のように、前記必要電力を前記蓄電装置(3)から前記第2回転電機(MG2)に供給することができないことを条件として、前記ダウンシフト調整制御を実行する構成において、前記第2車輪(W2)に前記第2回転電機(MG2)の側から伝達することが要求されるトルクに応じた前記第2回転電機(MG2)のトルクに、前記第2変速機(TM2)の入力回転速度(N2)を前記規定時間で前記第1回転速度(N21)から前記第2回転速度(N22)まで上昇させるためのイナーシャトルクを加算したトルクを、第1基準トルクとして、前記第1基準トルクと前記第2回転速度(N22)との積が、前記蓄電装置(3)の前記第2回転電機(MG2)への出力制限値を超える場合に、前記必要電力を前記蓄電装置(3)から前記第2回転電機(MG2)に供給することができないと判定すると好適である。
本構成によれば、上記の必要電力を蓄電装置(3)から第2回転電機(MG2)に供給することができるか否かを適切に判定することができる。
また、前記必要電力を前記第1回転電機(MG1)により発電することができることを更なる条件として、前記ダウンシフト調整制御を実行すると好適である。
上記の必要電力を蓄電装置(3)から第2回転電機(MG2)に供給することができず、且つ、当該必要電力を第1回転電機(MG1)により発電することができない場合には、ダウンシフト調整制御を実行しても、第2回転電機(MG2)の出力トルクを増大させることのみでは、第2変速機(TM2)の入力回転速度(N2)を規定時間で第1回転速度(N21)から第2回転速度(N22)まで上昇させることはできない。そのため、このような場合には、ダウンシフト調整制御を実行することによる制御の複雑化に見合った効果が得られないおそれがある。本構成によれば、必要電力を第1回転電機(MG1)により発電することができることを、ダウンシフト調整制御の実行条件に含めることで、ダウンシフト調整制御の効果が十分に期待できる場合にダウンシフト調整制御が実行されるようにすることができる。
上記の各構成の制御装置(30)において、前記第2車輪(W2)に前記正トルクとは反対方向の負トルクが伝達されている状態で、前記第1変速機(TM1)の変速比を維持しながら、前記第2変速機(TM2)の変速比を第3変速比から前記第3変速比より小さい第4変速比に変更するアップシフトの動作制御を実行する場合に、アップシフト調整制御を実行し、前記アップシフト調整制御は、前記内燃機関(EG)のトルクを用いた前記第1回転電機(MG1)による発電量を減少させる発電量減少制御を実行し、前記発電量減少制御の実行中に、前記アップシフトの動作を進行させるための前記第2変速機(TM2)の入力回転速度(N2)の低下を行う制御であると好適である。
本構成によれば、第1変速機(TM1)の変速比を維持しながら第2変速機(TM2)のアップシフト動作を行う場合に、第2変速機(TM2)の入力回転速度(N2)の低下が、内燃機関(EG)のトルクを用いた第1回転電機(MG1)による発電量を減少させる発電量減少制御の実行中に行われる。第2変速機(TM2)の入力回転速度(N2)の低下が行われるイナーシャ期間(P)での、イナーシャトルクに起因する第2車輪(W2)の駆動力の増加は、第2回転電機(MG2)の回生トルクを増大させることで抑制できるが、蓄電装置(3)の第2回転電機(MG2)からの入力制限を超えるために第2回転電機(MG2)の回生トルクを増大させることができない場合がある。しかし、本構成によれば、発電量減少制御により第1回転電機(MG1)による発電量が減少されるため、当該発電量の減少量に応じて蓄電装置(3)の第2回転電機(MG2)からの入力制限を緩和することができる。そのため、第2変速機(TM2)の入力回転速度(N2)の低下が、発電量減少制御の実行中に行われない場合に比べて、イナーシャ期間(P)において第2回転電機(MG2)の回生トルクの増大量を大きく確保しやすくなっており、これにより、第2車輪(W2)の駆動力の急激な増加を伴わないようなアップシフト動作を行いやすくなっている。
上記のようにアップシフト調整制御を実行する構成において、前記第1回転電機(MG1)及び前記第2回転電機(MG2)は、蓄電装置(3)に電気的に接続され、前記第2変速機(TM2)の入力回転速度(N2)を、規定時間で、前記第3変速比に応じた第3回転速度(N23)から前記第4変速比に応じた第4回転速度(N24)まで低下させるために必要となる回生電力を、前記第2回転電機(MG2)から前記蓄電装置(3)に供給することができないことを条件として、前記アップシフト調整制御を実行すると好適である。
上記の回生電力を第2回転電機(MG2)から蓄電装置(3)に供給することができる場合には、基本的に、上述した発電量減少制御を実行しなくとも、イナーシャ期間(P)において第2車輪(W2)の駆動力が急激に増加しないように、第2回転電機(MG2)の回生トルクを増大させることができる。本構成によれば、回生電力を第2回転電機(MG2)から蓄電装置(3)に供給することができる場合には、アップシフト調整制御が実行されないため、そのような場合において、アップシフトの動作制御の簡素化や制御期間の短縮を図りつつ、第2車輪(W2)の駆動力の急激な増加を伴わないようなアップシフト動作を行うことができる。
上記のように、前記回生電力を前記第2回転電機(MG2)から前記蓄電装置(3)に供給することができないことを条件として、前記アップシフト調整制御を実行する構成において、前記第2車輪(W2)に前記第2回転電機(MG2)の側から伝達することが要求されるトルクに応じた前記第2回転電機(MG2)のトルクから、前記第2変速機(TM2)の入力回転速度(N2)を前記規定時間で前記第3回転速度(N23)から前記第4回転速度(N24)まで低下させるためのイナーシャトルクを減算したトルクを、第2基準トルクとして、前記第2基準トルクの絶対値と前記第3回転速度との積が、前記蓄電装置(3)の前記第2回転電機(MG2)からの入力制限値を超える場合に、前記回生電力を前記第2回転電機(MG2)から前記蓄電装置(3)に供給することができないと判定すると好適である。
本構成によれば、上記の回生電力を第2回転電機(MG2)から蓄電装置(3)に供給することができるか否かを適切に判定することができる。
本開示に係る制御装置は、上述した各効果のうち、少なくとも1つを奏することができればよい。
3:蓄電装置
30:制御装置
90:車両用駆動装置
EG:内燃機関
MG1:第1回転電機
MG2:第2回転電機
N2:第2入力回転速度(第2変速機の入力回転速度)
N21:第1回転速度
N22:第2回転速度
N23:第3回転速度
N24:第4回転速度
T1:第1動力伝達経路
T2:第2動力伝達経路
TM1:第1変速機
TM2:第2変速機
W1:第1車輪
W2:第2車輪

Claims (7)

  1. 内燃機関及び第1回転電機と第1車輪とを結ぶ第1動力伝達経路に、変速比を変更可能な第1変速機を備え、第2回転電機と第2車輪とを結び且つ前記第1動力伝達経路とは分離した第2動力伝達経路に、変速比を変更可能な第2変速機を備えた車両用駆動装置を制御対象とする制御装置であって、
    前記第2車輪に前進加速方向のトルクである正トルクが伝達されている状態で、前記第1変速機の変速比を維持しながら、前記第2変速機の変速比を第1変速比から前記第1変速比より大きい第2変速比に変更するダウンシフトの動作制御を実行する場合に、ダウンシフト調整制御を実行し、
    前記ダウンシフト調整制御は、前記内燃機関のトルクを用いた前記第1回転電機による発電量を増加させる発電量増加制御を実行し、前記発電量増加制御の実行中に、前記ダウンシフトの動作を進行させるための前記第2変速機の入力回転速度の上昇を行う制御である、制御装置。
  2. 前記第1回転電機及び前記第2回転電機は、蓄電装置に電気的に接続され、
    前記第2変速機の入力回転速度を、規定時間で、前記第1変速比に応じた第1回転速度から前記第2変速比に応じた第2回転速度まで上昇させるために必要となる必要電力を、前記蓄電装置から前記第2回転電機に供給することができないことを条件として、前記ダウンシフト調整制御を実行する、請求項1に記載の制御装置。
  3. 前記第2車輪に前記第2回転電機の側から伝達することが要求されるトルクに応じた前記第2回転電機のトルクに、前記第2変速機の入力回転速度を前記規定時間で前記第1回転速度から前記第2回転速度まで上昇させるためのイナーシャトルクを加算したトルクを、第1基準トルクとして、
    前記第1基準トルクと前記第2回転速度との積が、前記蓄電装置の前記第2回転電機への出力制限値を超える場合に、前記必要電力を前記蓄電装置から前記第2回転電機に供給することができないと判定する、請求項2に記載の制御装置。
  4. 前記必要電力を前記第1回転電機により発電することができることを更なる条件として、前記ダウンシフト調整制御を実行する、請求項2又は3に記載の制御装置。
  5. 前記第2車輪に前記正トルクとは反対方向の負トルクが伝達されている状態で、前記第1変速機の変速比を維持しながら、前記第2変速機の変速比を第3変速比から前記第3変速比より小さい第4変速比に変更するアップシフトの動作制御を実行する場合に、アップシフト調整制御を実行し、
    前記アップシフト調整制御は、前記内燃機関のトルクを用いた前記第1回転電機による発電量を減少させる発電量減少制御を実行し、前記発電量減少制御の実行中に、前記アップシフトの動作を進行させるための前記第2変速機の入力回転速度の低下を行う制御である、請求項1から4のいずれか一項に記載の制御装置。
  6. 前記第1回転電機及び前記第2回転電機は、蓄電装置に電気的に接続され、
    前記第2変速機の入力回転速度を、規定時間で、前記第3変速比に応じた第3回転速度から前記第4変速比に応じた第4回転速度まで低下させるために必要となる回生電力を、前記第2回転電機から前記蓄電装置に供給することができないことを条件として、前記アップシフト調整制御を実行する、請求項5に記載の制御装置。
  7. 前記第2車輪に前記第2回転電機の側から伝達することが要求されるトルクに応じた前記第2回転電機のトルクから、前記第2変速機の入力回転速度を前記規定時間で前記第3回転速度から前記第4回転速度まで低下させるためのイナーシャトルクを減算したトルクを、第2基準トルクとして、
    前記第2基準トルクの絶対値と前記第3回転速度との積が、前記蓄電装置の前記第2回転電機からの入力制限値を超える場合に、前記回生電力を前記第2回転電機から前記蓄電装置に供給することができないと判定する、請求項6に記載の制御装置。
JP2020058648A 2020-03-27 2020-03-27 制御装置 Pending JP2021154932A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058648A JP2021154932A (ja) 2020-03-27 2020-03-27 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058648A JP2021154932A (ja) 2020-03-27 2020-03-27 制御装置

Publications (1)

Publication Number Publication Date
JP2021154932A true JP2021154932A (ja) 2021-10-07

Family

ID=77916885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058648A Pending JP2021154932A (ja) 2020-03-27 2020-03-27 制御装置

Country Status (1)

Country Link
JP (1) JP2021154932A (ja)

Similar Documents

Publication Publication Date Title
JP6003915B2 (ja) ハイブリッド車両の制御装置
JP5488711B2 (ja) 車両用動力伝達装置の制御装置
JP5189524B2 (ja) 車両用動力伝達装置の制御装置
JP7040363B2 (ja) 車両の制御装置
JP5765434B2 (ja) 車両用駆動装置の制御装置
JP5641149B2 (ja) 車両用駆動装置の制御装置
JP5429563B2 (ja) 車両用制御装置及び車両駆動システム
JP6278345B2 (ja) 車両用駆動装置の制御装置
JP2017194103A (ja) 車両の変速制御装置
US10793139B2 (en) Vehicle control apparatus
US20200023726A1 (en) Control device
JP2004150531A (ja) 車両の発進制御装置
JP6390788B2 (ja) 制御装置
JP2020045992A (ja) 制御装置
JP5842661B2 (ja) 車両用動力伝達装置
JPWO2016159124A1 (ja) 車両用駆動装置の制御装置
JP2020006782A (ja) 車両用駆動装置の制御装置
JP2012086763A (ja) 車両用動力伝達装置の制御装置
JP5803182B2 (ja) 車両用動力伝達装置の制御装置
JP2021154932A (ja) 制御装置
JP2021142887A (ja) 制御装置
JP2018013119A (ja) 車両の制御装置
CN111098845A (zh) 混合动力车辆的控制装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP2019093811A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210423