JP2021140179A - Image pick-up element, and imaging device - Google Patents

Image pick-up element, and imaging device Download PDF

Info

Publication number
JP2021140179A
JP2021140179A JP2021085081A JP2021085081A JP2021140179A JP 2021140179 A JP2021140179 A JP 2021140179A JP 2021085081 A JP2021085081 A JP 2021085081A JP 2021085081 A JP2021085081 A JP 2021085081A JP 2021140179 A JP2021140179 A JP 2021140179A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion unit
image pickup
area
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021085081A
Other languages
Japanese (ja)
Inventor
宏明 高原
Hiroaki Takahara
宏明 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019023651A external-priority patent/JP6890766B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2021085081A priority Critical patent/JP2021140179A/en
Publication of JP2021140179A publication Critical patent/JP2021140179A/en
Priority to JP2023205180A priority patent/JP2024022636A/en
Pending legal-status Critical Current

Links

Images

Abstract

To secure an amount of incidence upon each of a pair of photoelectric conversion units provided with respect to one microlens.SOLUTION: An image pick-up element is provided with: a plurality of first pixels that each include first and second photoelectric conversion parts photoelectrically converting light transmitting an optical system and a first microlens, and in which a difference between light reception areas of the first photoelectric conversion part and the second photoelectric conversion part varies at a first relationship according to a position of the light reception area in a first direction; and a plurality of second pixels that each include third and fourth photoelectric conversion parts photoelectrically converting light transmitting the optical system and a second microlens, and in which a difference between light reception areas of the third photoelectric conversion part and the fourth photoelectric conversion part varies at a second relationship different from the first relationship according to a position of the light reception area in the first direction.SELECTED DRAWING: Figure 3

Description

本発明は、撮像素子、及び撮像装置に関する。 The present invention relates to an image pickup device and an image pickup device.

従来から、一つのマイクロレンズに対して一対の受光素子が設けられ、マイクロレンズの光軸に対して一対の受光素子が対称となるように配列された焦点検出画素と、マイクロレンズの光軸に対して一対の受光素子が非対称となるように配置される焦点検出画素とが配列されたイメージセンサが知られている(たとえば特許文献1)。 Conventionally, a pair of light receiving elements is provided for one microlens, and a focus detection pixel in which the pair of light receiving elements are arranged symmetrically with respect to the optical axis of the microlens and an optical axis of the microlens On the other hand, there is known an image sensor in which a pair of light receiving elements are arranged so as to be asymmetrical with focus detection pixels (for example, Patent Document 1).

特開2011―221253号公報Japanese Unexamined Patent Publication No. 2011-221253

しかしながら、同一のマイクロレンズに対して配列された一対の受光素子のそれぞれに入射する光量が異なるため、何れか一方の受光素子の出力が飽和して焦点検出演算に用いることができずに焦点検出精度を維持できないという問題がある。 However, since the amount of light incident on each of the pair of light receiving elements arranged for the same microlens is different, the output of one of the light receiving elements is saturated and cannot be used for the focus detection calculation, so that the focus is detected. There is a problem that accuracy cannot be maintained.

第1の態様によれば、撮像素子は、光学系と第1マイクロレンズとを透過した光を光電変換する第1光電変換部と第2光電変換部とをそれぞれ有し、前記第1光電変換部と前記第2光電変換部との受光面積の差が第1の方向の位置によって第1の関係で変化する複数の第1画素と、前記光学系と第2マイクロレンズとを透過した光を光電変換する第3光電変換部と第4光電変換部とをそれぞれ有し、前記第3光電変換部と前記第4光電変換部のとの受光面積の差が前記第1の方向の位置によって前記第1の関係と異なる第2の関係で変化する複数の第2画素と、を備える。 According to the first aspect, the image pickup element has a first photoelectric conversion unit and a second photoelectric conversion unit that photoelectrically convert the light transmitted through the optical system and the first microlens, respectively, and the first photoelectric conversion unit is provided. Light transmitted through the optical system and the second microlens, and a plurality of first pixels in which the difference in light receiving area between the unit and the second photoelectric conversion unit changes in the first relationship depending on the position in the first direction. Each has a third photoelectric conversion unit and a fourth photoelectric conversion unit for photoelectric conversion, and the difference in light receiving area between the third photoelectric conversion unit and the fourth photoelectric conversion unit depends on the position in the first direction. It includes a plurality of second pixels that change according to a second relationship different from the first relationship.

本発明によれば、複数の画素のうちの周辺付近に位置する画素においても、一対の光電変換部の一方の出力が飽和することを防ぎ、焦点検出精度の低下を抑制できる。 According to the present invention, it is possible to prevent the output of one of the pair of photoelectric conversion units from being saturated even in a pixel located near the periphery of the plurality of pixels, and to suppress a decrease in focus detection accuracy.

本発明の実施の形態による撮像装置の構成を説明する横断面図Cross-sectional view for explaining the configuration of the image pickup apparatus according to the embodiment of the present invention. 実施の形態による撮像装置の要部構成を説明するブロック図A block diagram illustrating a configuration of a main part of an image pickup apparatus according to an embodiment. 実施の形態による撮像画素の配列の一例を示す図The figure which shows an example of the arrangement of the imaging pixel by embodiment 実施の形態における撮像画素の第1光電変換部および第2光電変換部の面積と、撮影レンズ系の射出瞳領域との投影関係を模式的に示す図The figure which shows typically the projection relationship between the area of the 1st photoelectric conversion part and the 2nd photoelectric conversion part of the image pickup pixel in embodiment, and the exit pupil region of a photographing lens system. 変形例における撮像画素の配列の一例を示す図The figure which shows an example of the arrangement of the imaging pixel in the modification 変形例における撮像画素の配列の一例を示す図The figure which shows an example of the arrangement of the imaging pixel in the modification 変形例における撮像画素の配列の一例を示す図The figure which shows an example of the arrangement of the imaging pixel in the modification

図面を参照しながら、本発明の一実施の形態による撮像素子と、当該撮像素子を備える焦点検出装置および撮像装置とについて説明する。図1は実施の形態による撮像装置であるデジタルカメラ100の構成を説明する横断面図である。なお、説明の都合上、x軸、y軸、z軸からなる座標系を図示の通りに設定する。 An image pickup device according to an embodiment of the present invention, and a focus detection device and an image pickup device provided with the image pickup device will be described with reference to the drawings. FIG. 1 is a cross-sectional view illustrating the configuration of a digital camera 100 which is an imaging device according to an embodiment. For convenience of explanation, a coordinate system consisting of an x-axis, a y-axis, and a z-axis is set as shown in the figure.

デジタルカメラ100は、カメラ本体200と撮影レンズ本体300とにより構成され、撮影レンズ本体300はマウント部(不図示)を介して装着される、いわゆるミラーレスカメラである。カメラ本体200には、マウント部を介して種々の撮影光学系を有する撮影レンズ本体300が装着可能である。上記のマウント部には電気接点201、202が設けられ、カメラ本体200と撮影レンズ本体300とが結合された時には、電気接点201および202を介して電気的な接続が確立される。 The digital camera 100 is a so-called mirrorless camera composed of a camera body 200 and a photographing lens body 300, and the photographing lens body 300 is mounted via a mount portion (not shown). A photographing lens body 300 having various photographing optical systems can be attached to the camera body 200 via a mount portion. The mount portion is provided with electrical contacts 201 and 202, and when the camera body 200 and the photographing lens body 300 are coupled, an electrical connection is established via the electrical contacts 201 and 202.

撮影レンズ本体300は、撮影レンズ系1と、絞り2と、駆動機構3と、レンズデータ部4とを備えている。撮影レンズ系1は、被写体像を所定の予定焦点面に結像させるための光学系であり、焦点調節レンズを含む複数のレンズによって構成されている。絞り2は、撮影レンズ系1を通過する光束、すなわち入射光量を制限するために、光軸Lを中心に開口径が可変な開口を形成する。駆動機構3は、電気接点201を介してカメラ本体200側から入力したデフォーカス量を用いてレンズ駆動量を算出し、レンズ駆動量に応じて撮影レンズ系1を構成する焦点調節レンズを光軸Lの方向(z軸方向)に沿って合焦位置へ駆動する。また、駆動機構3は、カメラ本体200側からの指令に応じて絞り駆動信号を出力して、絞り2の駆動を制御する。 The photographing lens main body 300 includes a photographing lens system 1, an aperture 2, a drive mechanism 3, and a lens data unit 4. The photographing lens system 1 is an optical system for forming a subject image on a predetermined planned focal plane, and is composed of a plurality of lenses including a focus adjusting lens. The diaphragm 2 forms an aperture having a variable aperture diameter about the optical axis L in order to limit the light flux passing through the photographing lens system 1, that is, the amount of incident light. The drive mechanism 3 calculates the lens drive amount using the defocus amount input from the camera body 200 side via the electrical contact 201, and the optical axis of the focus adjustment lens constituting the photographing lens system 1 according to the lens drive amount. It is driven to the in-focus position along the L direction (z-axis direction). Further, the drive mechanism 3 outputs an aperture drive signal in response to a command from the camera body 200 side to control the drive of the aperture 2.

レンズデータ部4は、たとえば不揮発性の記録媒体により構成され、撮影レンズ本体300に関連する各種のレンズ情報、たとえばレンズの焦点距離や明るさ(開放F値)等が格納されている。レンズデータ部4は電気接点202を介してカメラ本体200との間で上記のレンズ情報等を送信する。 The lens data unit 4 is composed of, for example, a non-volatile recording medium, and stores various lens information related to the photographing lens body 300, such as the focal length and brightness (open F value) of the lens. The lens data unit 4 transmits the above lens information and the like to and from the camera body 200 via the electrical contact 202.

カメラ本体200内部には、演算処理制御部5と、撮像素子制御回路6と、メカシャッタ7と、撮像素子8と、電子ビューファインダ(EVF)9と、接眼レンズ10とが設けられている。カメラ本体200には操作部11が設けられている。撮像素子8には、CCDやCMOS等の撮像画素がxy平面上において二次元状(行と列)に配置される。撮像素子8の撮像画素には、それぞれR(赤)、G(緑)、B(青)のカラーフィルタが設けられている。撮像素子8は、撮影レンズ系1およびメカシャッタ7を介して入射される光束を受光して被写体像を撮像して、撮像信号を撮像素子制御部6に出力する。撮像信号は、画像データ生成用の信号(画像信号)として、また、焦点検出用の信号(焦点検出用信号)として使用される。撮像素子8がカラーフィルタを通して被写体像を撮像するため、撮像素子8の撮像画素から出力される撮像信号はRGB表色系の色情報を有する。なお、撮像素子8については、詳細を後述する。 Inside the camera body 200, an arithmetic processing control unit 5, an image sensor control circuit 6, a mechanical shutter 7, an image sensor 8, an electronic viewfinder (EVF) 9, and an eyepiece 10 are provided. The camera body 200 is provided with an operation unit 11. Image pickup pixels such as CCD and CMOS are arranged two-dimensionally (rows and columns) on the xy plane in the image pickup element 8. The image pickup pixels of the image pickup device 8 are provided with R (red), G (green), and B (blue) color filters, respectively. The image sensor 8 receives a light beam incident through the photographing lens system 1 and the mechanical shutter 7 to image a subject image, and outputs an image pickup signal to the image sensor control unit 6. The imaging signal is used as a signal for generating image data (image signal) and as a signal for focusing detection (signal for focusing detection). Since the image sensor 8 captures the subject image through the color filter, the image pickup signal output from the image pickup pixel of the image pickup element 8 has color information of the RGB color system. The details of the image sensor 8 will be described later.

メカシャッタ7は撮像素子8の直前に設けられ、複数の遮光羽根より成る先幕と後幕とによって構成される。メカシャッタ7は、駆動モータ(たとえばDCモータやステッピングモータ等の電動モータ)により構成される駆動機構(不図示)の駆動により走行して、撮像素子8を被写体光から遮光する。電子ビューファインダ9は、演算処理制御部5により生成された表示画像データに対応する画像の表示を行う。また、電子ビューファインダ9は、撮影条件に関連する各種情報(シャッタ速度、絞り値、ISO感度など)の表示を行う。電子ビューファインダ9に表示された画像や各種情報は、接眼レンズ10を介してユーザにより観察される。 The mechanical shutter 7 is provided immediately before the image sensor 8, and is composed of a front curtain and a rear curtain composed of a plurality of light-shielding blades. The mechanical shutter 7 travels by driving a drive mechanism (not shown) composed of a drive motor (for example, an electric motor such as a DC motor or a stepping motor) to shield the image sensor 8 from the subject light. The electronic viewfinder 9 displays an image corresponding to the display image data generated by the arithmetic processing control unit 5. Further, the electronic viewfinder 9 displays various information (shutter speed, aperture value, ISO sensitivity, etc.) related to the shooting conditions. The image and various information displayed on the electronic viewfinder 9 are observed by the user through the eyepiece lens 10.

操作部11はユーザによって操作される種々の操作部材に対応して設けられた種々のスイッチを含み、操作部材の操作に応じた操作信号を演算処理制御部5へ出力する。操作部材は、たとえばレリーズボタンや、カメラ本体200の背面に設けられた背面モニタ(不図示)にメニュー画面を表示させるためのメニューボタンや、各種の設定等を選択操作する時に操作される十字キー、十字キーにより選択された設定等を決定するための決定ボタン、撮影モードと再生モードとの間でデジタルカメラ100の動作を切替える動作モード切替ボタン、露出モードを設定する露出モード切替ボタン等を含む。 The operation unit 11 includes various switches provided corresponding to various operation members operated by the user, and outputs an operation signal corresponding to the operation of the operation member to the arithmetic processing control unit 5. The operating members include, for example, a release button, a menu button for displaying a menu screen on a rear monitor (not shown) provided on the back of the camera body 200, and a cross key operated when selecting and operating various settings. Includes a decision button for determining the settings selected by the cross key, an operation mode switching button for switching the operation of the digital camera 100 between the shooting mode and the playback mode, an exposure mode switching button for setting the exposure mode, and the like. ..

さらに、図2に示すブロック図を用いて、デジタルカメラ100の制御系について説明する。図2に示すようにデジタルカメラ100は、A/D変換部12と、画像処理回路13と、焦点検出演算回路14と、ボディ−レンズ通信部15とを有している。演算処理制御部5は、CPU、ROM、RAMなどを有し、制御プログラムに基づいて、デジタルカメラ100の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。制御プログラムは、演算処理制御部5内の不図示の不揮発性メモリに格納されている。撮像素子駆動回路6は、演算処理制御部5によって制御され、撮像素子8およびA/D変換部12の駆動を制御して、撮像素子8に電荷蓄積および撮像信号の読み出し等を行わせる。A/D変換部12は、撮像素子8から出力されたアナログの撮像信号をデジタルに変換する。 Further, the control system of the digital camera 100 will be described with reference to the block diagram shown in FIG. As shown in FIG. 2, the digital camera 100 includes an A / D conversion unit 12, an image processing circuit 13, a focus detection calculation circuit 14, and a body-lens communication unit 15. The arithmetic processing control unit 5 is an arithmetic circuit that has a CPU, ROM, RAM, and the like, and controls each component of the digital camera 100 and executes various data processing based on a control program. The control program is stored in a non-volatile memory (not shown) in the arithmetic processing control unit 5. The image sensor drive circuit 6 is controlled by the arithmetic processing control unit 5, controls the drive of the image sensor 8 and the A / D conversion unit 12, and causes the image sensor 8 to store charges, read out an image pickup signal, and the like. The A / D conversion unit 12 converts the analog image pickup signal output from the image pickup element 8 into digital.

画像処理回路13は、撮像素子8から出力された撮像信号を画像信号として用い、画像信号に対して種々の画像処理を施して画像データを生成した後、付加情報等を付与して画像ファイルを生成する。画像処理回路13は、生成した画像ファイルをメモリカード等の記録媒体(不図示)に記録する。画像処理回路13は、生成した画像データや記録媒体に記録されている画像データに基づいて、電子ビューファインダ9や背面モニタ(不図示)に表示するための表示画像データを生成する。 The image processing circuit 13 uses the image pickup signal output from the image pickup element 8 as an image signal, performs various image processing on the image signal to generate image data, and then adds additional information or the like to create an image file. Generate. The image processing circuit 13 records the generated image file on a recording medium (not shown) such as a memory card. The image processing circuit 13 generates display image data for display on the electronic viewfinder 9 or a rear monitor (not shown) based on the generated image data or the image data recorded on the recording medium.

焦点検出演算回路14は、撮像素子8から出力された撮像信号を焦点検出用信号として使用して、公知の位相差検出方式を用いてデフォーカス量を算出する。ボディ−レンズ通信部15は、演算処理制御部5に制御され、電気接点201、202を介して撮影レンズ本体300内の駆動機構3やレンズデータ部4と通信を行い、カメラ情報(デフォーカス量や絞り値など)の送信やレンズ情報の受信を行う。 The focus detection calculation circuit 14 uses the image pickup signal output from the image pickup element 8 as a focus detection signal, and calculates the defocus amount using a known phase difference detection method. The body-lens communication unit 15 is controlled by the arithmetic processing control unit 5 and communicates with the drive mechanism 3 and the lens data unit 4 in the photographing lens main body 300 via the electrical contacts 201 and 202 to perform camera information (defocus amount). And aperture value, etc.) and receive lens information.

次に、本実施の形態における撮像素子8について詳細に説明する。
図3(a)は撮像素子8の中心部を含む一部の領域を模式的に示す平面図であり、図3(b)は撮像素子8の中心付近に設けられた1つの撮像画素80の断面を模式的に示す図であり、図3(c)は撮像素子8の周辺部に設けられた1つの撮像画素80の断面を模式的に示す図である。なお、図3においても、x軸、y軸、z軸からなる座標系を、図1に示す例と同様にして設定する。撮像素子8は、複数の撮像画素80が行方向(x方向)と列方向(y方向)とに二次元配列される。撮像画素80の各画素位置には、たとえばベイヤー配列の規則に従って上述したカラーフィルタ(R:赤色フィルタ、G:緑色フィルタ、B:青色フィルタ)が配置される。図3(a)においては、撮像画素80に配置されたカラーフィルタの色を、「R」、「G」または「B」と表記して模式的に表す。
Next, the image pickup device 8 according to the present embodiment will be described in detail.
FIG. 3A is a plan view schematically showing a part of a region including the central portion of the image sensor 8, and FIG. 3B is a single imaging pixel 80 provided near the center of the image sensor 8. It is a figure which shows typically the cross section, and FIG. 3C is a figure which shows typically the cross section of one image pickup pixel 80 provided in the peripheral part of the image pickup element 8. Also in FIG. 3, the coordinate system including the x-axis, the y-axis, and the z-axis is set in the same manner as in the example shown in FIG. In the image pickup device 8, a plurality of image pickup pixels 80 are two-dimensionally arranged in the row direction (x direction) and the column direction (y direction). At each pixel position of the image pickup pixel 80, for example, the above-mentioned color filters (R: red filter, G: green filter, B: blue filter) are arranged according to the rules of the Bayer arrangement. In FIG. 3A, the colors of the color filters arranged on the imaging pixels 80 are schematically represented by notation as “R”, “G” or “B”.

撮像画素80は、マイクロレンズ81と、1つのマイクロレンズ81の下に設けられた第1光電変換部82および第2光電変換部83とによって構成される。第1光電変換部82と第2光電変換部83とは、x方向に並んで配列される。図3に示す例では、第1光電変換部82はx方向+側、第2光電変換部83はx方向−側に設けられる。第1光電変換部82および第2光電変換部83には、それぞれ撮影レンズ系1の異なる領域を介して入射された光が入射する。すなわち、焦点検出演算回路14が位相差検出演算に用いる一対の被写体光束が入射する。 The image pickup pixel 80 is composed of a microlens 81 and a first photoelectric conversion unit 82 and a second photoelectric conversion unit 83 provided under one microlens 81. The first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 are arranged side by side in the x direction. In the example shown in FIG. 3, the first photoelectric conversion unit 82 is provided on the + side in the x direction, and the second photoelectric conversion unit 83 is provided on the − side in the x direction. Light incident on the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 are incident on the light incident through different regions of the photographing lens system 1, respectively. That is, a pair of subject luminous fluxes used by the focus detection calculation circuit 14 for the phase difference detection calculation are incident.

本実施の形態においては、各行において、撮像画素80が配置される位置に応じて、第1光電変換部82と第2光電変換部83との境界部84が、マイクロレンズ81の中心からずれる(図3(c)参照)。全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は実質的に同一である。換言すると、第1光電変換部82のサイズ(面積)と、第2光電変換部83のサイズ(面積)とが異なる。撮像素子8の中心列Cからx方向+側においては、マイクロレンズ81の中心に対して境界部84はx方向−側へずれ、中心列Cからx方向−側においては、マイクロレンズ81の中心に対して境界部84はx方向+側へずれる。換言すると、第1光電変換部82の面積は第2光電変換部83の面積よりも大きく、かつ、中心列Cからの距離に応じて第1光電変換部82の面積と第2光電変換部83の面積との差分が大きくなる。x方向−側においては、第2光電変換部83の面積は第1光電変換部82の面積よりも大きく、かつ、中心列Cからの距離に応じて第2光電変換部83の面積と第1光電変換部82の面積との差分が大きくなる。 In the present embodiment, in each row, the boundary portion 84 between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 deviates from the center of the microlens 81 according to the position where the imaging pixel 80 is arranged ( See FIG. 3 (c)). In all the imaging pixels 80, the total value of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is substantially the same. In other words, the size (area) of the first photoelectric conversion unit 82 and the size (area) of the second photoelectric conversion unit 83 are different. On the + side of the center row C of the image sensor 8 in the x direction + side, the boundary portion 84 shifts toward the x direction − side with respect to the center of the microlens 81, and on the x direction − side from the center row C, the center of the microlens 81. On the other hand, the boundary portion 84 shifts to the + side in the x direction. In other words, the area of the first photoelectric conversion unit 82 is larger than the area of the second photoelectric conversion unit 83, and the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 are increased according to the distance from the central row C. The difference from the area of is large. On the x-direction-side, the area of the second photoelectric conversion unit 83 is larger than the area of the first photoelectric conversion unit 82, and the area of the second photoelectric conversion unit 83 and the first one according to the distance from the central row C. The difference from the area of the photoelectric conversion unit 82 becomes large.

マイクロレンズ81に対する境界部84のずれ量、すなわち第2光電変換部83の面積と第1光電変換部82の面積との差分は、中心列Cからの距離に応じて線形的に変化してもよいし、所定個数の撮像画素80ごとに段階的に変化してもよい。各行において、撮像素子8の中心列Cに配列される撮像画素80では、マイクロレンズ81の中心と境界部84とは実質的に一致、すなわち第1光電変換部82の面積と第2光電変換部83の面積とは等しい。上述したように、全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は実質的に同一なので、撮像画素80は、撮像素子8の中心列Cからのx方向の距離に応じて、第1光電変換部82と第2光電変換部83との面積比が異なる。 The amount of deviation of the boundary portion 84 with respect to the microlens 81, that is, the difference between the area of the second photoelectric conversion unit 83 and the area of the first photoelectric conversion unit 82 may change linearly according to the distance from the central row C. Alternatively, it may be changed stepwise for each predetermined number of imaging pixels 80. In each row, in the image pickup pixels 80 arranged in the center column C of the image pickup element 8, the center of the microlens 81 and the boundary portion 84 substantially coincide with each other, that is, the area of the first photoelectric conversion unit 82 and the second photoelectric conversion unit It is equal to the area of 83. As described above, since the total value of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is substantially the same in all the image pickup pixels 80, the image pickup pixel 80 is the image pickup element 8. The area ratio of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 differs depending on the distance from the central row C in the x direction.

図3(a)に示すように、撮像素子8の中心列Cに配列された撮像画素80aに設けられた第1光電変換部82aと第2光電変換部83aとの境界部84aはマイクロレンズ81aの中心と実質的に等しい。すなわち第1光電変換部82aと第2光電変換部83aとは面積が等しい。撮像画素80aよりもx方向+側に配列された撮像画素80bにおいては、境界部84bはマイクロレンズ81bの中心に対してx方向−側にずれている。すなわち、第1光電変換部82bの面積は第2光電変換部83bの面積よりも大きい。上述したように、全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は同一に形成されている。したがって、撮像画素80aの第1光電変換部82aの面積よりも撮像画素80bの第1光電変換部82bの面積の方が大きく、撮像画素80aの第2光電変換部83aの面積よりも撮像画素80bの第2光電変換部83bの面積の方が小さい。 As shown in FIG. 3A, the boundary portion 84a between the first photoelectric conversion unit 82a and the second photoelectric conversion unit 83a provided in the image pickup pixels 80a arranged in the central row C of the image pickup element 8 is a microlens 81a. Is substantially equal to the center of. That is, the first photoelectric conversion unit 82a and the second photoelectric conversion unit 83a have the same area. In the image pickup pixels 80b arranged on the + side in the x direction with respect to the image pickup pixel 80a, the boundary portion 84b is displaced in the x direction − side with respect to the center of the microlens 81b. That is, the area of the first photoelectric conversion unit 82b is larger than the area of the second photoelectric conversion unit 83b. As described above, in all the imaging pixels 80, the total value of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is formed to be the same. Therefore, the area of the first photoelectric conversion unit 82b of the image pickup pixel 80b is larger than the area of the first photoelectric conversion unit 82a of the image pickup pixel 80a, and the area of the image pickup pixel 80b is larger than the area of the second photoelectric conversion unit 83a of the image pickup pixel 80a. The area of the second photoelectric conversion unit 83b is smaller.

撮像画素80bよりもx方向+側に配列された撮像画素80cにおいては、境界部84cのマイクロレンズ81cの中心に対するずれ量は、境界部84bのマイクロレンズ81bの中心に対するずれ量と比べて大きい。すなわち、撮像画素80がx方向+側に配置されるほど、境界部84とマイクロレンズ81の中心とのずれ量がx方向−側へ大きくなる。撮像画素80bの第1光電変換部82bの面積よりも撮像画素80cの第1光電変換部82cの面積の方が大きく、撮像画素80bの第2光電変換部83bの面積よりも撮像画素80cの第2光電変換部83cの面積の方が小さい。 In the image pickup pixels 80c arranged on the + side in the x direction with respect to the image pickup pixel 80b, the amount of deviation of the boundary portion 84c with respect to the center of the microlens 81c is larger than the amount of deviation of the boundary portion 84b with respect to the center of the microlens 81b. That is, as the imaging pixel 80 is arranged on the + side in the x direction, the amount of deviation between the boundary portion 84 and the center of the microlens 81 increases in the − side in the x direction. The area of the first photoelectric conversion unit 82c of the image pickup pixel 80c is larger than the area of the first photoelectric conversion unit 82b of the image pickup pixel 80b, and the area of the image pickup pixel 80c is larger than the area of the second photoelectric conversion unit 83b of the image pickup pixel 80b. 2 The area of the photoelectric conversion unit 83c is smaller.

撮像画素80aよりもx方向−側に配列された撮像画素80dにおいては、境界部84dはマイクロレンズ81dの中心に対してx方向+側にずれている。すなわち第2光電変換部83dの面積は第1光電変換部82dの面積よりも大きい。したがって、撮像画素80aの第1光電変換部82aの面積よりも撮像画素80dの第1光電変換部82dの面積の方が小さく、撮像画素80aの第2光電変換部83aの面積よりも撮像画素80dの第2光電変換部83dの面積の方が大きい。撮像画素80dよりもx方向−側に配列された撮像画素80eにおいては、境界部84eはマイクロレンズ81eの中心に対するx方向+側へのずれ量は、境界部84dのマイクロレンズ81dの中心に対するx方向+側のずれ量と比べて大きい。すなわち、撮像画素80dの第2光電変換部83dの面積よりも撮像画素80eの第2光電変換部83eの面積の方が大きく、撮像画素80dの第1光電変換部82dの面積よりも撮像画素80eの第1光電変換部82eの面積の方が小さい。
なお、境界部84とマイクロレンズ81の中心との関係および第1光電変換部82の面積と第2光電変換部83の面積との関係については、詳細を後述する。
In the image pickup pixels 80d arranged on the x-direction − side of the image pickup pixel 80a, the boundary portion 84d is shifted to the x-direction + side with respect to the center of the microlens 81d. That is, the area of the second photoelectric conversion unit 83d is larger than the area of the first photoelectric conversion unit 82d. Therefore, the area of the first photoelectric conversion unit 82d of the image pickup pixel 80d is smaller than the area of the first photoelectric conversion unit 82a of the image pickup pixel 80a, and the area of the image pickup pixel 80d is smaller than the area of the second photoelectric conversion unit 83a of the image pickup pixel 80a. The area of the second photoelectric conversion unit 83d is larger. In the image pickup pixels 80e arranged on the x-direction − side of the image pickup pixel 80d, the amount of deviation of the boundary portion 84e in the x direction + side with respect to the center of the microlens 81e is x with respect to the center of the microlens 81d of the boundary portion 84d. It is larger than the amount of deviation in the direction + side. That is, the area of the second photoelectric conversion unit 83e of the image pickup pixel 80e is larger than the area of the second photoelectric conversion unit 83d of the image pickup pixel 80d, and the area of the image pickup pixel 80e is larger than the area of the first photoelectric conversion unit 82d of the image pickup pixel 80d. The area of the first photoelectric conversion unit 82e is smaller.
The relationship between the boundary portion 84 and the center of the microlens 81 and the relationship between the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 will be described in detail later.

撮像画素80の第1光電変換部82と第2光電変換部83とのそれぞれにおいては、y方向の長さを変化させず、x方向の長さを変化させることによって、第1光電変換部82および第2光電変換部83との面積比を変化させる。すなわち、x方向+側に配列された撮像画素80では、撮像素子8の中心列Cからの距離が離れる程、第1光電変換部82のx方向の長さが増加し、第2光電変換部83のx方向の長さが減少する。x方向−側に配列された撮像画素80では、撮像素子8の中心列Cからの距離が離れる程、第1光電変換部82のx方向の長さが減少し、第2光電変換部83のx方向の長さが増加する。 In each of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80, the length in the y direction is not changed, but the length in the x direction is changed, so that the first photoelectric conversion unit 82 And the area ratio with the second photoelectric conversion unit 83 is changed. That is, in the image pickup pixels 80 arranged on the + side in the x direction, the length of the first photoelectric conversion unit 82 in the x direction increases as the distance from the center row C of the image pickup element 8 increases, and the second photoelectric conversion unit 82 increases. The length of 83 in the x direction is reduced. In the image pickup pixels 80 arranged on the x-direction-side, the length of the first photoelectric conversion unit 82 in the x-direction decreases as the distance from the center row C of the image pickup element 8 increases, and the length of the second photoelectric conversion unit 83 decreases. The length in the x direction increases.

撮像素子8のうち、列方向(y方向)に配列された撮像画素80においては、それぞれの第1光電変換部82および第2光電変換部83は同一の面積を有する。すなわち、たとえば撮像画素80cと同一の列に配列された撮像画素80については、第1光電変換部82cと同一の面積の第1光電変換部82と、第2光電変換部83cと同一の面積の第2光電変換部83とが設けられる。 In the image pickup pixels 80 arranged in the column direction (y direction) of the image pickup elements 8, the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 have the same area. That is, for example, for the imaging pixels 80 arranged in the same row as the imaging pixels 80c, the first photoelectric conversion unit 82 having the same area as the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c have the same area. A second photoelectric conversion unit 83 is provided.

本実施の形態においては、撮像画素80の第1光電変換部82および第2光電変換部83を上述した形状にすることにより、撮像素子8の周辺領域におけるケラレの影響を低減する。以下、その原理について説明する。
図4は撮像画素80の第1光電変換部82および第2光電変換部83の面積と、撮影レンズ系1の射出瞳領域との投影関係を模式的に示す。図4(a)は撮影レンズ系1の射出瞳距離PO1と撮像画素80の射出瞳距離PO2とが実質的に等しい場合、すなわち撮影レンズ系1がミラーレスカメラであるデジタルカメラ100に適合するように設計された専用の交換レンズ等の場合を示す。図4(b)は撮影レンズ系1の射出瞳距離PO1が撮像画素80の射出瞳距離PO2と比べて長い場合、すなわち撮影レンズ系1が、たとえば一眼レフカメラ用に設計された交換レンズや、ミラーレスカメラであるデジタルカメラ100に適合するように設計された専用の交換レンズであるが長い射出瞳距離PO1が設定されている場合を示す。なお、図4(b)においては、理解を容易にすることを目的として、射出瞳距離PO1とPO2が等しい場合の撮影レンズ系1を破線により示す。また、本実施の形態においては、撮像画素80の射出瞳距離PO2は、種々の専用の交換レンズごとに異なる射出瞳距離PO1のうちの中心値と比べて短くなるように設定されている。以下の説明では、図3においてx方向+側の周辺領域に配列された撮像画素80cを例に挙げて説明を挙げる。
In the present embodiment, the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the image pickup pixel 80 are shaped as described above to reduce the influence of eclipse in the peripheral region of the image pickup element 8. The principle will be described below.
FIG. 4 schematically shows the projection relationship between the areas of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80 and the exit pupil region of the photographing lens system 1. FIG. 4A shows a case where the ejection pupil distance PO1 of the photographing lens system 1 and the ejection pupil distance PO2 of the imaging pixel 80 are substantially equal, that is, the photographing lens system 1 is compatible with the digital camera 100 which is a mirrorless camera. The case of a dedicated interchangeable lens designed in is shown. FIG. 4B shows a case where the ejection pupil distance PO1 of the photographing lens system 1 is longer than the ejection pupil distance PO2 of the imaging pixel 80, that is, the photographing lens system 1 is an interchangeable lens designed for, for example, a single-lens reflex camera. It is a dedicated interchangeable lens designed to be compatible with the digital camera 100 which is a mirrorless camera, but shows a case where a long ejection pupil distance PO1 is set. In FIG. 4B, for the purpose of facilitating understanding, the photographing lens system 1 when the exit pupil distances PO1 and PO2 are equal is shown by a broken line. Further, in the present embodiment, the exit pupil distance PO2 of the imaging pixel 80 is set to be shorter than the center value of the exit pupil distance PO1 that is different for each of the various dedicated interchangeable lenses. In the following description, the imaging pixels 80c arranged in the peripheral region on the + side in the x direction in FIG. 3 will be described as an example.

図4(a)に示すように、第1光電変換部82cは、被写体からの光束のうち、撮影レンズ系1の一対の射出瞳領域841および842のうち、射出瞳領域841を通過した光束851をマイクロレンズ81cを介して受光し、第2光電変換部83cは射出瞳領域842を通過した光束852をマイクロレンズ81cを介して受光する。上述したように、図4(a)は射出瞳距離PO1およびPO2が実質的に等しい場合を示しているので、光束851および852は撮影レンズ本体300の構造等によるケラレが無い、もしくはケラレが少ない状態にて第1光電変換部82cおよび第2光電変換部83cにそれぞれ入射する。 As shown in FIG. 4A, the first photoelectric conversion unit 82c has a luminous flux 851 that has passed through the exit pupil region 841 of the pair of exit pupil regions 841 and 842 of the photographing lens system 1 among the luminous flux from the subject. Is received through the microlens 81c, and the second photoelectric conversion unit 83c receives the luminous flux 852 that has passed through the exit pupil region 842 via the microlens 81c. As described above, FIG. 4A shows a case where the exit pupil distances PO1 and PO2 are substantially equal, so that the luminous fluxes 851 and 852 have no or little eclipse due to the structure of the photographing lens body 300 or the like. In this state, the light incident on the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c, respectively.

図4(b)に示すように、被写体からの光束852は、撮影レンズ系1の射出瞳領域842を通過し、撮像画素80cのマイクロレンズ81cを介して第2光電変換部83cに入射する。撮影レンズ系1の射出瞳距離PO1が撮像画素80の射出瞳距離PO2と比べて長いため、被写体からの光束851は一部がケラレる。すなわち光束851のうち、光束851aが撮影レンズ系1の射出瞳領域841を通過し、マイクロレンズ81cを介して第1光電変換部82cに入射し、光束851bはケラレて第1光電変換部82cに入射しない。 As shown in FIG. 4B, the luminous flux 852 from the subject passes through the exit pupil region 842 of the photographing lens system 1 and is incident on the second photoelectric conversion unit 83c via the microlens 81c of the imaging pixel 80c. Since the exit pupil distance PO1 of the photographing lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80, a part of the luminous flux 851 from the subject is eclipsed. That is, of the luminous flux 851, the luminous flux 851a passes through the exit pupil region 841 of the photographing lens system 1 and is incident on the first photoelectric conversion unit 82c via the microlens 81c, and the luminous flux 851b is eclipsed and becomes the first photoelectric conversion unit 82c. No incident.

図4(c)の撮像画素80cの平面模式図において、光束852および上記のようにケラレの影響を受けた光束851と、撮像画素80cの第1光電変換部82cおよび第2光電変換部83cとの位置関係を示す。なお、図4(c)においては、光束851bにケラレの発生がなければ第1光電変換部82cに入射したであろう領域を破線で示す。本実施の形態においては、第1光電変換部82cは、光束851aが入射する領域82c1と、光束851bがケラレなければ入射したであろう領域821c2とを有する。撮像画素80cにおいては、第1光電変換部82cの領域82c1と光束852が入射する第2光電変換部83cとが同一の面積を有するように、境界部84cのx方向−側へのずれ量が決定されている。したがって、境界部84cがマイクロレンズ81cの中心に対してx方向−側にずれることにより、入射した光束852および851aは、第1光電変換部82cおよび第2光電変換部83cにおいて、それぞれ実質的に同一面積にて受光される。 In the schematic plan view of the imaging pixel 80c of FIG. 4C, the luminous flux 852 and the luminous flux 851 affected by eclipse as described above, and the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c of the imaging pixel 80c Shows the positional relationship of. In FIG. 4C, a broken line indicates a region that would have been incident on the first photoelectric conversion unit 82c if the luminous flux 851b had not been eclipsed. In the present embodiment, the first photoelectric conversion unit 82c has a region 82c1 in which the luminous flux 851a is incident and a region 821c2 in which the luminous flux 851b would have been incident if it were not eclipsed. In the image pickup pixel 80c, the amount of deviation of the boundary portion 84c in the x-direction is such that the region 82c1 of the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c on which the luminous flux 852 is incident have the same area. It has been decided. Therefore, when the boundary portion 84c is displaced in the x-direction-side with respect to the center of the microlens 81c, the incident luminous fluxes 852 and 851a are substantially different in the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c, respectively. Light is received in the same area.

撮像画素80bについても撮像画素80cと同様に、境界部84bのずれ量、すなわち第1光電変換部82bと第2光電変換部83bとの面積が決定される。ただし、上述したように、撮像画素80bは、撮像画素80cよりもx方向−側に配列されるので、境界部84bのずれ量は境界部84cのずれ量と比べて小さい。すなわち、撮像画素80bの第1光電変換部82bの面積は、撮像画素80cの第1光電変換部82cの面積と比べて小さい。また、撮像素子8の中心列Cからx方向−側に配列された撮像画素8については、境界部84がマイクロレンズ81の中心に対してずれる方向、すなわち第1光電変換部82と第2光電変換部83の面積の大小関係が反対になる。 For the image pickup pixel 80b, similarly to the image pickup pixel 80c, the amount of deviation of the boundary portion 84b, that is, the area between the first photoelectric conversion unit 82b and the second photoelectric conversion unit 83b is determined. However, as described above, since the imaging pixels 80b are arranged on the x-direction − side of the imaging pixels 80c, the deviation amount of the boundary portion 84b is smaller than the deviation amount of the boundary portion 84c. That is, the area of the first photoelectric conversion unit 82b of the image pickup pixel 80b is smaller than the area of the first photoelectric conversion unit 82c of the image pickup pixel 80c. Further, with respect to the image pickup pixels 8 arranged on the x-direction-side from the center row C of the image pickup element 8, the boundary portion 84 is deviated from the center of the microlens 81, that is, the first photoelectric conversion unit 82 and the second photoelectric conversion unit 82. The magnitude relationship of the area of the conversion unit 83 is opposite.

図4(d)は撮像画素80cが配列される位置に撮像画素80aが配列されたと仮定した場合、すなわち境界部84がマイクロレンズ81の中心と実質的に一致する場合に、射出瞳距離PO1が射出瞳距離PO2よりも大きいとき、第1光電変換部82aおよび第2光電変換部83aにそれぞれ入射する光束851および852を模式的に示す平面図である。この場合、光束851がケラレることにより、光束851aが第1光電変換部82aは図の斜線を付した領域にて受光される。光束852は第2光電変換部83aの全領域にて受光される。このため、第1光電変換部82aからの撮像信号の出力は、第2光電変換部83aからの撮像信号の出力と比べて低下する。すなわち、第1光電変換部82cからの撮像信号が十分な出力に達する前に、第2光電変換部83cからの撮像信号の出力が飽和する。 FIG. 4D shows the exit pupil distance PO1 when it is assumed that the imaging pixels 80a are arranged at the positions where the imaging pixels 80c are arranged, that is, when the boundary portion 84 substantially coincides with the center of the microlens 81. It is a top view which shows typically the light beams 851 and 852 which are incident on the 1st photoelectric conversion part 82a and the 2nd photoelectric conversion part 83a, respectively, when it is larger than the exit pupil distance PO2. In this case, when the luminous flux 851 is eclipsed, the luminous flux 851a is received by the first photoelectric conversion unit 82a in the shaded area in the figure. The luminous flux 852 is received in the entire region of the second photoelectric conversion unit 83a. Therefore, the output of the image pickup signal from the first photoelectric conversion unit 82a is lower than the output of the image pickup signal from the second photoelectric conversion unit 83a. That is, the output of the imaging signal from the second photoelectric conversion unit 83c is saturated before the imaging signal from the first photoelectric conversion unit 82c reaches a sufficient output.

これに対して本実施の形態においては、図4(c)に示す構造を有している。したがって、第1光電変換部82cからの撮像信号の出力が第2光電変換部83cからの撮像信号の出力と比較して低下することを防ぎ、第1光電変換部82cからの撮像信号が十分な出力に達する前に、第2光電変換部83cからの撮像信号の出力が飽和することを防ぐ。 On the other hand, the present embodiment has the structure shown in FIG. 4 (c). Therefore, it is possible to prevent the output of the imaging signal from the first photoelectric conversion unit 82c from being lowered as compared with the output of the imaging signal from the second photoelectric conversion unit 83c, and the imaging signal from the first photoelectric conversion unit 82c is sufficient. It prevents the output of the imaging signal from the second photoelectric conversion unit 83c from being saturated before reaching the output.

焦点検出演算回路14は、上述した構造を有する撮像画素80から出力された撮像信号を焦点検出用信号として用いて、公知の位相差検出方式を用いてデフォーカス量を算出する。焦点検出演算回路14は、第1光電変換部82からの焦点検出信号を順次並べた第1信号列{an}と、第2光電変換部83からの焦点検出信号を順次並べた第2信号列{bn}との相対的なズレ量を検出し、撮影レンズ系1の焦点調節状態、すなわちデフォーカス量を検出する。 The focus detection calculation circuit 14 uses the image pickup signal output from the image pickup pixel 80 having the above-mentioned structure as the focus detection signal, and calculates the defocus amount by using a known phase difference detection method. The focus detection calculation circuit 14 has a first signal sequence {an} in which the focus detection signals from the first photoelectric conversion unit 82 are sequentially arranged, and a second signal sequence in which the focus detection signals from the second photoelectric conversion unit 83 are sequentially arranged. The amount of deviation relative to {bn} is detected, and the focus adjustment state of the photographing lens system 1, that is, the defocus amount is detected.

画像処理回路13は、画像データを生成する際に、撮像画素80から出力された撮像信号を画像信号として使用する。画像処理回路13は、各撮像画素80について、第1光電変換部82から出力された撮像信号と、第2光電変換部83から出力された撮像信号とを加算して画像信号として扱う。したがって、第1光電変換部82と第2光電変換部83の面積差による影響はない。撮像画素80には、R色、G色またはB色の何れかのカラーフィルタが設けられているので、加算された画像信号は撮像画素80に設けられたカラーフィルタに応じた色情報を有する。画像処理回路13は、加算により生成した画像信号に対して種々の画像処理を施して画像データを生成し、付加情報等を付与して画像ファイルを生成する。 The image processing circuit 13 uses the image pickup signal output from the image pickup pixel 80 as the image signal when generating the image data. The image processing circuit 13 adds the image pickup signal output from the first photoelectric conversion unit 82 and the image pickup signal output from the second photoelectric conversion unit 83 to treat each image pickup pixel 80 as an image signal. Therefore, there is no influence due to the area difference between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83. Since the image pickup pixel 80 is provided with a color filter of any of R color, G color, and B color, the added image signal has color information corresponding to the color filter provided in the image pickup pixel 80. The image processing circuit 13 performs various image processing on the image signal generated by the addition to generate image data, and adds additional information or the like to generate an image file.

上述した実施の形態によれば、次の作用効果が得られる。全ての複数の撮像画素80では、一対の第1光電変換部82と第2光電変換部83との面積の合計が実質的に等しく、複数の撮像画素80の配列位置、すなわち撮像素子8の中心付近からの距離に応じて、一対の第1光電変換部82および第2光電変換部83の面積が異なる。すなわち、撮像素子8の中央付近からの距離が増加するほど、一対の第1光電変換部82と第2光電変換部83との面積差が増加する。したがって、射出瞳距離PO1が撮像素子8の射出瞳距離PO2よりも長い撮影レンズ系1が装着された場合のように、撮像素子8の周辺部にて入射光束がケラレの影響を受けるような場合であっても、第1光電変換部82または第2光電変換部83への入射光量を確保することができる。このため、ケラレの影響を受けた光束851を第1光電変換部82が演算可能となる光量を受光するまでに、第2光電変換部83がケラレの影響を受けていない光束852を受光した第2光電変換部83の出力が飽和することを防ぎ、焦点検出精度の低下を抑制できる。 According to the above-described embodiment, the following effects can be obtained. In all the plurality of imaging pixels 80, the total area of the pair of first photoelectric conversion units 82 and the second photoelectric conversion unit 83 is substantially equal, and the arrangement positions of the plurality of imaging pixels 80, that is, the center of the imaging element 8 The areas of the pair of first photoelectric conversion units 82 and the second photoelectric conversion units 83 differ depending on the distance from the vicinity. That is, as the distance from the vicinity of the center of the image sensor 8 increases, the area difference between the pair of first photoelectric conversion units 82 and the second photoelectric conversion unit 83 increases. Therefore, when the incident light beam is affected by eclipse in the peripheral portion of the image sensor 8, such as when the photographing lens system 1 in which the exit pupil distance PO1 is longer than the exit pupil distance PO2 of the image sensor 8 is attached. Even so, the amount of light incident on the first photoelectric conversion unit 82 or the second photoelectric conversion unit 83 can be secured. Therefore, the second photoelectric conversion unit 83 receives the light flux 852 that is not affected by the eclipse by the time the first photoelectric conversion unit 82 receives the light amount that can be calculated for the luminous flux 851 that is affected by the eclipse. 2 It is possible to prevent the output of the photoelectric conversion unit 83 from being saturated and suppress a decrease in focus detection accuracy.

次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)実施の形態においては、図4に示すように撮像画素80の射出瞳距離PO2よりも撮影レンズ系1の射出瞳距離PO1が長い場合について説明したが、射出瞳距離PO1が短い撮影レンズ系1が装着された場合について説明する。この場合、光束851にはケラレは生じないが光束852にはケラレが生じる。このため、被写体からの光束851は、撮影レンズ系1の射出瞳領域841を通過し、撮像画素80cのマイクロレンズ81cを介して第1光電変換部82cに入射する。また、光束852がケラレることにより、光束852の一部が撮影レンズ系1の射出瞳領域842を通過し、マイクロレンズ81cを介して第2光電変換部83cに入射する。この場合に撮像素子8の周辺領域におけるケラレの影響を低減するためには、撮像素子80cの第1光電変換部82cの面積を第2光電変換部83cの面積と比べて大きくなるように構成すればよい。すなわち、図3(a)に示す撮像画素80cに代えて撮像画素80eを配列すればよい。
The following modifications are also within the scope of the present invention, and one or more of the modifications can be combined with the above-described embodiment.
(1) In the embodiment, as shown in FIG. 4, the case where the exit pupil distance PO1 of the photographing lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80 has been described, but the exit pupil distance PO1 is short. The case where the system 1 is attached will be described. In this case, eclipse does not occur in the luminous flux 851, but eclipse occurs in the luminous flux 852. Therefore, the luminous flux 851 from the subject passes through the exit pupil region 841 of the photographing lens system 1 and is incident on the first photoelectric conversion unit 82c via the microlens 81c of the imaging pixel 80c. Further, when the luminous flux 852 is eclipsed, a part of the luminous flux 852 passes through the exit pupil region 842 of the photographing lens system 1 and is incident on the second photoelectric conversion unit 83c via the microlens 81c. In this case, in order to reduce the influence of eclipse in the peripheral region of the image sensor 8, the area of the first photoelectric conversion unit 82c of the image sensor 80c should be made larger than the area of the second photoelectric conversion unit 83c. Just do it. That is, the imaging pixels 80e may be arranged in place of the imaging pixels 80c shown in FIG. 3A.

図5に、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1に対応させる場合の撮像素子8における撮像画素80の配列の例を示す。図5に示すように、撮像素子8の中心列Cからx方向+側においては、第1光電変換部82の面積は第2光電変換部83の面積よりも小さく、かつ、中心列Cからの距離に応じて第1光電変換部82の面積と第2光電変換部83の面積との差分が大きくなる。x方向−側においては、第2光電変換部83の面積は第1光電変換部82の面積よりも小さく、かつ、中心列Cからの距離に応じて第2光電変換部83の面積と第1光電変換部82の面積との差分が大きくなる。この場合も、各行において、撮像素子8の中心列Cに配列される撮像画素80では、第1光電変換部82の面積と第2光電変換部83の面積とは等しい。 FIG. 5 shows an example of the arrangement of the image pickup pixels 80 in the image pickup element 8 when the exit pupil distance PO1 corresponds to the photographing lens system 1 shorter than the exit pupil distance PO2. As shown in FIG. 5, the area of the first photoelectric conversion unit 82 is smaller than the area of the second photoelectric conversion unit 83 on the + side in the x direction from the center row C of the image pickup element 8, and is from the center row C. The difference between the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 increases according to the distance. On the x-direction-side, the area of the second photoelectric conversion unit 83 is smaller than the area of the first photoelectric conversion unit 82, and the area of the second photoelectric conversion unit 83 and the first one according to the distance from the central row C. The difference from the area of the photoelectric conversion unit 82 becomes large. Also in this case, in the image pickup pixels 80 arranged in the central column C of the image pickup element 8 in each row, the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 are equal to each other.

(2)図6に、射出瞳距離PO1が射出瞳距離PO2よりも長い撮影レンズ系1と、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1とのいずれの撮影レンズ系1に対しても対応させる場合の撮像素子8の撮像画素80の配列の例を示す。この場合、図3(a)に示す構造を有する撮像画素80が配列された行(図6の行D2、D4、D6)と、図5に示す構造を有する撮像画素80が配列された行(図6の行D1、D3、D5)とがy方向に沿って交互に配置される。したがって、射出瞳距離PO1が射出瞳距離PO2よりも長い撮影レンズ系1の場合には、行D2、D4、D6に配列された撮像画素80から出力された撮像信号を使用し、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1の場合には、行D1、D3、D5に配列された撮像画素80から出力された撮像信号を使用することにより、ケラレによる影響を低減した焦点検出を行うことが可能となる。 (2) In FIG. 6, either the photographing lens system 1 in which the exit pupil distance PO1 is longer than the exit pupil distance PO2 or the photographing lens system 1 in which the exit pupil distance PO1 is shorter than the exit pupil distance PO2 An example of the arrangement of the image pickup pixels 80 of the image pickup element 8 is shown. In this case, a row in which the imaging pixels 80 having the structure shown in FIG. 3A are arranged (rows D2, D4, D6 in FIG. 6) and a row in which the imaging pixels 80 having the structure shown in FIG. 5 are arranged (rows D2, D4, D6 in FIG. Rows D1, D3, D5) of FIG. 6 are alternately arranged along the y direction. Therefore, in the case of the photographing lens system 1 in which the ejection pupil distance PO1 is longer than the ejection pupil distance PO2, the imaging signals output from the imaging pixels 80 arranged in rows D2, D4, and D6 are used, and the ejection pupil distance PO1 is used. In the case of the photographing lens system 1 in which is shorter than the ejection pupil distance PO2, the focus detection that reduces the influence of eclipse is reduced by using the imaging signals output from the imaging pixels 80 arranged in rows D1, D3, and D5. Can be done.

(3)撮像画素80が有する第1光電変換部82と第2光電変換部83とがx方向に並んで配列されるものに代えて、第1光電変換部82と第2光電変換部とがy方向に並んで配列されるものについても本発明の一態様に含まれる。また、撮像素子8は、第1光電変換部82と第2光電変換部83とがx方向に並んで配列された撮像画素80と、第1光電変換部82と第2光電変換部83とがy方向に並んで配列された撮像画素80とが配列されたものについても本発明の一態様に含まれる。 (3) Instead of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80 arranged side by side in the x direction, the first photoelectric conversion unit 82 and the second photoelectric conversion unit are arranged. Those arranged side by side in the y direction are also included in one aspect of the present invention. Further, in the image pickup element 8, the image pickup pixel 80 in which the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 are arranged side by side in the x direction, and the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 are arranged. One aspect of the present invention also includes an array of imaging pixels 80 arranged side by side in the y direction.

(4)図7に示すように、一対の撮像画素80の一方に第1光電変換部82が配置され、他方の撮像画素80に第2光電変換部83が配置される撮像素子8についても本発明の一態様に含まれる。この場合、撮像素子8の中心列Cに配列された一対の撮像画素80a1および80a2においては、撮像画素80a1が有する第2光電変換部83aと、撮像画素80a2が有する第1光電変換部82aとは、実質的に面積が等しい。撮像素子8の周辺部(図7においてはx方向+側)に配置された一対の撮像画素80c1および80c2においては、撮像画素80c1が有する第2光電変換部83cの面積は、撮像画素80c2が有する第1光電変換部82cの面積と比べて大きい。面積の差分は実施の形態の場合と同様に、撮像素子8の中心列Cからの距離に応じて決定される。したがって、撮像素子8が図7に示す構成を有する撮像画素80により構成される場合であっても、撮像素子8の周辺部における光束のケラレの影響を低減して入射光量を維持することができるので、焦点検出精度の低下を抑制できる。 (4) As shown in FIG. 7, the present invention also relates to an image sensor 8 in which the first photoelectric conversion unit 82 is arranged on one of the pair of image pickup pixels 80 and the second photoelectric conversion unit 83 is arranged on the other image pickup pixel 80. It is included in one aspect of the invention. In this case, in the pair of image pickup pixels 80a1 and 80a2 arranged in the central row C of the image pickup element 8, the second photoelectric conversion unit 83a included in the image pickup pixel 80a1 and the first photoelectric conversion unit 82a included in the image pickup pixel 80a2 are , The areas are substantially equal. In the pair of image pickup pixels 80c1 and 80c2 arranged in the peripheral portion (x direction + side in FIG. 7), the area of the second photoelectric conversion unit 83c possessed by the image pickup pixel 80c1 is possessed by the image pickup pixel 80c2. It is larger than the area of the first photoelectric conversion unit 82c. The difference in area is determined according to the distance from the center row C of the image sensor 8 as in the case of the embodiment. Therefore, even when the image sensor 8 is composed of the image pickup pixels 80 having the configuration shown in FIG. 7, it is possible to reduce the influence of the eclipse of the luminous flux in the peripheral portion of the image pickup element 8 and maintain the incident light amount. Therefore, it is possible to suppress a decrease in focus detection accuracy.

本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiment as long as the features of the present invention are not impaired, and other embodiments considered within the scope of the technical idea of the present invention are also included within the scope of the present invention. ..

8…撮像素子、13…画像処理回路、14…焦点検出演算回路、80…撮像画素、81…マイクロレンズ、82…第1光電変換部、83…第2光電変換部、100…デジタルカメラ 8 ... image sensor, 13 ... image processing circuit, 14 ... focus detection calculation circuit, 80 ... image pixel, 81 ... microlens, 82 ... first photoelectric conversion unit, 83 ... second photoelectric conversion unit, 100 ... digital camera

Claims (10)

光学系と第1マイクロレンズとを透過した光を光電変換する第1光電変換部と第2光電変換部とをそれぞれ有し、前記第1光電変換部と前記第2光電変換部との受光面積の差が第1の方向の位置によって第1の関係で変化する複数の第1画素と、
前記光学系と第2マイクロレンズとを透過した光を光電変換する第3光電変換部と第4光電変換部とをそれぞれ有し、前記第3光電変換部と前記第4光電変換部との受光面積の差が前記第1の方向の位置によって前記第1の関係と異なる第2の関係で変化する複数の第2画素と、
を備える撮像素子。
It has a first photoelectric conversion unit and a second photoelectric conversion unit that photoelectrically convert the light transmitted through the optical system and the first microlens, respectively, and has a light receiving area between the first photoelectric conversion unit and the second photoelectric conversion unit. With a plurality of first pixels whose difference is changed in the first relationship depending on the position in the first direction,
It has a third photoelectric conversion unit and a fourth photoelectric conversion unit that photoelectrically convert the light transmitted through the optical system and the second microlens, and receives light from the third photoelectric conversion unit and the fourth photoelectric conversion unit. A plurality of second pixels in which the difference in area changes in a second relationship different from the first relationship depending on the position in the first direction.
An image sensor comprising.
請求項1に記載の撮像素子において、
前記第1光電変換部の受光面積は、前記第2光電変換部の受光面積よりも大きく、
前記第3光電変換部の受光面積は、前記第4光電変換部の受光面積よりも小さい撮像素子。
In the image pickup device according to claim 1,
The light receiving area of the first photoelectric conversion unit is larger than the light receiving area of the second photoelectric conversion unit.
The light receiving area of the third photoelectric conversion unit is smaller than the light receiving area of the fourth photoelectric conversion unit.
請求項1または2に記載の撮像素子において、
前記第1光電変換部の受光面積は、前記光学系の光軸から離れるほど前記第2光電変換部の受光面積よりも大きくなり、
前記第3光電変換部の受光面積は、前記光学系の光軸から離れるほど前記第4光電変換部の受光面積よりも小さい撮像素子。
In the image pickup device according to claim 1 or 2.
The light receiving area of the first photoelectric conversion unit becomes larger than the light receiving area of the second photoelectric conversion unit as the distance from the optical axis of the optical system increases.
An image sensor in which the light receiving area of the third photoelectric conversion unit is smaller than the light receiving area of the fourth photoelectric conversion unit as the distance from the optical axis of the optical system increases.
請求項1から3までのいずれか一項に記載の撮像素子において、
前記第1光電変換部と前記第2光電変換部との受光面積は、前記光学系の光軸からの距離に対して線形的に変化する撮像素子。
The image sensor according to any one of claims 1 to 3.
An image pickup device in which the light receiving area between the first photoelectric conversion unit and the second photoelectric conversion unit changes linearly with respect to the distance from the optical axis of the optical system.
請求項1から4までのいずれか一項に記載の撮像素子において、
前記第1光電変換部と前記第2光電変換部との受光面積は、前記光学系の光軸から複数の前記第1画素毎に変化する撮像素子。
The image sensor according to any one of claims 1 to 4.
An image pickup device in which the light receiving area between the first photoelectric conversion unit and the second photoelectric conversion unit changes for each of a plurality of the first pixels from the optical axis of the optical system.
請求項1から5までのいずれか一項に記載の撮像素子において、
前記第1光電変換部と前記第2光電変換部との受光面積の差は、前記光学系の光軸から離れるほど大きくなる撮像素子。
The image sensor according to any one of claims 1 to 5.
An image sensor in which the difference in light receiving area between the first photoelectric conversion unit and the second photoelectric conversion unit increases as the distance from the optical axis of the optical system increases.
請求項1から6までのいずれか一項に記載の撮像素子において、
前記第1光電変換部と前記第2光電変換部との受光面積の差は、前記光学系の光軸からの距離に対して線形的に変化する撮像素子。
The image sensor according to any one of claims 1 to 6.
An image sensor in which the difference in light receiving area between the first photoelectric conversion unit and the second photoelectric conversion unit changes linearly with respect to the distance from the optical axis of the optical system.
請求項1から7までのいずれか一項に記載の撮像素子において、
前記第1光電変換部と前記第2光電変換部との受光面積の差は、前記光学系の光軸から複数の前記第1画素毎に変化する撮像素子。
In the image pickup device according to any one of claims 1 to 7.
An image pickup device in which the difference in light receiving area between the first photoelectric conversion unit and the second photoelectric conversion unit changes for each of a plurality of the first pixels from the optical axis of the optical system.
請求項1から8までのいずれか一項に記載の撮像素子と、
前記第1画素出力された信号及び前記第2画素出力された信号の少なくとも1方に基づいて、前記光学系の焦点検出を行う検出部と、
を備える撮像装置。
The image sensor according to any one of claims 1 to 8 and the image sensor.
A detection unit that detects the focus of the optical system based on at least one of the signal output by the first pixel and the signal output by the second pixel.
An imaging device comprising.
請求項9に記載の撮像装置において、
前記検出部は、前記光学系の射出瞳距離の情報に基づいて、前記第1画素出力された信号及び前記第2画素出力された信号の少なくとも1方を選択して、前記光学系の焦点検出を行う撮像装置。
In the imaging device according to claim 9,
The detection unit selects at least one of the signal output by the first pixel and the signal output by the second pixel based on the information of the exit pupil distance of the optical system, and detects the focus of the optical system. Imaging device to perform.
JP2021085081A 2019-02-13 2021-05-20 Image pick-up element, and imaging device Pending JP2021140179A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021085081A JP2021140179A (en) 2019-02-13 2021-05-20 Image pick-up element, and imaging device
JP2023205180A JP2024022636A (en) 2019-02-13 2023-12-05 Image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019023651A JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device
JP2021085081A JP2021140179A (en) 2019-02-13 2021-05-20 Image pick-up element, and imaging device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019023651A Division JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023205180A Division JP2024022636A (en) 2019-02-13 2023-12-05 Image sensor

Publications (1)

Publication Number Publication Date
JP2021140179A true JP2021140179A (en) 2021-09-16

Family

ID=77668567

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2021085081A Pending JP2021140179A (en) 2019-02-13 2021-05-20 Image pick-up element, and imaging device
JP2023205180A Pending JP2024022636A (en) 2019-02-13 2023-12-05 Image sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023205180A Pending JP2024022636A (en) 2019-02-13 2023-12-05 Image sensor

Country Status (1)

Country Link
JP (2) JP2021140179A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235444A (en) * 2011-04-20 2012-11-29 Canon Inc Image pickup device and image pickup apparatus
JP2014048459A (en) * 2012-08-31 2014-03-17 Canon Inc Distance calculation device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012235444A (en) * 2011-04-20 2012-11-29 Canon Inc Image pickup device and image pickup apparatus
JP2014048459A (en) * 2012-08-31 2014-03-17 Canon Inc Distance calculation device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Also Published As

Publication number Publication date
JP2024022636A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
US8305483B2 (en) Imaging device and focus detecting method
JP5476716B2 (en) Imaging device and imaging apparatus
JP5050928B2 (en) Imaging device and imaging device
JP5593602B2 (en) Imaging device and imaging apparatus
JP5169499B2 (en) Imaging device and imaging apparatus
JP5947602B2 (en) Imaging device
JP5525107B2 (en) Imaging device
JP2010160313A (en) Imaging element and imaging apparatus
JP2008211631A (en) Focal point detection element, focal point detector, and imaging apparatus
JP2010169709A (en) Imaging element and imaging apparatus
US7620312B2 (en) Focus detection apparatus and signal processing method for focus detection
JP7264192B2 (en) Imaging element and imaging device
JP5625856B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP5507761B2 (en) Imaging device
JP2003241075A (en) Camera system, camera and photographic lens device
JP6561437B2 (en) Focus adjustment device and imaging device
JP2017223760A (en) Imaging device and focus adjustment method
JP6890766B2 (en) Detection device
JP2021140179A (en) Image pick-up element, and imaging device
JP6234094B2 (en) Focus detection apparatus and imaging apparatus
JP5157525B2 (en) Imaging device
JP2016038467A (en) Image pick-up element, focus detection device and imaging device
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP2009150978A (en) Imaging sensor and imaging device
JP2009031562A (en) Light receiving element, light receiver, focus detecting device, camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230905