JP2021143351A - REGENERATION METHOD OF Al ALLOY - Google Patents

REGENERATION METHOD OF Al ALLOY Download PDF

Info

Publication number
JP2021143351A
JP2021143351A JP2020040619A JP2020040619A JP2021143351A JP 2021143351 A JP2021143351 A JP 2021143351A JP 2020040619 A JP2020040619 A JP 2020040619A JP 2020040619 A JP2020040619 A JP 2020040619A JP 2021143351 A JP2021143351 A JP 2021143351A
Authority
JP
Japan
Prior art keywords
molten metal
alloy
compound
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020040619A
Other languages
Japanese (ja)
Other versions
JP7414592B2 (en
Inventor
琢真 箕浦
Takuma Minoura
琢真 箕浦
盾 八百川
Jun Yaokawa
盾 八百川
裕子 青木
Hiroko Aoki
裕子 青木
博行 石井
Hiroyuki Ishii
博行 石井
彰 加納
Akira Kano
彰 加納
裕生 日下
Hiroo Kusaka
裕生 日下
享祐 伊東
Kyosuke Ito
享祐 伊東
知雄 村田
Tomoo Murata
知雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Tsusho Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Toyotsu Smelting Technology Corp
Original Assignee
Toyota Tsusho Corp
Toyota Motor Corp
Toyota Central R&D Labs Inc
Toyotsu Smelting Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Tsusho Corp, Toyota Motor Corp, Toyota Central R&D Labs Inc, Toyotsu Smelting Technology Corp filed Critical Toyota Tsusho Corp
Priority to JP2020040619A priority Critical patent/JP7414592B2/en
Publication of JP2021143351A publication Critical patent/JP2021143351A/en
Application granted granted Critical
Publication of JP7414592B2 publication Critical patent/JP7414592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

To provide a novel recycling method of Al alloy scrap capable of heightening a ratio (removal efficiency) of an Fe amount to be removed relative to a Mn amount.SOLUTION: A regeneration method of an Al alloy of the present invention comprises: a mixing step of obtaining a third molten metal by mixing a first molten metal and a second molten metal prepared by dissolving a raw material at least one of which contains an Al alloy scrap or a regenerated Al alloy ingot; and an extraction step for extracting a fourth molten metal from which at least a part of an Fe compound precipitated from the third molten metal is removed. Here, the first molten metal has a larger Mn concentration and a higher temperature of the molten metal than the second molten metal, and the second molten metal has the temperature of the molten metal within the crystallization temperature range of the Fe compound. The first molten metal has a Mn concentration relative to a total of, for example, 1 mass% or more. The second molten metal has a Mn concentration relative to a total of, for example, smaller than 1 mass%. According to the regeneration method of the Al alloy of the present invention, for example, the removal efficiency can be increased by about 25 to 75%.SELECTED DRAWING: Figure 2

Description

本発明は、Al合金スクラップを再生(リサイクル)する方法等に関する。 The present invention relates to a method for recycling Al alloy scrap and the like.

最近の環境意識等の高揚に伴い、様々な部材や装置の軽量化が進められており、アルミニウム合金(単に「Al合金」という。)の使用量は増加しつつある。新規なAlの製造(精錬)には多量のエネルギーが必要であるが、Al合金スクラップ(単に「スクラップ」ともいう。)の再溶解に必要なエネルギーは僅かである。このためスクラップの再生または再利用(単に「リサイクル」という。)が望まれる。 With the recent rise in environmental awareness, the weight of various members and devices has been reduced, and the amount of aluminum alloys (simply referred to as "Al alloys") used is increasing. A large amount of energy is required to produce (refining) new Al, but a small amount of energy is required to redissolve Al alloy scrap (also simply referred to as “scrap”). For this reason, it is desirable to recycle or reuse scrap (simply referred to as "recycling").

スクラップを再溶解すると、通常、その溶湯中には、Feが混在する。スクラップから再生Al合金を得るためには、不要元素(不純物元素)の除去が必要となる。そのような元素の除去方法として、関連する記載が下記の文献にある。 When scrap is redissolved, Fe is usually mixed in the molten metal. In order to obtain a recycled Al alloy from scrap, it is necessary to remove unnecessary elements (impurity elements). As a method for removing such an element, a related description is found in the following documents.

米国特許第2464610号U.S. Pat. No. 2464610 米国特許第5741348号U.S. Pat. No. 5,741348 特開2002−155322号Japanese Patent Application Laid-Open No. 2002-155322 米国特許第4734127号U.S. Pat. No. 4,734,127 WO2013/168213WO2013 / 168213 WO2013/168214WO2013 / 168214

古河電工時報104号(平成11年7月)25-30Furukawa Electric Time Signal No. 104 (July 1999) 25-30 Metallurgical Transactions 5(1974)785-787Metallurgical Transactions 5 (1974) 785-787 Material Transactions, JIM.38(1997)622-699Material Transactions, JIM.38 (1997) 622-699

(1)金属間化合物除去法
特許文献1、2および非特許文献は、Feを金属間化合物として溶湯から除去する方法に関する。具体的にいうと、特許文献1では、Al−(11.6〜13.5)%Si−(0.8〜9)%Fe合金に対し、Cr、Mn、Coを添加してFe系金属間化合物を晶出させ、溶湯中のFe量を低減させている。
(1) Intermetallic Compound Removal Method Patent Documents 1 and 2 and non-patent documents relate to a method for removing Fe as an intermetallic compound from a molten metal. Specifically, in Patent Document 1, Cr, Mn, and Co are added to an Al- (11.6 to 13.5)% Si- (0.8 to 9)% Fe alloy to crystallize an Fe-based intermetallic compound. , The amount of Fe in the molten metal is reduced.

特許文献2では、Al−(0〜12)%Si−(0.49〜2.1)%Fe−(0.37〜1.91)%Mn合金(Cr<0.4%、Ti<0.41%、Zr<0.26%、Mo<0.01%)にMnを添加してFe量の低減を図っている。しかし、Mnの使用量に対するFeの除去効率は低い。 In Patent Document 2, Al- (0 to 12)% Si- (0.49 to 2.1)% Fe- (0.37 to 1.91)% Mn alloy (Cr <0.4%, Ti <0.41%, Zr <0.26%, Mo <0.01 %) To reduce the amount of Fe. However, the efficiency of removing Fe with respect to the amount of Mn used is low.

(2)偏析凝固法、結晶分別法
特許文献3〜6、非特許文献1、2は、Al相が晶出した半凝固状態の溶湯から、Al晶出物を残留液相から分離して不純物を低減する偏析凝固法または結晶分別法に関する。ちなみに、非特許文献1では、半凝固溶湯を圧搾して残留液相を除去している。また非特許文献2では、半凝固溶湯を撹拌してAl晶出物を球状化させて、残留液相と分離している。このような方法は、Al相が晶出するまで溶湯を冷却する必要があり、エネルギーロスが大きい。
(2) Segregation solidification method, crystal fractionation method In Patent Documents 3 to 6 and Non-Patent Documents 1 and 2, Al crystals are separated from the residual liquid phase from the molten metal in a semi-solidified state in which the Al phase is crystallized, and impurities are present. The present invention relates to a segregation solidification method or a crystal fractionation method for reducing the amount of water. Incidentally, in Non-Patent Document 1, the semi-solidified molten metal is squeezed to remove the residual liquid phase. Further, in Non-Patent Document 2, the semi-solidified molten metal is stirred to spheroidize the Al crystallized product and separate it from the residual liquid phase. In such a method, it is necessary to cool the molten metal until the Al phase crystallizes, and the energy loss is large.

(3)半溶融精製法
非特許文献3は、Al合金(固体)を半溶融状態に加熱して液相と残留Al結晶とに分離し、Al相の固溶限を超える不純物を除去する半溶融精製法に関する。具体的にいうと、非特許文献3では、半溶融状態のAl−8.39%Si−0.06%Mn−0.05%Mg合金を加圧して液相を分離し、残留分からAl−0.96%Si−1.14%Mn−1.56%Mg合金を得ている。この方法では、Feを金属間化合物として除去することが難しい。また、半溶融状態の残留Al結晶量は温度に依存しているため、本方法を利用できる合金組成が限られる。
(3) Semi-melt purification method In Non-Patent Document 3, the Al alloy (solid) is heated to a semi-melted state to separate it into a liquid phase and a residual Al crystal, and impurities exceeding the solid solubility limit of the Al phase are removed. Regarding the melt purification method. Specifically, in Non-Patent Document 3, Al-8.39% Si-0.06% Mn-0.05% Mg alloy in a semi-molten state is pressed to separate the liquid phase, and Al-0.96% Si-1.14% is separated from the residue. Mn-1.56% Mg alloy is obtained. With this method, it is difficult to remove Fe as an intermetallic compound. Further, since the amount of residual Al crystals in the semi-molten state depends on the temperature, the alloy composition that can use this method is limited.

(4)帯溶融法
上述した方法以外にも、Al合金中から不純物を除去する方法として、インゴットを一端側から部分的に加熱・溶融させて、末端側に不純物を集め、加熱を開始した一端側の純度を高める帯溶融法もある。
(4) Band melting method In addition to the method described above, as a method for removing impurities from the Al alloy, the ingot is partially heated and melted from one end side, impurities are collected on the end side, and heating is started at one end. There is also a band melting method that increases the purity of the side.

本発明はこのような事情に鑑みて為されたものであり、Mn使用量に対するFe除去量の割合(除去効率)を高めてAl合金スクラップをリサイクルできる新たなAl合金の再生方法等を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a new method for regenerating an Al alloy, which can recycle Al alloy scrap by increasing the ratio of the amount of Fe removed to the amount of Mn used (removal efficiency). The purpose is.

本発明者はこの課題を解決すべく鋭意研究した結果、Mn濃度と湯温が異なる複数の溶湯を混合することにより、従来よりも除去効率を高めることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has succeeded in improving the removal efficiency as compared with the conventional case by mixing a plurality of molten metal having different Mn concentration and hot water temperature. By developing this result, the present invention described below has been completed.

《Al合金の再生方法》
(1)本発明は、少なくとも一方がAl合金スクラップを含む原料を溶解して調製された第1溶湯と第2溶湯を混合して第3溶湯を得る混合工程と、該第3溶湯から晶出したFe化合物の少なくとも一部を除去した第4溶湯を抽出する抽出工程と、を備えたAl合金の再生方法であって、該第1溶湯は、第2溶湯よりもMn濃度が大きいと共に湯温が高く、該第2溶湯は、湯温がFe化合物の晶出温度域内にあるAl合金の再生方法である。
<< How to regenerate Al alloy >>
(1) The present invention comprises a mixing step of mixing a first molten metal and a second molten metal prepared by melting a raw material containing Al alloy scrap at least one of them to obtain a third molten metal, and crystallization from the third molten metal. A method for regenerating an Al alloy, comprising an extraction step of extracting a fourth molten metal from which at least a part of the Fe compound has been removed. The first molten metal has a higher Mn concentration and a hot water temperature than the second molten metal. The second molten metal is a method for regenerating an Al alloy in which the temperature of the molten metal is within the crystallization temperature range of the Fe compound.

(2)本発明のAl合金の再生方法(単に「再生方法」または「リサイクル方法」という。)によれば、Mn使用量またはMn濃度を全体的に低減させつつ、スクラップを利用した溶湯から、Fe除去またはFe濃度低減が可能となる。換言すると、Mn量に対して除去されるFe量の割合である除去効率(Fe/Mn)を高めることができ、Al合金スクラップの効率的なリサイクル(Al合金の再生)が可能となる。 (2) According to the method for regenerating Al alloy of the present invention (simply referred to as "regeneration method" or "recycling method"), from molten metal using scrap while reducing the amount of Mn used or the Mn concentration as a whole. Fe can be removed or the Fe concentration can be reduced. In other words, the removal efficiency (Fe / Mn), which is the ratio of the amount of Fe to be removed to the amount of Mn, can be increased, and efficient recycling of Al alloy scrap (regeneration of Al alloy) becomes possible.

本発明により除去効率が向上した理由は、次のように推察される。第2溶湯は、第1溶湯よりもMn濃度が小さく、その湯温はFe化合物の晶出温度域内にある。このような第2溶湯では、Fe濃度の高いFe化合物(Mnの有無は問わない)が晶出する。 The reason why the removal efficiency is improved by the present invention is presumed as follows. The second molten metal has a lower Mn concentration than the first molten metal, and the temperature of the second molten metal is within the crystallization temperature range of the Fe compound. In such a second molten metal, an Fe compound having a high Fe concentration (with or without Mn) crystallizes.

このような第2溶湯に、高Mn濃度の第1溶湯が加わると、第2溶湯中のFe化合物が核となって、Mnを含むFe化合物の成長が促進される。この結果、一般的な化学量論比(MnとFeの比率)に沿うFe化合物ではなく、Mnに対してFeが濃化または偏在したFe化合物が新たに生成され得る。その結果、高い除去効率(収率)でスクラップをリサイクルできるようになったと考えられる。 When the first molten metal having a high Mn concentration is added to such a second molten metal, the Fe compound in the second molten metal becomes a nucleus and the growth of the Fe compound containing Mn is promoted. As a result, an Fe compound in which Fe is concentrated or unevenly distributed with respect to Mn can be newly produced instead of the Fe compound in line with the general stoichiometric ratio (ratio of Mn and Fe). As a result, it is considered that scrap can be recycled with high removal efficiency (yield).

《その他》
(1)Feの除去(Fe濃度の低減)がなされた再生Al合金は、固相状態で利用されても、液相状態(例えば第4溶湯のまま)で利用されてもよい。液相状態の再生Al合金は、例えば、再溶解等を行わずに、そのまま再生地金として利用され得る。
"others"
(1) The regenerated Al alloy from which Fe has been removed (reduction of Fe concentration) may be used in a solid phase state or in a liquid phase state (for example, as a fourth molten metal). The regenerated Al alloy in the liquid phase state can be used as it is as a regenerated bullion without being redissolved, for example.

(2)Fe化合物の組成は、再生過程の進行に伴い変化し得る。Fe化合物は、第3溶湯から分離除去され得る限り(第4溶湯の抽出が可能である限り)、具体的な組成や形態等は問わない。例えば、Fe化合物は、Feを含む金属間化合物、Feを含む合金、それらの混在物でもよい。Fe化合物の一部を構成し得る金属間化合物として、例えば、Al13Fe、Al15Si(Fe,Mn)等があり得る。 (2) The composition of the Fe compound may change as the regeneration process progresses. As long as the Fe compound can be separated and removed from the third molten metal (as long as the fourth molten metal can be extracted), the specific composition, form, etc. are not limited. For example, the Fe compound may be an intermetallic compound containing Fe, an alloy containing Fe, or a mixture thereof. Examples of the intermetallic compound that can form a part of the Fe compound include Al 13 Fe 4 , Al 15 Si 2 (Fe, Mn) 4, and the like.

(3)本明細書でいう濃度や組成等は、特に断らない限り、対象物(溶湯、合金、化合物等)の全体に対する質量割合(質量%)であり、適宜、質量%を単に「%」と記す。 (3) Unless otherwise specified, the concentration, composition, etc. referred to in the present specification are the mass ratio (mass%) to the whole of the object (molten metal, alloy, compound, etc.), and the mass% is simply "%" as appropriate. Write.

(4)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (4) Unless otherwise specified, "x to y" in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value.

Fe化合物の晶出温度と、Mn濃度またはFe濃度との関係を示すグラフである。It is a graph which shows the relationship between the crystallization temperature of Fe compound, Mn concentration or Fe concentration. 各試料に係る再生方法と、再生溶湯のFe・Mn濃度を示す説明図である。It is explanatory drawing which shows the regeneration method which concerns on each sample, and the Fe · Mn concentration of the regenerated molten metal. 試料1に係る残渣(Fe化合物)のEPMAによる分析結果である。It is the analysis result by EPMA of the residue (Fe compound) which concerns on Sample 1. 試料C1に係る残渣(Fe化合物)のEPMAによる分析結果である。It is the analysis result by EPMA of the residue (Fe compound) which concerns on sample C1.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、方法的な構成要素であっても物(例えば、再生Al合金(溶湯))に関する構成要素となり得る。 One or more components arbitrarily selected from the present specification may be added to the above-described components of the present invention. The contents described in the present specification can be components related to a product (for example, a regenerated Al alloy (molten metal)) even if it is a method component.

《混合工程》
混合工程では、Mn濃度と湯温が異なる第1溶湯と第2溶湯が、少なくとも混合される。便宜上、第1溶湯と第2溶湯を混合する場合について主に説明するが、混合工程は、Mn濃度および/または湯温が異なる3種以上の溶湯(第1溶湯、第2溶湯および他の溶湯)が混合されてもよい。
<< Mixing process >>
In the mixing step, at least the first molten metal and the second molten metal having different Mn concentration and hot water temperature are mixed. For convenience, the case where the first molten metal and the second molten metal are mixed will be mainly described, but in the mixing step, three or more kinds of molten metal having different Mn concentration and / or hot water temperature (first molten metal, second molten metal and other molten metal) are described. ) May be mixed.

(1)第1溶湯と第2溶湯
第1溶湯と第2溶湯は、少なくとも一方が、スクラップ原料から調製されていれば足る(調製工程)。スクラップ原料は、Al合金スクラップ(単に「スクラップ」という。)を含む原料、再生Al合金鋳塊(Al合金スクラップを原料として製造したAl合金鋳塊)等の一種以上からなる。各溶湯がスクラップ原料をベースに調製されていると、スクラップのリサイクルが促進されてより好ましい。各溶湯の調製に際して、スクラップ原料の異同や調製時期の異同等は問わない。
(1) First molten metal and second molten metal It is sufficient that at least one of the first molten metal and the second molten metal is prepared from scrap raw materials (preparation step). The scrap raw material comprises one or more kinds of raw materials including Al alloy scrap (simply referred to as "scrap"), recycled Al alloy ingots (Al alloy ingots produced from Al alloy scrap as raw materials), and the like. It is more preferable that each molten metal is prepared based on the scrap raw material because the recycling of scrap is promoted. When preparing each molten metal, it does not matter whether the scrap raw materials are different or the preparation time is different.

スクラップ原料は、鋳物や展伸材等からなるAl合金の他、異種金属材(Fe基材、Mg基材等)を含んでもよい。また、スクラップ原料は、スクラップ自体に加えて、各溶湯を所望の成分組成とするための調整原料(合金、化合物、純金属等からなる添加材)を含んでもよい。 The scrap raw material may include dissimilar metal materials (Fe base material, Mg base material, etc.) in addition to Al alloys made of castings, wrought materials, and the like. Further, the scrap raw material may include, in addition to the scrap itself, an adjusting raw material (additive composed of an alloy, a compound, a pure metal, etc.) for adjusting each molten metal to a desired component composition.

第1溶湯の調製は、Al合金スクラップや添加材等の原料が十分に溶融する温度(例えば、650〜930℃さらには680〜880℃程度)でなされるとよい。但し、その湯温は、鉄くず等が溶け残る温度でもよい。第2溶湯の調製は、例えば、Al合金スクラップ等の原料が十分に溶解する温度(Fe化合物の晶出上限温度超)にされた後、Fe化合物の晶出温度域に調整(降温)してなされてもよい。いずれにしても第2溶湯は、第1溶湯との混合前に、核となるFe化合物が晶出した状態であると好ましい。 The first molten metal may be prepared at a temperature at which raw materials such as Al alloy scrap and additives are sufficiently melted (for example, about 650 to 930 ° C. and further about 680 to 880 ° C.). However, the hot water temperature may be a temperature at which iron scraps and the like remain undissolved. The second molten metal is prepared, for example, by adjusting (lowering the temperature) to a temperature in which the raw materials such as Al alloy scrap are sufficiently melted (exceeding the upper limit temperature for crystallization of the Fe compound) and then adjusting to the crystallization temperature range of the Fe compound. May be done. In any case, it is preferable that the second molten metal is in a state in which the core Fe compound is crystallized before mixing with the first molten metal.

第2溶湯は、例えば、その全体に対してMn濃度が1質量%未満、0.7質量%以下さらには0.4質量%以下であるとよい。Mn濃度は、下限値を問わないが、例えば、0.05質量%以上さらには0.1質量%以上でもよい。 The second molten metal may have, for example, a Mn concentration of less than 1% by mass, 0.7% by mass or less, and further 0.4% by mass or less with respect to the whole. The Mn concentration is not limited to the lower limit value, but may be, for example, 0.05% by mass or more, further 0.1% by mass or more.

第1溶湯は、その核のまわりに、Al−Fe−Mn−Si系化合物を成長させるため、例えば、その全体に対してMn濃度が1質量%以上、1.4質量%以上さらには1.7質量%以上であるとよい。そのMn濃度は、上限値を問わないが、例えば、5質量%以下、4質量%以下さらには3質量%以下でもよい。除去効率を高めるため、第1溶湯と第2溶湯のMn濃度差を、例えば、1質量%以上、1.5質量%以上さらには1.8質量%以上としてもよい。 Since the first molten metal grows an Al-Fe-Mn-Si compound around its nucleus, for example, the Mn concentration is 1% by mass or more, 1.4% by mass or more, and further 1. It is preferably 7% by mass or more. The Mn concentration is not limited to the upper limit value, but may be, for example, 5% by mass or less, 4% by mass or less, and further 3% by mass or less. In order to increase the removal efficiency, the difference in Mn concentration between the first molten metal and the second molten metal may be, for example, 1% by mass or more, 1.5% by mass or more, and further 1.8% by mass or more.

Fe化合物の晶出温度域は、溶湯の成分組成により変化し得る。Fe化合物の晶出上限温度(晶出開始温度)とα−Alの晶出上限温度との一例を図1に示した。図1は、解析ソフト(Thermo-Calc Software AB社製 Thermo-Calc)を用いてScheil式に基づいて計算した結果である。そのときのAl合金溶湯組成(一例)は、Al−11%Si−2%Cu−(0.5〜1.5)%Fe−(0.2〜2)%Mn−0.3%Mg−0.8%Znとした。 The crystallization temperature range of the Fe compound can change depending on the composition of the molten metal. An example of the upper limit temperature for crystallization of the Fe compound (the upper limit temperature for crystallization) and the upper limit temperature for crystallization of α-Al is shown in FIG. FIG. 1 shows the result of calculation based on the Scheil equation using analysis software (Thermo-Calc Software AB Thermo-Calc). The composition of the molten Al alloy at that time (example) was Al-11% Si-2% Cu- (0.5 to 1.5)% Fe- (0.2 to 2)% Mn-0.3% Mg-. It was set to 0.8% Zn.

図1からわかるように、Mn濃度およびFe濃度が高いほど、Fe化合物が生成されて晶出温度域が広くなることがわかる。 As can be seen from FIG. 1, it can be seen that the higher the Mn concentration and the Fe concentration, the wider the crystallization temperature range due to the formation of Fe compounds.

そこで第1溶湯の湯温は、第2溶湯の湯温よりも高いと共に、Mn濃度やFe濃度に応じて、Fe化合物の晶出上限温度よりも高いとよい。具体的にいうと、第1溶湯の湯温は、例えば、700〜900℃さらには750〜850℃とされるとよい。 Therefore, it is preferable that the temperature of the first molten metal is higher than the temperature of the second molten metal and is higher than the upper limit of crystallization of the Fe compound depending on the Mn concentration and the Fe concentration. Specifically, the temperature of the first molten metal may be, for example, 700 to 900 ° C., further 750 to 850 ° C.

第2溶湯の湯温は、例えば、核となるFe化合物の晶出温度域内にあるとよい。他の化合物や金属等がその温度域内で晶出等してもよい。但し、リサイクル効率(Al収率)を高めるため、第2溶湯の湯温は、α−Alが晶出しない温度域であるとよい。つまり第2溶湯の湯温は、α−Alの晶出上限温度(約577℃)よりも高いとよい。具体的にいうと、第2溶湯の湯温は、例えば、620〜570℃さらには600〜575℃とされるとよい。 The temperature of the second molten metal may be, for example, within the crystallization temperature range of the core Fe compound. Other compounds, metals, etc. may crystallize within the temperature range. However, in order to increase the recycling efficiency (Al yield), the temperature of the second molten metal is preferably in a temperature range in which α-Al does not crystallize. That is, the temperature of the second molten metal is preferably higher than the upper limit temperature for crystallization of α-Al (about 577 ° C.). Specifically, the temperature of the second molten metal may be, for example, 620 to 570 ° C., more preferably 600 to 575 ° C.

(2)第3溶湯
第3溶湯は、第1溶湯と第2溶湯を混合して得られる。混合は、例えば、第1溶湯を第2溶湯側へ注いでなされてもよいし、第2溶湯を第1溶湯側へ注いでなされてもよいし、第1溶湯と第2溶湯を別な容体(坩堝等)へ注いでなされてもよい。第2溶湯を第1溶湯側または別な容体へ注ぐときは、沈降しているFe化合物の混入を抑制しつつなされてもよい。具体的には、下層域を除いて、第2溶湯の上層域〜中層域(上澄み部分)が他へ注がれてもよい。
(2) Third molten metal The third molten metal is obtained by mixing the first molten metal and the second molten metal. The mixing may be performed, for example, by pouring the first melt into the second melt side, pouring the second melt into the first melt side, or pouring the first melt and the second melt into different bodies. It may be poured into (crucible, etc.). When the second molten metal is poured into the first molten metal side or another body, the mixing of the precipitated Fe compound may be suppressed. Specifically, except for the lower layer region, the upper layer region to the middle layer region (supernatant portion) of the second molten metal may be poured into other layers.

混合後の時間経過や温度変化(降温)により、第3溶湯中でFe化合物の晶出や成長が起こる(晶出工程)。その晶出を促進するために、第3溶湯は、降温、撹拌等がされてもよい。例えば、第3溶湯は、(α−Alの晶出上限温度)+(3〜53℃さらには13〜33℃)、具体的にいうと、580〜630℃さらには590〜610℃とされるとよい。なお、晶出工程の時間は問わないが、例えば、5〜120分間さらには15〜60分間であるとよい。 The Fe compound crystallizes and grows in the third molten metal due to the passage of time after mixing and the temperature change (temperature drop) (crystallization step). In order to promote the crystallization, the temperature of the third molten metal may be lowered, stirred or the like. For example, the third molten metal is (α-Al upper limit temperature for crystallization) + (3 to 53 ° C., further 13 to 33 ° C.), specifically, 580 to 630 ° C., further 590 to 610 ° C. It is good. The time of the crystallization step is not limited, but is preferably 5 to 120 minutes, more preferably 15 to 60 minutes, for example.

《抽出工程》
第3溶湯中に晶出したFe化合物の少なくとも一部を除去することにより、Fe濃度が低減された第4溶湯が抽出される。比重が大きいFe化合物は第3溶湯の下層域に沈降し易いため、第4溶湯の抽出は、例えば、第3溶湯の中層域〜上層域にある溶湯(Feの濃度が低下した上澄み溶湯)だけを取り出してなされる。その他、固相であるFe化合物をフィルター等で濾して、第3溶湯から第4溶湯が抽出されてもよい。
<< Extraction process >>
By removing at least a part of the Fe compound crystallized in the third molten metal, the fourth molten metal having a reduced Fe concentration is extracted. Since the Fe compound having a large specific density tends to settle in the lower layer region of the third molten metal, the extraction of the fourth molten metal is limited to, for example, the molten metal in the middle to upper layer regions of the third molten metal (supernatant molten metal having a reduced Fe concentration). Is taken out and made. In addition, the fourth molten metal may be extracted from the third molten metal by filtering the Fe compound which is a solid phase with a filter or the like.

Fe化合物以外の未溶解物(例えば鉄くず等)の除去は、第3溶湯の調製段階(混合工程)でなされてもよいし、第4溶湯の抽出段階でなされてもよい。 Undissolved substances other than the Fe compound (for example, iron scraps and the like) may be removed in the preparation step (mixing step) of the third molten metal or in the extraction step of the fourth molten metal.

抽出された第4溶湯は、凝固させることなく、そのまま展伸材や鋳物等の製造に供されてもよい。第4溶湯は、再利用前(リサイクル前)に、さらに精製されたり、純Al(新塊)や合金源が添加されて、所望成分に調整されてもよい(成分調整工程)。勿論、第4溶湯は、凝固させた再生鋳塊(インゴット)として提供されてもよい。 The extracted fourth molten metal may be directly used for producing a wrought material, a casting, or the like without solidifying. The fourth molten metal may be further refined before reuse (before recycling), or may be adjusted to a desired component by adding pure Al (new ingot) or an alloy source (component adjusting step). Of course, the fourth molten metal may be provided as a solidified regenerated ingot.

各溶湯の組成は、本発明に係るFeの除去原理(メカニズム)が実現され得る限り、問わない。敢えて一例をいうと、各溶湯は、Al合金部材の所望特性等に応じて、下記に示す組成範囲のいずれか一つ以上を満たしてもよい。
Si:1〜13%さらに3〜12%、Cu:0.5〜5%さらに1.5〜4%、
Mg:0.1〜6%さらに0.2〜4%、Zn:0.3〜7%さらに0.6〜5%、
Mn:0.1〜5%さらに0.3〜3%、Fe:0.5%以下さらに0.4%以下
The composition of each molten metal is not limited as long as the Fe removal principle (mechanism) according to the present invention can be realized. As an example, each molten metal may satisfy any one or more of the composition ranges shown below depending on the desired properties of the Al alloy member and the like.
Si: 1 to 13%, further 3 to 12%, Cu: 0.5 to 5%, further 1.5 to 4%,
Mg: 0.1 to 6%, further 0.2 to 4%, Zn: 0.3 to 7%, further 0.6 to 5%,
Mn: 0.1 to 5% Further 0.3 to 3%, Fe: 0.5% or less Further 0.4% or less

Feの除去方法(再生方法)を変更して調製した各Al合金溶湯(試料)について、その成分測定と分離されたFe化合物の観察を行った。これらの具体例に基づいて本発明をより詳しく説明する。 For each molten Al alloy (sample) prepared by changing the method for removing Fe (regeneration method), the components thereof were measured and the separated Fe compound was observed. The present invention will be described in more detail based on these specific examples.

《試料1》
(1)原溶湯
図2に示すように、Al合金スクラップの代替として、Fe含有量(濃度)が比較的多いダイカスト材(JIS ADC12)を原料に用いた。その化学組成(初期組成)は、Al−11%Si−2%Cu−1%Fe−0.2%Mn−0.3%Mg−0.8%Znであった。なお、本実施例でいう組成(濃度)は、対象としている溶湯または合金の全体に対する質量割合(質量%)であり、単に「%」で示す。
<< Sample 1 >>
(1) Raw molten metal As shown in FIG. 2, a die casting material (JIS ADC12) having a relatively high Fe content (concentration) was used as a raw material as a substitute for Al alloy scrap. The chemical composition (initial composition) was Al-11% Si-2% Cu-1% Fe-0.2% Mn-0.3% Mg-0.8% Zn. The composition (concentration) referred to in this example is the mass ratio (mass%) of the target molten metal or alloy to the whole, and is simply indicated by "%".

試料1では、二つの黒鉛坩堝(#10:高さ182mm×口径147mm×底径94mm、口厚12mm)に、それぞれ原料を1kgずつ入れて、800℃まで加熱した。こうして、各黒鉛坩堝(単に「坩堝」という。)に、同組成の溶湯(「原溶湯」という。)を1kgずつ用意した。ちなみに、原溶湯のFe化合物の晶出上限温度は591℃となる。なお、本実施例で示す晶出温度はいずれも、既述した解析ソフト(熱力学計算ソフト)から求めた。 In Sample 1, 1 kg of each of the raw materials was placed in two graphite crucibles (# 10: height 182 mm × diameter 147 mm × bottom diameter 94 mm, mouth thickness 12 mm) and heated to 800 ° C. In this way, 1 kg of a molten metal having the same composition (referred to as "raw molten metal") was prepared for each graphite crucible (simply referred to as "crucible"). Incidentally, the upper limit temperature for crystallization of the Fe compound in the raw molten metal is 591 ° C. The crystallization temperature shown in this example was obtained from the analysis software (thermodynamic calculation software) described above.

(2)調製工程
一方の原溶湯に、粒状の純Mnを16.2g添加して、撹拌と静置を繰返し、Mnを含む原料全体(スクラップ原料)を完全に溶解した。こうしてMn濃度を2%とした溶湯(800℃)を調製した。この溶湯を「第1溶湯」という。ちなみに、第1溶湯のFe化合物の晶出上限温度は676℃となる。
(2) Preparation Step 16.2 g of granular pure Mn was added to one of the raw molten metal, and stirring and standing were repeated to completely dissolve the entire raw material (scrap raw material) containing Mn. In this way, a molten metal (800 ° C.) having a Mn concentration of 2% was prepared. This molten metal is called "first molten metal". Incidentally, the upper limit temperature for crystallization of the Fe compound in the first molten metal is 676 ° C.

他方の原溶湯は、Mnを添加せず、坩堝ごと炉外へ取り出し、大気中に静置して578℃(α−Alの晶出上限温度(577℃)+1℃)まで放冷させた(降温工程)。こうして得られた溶湯を「第2溶湯」という。第2溶湯は、その降温処理により、Fe化合物が微細に晶出した状態またはその一部が沈降した状態になっていたと推察される。第2溶湯は原溶湯と同組成なため、第2溶湯のFe化合物の晶出上限温度も591℃である。 The other raw molten metal was taken out of the furnace together with the crucible without adding Mn, and allowed to stand in the atmosphere to cool to 578 ° C (upper limit temperature for crystallization of α-Al (577 ° C) + 1 ° C) ( Temperature lowering process). The molten metal thus obtained is called "second molten metal". It is presumed that the second molten metal was in a state in which the Fe compound was finely crystallized or a part thereof was precipitated by the temperature lowering treatment. Since the second molten metal has the same composition as the original molten metal, the upper limit temperature for crystallization of the Fe compound in the second molten metal is also 591 ° C.

(3)混合工程
炉外に取り出した第1溶湯の坩堝を傾動させて、第1溶湯を第2溶湯の坩堝へ注いだ。こうして第1溶湯と第2溶湯を混合した。混合された溶湯(「混合溶湯」という。)の湯温は約640℃であった。
(3) Mixing step The crucible of the first molten metal taken out of the furnace was tilted, and the first molten metal was poured into the crucible of the second molten metal. In this way, the first molten metal and the second molten metal were mixed. The temperature of the mixed molten metal (referred to as "mixed molten metal") was about 640 ° C.

(4)晶出工程
混合溶湯を大気中で撹拌しながら600℃(α−Alの晶出上限温度(577℃)+ 23℃)まで放冷させた。こうして得られた溶湯を「第3溶湯」という。撹拌されつつ降温された第3溶湯は、Fe化合物の晶出と成長が進行し、Fe化合物の多くが沈降した状態になっていたと推察される。ちなみに、第3溶湯のFe化合物の晶出上限温度は636℃となる。
(4) Crystallization Step The mixed molten metal was allowed to cool to 600 ° C. (upper temperature of α-Al crystallization (577 ° C.) + 23 ° C.) while stirring in the air. The molten metal thus obtained is called "third molten metal". It is presumed that in the third molten metal whose temperature was lowered while being stirred, the crystallization and growth of the Fe compound proceeded, and most of the Fe compound was in a precipitated state. Incidentally, the upper limit temperature for crystallization of the Fe compound in the third molten metal is 636 ° C.

(5)抽出工程
第3溶湯を坩堝ごと傾動させて、その上層域にある溶湯(上澄み)だけを空の坩堝に注いだ。こうしてAl合金の再生溶湯(第4溶湯)を得た。
(5) Extraction step The third molten metal was tilted together with the crucible, and only the molten metal (supernatant) in the upper layer was poured into the empty crucible. In this way, a recycled molten metal of Al alloy (fourth molten metal) was obtained.

《試料C1・試料C2》
比較例として、図2に示すように、試料C1と試料C2も製作した。いずれの試料も、一つの坩堝で2kgの原料を800℃まで加熱して、原溶湯を用意した。試料C1では、原溶湯に既述のMnを16.2g添加して、Mn濃度が1%の溶湯を調製した。試料C2では、原溶湯に同Mnを36.7g添加し、Mn濃度が2%の溶湯を調製した。なお、いずれの試料でも、試料1の場合と同様に、撹拌と静置を繰返して、Mnを含む原料を完全に溶解させた。
<< Sample C1 and Sample C2 >>
As a comparative example, as shown in FIG. 2, sample C1 and sample C2 were also produced. For each sample, 2 kg of the raw material was heated to 800 ° C. in one crucible to prepare a raw molten metal. In sample C1, 16.2 g of the above-mentioned Mn was added to the raw molten metal to prepare a molten metal having an Mn concentration of 1%. In sample C2, 36.7 g of the same Mn was added to the raw molten metal to prepare a molten metal having an Mn concentration of 2%. In each sample, as in the case of sample 1, stirring and standing were repeated to completely dissolve the raw material containing Mn.

Mnを添加した各溶湯に対しても、試料1の場合と同様な晶出工程と抽出工程を施して、それぞれ再生溶湯を得た。 Each molten metal to which Mn was added was also subjected to the same crystallization step and extraction step as in the case of Sample 1 to obtain a regenerated molten metal.

《測定・観察》
(1)成分測定
各試料の再生溶湯(上澄み溶湯)を、750℃まで再加熱し、十分に撹拌した後、その一部を分析用型(φ40mm×30mm)に注湯し、室内で放冷して自然凝固させた。こうして得られた各試料の合金を用いて、その底面から高さ約5mmの水平断面における濃度を蛍光X線分析により行った。得られたそれぞれのFe濃度とMn濃度を、図2に併せて示した。
《Measurement / Observation》
(1) Component measurement The regenerated molten metal (supernatant molten metal) of each sample is reheated to 750 ° C., and after sufficient stirring, a part of the molten metal is poured into an analysis mold (φ40 mm × 30 mm) and allowed to cool indoors. And naturally solidified. Using the alloy of each sample thus obtained, the concentration in a horizontal cross section having a height of about 5 mm from the bottom surface was measured by fluorescent X-ray analysis. The obtained Fe concentration and Mn concentration are also shown in FIG.

(2)Fe化合物の観察
試料1と試料C1について、上澄み溶湯の抽出後の底部(試料1なら第3溶湯の底部)にあった残渣(凝固物)を、電子プローブマイクロアナライザー(EPMA)で観察・分析した。得られた結果(Fe、Mn、SiおよびAlの濃度分布)を、図3Aと図3B(両者を併せて単に「図3」という。)にそれぞれ示した。なお、EPMAの観察試料は、熱硬化性樹脂に埋め込んだ凝固物の一部を鏡面研磨して製作した。
(2) Observation of Fe compound For Sample 1 and Sample C1, the residue (coagulated product) on the bottom of the supernatant molten metal after extraction (in the case of Sample 1, the bottom of the third molten metal) was observed with an electron probe microanalyzer (EPMA). ·analyzed. The obtained results (concentration distribution of Fe, Mn, Si and Al) are shown in FIGS. 3A and 3B (both are simply referred to as "FIG. 3"), respectively. The EPMA observation sample was produced by mirror-polishing a part of the coagulated product embedded in the thermosetting resin.

《評価》
(1)Fe濃度
図2に示した試料1〜C2の各Fe濃度を比較すると明らかなように、試料1のFe濃度は、Mn添加量が同じ試料C1のFe濃度とMn添加量が約2倍である試料C2のFe濃度との略中間となった。これらのことから、Mn濃度と湯温が異なる二つの溶湯を混合すると、Mnの使用量に対するFeの除去量(除去効率)を大幅に向上させ得ることがわかった。具体的にいうと、混合工程により、除去効率が25〜75%程度向上することがわかった。
"evaluation"
(1) Fe Concentration As is clear from comparing the Fe concentrations of Samples 1 to C2 shown in FIG. 2, the Fe concentration of Sample 1 is such that the Fe concentration of Sample C1 having the same Mn addition amount and the Mn addition amount are about 2. It was substantially in the middle of the Fe concentration of sample C2, which was double. From these facts, it was found that by mixing two molten metal having different Mn concentration and hot water temperature, the amount of Fe removed (removal efficiency) with respect to the amount of Mn used can be significantly improved. Specifically, it was found that the removal efficiency was improved by about 25 to 75% by the mixing step.

(2)Fe化合物
図3に示したAl−Fe−Mn−Si系の化合物(Fe化合物)を比較すると明らかなように、試料1のFe化合物は、中央付近に、Fe濃度が高くてMn濃度が低い部分が生成されていた。一方、試料C1のFe化合物は、Fe濃度とMn濃度が略均一的であった。
(2) Fe Compound As is clear from a comparison of the Al-Fe-Mn-Si based compounds (Fe compounds) shown in FIG. 3, the Fe compound of Sample 1 has a high Fe concentration and a Mn concentration near the center. The low part was generated. On the other hand, the Fe compound of sample C1 had substantially uniform Fe concentration and Mn concentration.

試料1のFe化合物は、混合工程前に核となる第1Fe化合物(高Fe濃度で低Mn濃度な化合物)が晶出した後、混合工程後にその核の周囲に第2Fe化合物(Fe濃度とMn濃度が略均一的な化合物)が成長してできたと考えられる。そして、第1Fe化合物の生成が上述した除去効率の向上に寄与したと推察される。 In the Fe compound of Sample 1, after the core first Fe compound (compound having a high Fe concentration and a low Mn concentration) crystallizes before the mixing step, the second Fe compound (Fe concentration and Mn) surrounds the nucleus after the mixing step. It is considered that a compound having a substantially uniform concentration) was grown. Then, it is presumed that the formation of the first Fe compound contributed to the improvement of the removal efficiency described above.

以上のことから、本発明の再生方法によれば、Mn量を抑制しつつFeを除去でき、Al合金スクラップのリサイクルを効率的に行えることが明らかとなった。 From the above, it has been clarified that according to the regeneration method of the present invention, Fe can be removed while suppressing the amount of Mn, and Al alloy scrap can be efficiently recycled.

Claims (4)

少なくとも一方がAl合金スクラップまたは再生Al合金鋳塊を含む原料を溶解して調製された第1溶湯と第2溶湯を混合して第3溶湯を得る混合工程と、
該第3溶湯から晶出したFe化合物の少なくとも一部を除去した第4溶湯を抽出する抽出工程と、
を備えたAl合金の再生方法であって、
該第1溶湯は、第2溶湯よりもMn濃度が大きいと共に湯温が高く、
該第2溶湯は、湯温がFe化合物の晶出温度域内にあるAl合金の再生方法。
A mixing step of mixing a first molten metal and a second molten metal prepared by melting a raw material containing at least one of Al alloy scrap or recycled Al alloy ingot to obtain a third molten metal.
An extraction step of extracting the fourth molten metal from which at least a part of the Fe compound crystallized from the third molten metal has been removed, and
It is a method of regenerating an Al alloy equipped with
The first molten metal has a higher Mn concentration and a higher hot water temperature than the second molten metal.
The second molten metal is a method for regenerating an Al alloy whose temperature is within the crystallization temperature range of the Fe compound.
前記第1溶湯は、その全体に対するMn濃度が1質量%以上であり、
前記第2溶湯は、その全体に対するMn濃度が1質量%未満である請求項1に記載のAl合金の再生方法。
The first molten metal has a Mn concentration of 1% by mass or more with respect to the whole.
The method for regenerating an Al alloy according to claim 1, wherein the second molten metal has a Mn concentration of less than 1% by mass with respect to the whole.
前記第1溶湯の湯温は、Fe化合物の晶出上限温度よりも高い請求項1または2に記載のAl合金の再生方法。 The method for regenerating an Al alloy according to claim 1 or 2, wherein the temperature of the first molten metal is higher than the upper limit temperature for crystallization of the Fe compound. 前記第2溶湯の湯温は、α−Alの晶出上限温度よりも高い請求項1〜3のいずれかに記載のAl合金の再生方法。 The method for regenerating an Al alloy according to any one of claims 1 to 3, wherein the temperature of the second molten metal is higher than the upper limit temperature for crystallization of α-Al.
JP2020040619A 2020-03-10 2020-03-10 Al alloy regeneration method Active JP7414592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040619A JP7414592B2 (en) 2020-03-10 2020-03-10 Al alloy regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040619A JP7414592B2 (en) 2020-03-10 2020-03-10 Al alloy regeneration method

Publications (2)

Publication Number Publication Date
JP2021143351A true JP2021143351A (en) 2021-09-24
JP7414592B2 JP7414592B2 (en) 2024-01-16

Family

ID=77767093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040619A Active JP7414592B2 (en) 2020-03-10 2020-03-10 Al alloy regeneration method

Country Status (1)

Country Link
JP (1) JP7414592B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2020001770A (en) 2017-08-16 2020-03-24 Alcoa Usa Corp Methods of recycling aluminum alloys and purification thereof.

Also Published As

Publication number Publication date
JP7414592B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6667485B2 (en) Recycling method of Al alloy
US6290748B1 (en) TiB2 particulate ceramic reinforced Al-alloy metal-matrix composites
TWI481726B (en) Aluminum alloy and manufacturing method thereof
JP6800128B2 (en) How to regenerate Al alloy
JPS5912731B2 (en) Method for refining aluminum or aluminum alloy
JP7123834B2 (en) Impurity removal method
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
US9371573B2 (en) Grain refinement, aluminium foundry alloys
JP6864704B2 (en) How to regenerate Al alloy
JP7414592B2 (en) Al alloy regeneration method
KR102655019B1 (en) Impurity removal method
WO2019198476A1 (en) Impurity removal method
JP2006326639A (en) Method for producing maraging steel
CN114000020A (en) Ingot for large-size die forging and preparation method thereof
JP2019077895A (en) REGENERATION METHOD OF Al ALLOY
CN110564991A (en) Method for producing aluminum alloy
RU2266971C1 (en) Method of production of aluminum-and-silicon alloys
WO2023079851A1 (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
US20240167122A1 (en) Selective Removal of Impurities from Molten Aluminum
Muangnoy et al. Fading mechanism on grain refinement and modification with Al-B-Sr master alloys in an aluminium-silicon cast alloy
Sigworth Modification of aluminum-silicon alloys
CN110885935B (en) Casting method suitable for Mg-Al alloy grain refinement
JP2695433B2 (en) Method for adjusting magnesium content of molten aluminum
JP2023070039A (en) Method for removing impurities, method for producing aluminum-based alloy, and method for producing aluminum-based alloy material
JPH09272944A (en) High strength cast aluminum alloy and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231228

R150 Certificate of patent or registration of utility model

Ref document number: 7414592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150