JP2008211631A - Focal point detection element, focal point detector, and imaging apparatus - Google Patents

Focal point detection element, focal point detector, and imaging apparatus Download PDF

Info

Publication number
JP2008211631A
JP2008211631A JP2007047529A JP2007047529A JP2008211631A JP 2008211631 A JP2008211631 A JP 2008211631A JP 2007047529 A JP2007047529 A JP 2007047529A JP 2007047529 A JP2007047529 A JP 2007047529A JP 2008211631 A JP2008211631 A JP 2008211631A
Authority
JP
Japan
Prior art keywords
focus detection
pixels
pixel
imaging
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007047529A
Other languages
Japanese (ja)
Other versions
JP4826507B2 (en
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007047529A priority Critical patent/JP4826507B2/en
Publication of JP2008211631A publication Critical patent/JP2008211631A/en
Application granted granted Critical
Publication of JP4826507B2 publication Critical patent/JP4826507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain focal point detection with high precision in a plurality of directions on a screen. <P>SOLUTION: In this focal point detection element, a plurality of pixels 320, 330 for focal point detection which receive light from an imaging optical system are two-dimensionally and densely arranged, the plurality of pixels 320, 330 for focal point detection constitute first pixel array for focal point detection comprised of the pixels 320 for focal point detection arrayed along a first direction different from the dense array direction and a second pixel array for focal point detection comprised of the pixels 330 for focal point detection arrayed along a second direction different from both of the dense array direction and the first direction, and the pixels 320, 330 for focal point detection corresponding to each of the first pixel array for focal point detection and the second pixel array for focal point detection are discontinuously arranged in the dense array direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は焦点検出素子、焦点検出装置および撮像装置に関する。   The present invention relates to a focus detection element, a focus detection device, and an imaging device.

結像光学系からの光を受光する複数の焦点検出用画素が2次元状に稠密正方格子状に配列された焦点検出素子が知られている(例えば、特許文献1参照)。この焦点検出素子では、一つの焦点検出用画素に2対の光電変換部を配置し、結像光学系による画面上の2方向において同一の検出ピッチによる焦点検出を可能にしている。   A focus detection element is known in which a plurality of focus detection pixels that receive light from an imaging optical system are two-dimensionally arranged in a dense square lattice (see, for example, Patent Document 1). In this focus detection element, two pairs of photoelectric conversion units are arranged in one focus detection pixel, thereby enabling focus detection with the same detection pitch in two directions on the screen by the imaging optical system.

この出願の発明に関連する先行技術文献としては次のものがある。
特開昭58−024105号公報
Prior art documents related to the invention of this application include the following.
JP 58-024105 A

しかしながら、上述した従来の焦点検出素子では、一つの焦点検出用画素の中に2対の光電変換部を配置しているので、焦点検出精度を上げるために焦点検出用画素を縮小して焦点検出ピッチを小さくするには限界がある。
仮に、二次元状に配列された焦点検出用画素のそれぞれが一対の光電変換部を有するものとして画面上の縦横2方向の焦点検出をそれぞれ異なる焦点検出用画素を用いて行うようにすると、検出ピッチが極力小さくなるように焦点検出用画素の配列方向に沿った連続する画素を焦点検出用画素とし、縦方向と横方向の焦点検出用画素配列が交差するように設定した場合に、配列の交点に位置する画素はいずれかの方向の画素となるため、焦点検出用画素の配列方向によって検出ピッチを同じにすることはできない。
However, in the conventional focus detection element described above, since two pairs of photoelectric conversion units are arranged in one focus detection pixel, focus detection is performed by reducing the focus detection pixel in order to increase focus detection accuracy. There is a limit to reducing the pitch.
Assuming that the focus detection pixels arranged in a two-dimensional manner have a pair of photoelectric conversion units and perform focus detection in two vertical and horizontal directions on the screen using different focus detection pixels. When the focus detection pixels are set to be continuous pixels along the arrangement direction of the focus detection pixels so that the pitch is as small as possible, and the vertical and horizontal focus detection pixel arrays are set to intersect, Since the pixel located at the intersection is a pixel in any direction, the detection pitch cannot be made the same depending on the arrangement direction of the focus detection pixels.

(1) 請求項1の発明は、結像光学系からの光を受光する複数の焦点検出用画素が2次元状に稠密に配列された焦点検出素子であって、複数の焦点検出用画素は、稠密な配列の方向とは異なる第1方向に沿って配列された焦点検出用画素からなる第1焦点検出用画素配列と、稠密な配列の方向および第1方向のいずれとも異なる第2方向に沿って配列された焦点検出用画素からなる第2焦点検出用画素配列とを構成するとともに、第1焦点検出用画素配列および第2焦点検出用画素配列のそれぞれに対応する焦点検出用画素を、稠密な配列の方向に不連続に配置したものである。
(2) 請求項2の焦点検出素子は、第1方向および第2方向を、第1焦点検出用画素配列および第2焦点検出用画素配列における焦点検出用画素の間隔が、稠密に配列された複数の焦点検出用画素の間隔のうち2番目に短い間隔となる方向としたものである。
(3) 請求項3の焦点検出素子は、焦点検出用画素が、結像光学系の射出瞳上の異なる領域を通る光束を受光する1対の光電変換部を有し、第1焦点検出用画素配列および第2焦点検出用画素配列のそれぞれに属する焦点検出用画素の1対の光電変換部は、第1方向または第2方向に沿って並ぶようにしたものである。
(4) 請求項4の焦点検出素子は、第1焦点検出用画素配列および第2焦点検出用画素配列のそれぞれは、結像光学系の射出瞳上の異なる領域の一方を通る光束を受光する光電変換部を有する第1焦点検出用画素と、異なる領域の他方を通る光束を受光する光電変換部を有する第2焦点検出用画素とが、第1方向または第2方向に沿って交互に配列されるようにしたものである。
(5) 請求項5の焦点検出素子は、焦点検出用画素を正方格子状に稠密に配列したものである。
(6) 請求項6の焦点検出素子は、焦点検出用画素を六方格子状に稠密に配列したものである。
(7) 請求項7の焦点検出装置は、請求項1〜6のいずれか1項に記載の焦点検出素子と、第1焦点検出用画素配列および第2焦点検出用画素配列に属する焦点検出用画素の光電変換部から出力される信号に基づいて、結像光学系の焦点調節状態を演算する焦点検出演算手段とを備える。
(8) 請求項8の撮像装置は、請求項7に記載の焦点検出装置と、焦点検出演算手段により演算された焦点調節状態に基づいて結像光学系の焦点調節を行う焦点調節手段と、結像光学系からの光を受光する複数の撮像用画素が2次元状に稠密に配列された撮像素子とを備える。
(9) 請求項9の撮像装置は、結像光学系からの光を焦点検出素子と撮像素子の少なくとも一方へ導く光路選択手段を備える。
(10) 請求項10の撮像装置の光路選択手段は、結像光学系からの光を焦点検出素子と撮像素子の両方へ導く光束分割手段である。
(11) 請求項11の撮像装置は、焦点検出用画素を撮像用画素よりも大きくしたものである。
(1) The invention of claim 1 is a focus detection element in which a plurality of focus detection pixels that receive light from the imaging optical system are densely arranged two-dimensionally, and the plurality of focus detection pixels are A first focus detection pixel array composed of focus detection pixels arranged along a first direction different from the dense array direction, and a second direction different from both the dense array direction and the first direction. And a focus detection pixel corresponding to each of the first focus detection pixel array and the second focus detection pixel array. They are arranged discontinuously in the direction of the dense array.
(2) In the focus detection element according to the second aspect, the intervals between the focus detection pixels in the first focus detection pixel array and the second focus detection pixel array are densely arranged in the first direction and the second direction. The direction is the second shortest interval among the intervals between the plurality of focus detection pixels.
(3) In the focus detection element according to claim 3, the focus detection pixel has a pair of photoelectric conversion units that receive light beams passing through different regions on the exit pupil of the imaging optical system, and the first focus detection element. A pair of photoelectric conversion units of focus detection pixels belonging to each of the pixel array and the second focus detection pixel array are arranged along the first direction or the second direction.
(4) In the focus detection element according to claim 4, each of the first focus detection pixel array and the second focus detection pixel array receives a light beam passing through one of different regions on the exit pupil of the imaging optical system. First focus detection pixels having a photoelectric conversion unit and second focus detection pixels having a photoelectric conversion unit that receives a light beam passing through the other of different regions are alternately arranged in the first direction or the second direction. It is made to be done.
(5) A focus detection element according to a fifth aspect is obtained by densely arranging focus detection pixels in a square lattice pattern.
(6) A focus detection element according to a sixth aspect is one in which focus detection pixels are densely arranged in a hexagonal lattice pattern.
(7) A focus detection device according to a seventh aspect is the focus detection element according to any one of the first to sixth aspects, and the focus detection element belonging to the first focus detection pixel array and the second focus detection pixel array. Focus detection calculation means for calculating a focus adjustment state of the imaging optical system based on a signal output from the photoelectric conversion unit of the pixel.
(8) An imaging apparatus according to an eighth aspect includes the focus detection apparatus according to the seventh aspect, a focus adjustment unit that performs focus adjustment of the imaging optical system based on a focus adjustment state calculated by the focus detection calculation unit, A plurality of imaging pixels that receive light from the imaging optical system are arranged in a two-dimensional dense array.
(9) The imaging apparatus according to claim 9 includes an optical path selection unit that guides light from the imaging optical system to at least one of the focus detection element and the imaging element.
(10) The optical path selection means of the imaging apparatus according to claim 10 is a light beam splitting means for guiding light from the imaging optical system to both the focus detection element and the imaging element.
(11) In the imaging device according to an eleventh aspect, the focus detection pixel is made larger than the imaging pixel.

本発明によれば、画面上の複数の方向で精度の高い焦点検出を実現することができる。   According to the present invention, it is possible to realize focus detection with high accuracy in a plurality of directions on the screen.

一実施の形態の焦点検出素子および焦点検出装置を備えた撮像装置として、レンズ交換式デジタルスチルカメラを例に上げて説明する。なお、本願発明はレンズ交換式カメラに限定されず、レンズ固定式カメラにも適用することができる。図1は一実施の形態のカメラの構成を示す横断面図である。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。   As an imaging apparatus including the focus detection element and the focus detection apparatus according to one embodiment, a lens interchangeable digital still camera will be described as an example. The present invention is not limited to the interchangeable lens camera, but can be applied to a fixed lens camera. FIG. 1 is a cross-sectional view showing a configuration of a camera according to an embodiment. A digital still camera 201 according to an embodiment includes an interchangeable lens 202 and a camera body 203, and the interchangeable lens 202 is attached to the camera body 203 via a mount unit 204.

交換レンズ202はレンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210および絞り211の駆動制御や、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う他、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信を行う。   The interchangeable lens 202 includes a lens 209, a zooming lens 208, a focusing lens 210, an aperture 211, a lens drive control device 206, and the like. The lens drive control device 206 includes a microcomputer (not shown), a memory, a drive control circuit, and the like. The lens drive control device 206 controls the driving of the focusing lens 210 and the aperture 211, detects the state of the zooming lens 208, the focusing lens 210, and the aperture 211, and the like. In addition, the lens information is transmitted and the camera information is received by communication with a body drive control device 214 described later.

カメラボディ203はボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219、撮像素子220、焦点検出素子221、光分割プリズム223などを備えている。   The camera body 203 includes a body drive control device 214, a liquid crystal display element drive circuit 215, a liquid crystal display element 216, an eyepiece lens 217, a memory card 219, an image sensor 220, a focus detection element 221, a light splitting prism 223, and the like.

光分割プリズム223は、交換レンズ202から到来する光束を反射光束と透過光束に1:1の比で分割するハーフミラー面222を備えている。撮像素子(固体撮像素子)220は撮像用画素が2次元状に配列されており(詳細後述)、光分割プリズム223を透過した光束の予定結像面(撮像面)に配置されている。一方、焦点検出素子223は焦点検出用画素が2次元状に配列されており(詳細後述)、光分割プリズム223により反射された光束の予定結像面に配置されている。   The light splitting prism 223 includes a half mirror surface 222 that splits the light beam coming from the interchangeable lens 202 into a reflected light beam and a transmitted light beam in a ratio of 1: 1. The imaging element (solid-state imaging element) 220 has imaging pixels arranged in a two-dimensional manner (details will be described later), and is disposed on a planned imaging plane (imaging plane) of a light beam that has passed through the light splitting prism 223. On the other hand, the focus detection element 223 has focus detection pixels arrayed two-dimensionally (details will be described later), and is disposed on the planned imaging plane of the light beam reflected by the light splitting prism 223.

ボディ駆動制御装置214はマイクロコンピューター、メモリ、駆動制御回路などから構成され、撮像素子220および焦点検出素子221の駆動制御と画像信号および焦点検出信号の読み出し、画像信号の処理と記録、焦点検出信号に基づく焦点検出演算と交換レンズ202の焦点調節、カメラの動作制御を行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206と通信を行い、レンズ情報の受信とカメラ情報(デフォーカス量や絞り値等)の送信を行う。   The body drive control device 214 includes a microcomputer, a memory, a drive control circuit, and the like. The drive control of the image sensor 220 and the focus detection element 221, readout of the image signal and focus detection signal, processing and recording of the image signal, focus detection signal Based on the focus detection calculation, the focus adjustment of the interchangeable lens 202, and the camera operation control. The body drive control device 214 communicates with the lens drive control device 206 via the electrical contact 213 to receive lens information and send camera information (defocus amount, aperture value, etc.).

液晶表示素子216は液晶ビューファインダー(EVF:電気的ビューファインダー)として機能する。液晶表示素子駆動回路215は撮像素子220によるスルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子220により撮像された画像を記憶する画像ストレージである。   The liquid crystal display element 216 functions as a liquid crystal viewfinder (EVF: electrical viewfinder). The liquid crystal display element driving circuit 215 displays the through image by the image sensor 220 on the liquid crystal display element 216, and the photographer can observe the through image through the eyepiece lens 217. The memory card 219 is an image storage that stores an image captured by the image sensor 220.

交換レンズ202を通過し光分割プリズム223により分割された光束によって、撮像素子220と焦点検出素子221の受光面上に被写体像が形成される。この被写体像は撮像素子220と焦点検出素子221によりそれぞれ光電変換され、画像信号と焦点検出信号がボディ駆動制御装置214へ送られる。   A subject image is formed on the light receiving surfaces of the imaging element 220 and the focus detection element 221 by the light beam that has passed through the interchangeable lens 202 and is split by the light splitting prism 223. The subject image is photoelectrically converted by the image sensor 220 and the focus detection element 221, and the image signal and the focus detection signal are sent to the body drive control device 214.

ボディ駆動制御装置214は、焦点検出素子220からの焦点検出信号に基づいてデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子220からの画像信号を処理してメモリカード219に格納するとともに、撮像素子220からのスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。   The body drive control device 214 calculates the defocus amount based on the focus detection signal from the focus detection element 220 and sends this defocus amount to the lens drive control device 206. In addition, the body drive control device 214 processes the image signal from the image sensor 220 and stores it in the memory card 219, and sends the through image signal from the image sensor 220 to the liquid crystal display element drive circuit 215, so that the through image is liquid crystal. The image is displayed on the display element 216. Further, the body drive control device 214 sends aperture control information to the lens drive control device 206 to control the aperture of the aperture 211.

レンズ駆動制御装置206は、レンズ情報を、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じて変更する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値を検出し、これらのレンズ位置と絞り値に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値に応じたレンズ情報を選択する。   The lens drive control device 206 changes the lens information according to the focusing state, zooming state, aperture setting state, aperture open F value, and the like. Specifically, the positions of the zooming lens 208 and the focusing lens 210 and the aperture value of the aperture 211 are detected, and lens information is calculated according to these lens positions and aperture values, or a lookup prepared in advance. Lens information corresponding to the lens position and aperture value is selected from the table.

レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦点へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。   The lens drive control device 206 calculates a lens drive amount based on the received defocus amount, and drives the focusing lens 210 to a focal point according to the lens drive amount. Further, the lens drive control device 206 drives the diaphragm 211 in accordance with the received diaphragm value.

図2は、交換レンズ201の撮影画面における撮像用画素と焦点検出用画素の配列範囲を示す。交換レンズ201の撮影画面において、撮像素子220の撮像用画素は範囲220aの中に配列され、焦点検出素子221の焦点検出用画素は範囲221aの中に配列される。焦点検出用画素の配列範囲221aは、撮像用画素の配列範囲220aより狭くなっている。撮影画面端部で焦点検出を行うことはほとんどないため、焦点検出用画素の配列範囲221aを狭くして焦点検出素子221を小型化する。   FIG. 2 shows an arrangement range of imaging pixels and focus detection pixels on the imaging screen of the interchangeable lens 201. On the imaging screen of the interchangeable lens 201, the imaging pixels of the imaging element 220 are arranged in the range 220a, and the focus detection pixels of the focus detection element 221 are arranged in the range 221a. The focus detection pixel array range 221a is narrower than the imaging pixel array range 220a. Since focus detection is rarely performed at the edge of the photographing screen, the focus detection element 221 is downsized by narrowing the focus detection pixel array range 221a.

図2において、点100は撮影画面の中心、すなわち交換レンズ202の光軸と撮像素子220の交点であり、直線101は点100を通る水平方向(行方向)の直線であり、直線102は点100を通る垂直方向(列方向)の直線である。直線102の上方向が図1に示す“A”の方向であり、下方向が図1に示す“B”の方向である。   In FIG. 2, the point 100 is the center of the photographing screen, that is, the intersection of the optical axis of the interchangeable lens 202 and the image sensor 220, the straight line 101 is a horizontal line (row direction) passing through the point 100, and the straight line 102 100 is a straight line passing through 100 in the vertical direction (column direction). The upward direction of the straight line 102 is the “A” direction shown in FIG. 1, and the downward direction is the “B” direction shown in FIG.

図3は撮像素子220の部分拡大図である。撮像素子220は、行方向とそれに直交する方向の列方向の2次元状に、稠密正方格子状に配列された撮像用画素から構成される。図3において、撮像用画素は行方向と列方向に稠密に配列されており、撮像用画素の稠密配列方向は行方向と列方向になる。   FIG. 3 is a partially enlarged view of the image sensor 220. The image sensor 220 includes imaging pixels arranged in a two-dimensional shape in a row direction and a column direction perpendicular to the row direction in a dense square lattice pattern. In FIG. 3, the imaging pixels are densely arranged in the row direction and the column direction, and the dense arrangement directions of the imaging pixels are the row direction and the column direction.

図8は撮像素子220の撮像用画素配列の内の単位配列部を拡大した図である。撮像素子220は、図8に示すように緑画素310、313、赤画素311、青画素312の3種類4個の撮像用画素を単位配列とするベイヤー配列で構成されている。各撮像用画素はマイクロレンズ10、光電変換部11および色フィルター(不図示)から構成される。色フィルターは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図10に示す特性となっている。   FIG. 8 is an enlarged view of a unit array portion in the image pickup pixel array of the image sensor 220. As shown in FIG. 8, the image sensor 220 is configured in a Bayer array in which three types of four pixels for imaging, which are green pixels 310 and 313, a red pixel 311, and a blue pixel 312, are used as a unit array. Each imaging pixel includes a microlens 10, a photoelectric conversion unit 11, and a color filter (not shown). There are three types of color filters, red (R), green (G), and blue (B), and the respective spectral sensitivities have the characteristics shown in FIG.

図4は、焦点検出素子221の一部の領域(図2に示す領域C)を拡大した図である。焦点検出素子221は、2種類の焦点検出用画素320と330が行方向とそれに直交する方向の列方向の2次元状に稠密正方格子状に配列されている。焦点検出素子221の焦点検出用画素の配列は、図5に示す焦点検出用画素320からなる部分配列221aと、図6に示す焦点検出画素330からなる部分配列221bとから構成されている。   FIG. 4 is an enlarged view of a part of the focus detection element 221 (region C shown in FIG. 2). In the focus detection element 221, two types of focus detection pixels 320 and 330 are arranged in a two-dimensional shape in the row direction and in the column direction perpendicular to the row direction in a dense square lattice pattern. The array of focus detection pixels of the focus detection element 221 includes a partial array 221a composed of focus detection pixels 320 shown in FIG. 5 and a partial array 221b composed of focus detection pixels 330 shown in FIG.

図5において、一方の部分配列221aを構成する焦点検出用画素320は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を時計回り方向に45度回転させたものである。また、図6において、他方の部分配列221bを構成する焦点検出用画素330は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を反時計回り方向に45度回転させたものである。   In FIG. 5, the focus detection pixel 320 constituting one partial array 221a rotates the focus detection pixel including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 45 degrees in the clockwise direction. It has been made. In FIG. 6, the focus detection pixels 330 constituting the other partial array 221 b are arranged so that the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 illustrated in FIG. 9 are counterclockwise. It is rotated 45 degrees.

焦点検出用画素320、330には光量をかせぐために色フィルターが設置されておらず、その分光特性は光電変換を行うフォトダイオードの分光感度特性と、赤外カットフィルタ(不図示)の分光特性とを総合した図11に示す分光特性となる。この焦点検出用画素320,330の分光特性は、図10に示す緑画素G、赤画素Rおよび青画素Bの分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素G、赤画素Rおよび青画素Bの感度の光波長領域を包括している。   The focus detection pixels 320 and 330 are not provided with a color filter in order to increase the amount of light, and the spectral characteristics thereof are the spectral sensitivity characteristics of a photodiode that performs photoelectric conversion, and the spectral characteristics of an infrared cut filter (not shown). The spectral characteristics shown in FIG. The spectral characteristics of the focus detection pixels 320 and 330 are spectral characteristics obtained by adding the spectral characteristics of the green pixel G, the red pixel R, and the blue pixel B shown in FIG. 10, and the light wavelength region of the sensitivity is the green pixel G. The optical wavelength region of the sensitivity of the red pixel R and the blue pixel B is included.

図5に示す部分配列221aにおいて、図7に示すように焦点検出用画素320どうしの画素間距離はS2である。図7において、稠密正方格子状の配列における最短の画素間距離をS1とすると、画素間距離S2は画素間距離S1の次に短い画素間距離である。稠密正方格子状配列においては、例えば最短の画素間距離S1をPとした場合、2番目に短い画素間距離S2は√(2)・Pである。部分配列221aにおいて、方向D1(垂直方向から反時計周りに45度回転した方向)の直線上に配列された焦点検出用画素320の列が1つの焦点検出用画素列を構成し、後述する瞳分割方式により撮影画面上の1対の像の方向D1の像ズレ量が検出される。   In the partial array 221a shown in FIG. 5, as shown in FIG. 7, the inter-pixel distance between the focus detection pixels 320 is S2. In FIG. 7, when the shortest inter-pixel distance in the dense square lattice arrangement is S1, the inter-pixel distance S2 is the shortest inter-pixel distance after the inter-pixel distance S1. In the dense square lattice arrangement, for example, when P is the shortest inter-pixel distance S1, the second shortest inter-pixel distance S2 is √ (2) · P. In the partial array 221a, a column of focus detection pixels 320 arranged on a straight line in the direction D1 (a direction rotated 45 degrees counterclockwise from the vertical direction) forms one focus detection pixel column, and a pupil to be described later The image shift amount in the direction D1 of the pair of images on the shooting screen is detected by the division method.

図6に示す部分配列221bにおいて、図7に示すように焦点検出用画素330どうしの画素間距離はS2である。画素間距離S2は、上述したように稠密正方格子状の配列における最短の画素間距離をS1としたときに、画素間距離S1の次に短い画素間距離である。部分配列221bにおいて、方向D2(垂直方向から時計周りに45度回転した方向、方向D1とは直交する方向)の直線上に配列された焦点検出用画素330の列が1つの焦点検出用画素列を構成し、後述する瞳分割方式により撮影画面上の1対の像の方向D2の像ズレ量が検出される。   In the partial array 221b shown in FIG. 6, the inter-pixel distance between the focus detection pixels 330 is S2, as shown in FIG. The inter-pixel distance S2 is the shortest inter-pixel distance next to the inter-pixel distance S1, where S1 is the shortest inter-pixel distance in the dense square lattice array as described above. In the partial array 221b, a column of focus detection pixels 330 arranged on a straight line in the direction D2 (a direction rotated 45 degrees clockwise from the vertical direction, a direction orthogonal to the direction D1) is one focus detection pixel column. The image shift amount in the direction D2 of the pair of images on the photographing screen is detected by a pupil division method described later.

図5に示す部分配列221aと図6に示す部分配列221bとを組み合わせると、図4に示す焦点検出用画素320,330が稠密正方格子状に配列された焦点検出素子221が形成される。図4に示す画素配列の焦点検出素子221では、撮影画面上の任意の位置でD1方向とD2方向において像ズレ検出が可能になる。   When the partial array 221a shown in FIG. 5 and the partial array 221b shown in FIG. 6 are combined, the focus detection elements 221 in which the focus detection pixels 320 and 330 shown in FIG. 4 are arranged in a dense square lattice are formed. The focus detection element 221 having the pixel arrangement shown in FIG. 4 can detect image misalignment in the D1 direction and the D2 direction at an arbitrary position on the shooting screen.

図8に示す撮像用画素310、311、312、313と図9に示す焦点検出用画素320、330は同じ縮尺で図示されており、焦点検出用画素320,330の受光面の面積は、撮像用画素310、311、312、313の受光面の面積よりも広くなっている。例えば、撮像用画素310、311、312、313の受光面の直径を3ミクロンとした場合には、焦点検出用画素320,330の受光面の直径を6ミクロンとする。   The imaging pixels 310, 311, 312, and 313 shown in FIG. 8 and the focus detection pixels 320 and 330 shown in FIG. 9 are shown in the same scale, and the area of the light receiving surface of the focus detection pixels 320 and 330 is the imaging. It is wider than the area of the light receiving surface of the pixels 310, 311, 312, 313. For example, when the diameter of the light receiving surface of the imaging pixels 310, 311, 312, and 313 is 3 microns, the diameter of the light receiving surface of the focus detection pixels 320 and 330 is 6 microns.

撮像用画素310、311、312、313の光電変換部11は、マイクロレンズ10により所定の絞り開口径(例えばF1.0)の光束をすべて受光するような形状に設計される。一方、焦点検出用画素320,330の1対の光電変換部12、13は、マイクロレンズ10により所定の絞り開口径(例えばF2.8)の光束をすべて受光するような形状に設計される。焦点検出用画素320,330のサイズが小さくなると(例えば数ミクロン以下になると)、回折の影響により後述する瞳分割機能の低下が発生して焦点検出精度が悪化するとともに、焦点検出用画素320,330の出力レベルが低下して低輝度時の焦点検出能力が悪化するため、解像性能の向上のために縮小化された撮像用画素310、311、312、313の受光面サイズよりも焦点検出画素の受光面サイズを大きくし、画像性能と焦点検出性能の両立を図る。   The photoelectric conversion units 11 of the imaging pixels 310, 311, 312, and 313 are designed to have a shape that receives all the light flux having a predetermined aperture diameter (for example, F1.0) by the microlens 10. On the other hand, the pair of photoelectric conversion units 12 and 13 of the focus detection pixels 320 and 330 are designed to receive all light beams having a predetermined aperture diameter (for example, F2.8) by the microlens 10. When the size of the focus detection pixels 320 and 330 is reduced (for example, when it becomes several microns or less), a pupil division function, which will be described later, deteriorates due to the influence of diffraction, and the focus detection accuracy deteriorates. Since the output level of 330 decreases and the focus detection capability at low luminance deteriorates, focus detection is performed more than the light receiving surface size of the imaging pixels 310, 311, 312, and 313 reduced for improving the resolution performance. The size of the light receiving surface of the pixel is increased to achieve both image performance and focus detection performance.

図12は撮像用画素310、311、312、313の断面図である。撮像用画素310、311、312、313では、撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11が前方に投影される。光電変換部11は半導体回路基板29上に形成される。不図示の色フィルタはマイクロレンズ10と光電変換部11の中間位置に配置される。   FIG. 12 is a cross-sectional view of the imaging pixels 310, 311, 312, and 313. In the imaging pixels 310, 311, 312, and 313, the microlens 10 is disposed in front of the imaging photoelectric conversion unit 11, and the photoelectric conversion unit 11 is projected forward by the microlens 10. The photoelectric conversion unit 11 is formed on the semiconductor circuit substrate 29. A color filter (not shown) is disposed at an intermediate position between the microlens 10 and the photoelectric conversion unit 11.

図13は焦点検出用画素320,330の断面図である。焦点検出用画素320,330では、焦点検出用の光電変換部12、13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部12、13が前方に投影される。光電変換部12、13は半導体回路基板29上に形成される。   FIG. 13 is a cross-sectional view of the focus detection pixels 320 and 330. In the focus detection pixels 320 and 330, the microlens 10 is disposed in front of the focus detection photoelectric conversion units 12 and 13, and the photoelectric conversion units 12 and 13 are projected forward by the microlens 10. The photoelectric conversion units 12 and 13 are formed on the semiconductor circuit substrate 29.

次に、図14を参照してマイクロレンズを用いた瞳分割方式による焦点検出方法を説明する。なお、図14では交換レンズ202(図1参照)の光軸状のマイクロレンズ50とそれに隣接するマイクロレンズ60、およびそれらに対応する対の光電変換部(52,53)、(62,63)を代表して説明する。射出瞳90は、図1に示す交換レンズ202の予定結像面に配置されたマイクロレンズ50、60の前方d0の距離に設定される。この距離d0は、マイクロレンズ50、60の曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離であり、この明細書では測距瞳距離と呼ぶ。   Next, a focus detection method by a pupil division method using a microlens will be described with reference to FIG. In FIG. 14, the optical-axis microlens 50 of the interchangeable lens 202 (see FIG. 1), the microlens 60 adjacent thereto, and the corresponding photoelectric conversion units (52, 53), (62,63). This will be described as a representative. The exit pupil 90 is set to a distance d0 in front of the microlenses 50 and 60 arranged on the planned imaging plane of the interchangeable lens 202 shown in FIG. This distance d0 is a distance determined according to the curvature and refractive index of the microlenses 50 and 60, the distance between the microlens and the photoelectric conversion unit, and is referred to as a distance measuring pupil distance in this specification.

マイクロレンズ50、60は、図1に示す交換レンズ202(結像光学系)の予定結像面近傍に配置されている。マイクロレンズ50の背後に配置された1対の光電変換部52、53の形状は、マイクロレンズ50によりマイクロレンズ50から投影距離d0だけ離間した射出瞳90上に投影され、その投影形状は1対の領域(この明細書では測距瞳という)92,93を形成する。同様に、マイクロレンズ60の背後に配置された1対の光電変換部62、63の形状は、マイクロレンズ60によりマイクロレンズ60から投影距離d0だけ離間した射出瞳90上に投影され、その投影形状は測距瞳92,93を形成する。   The microlenses 50 and 60 are disposed in the vicinity of the planned imaging plane of the interchangeable lens 202 (imaging optical system) shown in FIG. The shape of the pair of photoelectric conversion units 52 and 53 disposed behind the microlens 50 is projected onto the exit pupil 90 separated from the microlens 50 by the projection distance d0 by the microlens 50, and the projected shape is a pair. (Referred to as distance measuring pupil in this specification) 92, 93. Similarly, the shape of the pair of photoelectric conversion units 62 and 63 disposed behind the microlens 60 is projected onto the exit pupil 90 separated from the microlens 60 by the projection distance d0 by the microlens 60, and the projected shape thereof. Forms distance measuring pupils 92 and 93.

図14では、便宜的に光軸上にある焦点検出画素(マイクロレンズ50と1対の光電変換部52、53からなる)と隣接する焦点検出画素(マイクロレンズ60と1対の光電変換部62、63からなる)を模式的に例示しているが、焦点検出画素が画面周辺の光軸から離れた位置にあった場合においても、1対の光電変換部はそれぞれ1対の測距瞳から各マイクロレンズに到来する光束を受光する。   In FIG. 14, for the sake of convenience, a focus detection pixel (consisting of a microlens 50 and a pair of photoelectric conversion units 52 and 53) on the optical axis is adjacent to a focus detection pixel (a microlens 60 and a pair of photoelectric conversion units 62). 63). However, even when the focus detection pixel is at a position away from the optical axis at the periphery of the screen, each pair of photoelectric conversion units is separated from each pair of distance measurement pupils. A light beam arriving at each microlens is received.

ここで、焦点検出用画素の配列方向は、1対の測距瞳の並び方向すなわち1対の光電変換部の並び方向と一致させる。   Here, the arrangement direction of the focus detection pixels is made to coincide with the arrangement direction of the pair of ranging pupils, that is, the arrangement direction of the pair of photoelectric conversion units.

投影距離d0にある射出瞳90上で各焦点検出用画素の光電変換部の投影形状(測距瞳92,93)が一致するように、各画素の投影方向が決定されている。すなわち、1対の測距瞳92,93と、1対の光電変換部(52、53)および1対の光電変換部(62、63)はマイクロレンズ50,60を介して共役な関係になっている。   The projection direction of each pixel is determined so that the projection shapes (ranging pupils 92 and 93) of the photoelectric conversion units of the focus detection pixels coincide on the exit pupil 90 at the projection distance d0. That is, the pair of distance measuring pupils 92 and 93, the pair of photoelectric conversion units (52 and 53), and the pair of photoelectric conversion units (62 and 63) have a conjugate relationship via the microlenses 50 and 60. ing.

光電変換部52は、測距瞳92を通過してマイクロレンズ50に向う焦点検出用光束72によりマイクロレンズ50上に形成される像の強度に対応した信号を出力する。同様に、光電変換部53は、測距瞳93を通過してマイクロレンズ50に向う焦点検出用光束73によりマイクロレンズ50上に形成される像の強度に対応した信号を出力する。また、光電変換部62は、測距瞳92を通過してマイクロレンズ60に向う焦点検出用光束82によりマイクロレンズ60上に形成される像の強度に対応した信号を出力する。同様に、光電変換部63は、測距瞳93を通過してマイクロレンズ60に向う焦点検出用光束83によりマイクロレンズ60上に形成される像の強度に対応した信号を出力する。   The photoelectric conversion unit 52 outputs a signal corresponding to the intensity of an image formed on the microlens 50 by the focus detection light beam 72 passing through the distance measuring pupil 92 and directed to the microlens 50. Similarly, the photoelectric conversion unit 53 outputs a signal corresponding to the intensity of the image formed on the microlens 50 by the focus detection light beam 73 passing through the distance measuring pupil 93 and directed to the microlens 50. In addition, the photoelectric conversion unit 62 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 82 that passes through the distance measuring pupil 92 and faces the microlens 60. Similarly, the photoelectric conversion unit 63 outputs a signal corresponding to the intensity of the image formed on the microlens 60 by the focus detection light beam 83 passing through the distance measuring pupil 93 and directed toward the microlens 60.

このような焦点検出用画素を直線状に複数個配置し、各画素の1対の光電変換部の出力を測距瞳92および測距瞳93に対応した出力グループにまとめることによって、測距瞳92と測距瞳93をそれぞれ通過する焦点検出用光束が焦点検出用画素列上に形成する1対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で1対の像の像ズレ量が検出される。   A plurality of focus detection pixels are arranged in a straight line, and the output of a pair of photoelectric conversion units of each pixel is collected into an output group corresponding to the distance measurement pupil 92 and the distance measurement pupil 93, thereby providing a distance measurement pupil. Information about the intensity distribution of a pair of images formed on the focus detection pixel array by the focus detection light fluxes that respectively pass through 92 and the distance measuring pupil 93 is obtained. By applying an image shift detection calculation process (correlation calculation process, phase difference detection process), which will be described later, to this information, the image shift amount of a pair of images is detected by a so-called pupil division type phase difference detection method.

さらに、像ズレ量に1対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。   Further, by performing a conversion operation according to the center of gravity distance of the pair of distance measuring pupils to the image shift amount, the current image plane relative to the planned image plane (corresponding to the position of the microlens array on the planned image plane) The deviation (defocus amount) of the imaging plane at the focus detection position is calculated.

なお、上述した説明では測距瞳は交換レンズの開口制限要素(絞り開口、レンズ外形、フードなど)によって制限されていない(けられていない)状態としたが、交換レンズの開口制限要素によって測距瞳が制限される場合には、焦点検出用画素の光電変換部は制限を受けた測距瞳を通過する光束を焦点検出用光束として受光することになる。   In the above description, the range-finding pupil is not limited by the aperture limiting element (aperture aperture, lens outline, hood, etc.) of the interchangeable lens, but is measured by the aperture limiting element of the interchangeable lens. When the distance pupil is restricted, the photoelectric conversion unit of the focus detection pixel receives the light beam passing through the restricted distance measurement pupil as the focus detection light beam.

焦点検出用画素のサイズを小さくしていくと(数ミクロン以下)、マイクロレンズの開口径も比例して小さくなり、1対の光電変換部をマイクロレンズで射出瞳に投影した場合に、測距瞳92,93の形状が回折の影響で大きくぼけてしまうため、測距瞳92,93の分離が次第に困難となり、結果的に焦点検出精度が低下してしまう。   When the size of the focus detection pixel is reduced (several microns or less), the aperture diameter of the microlens decreases proportionally, and distance measurement is performed when a pair of photoelectric conversion units are projected onto the exit pupil by the microlens. Since the shapes of the pupils 92 and 93 are greatly blurred due to diffraction, separation of the distance measuring pupils 92 and 93 becomes increasingly difficult, and as a result, focus detection accuracy is lowered.

次に、図15を参照して撮像用画素と射出瞳の関係を説明する。なお、図15において、図14に示す要素と同様な要素に対しては同一の符号を付して相違点を中心に説明する。また、図15では、図1に示す交換レンズ202の光軸上にある撮像画素(マイクロレンズ70と光電変換部71からなる)を模式的に例示しているが、その他の撮像画素においても光電変換部はそれぞれ領域94から各マイクロレンズに到来する光束を受光する。   Next, the relationship between the imaging pixels and the exit pupil will be described with reference to FIG. In FIG. 15, the same elements as those shown in FIG. 14 are denoted by the same reference numerals, and different points will be mainly described. 15 schematically illustrates an imaging pixel (comprising a microlens 70 and a photoelectric conversion unit 71) on the optical axis of the interchangeable lens 202 illustrated in FIG. 1, but photoelectric imaging is also performed in other imaging pixels. Each of the converters receives a light beam coming from each region 94 to each microlens.

マイクロレンズ70は、図1に示す交換レンズ202(結像光学系)の予定結像面近傍に配置されている。マイクロレンズ70の背後に配置された光電変換部71の形状は、マイクロレンズ70によりマイクロレンズ70から投影距離d0だけ離間した射出瞳90上に投影され、その投影形状は領域94を形成する。光電変換部71は、射出瞳90の領域94を通過してマイクロレンズ70に向う焦点検出用光束81によりマイクロレンズ70上に形成される像の強度に対応した信号を出力する。このような撮像用画素を2次元状に多数配置することによって、各画素の光電変換部に基づいて画像情報が得られる。   The microlens 70 is disposed in the vicinity of the planned imaging plane of the interchangeable lens 202 (imaging optical system) shown in FIG. The shape of the photoelectric conversion unit 71 disposed behind the microlens 70 is projected onto the exit pupil 90 separated from the microlens 70 by the projection distance d0 by the microlens 70, and the projection shape forms a region 94. The photoelectric conversion unit 71 outputs a signal corresponding to the intensity of the image formed on the microlens 70 by the focus detection light beam 81 that passes through the region 94 of the exit pupil 90 and faces the microlens 70. By arranging a large number of such imaging pixels two-dimensionally, image information can be obtained based on the photoelectric conversion unit of each pixel.

図16は射出瞳面における測距瞳の正面図である。図16において、焦点検出用画素から1対の光電変換部をマイクロレンズにより射出瞳面90に投影した測距瞳922,933の外接円は、結像面から見た場合に所定の開口F値(この明細書では測距瞳F値という。ここではF2.8)となる。図中に破線で示す領域901は、絞り値F2.8よりも大きな開口径の絞り値(例えばF2)に対応した領域を示し、測距瞳922,933を内部に含んでいる。測距瞳922,933の並び方向(図では水平方向)における測距瞳922、933を通過する光束(焦点検出用光束)の重心952,953の間隔は、Gとなる。   FIG. 16 is a front view of the distance measuring pupil on the exit pupil plane. In FIG. 16, the circumscribed circle of the distance measuring pupils 922 and 933 obtained by projecting a pair of photoelectric conversion units from the focus detection pixels onto the exit pupil plane 90 by the microlens is a predetermined aperture F value when viewed from the imaging plane. (In this specification, it is called a distance-measuring pupil F value. Here, it is F2.8). A region 901 indicated by a broken line in the drawing indicates a region corresponding to an aperture value (for example, F2) having an aperture diameter larger than the aperture value F2.8, and includes distance measuring pupils 922 and 933 therein. The distance between the centers of gravity 952 and 953 of the light beams (focus detection light beams) passing through the distance measurement pupils 922 and 933 in the direction in which the distance measurement pupils 922 and 933 are aligned (horizontal direction in the figure) is G.

図17は、図1に示すカメラ(撮像装置)の動作を示すフローチャートである。ボディ駆動制御装置214は、ステップ100でカメラの電源スイッチ(不図示)がオンされるとこの動作を開始する。ステップ110において、撮像素子220の出力信号レベルに基づいて被写体輝度を検出し、被写体輝度に応じて撮像素子220を制御して画像データを読み出す。続くステップ120で撮像素子220の撮像用画素のデータを電子ビューファインダーに表示させる。また、ステップ130では被写体輝度に応じて焦点検出素子221を制御し、焦点検出用画像データを読み出す。   FIG. 17 is a flowchart showing the operation of the camera (imaging device) shown in FIG. The body drive control device 214 starts this operation when a power switch (not shown) of the camera is turned on in step 100. In step 110, subject brightness is detected based on the output signal level of the image sensor 220, and image data is read by controlling the image sensor 220 in accordance with the subject brightness. In the next step 120, the image pickup pixel data of the image sensor 220 is displayed on the electronic viewfinder. In step 130, the focus detection element 221 is controlled in accordance with the subject brightness to read out focus detection image data.

ステップ140において、撮影画面上の任意に指定された位置(手動または自動で決定される)の近傍領域における方向D1の焦点検出用画素320の配列に対応した1対の像データと、方向D2の焦点検出用画素330の配列に対応した1対の像データに基づいて、後述する像ズレ検出演算処理(相関演算処理)を行い、指定された位置における方向D1のデフォーカス量と方向D2のデフォーカス量を算出する。さらに、2つのデフォーカス量に基づいて最終的にひとつのデフォーカス量を求める。例えば、2つのデフォーカス量の平均値、またはより近距離の被写体を示すデフォーカス量、あるいはより信頼性の高いデフォーカス量などを最終的なデフォーカス量とする。   In step 140, a pair of image data corresponding to the array of focus detection pixels 320 in the direction D1 in a region near an arbitrarily designated position (determined manually or automatically) on the photographing screen, and the direction D2 Based on a pair of image data corresponding to the arrangement of the focus detection pixels 330, an image shift detection calculation process (correlation calculation process) described later is performed, and the defocus amount in the direction D1 and the defocusing direction in the direction D2 at the designated position. Calculate the focus amount. Furthermore, one defocus amount is finally obtained based on the two defocus amounts. For example, an average value of two defocus amounts, a defocus amount indicating a closer object, or a more reliable defocus amount is set as a final defocus amount.

ステップ150で合焦近傍か否か、すなわちデフォーカス量の絶対値が所定値以内であるか否かを判定する。合焦近傍でないと判定された場合はステップ160へ進み、デフォーカス量をレンズ駆動制御装置206(図1参照)へ送信し、交換レンズ202のフォーカシング用レンズ210を合焦位置に駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。なお、焦点検出不能な場合もこのステップに分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシング用レンズ210を無限から至近の間でスキャン駆動させる。その後、ステップ110へ戻り、上述した動作を繰り返す。   In step 150, it is determined whether or not the focus is close, that is, whether or not the absolute value of the defocus amount is within a predetermined value. If it is determined that the lens is not in focus, the process proceeds to step 160 where the defocus amount is transmitted to the lens drive controller 206 (see FIG. 1), and the focusing lens 210 of the interchangeable lens 202 is driven to the focus position. Then, it returns to step 110 and repeats the operation | movement mentioned above. Even when focus detection is impossible, the process branches to this step, a scan drive command is transmitted to the lens drive control device 206, and the focusing lens 210 of the interchangeable lens 202 is scan-driven between infinity and close. Then, it returns to step 110 and repeats the operation | movement mentioned above.

一方、合焦近傍であると判定された場合はステップ170へ進み、シャッターボタン(不図示)の操作によりシャッターレリーズがなされたか否かを判定する。レリーズ操作がなされていないと判定された場合はステップ110へ戻り、上述した動作を繰り返す。レリーズ操作がなされたと判定された場合はステップ180へ進み、被写体輝度に応じて撮影パラメータを決定し、レンズ駆動制御装置206へ絞り制御情報を送信し、交換レンズ202の絞り値を撮影絞り値にする。絞り制御が終了した時点で、決定された電荷蓄積時間に応じて撮像素子の露光を行う。ステップ190で撮像素子220から撮像画素のデータを読み出し、続くステップ200で画像データをメモリーカード219に保存する。その後、ステップ110へ戻って上述した動作を繰り返す。   On the other hand, if it is determined that it is close to the in-focus state, the process proceeds to step 170, and it is determined whether or not a shutter release has been performed by operating a shutter button (not shown). If it is determined that the release operation has not been performed, the process returns to step 110 to repeat the above-described operation. If it is determined that the release operation has been performed, the process proceeds to step 180, the shooting parameters are determined according to the subject brightness, the aperture control information is transmitted to the lens drive control device 206, and the aperture value of the interchangeable lens 202 is set to the shooting aperture value. To do. When the aperture control is completed, the image sensor is exposed according to the determined charge accumulation time. In step 190, data of the image pickup pixel is read from the image pickup element 220, and in step 200, the image data is stored in the memory card 219. Then, it returns to step 110 and repeats the operation | movement mentioned above.

図18により、図17のステップ140で実行される像ズレ検出演算処理(相関演算処理)の詳細を説明する。焦点検出用画素列から出力される1対のデータ列(α1〜αM、β1〜βM:Mはデータ数)に対し、(1)式に示すような高周波カットフィルタ処理を施し、第1データ列A1〜ANと第2データ列B1〜BNを生成する。
An=αn+2×αn+1+αn+2、
Bn=βn+2×βn+1+βn+2 ・・・(1)
(1)式において、n=1〜Nである。これにより、データ列から相関処理に悪影響を及ぼすノイズ成分や高周波成分を除去することができる。
The details of the image shift detection calculation process (correlation calculation process) executed in step 140 of FIG. 17 will be described with reference to FIG. A pair of data strings (α1 to αM, β1 to βM, where M is the number of data) output from the focus detection pixel column is subjected to a high frequency cut filter process as shown in Equation (1), and the first data string A1 to AN and second data strings B1 to BN are generated.
An = αn + 2 × αn + 1 + αn + 2,
Bn = βn + 2 × βn + 1 + βn + 2 (1)
In the formula (1), n = 1 to N. As a result, noise components and high-frequency components that adversely affect the correlation processing can be removed from the data string.

ここで、α1〜αMは、図14に示す測距瞳92を通る焦点検出用光束により形成された像の画像データに相当し、β1〜βMは、測距瞳93を通る焦点検出用光束により形成された像の画像データに相当する。なお、演算時間の短縮を図る場合や、すでに大きくデフォーカスしていて高周波成分が少ないことがわかっている場合には、この処理を省略することもできる。   Here, α1 to αM correspond to image data of an image formed by the focus detection light beam passing through the distance measuring pupil 92 shown in FIG. 14, and β1 to βM are determined by the focus detection light beam passing through the distance measurement pupil 93. This corresponds to the image data of the formed image. Note that this processing can be omitted when the calculation time is to be shortened or when it is already known that there is little high-frequency component since the focus is greatly defocused.

データ列An、Bnに対し(2)式に示す相関演算を行い、相関量C(k)を演算する。
C(k)=Σ|An−Bn+k| ・・・(2)
(2)式において、Σ演算はnについて累積される。nのとる範囲はずらし量kに応じてAn、Bn+kのデータが存在する範囲に限定される。ずらし量kは整数であり、データ列のデータ間隔(画素ピッチ)を単位とした相対的シフト量である。(2)式の演算結果は、図18(a)に示すように、1対のデータの相関が高いシフト量(図18(a)ではk=kj=2)において相関量C(k)が極小(小さいほど相関度が高い)になる。
The correlation calculation shown in the equation (2) is performed on the data strings An and Bn, and the correlation amount C (k) is calculated.
C (k) = Σ | An−Bn + k | (2)
In equation (2), Σ operations are accumulated for n. The range of n is limited to the range in which data of An and Bn + k exist according to the shift amount k. The shift amount k is an integer and is a relative shift amount with the data interval (pixel pitch) of the data string as a unit. As shown in FIG. 18A, the calculation result of the expression (2) indicates that the correlation amount C (k) is the shift amount (k = kj = 2 in FIG. 18A) with a high correlation between a pair of data. Minimal (the smaller the value, the higher the degree of correlation).

次に、(3)〜(6)式による3点内挿の手法を用いて連続的な相関量に対する極小値C(x)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(3)、
C(x)= C(kj)−|D| ・・・(4)、
D={C(kj-1)−C(kj-1)}/2 ・・・(5)、
SLOP=MAX{C(kj+1)−C(kj),C(kj-1)−C(kj)} ・・・(6)
Next, the shift amount x that gives the minimum value C (x) with respect to the continuous correlation amount is obtained by using the three-point interpolation method according to the equations (3) to (6).
x = kj + D / SLOP (3),
C (x) = C (kj) − | D | (4),
D = {C (kj-1) -C (kj-1)} / 2 (5),
SLOP = MAX {C (kj + 1) -C (kj), C (kj-1) -C (kj)} (6)

(3)式で算出されたずらし量xの信頼性があるかどうかは、次のようにして判定する。図18(b)に示すように、1対のデータの相関度が低い場合は、内挿された相関量の極小値C(x)の値が大きくなる。したがって、C(x)が所定のしきい値以上の場合は算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。図18(c)に示すように、1対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、極小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。   Whether or not the shift amount x calculated by the equation (3) is reliable is determined as follows. As shown in FIG. 18B, when the degree of correlation between a pair of data is low, the value of the minimal value C (x) of the interpolated correlation amount increases. Therefore, when C (x) is equal to or greater than a predetermined threshold value, it is determined that the calculated shift amount has low reliability, and the calculated shift amount x is canceled. Alternatively, in order to normalize C (x) with the contrast of data, when the value obtained by dividing C (x) by SLOP that is proportional to the contrast is equal to or greater than a predetermined value, the reliability of the calculated shift amount Is determined to be low, and the calculated shift amount x is canceled. Alternatively, when SLOP that is a value proportional to the contrast is equal to or less than a predetermined value, it is determined that the subject has low contrast and the reliability of the calculated shift amount is low, and the calculated shift amount x is canceled. As shown in FIG. 18C, when the degree of correlation of a pair of data is low and there is no drop in the correlation amount C (k) between the shift ranges kmin to kmax, the minimum value C (x) is obtained. In such a case, it is determined that the focus cannot be detected.

算出されたずらし量xの信頼性があると判定された場合は、被写体像面の予定結像面に対するデフォーカス量DEFを(7)式により求めることができる。
DEF=KX・PY・x ・・・(7)
(7)式において、PYは検出ピッチ(焦点検出用画素のピッチ)であり、KXは1対の測距瞳を通過する光束の重心の開き角の大きさ(測距瞳重心間隔と測距瞳距離によって決まる)によって決まる変換係数である。
When it is determined that the calculated shift amount x is reliable, the defocus amount DEF of the subject image plane with respect to the planned image formation plane can be obtained by Expression (7).
DEF = KX · PY · x (7)
In equation (7), PY is a detection pitch (the pitch of focus detection pixels), and KX is the size of the opening angle of the center of gravity of a light beam passing through a pair of distance measurement pupils (the distance measurement pupil center distance and distance measurement). Conversion coefficient determined by the pupil distance).

《焦点検出素子の変形例》
図19は、変形例の焦点検出素子221Aの一部の領域(図2に示す領域C)を拡大した図である。図4に示す焦点検出素子221の焦点検出用画素配列では、撮影画面の方向D1と方向D2(画面垂直方向に対して±45度傾いた方向)の像ズレを検出する例を示した。この変形例の焦点検出素子221Aでは、撮影画面の垂直方向(方向D3)と水平方向(方向D4)において像ずれを検出する。一般に、撮影対象となる人工物や自然物は地平面に対して垂直方向と水平方向の構造を持つものが多く、像ズレ検出方向を画面垂直方向と水平方向とすることによって焦点検出性能を向上させることができる。
<< Modification of focus detection element >>
FIG. 19 is an enlarged view of a partial region (region C shown in FIG. 2) of the focus detection element 221A of the modified example. In the focus detection pixel array of the focus detection element 221 illustrated in FIG. 4, an example in which an image shift between the direction D1 and the direction D2 of the photographing screen (direction inclined by ± 45 degrees with respect to the vertical direction of the screen) is illustrated. The focus detection element 221A of this modification detects an image shift in the vertical direction (direction D3) and the horizontal direction (direction D4) of the shooting screen. In general, many artifacts and natural objects to be photographed have a vertical and horizontal structure with respect to the ground plane, and focus detection performance is improved by setting the image shift detection direction to the vertical and horizontal directions of the screen. be able to.

図19において、焦点検出用画素340、350からなる全体の画素配列は、撮像用画素と同様に稠密正方格子配列となっている。全体の画素配列は、さらに図20に示す焦点検出用画素340からなる部分配列と、図21に示す焦点検出用画素350からなる部分配列とから構成されている。図20に示す部分配列を構成する焦点検出用画素340は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を時計回り方向に90度回転させたものである。一方、図21に示す部分配列を構成する焦点検出用画素350は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素と同じものである。   In FIG. 19, the entire pixel array including the focus detection pixels 340 and 350 is a dense square lattice array as with the imaging pixels. The entire pixel array is further composed of a partial array composed of focus detection pixels 340 shown in FIG. 20 and a partial array composed of focus detection pixels 350 shown in FIG. The focus detection pixels 340 constituting the partial array shown in FIG. 20 are obtained by rotating the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 90 degrees in the clockwise direction. It is. On the other hand, the focus detection pixels 350 constituting the partial array shown in FIG. 21 are the same as the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG.

図20に示す部分配列は、図7に示す焦点検出用画素どうしの画素間距離がS2である焦点検出用画素340から構成される。上述したように、画素間距離S2は、図7に示すように稠密正方格子配列における最短の画素間距離をS1としたときに、その次に短い画素間距離である。この部分配列において、方向D3(垂直方向)の直線上に配列された焦点検出用画素340の列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D3の像ズレ量が検出される。   The partial array shown in FIG. 20 includes focus detection pixels 340 in which the inter-pixel distance between the focus detection pixels shown in FIG. 7 is S2. As described above, the inter-pixel distance S2 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense square lattice arrangement is S1, as shown in FIG. In this partial arrangement, the row of focus detection pixels 340 arranged on a straight line in the direction D3 (vertical direction) constitutes one focus detection pixel row, and an image in the direction D3 of a pair of images by the pupil division method. The amount of deviation is detected.

図21に示す部分配列は、画素間距離がS2である焦点検出画素350から構成される。上述したように、画素間距離S2は、稠密正方格子配列における最短の画素間距離をS1としたときに、その次に短い画素間距離である。この部分配列において、方向D4(水平方向)の直線上に配列された焦点検出用画素350の列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D4の像ズレ量が検出される。   The partial array shown in FIG. 21 includes focus detection pixels 350 whose inter-pixel distance is S2. As described above, the inter-pixel distance S2 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense square lattice arrangement is S1. In this partial arrangement, a row of focus detection pixels 350 arranged on a straight line in the direction D4 (horizontal direction) constitutes one focus detection pixel row, and an image in the direction D4 of a pair of images by the pupil division method. The amount of deviation is detected.

図20に示す部分配列と図21に示す部分配列とを組み合わせて配列することにより、図19に示す焦点検出用画素が稠密正方格子配列された画素配列が形成される。図19に示す画素配列を備えた焦点検出素子221Aによれば、撮影画面上の任意の位置においてD3方向(垂直方向)とD4方向(水平方向)で像ズレ検出が可能になる。   By arranging the partial array shown in FIG. 20 and the partial array shown in FIG. 21 in combination, a pixel array in which the focus detection pixels shown in FIG. 19 are arranged in a dense square lattice is formed. According to the focus detection element 221A having the pixel array shown in FIG. 19, it is possible to detect an image shift in the D3 direction (vertical direction) and the D4 direction (horizontal direction) at an arbitrary position on the shooting screen.

《焦点検出素子の他の変形例》
図22は、他の変形例の焦点検出素子221Bの一部の領域(図2に示す領域C)を拡大した図である。図4に示す焦点検出素子221の焦点検出用画素配列では、撮影画面の方向D1と方向D2(画面垂直方向に対して±45度傾いた方向)の像ズレを検出するために、1つの焦点検出用画素の中に1対の光電変換部を備えた例を示した。この変形例の焦点検出素子221Bでは、1つの焦点検出用画素の中に1対の光電変換部の内の一方を設け、もう1つの焦点検出用画素の中に他方の光電変換部を設け、2つの焦点検出用画素を像ズレ検出方向に隣接させるとともに、このような焦点検出用画素ペアを像ズレ検出方向に配列することによって像ズレ検出を行う。このような構成にすることによって、画素構造を単純にして焦点検出素子の回路構成の複雑化を防止することができる。
<< Other Modifications of Focus Detection Element >>
FIG. 22 is an enlarged view of a partial region (region C shown in FIG. 2) of the focus detection element 221B of another modification. In the focus detection pixel array of the focus detection element 221 shown in FIG. 4, one focus is used to detect an image shift between the direction D1 and the direction D2 (direction inclined ± 45 degrees with respect to the vertical direction of the screen) of the shooting screen. An example in which a pair of photoelectric conversion units is provided in the detection pixel is shown. In the focus detection element 221B of this modification, one of the pair of photoelectric conversion units is provided in one focus detection pixel, and the other photoelectric conversion unit is provided in the other focus detection pixel. Two focus detection pixels are adjacent in the image shift detection direction, and image shift detection is performed by arranging such focus detection pixel pairs in the image shift detection direction. With such a configuration, it is possible to simplify the pixel structure and prevent the circuit configuration of the focus detection element from becoming complicated.

図22において、焦点検出用画素360a、360bおよび焦点検出用画素370a、370bからなる全体の画素配列は、撮像用画素と同様に稠密正方格子配列となっている。全体の画素配列は、さらに図23に示す焦点検出用画素360a、360bからなる部分配列と、図24に示す焦点検出用画素370a、370bからなる部分配列とから構成されている。   In FIG. 22, the entire pixel array composed of focus detection pixels 360a and 360b and focus detection pixels 370a and 370b is a dense square lattice array similar to the imaging pixels. The entire pixel array is further composed of a partial array composed of focus detection pixels 360a and 360b shown in FIG. 23 and a partial array composed of focus detection pixels 370a and 370b shown in FIG.

図23に示す部分配列を構成する焦点検出用画素360a、360bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を時計回り方向に45度回転させたものである。そして、焦点検出用画素360aには一方の光電変換部13のみが配置され、焦点検出用画素360bには他方の光電変換部12のみが配置される。   The focus detection pixels 360a and 360b constituting the partial array shown in FIG. 23 rotate the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 45 degrees in the clockwise direction. It is a thing. Only one photoelectric conversion unit 13 is arranged in the focus detection pixel 360a, and only the other photoelectric conversion unit 12 is arranged in the focus detection pixel 360b.

図24に示す部分配列を構成する焦点検出用画素370a、370bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出画素を反時計回り方向に45度回転させたものである。そして、焦点検出用画素370aには一方の光電変換部13のみが配置され、焦点検出用画素370bには他方の光電変換部12のみが配置される。   The focus detection pixels 370a and 370b constituting the partial array shown in FIG. 24 rotate the focus detection pixel including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 45 degrees counterclockwise. It is a thing. Only one photoelectric conversion unit 13 is arranged in the focus detection pixel 370a, and only the other photoelectric conversion unit 12 is arranged in the focus detection pixel 370b.

図23に示す部分配列は、図7に示す焦点検出用画素どうしの画素間距離がS2である焦点検出用画素360a、360bから構成される。上述したように、画素間距離S2は、図7に示すように稠密正方格子配列における最短の画素間距離をS1としたときに、その次に短い画素間の距離である。この部分配列において、方向D1(垂直方向から反時計周りに45度回転した方向)の直線上に配列された焦点検出用画素360a、360bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D1の像ズレ量が検出される。   The partial array shown in FIG. 23 includes focus detection pixels 360a and 360b in which the inter-pixel distance between the focus detection pixels shown in FIG. 7 is S2. As described above, the inter-pixel distance S2 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense square lattice arrangement is S1, as shown in FIG. In this partial arrangement, columns of focus detection pixels 360a and 360b arranged on a straight line in the direction D1 (a direction rotated 45 degrees counterclockwise from the vertical direction) form one focus detection pixel column, and the pupil The image shift amount in the direction D1 of the pair of images is detected by the division method.

図24に示す部分配列は、画素間距離がS2である焦点検出用画素370a、370bから構成される。上述したように、画素間距離S2は、稠密正方格子配列における最短の画素間距離をS1としたときに、その次に短い画素間の距離である。この部分配列において、方向D2(垂直方向から時計周りに45度回転した方向、方向D1とは直交する方向)の直線上に配列された焦点検出用画素370a、370bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D2の像ズレ量が検出される。   The partial array shown in FIG. 24 includes focus detection pixels 370a and 370b whose inter-pixel distance is S2. As described above, the inter-pixel distance S2 is a distance between the next shortest pixels when the shortest inter-pixel distance in the dense square lattice arrangement is S1. In this partial arrangement, a column of focus detection pixels 370a and 370b arranged on a straight line in the direction D2 (a direction rotated 45 degrees clockwise from the vertical direction and a direction orthogonal to the direction D1) is one focus detection. A pixel row is formed, and an image shift amount in the direction D2 of the pair of images is detected by a pupil division method.

図23に示す部分配列と図24に示す部分配列とを組み合わせて配列することによって、図22に示す焦点検出用画素が稠密正方格子配列された画素配列が形成される。図22に示す画素配列を備えた焦点検出素子221Bによれば、撮影画面上の任意の位置においてD1方向およびD2方向で像ズレ検出が可能になる。   By arranging the partial arrangement shown in FIG. 23 and the partial arrangement shown in FIG. 24 in combination, a pixel arrangement in which the focus detection pixels shown in FIG. 22 are arranged in a dense square lattice is formed. According to the focus detection element 221B having the pixel array shown in FIG. 22, it is possible to detect an image shift in the D1 direction and the D2 direction at an arbitrary position on the photographing screen.

《焦点検出素子の他の変形例》
図25は、他の変形例の焦点検出素子221Cの一部の領域(図2に示す領域C)を拡大した図である。図19に示す焦点検出素子221Aの焦点検出用画素配列では、方向D3(垂直方向)と方向D4(水平方向)の像ズレを検出するために、1つの焦点検出用画素の中に1対の光電変換部を備えた例を示した。この変形例の焦点検出素子221Cでは、1つの焦点検出用画素の中に1対の光電変換部のうちの一方を設け、もう1つの焦点検出用画素の中に他方の光電変換部を設け、2つの焦点検出用画素を像ズレ検出方向に隣接させるとともに、このような焦点検出用画素ペアを像ズレ検出方向に配列することによって像ズレ検出を行う。このような構成にすることにより、画素構造を単純にして焦点検出素子の回路構成の複雑化を防止することができる。
<< Other Modifications of Focus Detection Element >>
FIG. 25 is an enlarged view of a partial region (region C shown in FIG. 2) of the focus detection element 221C of another modification. In the focus detection pixel array of the focus detection element 221A shown in FIG. 19, in order to detect an image shift in the direction D3 (vertical direction) and the direction D4 (horizontal direction), a pair of focus detection pixels The example provided with the photoelectric conversion part was shown. In the focus detection element 221C of this modified example, one of the pair of photoelectric conversion units is provided in one focus detection pixel, and the other photoelectric conversion unit is provided in the other focus detection pixel. Two focus detection pixels are adjacent in the image shift detection direction, and image shift detection is performed by arranging such focus detection pixel pairs in the image shift detection direction. With such a configuration, it is possible to simplify the pixel structure and prevent the circuit configuration of the focus detection element from becoming complicated.

図25において、焦点検出用画素380a、380bと焦点検出用画素390a、390bからなる全体の画素配列は、撮像用画素と同様に稠密正方格子配列となっている。全体の画素配列は、さらに図26に示す焦点検出用画素380a、380bからなる部分配列と、図27に示す焦点検出用画素390a、390bからなる部分配列とから構成されている。   In FIG. 25, the entire pixel array composed of the focus detection pixels 380a and 380b and the focus detection pixels 390a and 390b is a dense square lattice array similar to the imaging pixels. The entire pixel array is further composed of a partial array composed of focus detection pixels 380a and 380b shown in FIG. 26 and a partial array composed of focus detection pixels 390a and 390b shown in FIG.

図26に示す部分配列を構成する焦点検出用画素380a、380bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を時計回り方向に90度回転させたものであるが、焦点検出用画素380aには一方の光電変換部13のみが配置され、焦点検出用画素380bには他方の光電変換部12のみが配置される。   The focus detection pixels 380a and 380b constituting the partial array shown in FIG. 26 rotate the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 90 degrees in the clockwise direction. However, only one photoelectric conversion unit 13 is arranged in the focus detection pixel 380a, and only the other photoelectric conversion unit 12 is arranged in the focus detection pixel 380b.

図27に示す部分配列を構成する焦点検出用画素390a、390bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素と同じものであるが、焦点検出用画素390aには一方の光電変換部13のみが配置され、焦点検出用画素390bには他方の光電変換部12のみが配置される。   The focus detection pixels 390a and 390b constituting the partial array shown in FIG. 27 are the same as the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. Only one photoelectric conversion unit 13 is disposed in the pixel 390a, and only the other photoelectric conversion unit 12 is disposed in the focus detection pixel 390b.

図26に示す部分配列は、図7に示す焦点検出用画素どうしの画素間距離がS2である焦点検出用画素380a、380bから構成される。上述したように、画素間距離S2は、図7に示すように稠密正方格子配列における最短の画素間距離をS1としたときに、その次に短い画素間距離である。この部分配列において、方向D3(垂直方向)の直線上に配列された焦点検出用画素380a、380bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D3の像ズレ量が検出される。   The partial array illustrated in FIG. 26 includes focus detection pixels 380a and 380b in which the inter-pixel distance between the focus detection pixels illustrated in FIG. 7 is S2. As described above, the inter-pixel distance S2 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense square lattice arrangement is S1, as shown in FIG. In this partial arrangement, the row of focus detection pixels 380a and 380b arranged on a straight line in the direction D3 (vertical direction) constitutes one focus detection pixel row, and a pair of image directions D3 is obtained by the pupil division method. Is detected.

図27に示す部分配列は、画素間距離がS2である焦点検出用画素390a、390bから構成される。上述したように、画素間距離S2は、稠密正方格子配列における最短の画素間距離をS1としたときに、その次に短い画素間距離である。この部分配列において、方向D4(水平方向)の直線上に配列された焦点検出用画素390a、390bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D4の像ズレ量が検出される。   The partial array shown in FIG. 27 includes focus detection pixels 390a and 390b whose inter-pixel distance is S2. As described above, the inter-pixel distance S2 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense square lattice arrangement is S1. In this partial arrangement, the row of focus detection pixels 390a and 390b arranged on a straight line in the direction D4 (horizontal direction) constitutes one focus detection pixel row, and a pair of image directions D4 is obtained by the pupil division method. Is detected.

図26に示す部分配列と図27に示す部分配列とを組み合わせて配列することによって、図25に示す焦点検出画素が稠密正方格子配列された画素配列が形成される。図25に示す画素配列を備えた焦点検出素子221Cによれば、撮影画面上の任意の位置においてD3方向(垂直方向)とD4方向(水平方向)で像ズレ検出が可能になる。   The partial array shown in FIG. 26 and the partial array shown in FIG. 27 are combined to form a pixel array in which the focus detection pixels shown in FIG. 25 are arranged in a dense square lattice. According to the focus detection element 221C having the pixel array shown in FIG. 25, it is possible to detect image shift in the D3 direction (vertical direction) and the D4 direction (horizontal direction) at an arbitrary position on the shooting screen.

《焦点検出素子の他の変形例》
図28は、変形例の焦点検出素子221Dの一部の領域(図2に示す領域C)を拡大した図である。図4に示す焦点検出素子221の焦点検出用画素配列では、焦点検出用画素が稠密正方格子配列に配列された例を示したが、これ以外の稠密配列として例えば稠密六方格子配列とすることができる。このような構成とすることよって、像ズレ検出方向を増加させることができ、焦点検出性能を向上させることができる。
<< Other Modifications of Focus Detection Element >>
FIG. 28 is an enlarged view of a partial region (region C shown in FIG. 2) of the focus detection element 221D of the modification. In the focus detection pixel array of the focus detection element 221 shown in FIG. 4, an example in which the focus detection pixels are arrayed in a dense square lattice array is shown. However, for example, a dense hexagonal lattice array may be used as another dense array. it can. With such a configuration, the image shift detection direction can be increased, and the focus detection performance can be improved.

焦点検出用画素410、420、430からなる全体の画素配列は、稠密六方格子配列となっている。全体の画素配列は、さらに図29に示す焦点検出用画素410からなる部分配列と、図30に示す焦点検出用画素420からなる部分配列と、図31に示す焦点検出用画素430からなる部分配列とから構成されている。   The entire pixel array including the focus detection pixels 410, 420, and 430 is a dense hexagonal lattice array. The entire pixel array further includes a partial array including focus detection pixels 410 illustrated in FIG. 29, a partial array including focus detection pixels 420 illustrated in FIG. 30, and a partial array including focus detection pixels 430 illustrated in FIG. It consists of and.

図29に示す部分配列を構成する焦点検出用画素410は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素と同じである。また、図30に示す部分配列を構成する焦点検出用画素420は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を時計回り方向に60度回転させたものである。さらに、図31に示す部分配列を構成する焦点検出用画素430は、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を反時計回り方向に60度回転させたものである。   The focus detection pixels 410 constituting the partial array shown in FIG. 29 are the same as the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. Further, the focus detection pixel 420 constituting the partial array shown in FIG. 30 rotates the focus detection pixel including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 60 degrees in the clockwise direction. It is a thing. Further, the focus detection pixels 430 constituting the partial array shown in FIG. 31 rotate the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 60 degrees counterclockwise. It has been made.

図29に示す部分配列において、図32に示すように焦点検出用画素どうしの画素間距離がS4である焦点検出用画素410から構成される。図32において、画素間距離S4は、稠密六方格子配列における最短の画素間距離をS3としたときに、画素間距離S3の次に短い画素間距離である。稠密六方格子状配列においては、例えば最短の画素間距離S3をPとした場合、2番目に短い画素間距離S4は{√(3)/2}・Pである。この部分配列において、方向D4(水平方向)の直線上に配列された焦点検出用画素410の列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D4の像ズレ量が検出される。   In the partial array shown in FIG. 29, as shown in FIG. 32, it is composed of focus detection pixels 410 in which the inter-pixel distance between focus detection pixels is S4. In FIG. 32, the inter-pixel distance S4 is the shortest inter-pixel distance after the inter-pixel distance S3, where S3 is the shortest inter-pixel distance in the dense hexagonal lattice arrangement. In the dense hexagonal lattice arrangement, for example, when P is the shortest inter-pixel distance S3, the second shortest inter-pixel distance S4 is {√ (3) / 2} · P. In this partial arrangement, the row of focus detection pixels 410 arranged on a straight line in the direction D4 (horizontal direction) constitutes one focus detection pixel row, and an image of the pair of images in the direction D4 is obtained by the pupil division method. The amount of deviation is detected.

図30に示す部分配列は、図32に示すように焦点検出用画素どうしの画素間距離がS4である焦点検出用画素420から構成される。上述したように、画素間距離S4は、稠密六方格子配列における最短の画素間距離をS3としたときに、画素間距離S3の次に短い画素間距離である。この部分配列において、方向D5(垂直方向から反時計周りに30度回転した方向)の直線上に配列された焦点検出用画素420の列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D5の像ズレ量が検出される。   The partial array shown in FIG. 30 includes focus detection pixels 420 in which the inter-pixel distance between focus detection pixels is S4 as shown in FIG. As described above, the inter-pixel distance S4 is the shortest inter-pixel distance after the inter-pixel distance S3, where S3 is the shortest inter-pixel distance in the dense hexagonal lattice arrangement. In this partial arrangement, a row of focus detection pixels 420 arranged on a straight line in the direction D5 (a direction rotated 30 degrees counterclockwise from the vertical direction) constitutes one focus detection pixel row, and the pupil division method Thus, the image shift amount in the direction D5 of the pair of images is detected.

図31に示す部分配列は、図32に示すように焦点検出用画素どうしの画素間距離がS4である焦点検出用画素430から構成される。画素間距離S4は、稠密六方格子配列における最短の画素間距離をS3としたときに、画素間距離S3の次に短い画素間距離である。この部分配列において、方向D6(垂直方向から時計周りに30度回転した方向)の直線上に配列された焦点検出用画素430の列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D6の像ズレ量が検出される。   The partial array shown in FIG. 31 includes focus detection pixels 430 in which the inter-pixel distance between focus detection pixels is S4 as shown in FIG. The inter-pixel distance S4 is the shortest inter-pixel distance after the inter-pixel distance S3, where S3 is the shortest inter-pixel distance in the dense hexagonal lattice arrangement. In this partial arrangement, a row of focus detection pixels 430 arranged on a straight line in the direction D6 (a direction rotated 30 degrees clockwise from the vertical direction) constitutes one focus detection pixel row, and is divided by a pupil division method. An image shift amount in the direction D6 of the pair of images is detected.

図29に示す部分配列、図30に示す部分配列および図31に示す部分配列を組み合わせて配列することにより、図28に示す焦点検出用画素が稠密六方格子配列された画素配列が形成される。図28に示す画素配列を備えた焦点検出素子221Dによれば、撮影画面上の任意の位置においてD4方向、D5方向およびD6方向で像ズレ検出が可能になる。   By arranging the partial array shown in FIG. 29, the partial array shown in FIG. 30, and the partial array shown in FIG. 31 in combination, a pixel array in which the focus detection pixels shown in FIG. 28 are arranged in a dense hexagonal lattice is formed. According to the focus detection element 221D having the pixel array shown in FIG. 28, it is possible to detect an image shift in the D4 direction, the D5 direction, and the D6 direction at an arbitrary position on the shooting screen.

《焦点検出素子の他の変形例》
図33は、変形例の焦点検出素子221Eの一部の領域(図2に示す領域C)を拡大した図である。図28に示す焦点検出素子221Dの焦点検出用画素配列では、方向D4、方向D5および方向D6の像ズレを検出するために、1つの焦点検出用画素の中に1対の光電変換部を備えた例を示した。この変形例の焦点検出素子221Eでは、1つの焦点検出用画素の中に1対の光電変換部のうちの一方を設け、もう1つの焦点検出用画素の中に他方の光電変換部を設け、2つの焦点検出用画素を像ズレ検出方向に隣接させるとともに、このような焦点検出用画素ペアを像ズレ検出方向に配列することにより像ズレ検出を行う。このような構成にすることにより、画素構造を単純にして焦点検出素子の回路構成の複雑化を防止することができる。
<< Other Modifications of Focus Detection Element >>
FIG. 33 is an enlarged view of a partial region (region C shown in FIG. 2) of the focus detection element 221E of the modification. The focus detection pixel array of the focus detection element 221D shown in FIG. 28 includes a pair of photoelectric conversion units in one focus detection pixel in order to detect image misalignment in the direction D4, the direction D5, and the direction D6. An example was given. In the focus detection element 221E of this modification, one of the pair of photoelectric conversion units is provided in one focus detection pixel, and the other photoelectric conversion unit is provided in the other focus detection pixel. Two focus detection pixels are adjacent in the image shift detection direction, and image shift detection is performed by arranging such focus detection pixel pairs in the image shift detection direction. With such a configuration, it is possible to simplify the pixel structure and prevent the circuit configuration of the focus detection element from becoming complicated.

図33において、焦点検出用画素440a、440b、450a、450b、460a、460bからなる全体の画素配列は、稠密六方格子配列となっている。全体の画素配列は、さらに図34に示す焦点検出用画素440a、440bからなる部分配列、図35に示す焦点検出用画素450a、450bからなる部分配列、および図36に示す焦点検出用画素460a、460bからなる部分配列から構成されている。   In FIG. 33, the entire pixel array composed of focus detection pixels 440a, 440b, 450a, 450b, 460a, and 460b is a dense hexagonal lattice array. The entire pixel array further includes a partial array including focus detection pixels 440a and 440b illustrated in FIG. 34, a partial array including focus detection pixels 450a and 450b illustrated in FIG. 35, and a focus detection pixel 460a illustrated in FIG. It consists of a partial array consisting of 460b.

図34に示す部分配列を構成する焦点検出用画素440a、440bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素と同じであるが、焦点検出用画素440aには一方の光電変換部13のみが配置され、焦点検出用画素440bには他方の光電変換部12のみが配置される。   The focus detection pixels 440a and 440b constituting the partial array shown in FIG. 34 are the same as the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. Only one photoelectric conversion unit 13 is arranged in the pixel 440a, and only the other photoelectric conversion unit 12 is arranged in the focus detection pixel 440b.

図35に示す部分配列を構成する焦点検出用画素450a、450bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出画素を時計回り方向に60度回転させたものであるが、焦点検出用画素450aには一方の光電変換部13のみが配置され、焦点検出用画素450bには他方の光電変換部12のみが配置される。   The focus detection pixels 450a and 450b constituting the partial array shown in FIG. 35 are obtained by rotating the focus detection pixel including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 60 degrees in the clockwise direction. However, only one photoelectric conversion unit 13 is arranged in the focus detection pixel 450a, and only the other photoelectric conversion unit 12 is arranged in the focus detection pixel 450b.

図36に示す部分配列を構成する焦点検出用画素460a、460bは、図9に示すマイクロレンズ10と1対の光電変換部12,13からなる焦点検出用画素を反時計回り方向に60度回転させたものであるが、焦点検出用画素460aには一方の光電変換部13のみが配置され、焦点検出用画素460bには他方の光電変換部12のみが配置される。   The focus detection pixels 460a and 460b constituting the partial array shown in FIG. 36 rotate the focus detection pixels including the microlens 10 and the pair of photoelectric conversion units 12 and 13 shown in FIG. 9 by 60 degrees counterclockwise. However, only one photoelectric conversion unit 13 is arranged in the focus detection pixel 460a, and only the other photoelectric conversion unit 12 is arranged in the focus detection pixel 460b.

図34に示す部分配列は、図32に示す焦点検出用画素どうしの画素間距離がS4である焦点検出用画素440a、440bから構成される。画素間距離S4は、図32で示すように稠密六方格子配列における最短の画素間距離をS3としたときに、その次に短い画素間距離である。この部分配列において、方向D4(水平方向)の直線上に配列された焦点検出用画素440a、440bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D4の像ズレ量が検出される。   The partial array shown in FIG. 34 includes focus detection pixels 440a and 440b in which the inter-pixel distance between the focus detection pixels shown in FIG. 32 is S4. The inter-pixel distance S4 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense hexagonal lattice arrangement is S3 as shown in FIG. In this partial arrangement, the row of focus detection pixels 440a and 440b arranged on a straight line in the direction D4 (horizontal direction) constitutes one focus detection pixel row, and a pair of image directions D4 is obtained by the pupil division method. Is detected.

図35に示す部分配列は、図32に示す焦点検出用画素どうしの画素間距離がS4である焦点検出用画素450a、450bから構成される。上述したように、画素間距離S4は、稠密六方格子配列における最短の画素間距離をS3としたときに、その次に短い画素間距離である。この部分配列において、方向D5(垂直方向から反時計周りに30度回転した方向)の直線上に配列された焦点検出用画素450a、450bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D5の像ズレ量が検出される。   The partial array illustrated in FIG. 35 includes focus detection pixels 450a and 450b in which the inter-pixel distance between the focus detection pixels illustrated in FIG. 32 is S4. As described above, the inter-pixel distance S4 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense hexagonal lattice arrangement is S3. In this partial arrangement, a row of focus detection pixels 450a and 450b arranged on a straight line in the direction D5 (a direction rotated 30 degrees counterclockwise from the vertical direction) constitutes one focus detection pixel row, and the pupil The image shift amount in the direction D5 of the pair of images is detected by the division method.

図36に示す部分配列は、図32に示す焦点検出用画素どうしの画素間距離がS4である焦点検出用画素460a、460bから構成される。上述したように、画素間距離S4は、稠密六方格子配列における最短の画素間距離をS3としたときに、その次に短い画素間距離である。この部分配列において、方向D6(垂直方向から時計周りに30度回転した方向)の直線上に配列された焦点検出用画素460a、460bの列が1つの焦点検出用画素列を構成し、瞳分割方式により1対の像の方向D6の像ズレ量が検出される。   The partial array shown in FIG. 36 includes focus detection pixels 460a and 460b in which the inter-pixel distance between the focus detection pixels shown in FIG. 32 is S4. As described above, the inter-pixel distance S4 is the next shortest inter-pixel distance when the shortest inter-pixel distance in the dense hexagonal lattice arrangement is S3. In this partial arrangement, columns of focus detection pixels 460a and 460b arranged on a straight line in the direction D6 (a direction rotated 30 degrees clockwise from the vertical direction) constitute one focus detection pixel column, and pupil division is performed. The image shift amount in the direction D6 of the pair of images is detected by the method.

図34に示す部分配列、図35に示す部分配列および図36に示す部分配列を組み合わせて配列することによって、図33に示す焦点検出用画素が稠密六方格子配列された画素配列が形成される。図33に示す画素配列を備えた焦点検出素子221Eによれば、撮影画面上の任意の位置においてD4方向およびD5方向およびD6方向で像ズレ検出が可能になる。   By arranging the partial array shown in FIG. 34, the partial array shown in FIG. 35, and the partial array shown in FIG. 36 in combination, a pixel array in which the focus detection pixels shown in FIG. 33 are arranged in a dense hexagonal lattice is formed. According to the focus detection element 221E having the pixel array shown in FIG. 33, it is possible to detect an image shift in the D4 direction, the D5 direction, and the D6 direction at an arbitrary position on the shooting screen.

以上説明したように、一実施の形態では、交換レンズ202から到来する光束により形成される光学像を電気信号に変換する光電変換部12、13を有する焦点検出用画素320、330、・・・が2次元状に稠密に配列された焦点検出素子において、焦点検出用画素320、330、・・・の配列は複数の部分配列から構成され、各部分配列に属する焦点検出用画素の最短の隣接画素間距離は、稠密な焦点検出用画素の配列における最短の隣接画素間距離の次に短い画素間距離となっており、同一の部分配列に属する焦点検出用画素は、交換レンズ202の射出瞳において部分配列における焦点検出用画素の並び方向のうちの一つの方向に並んだ1対の領域を通る光束を受光する光電変換部12、13を有し、異なる部分配列間では、焦点検出用画素320、330、・・・の光電変換部12、13が受光する光束が通る交換レンズ202の射出瞳の1対の領域の並び方向が異なるように構成した。これにより、交換レンズ202の撮影画面上の任意の位置において、同等の性能で複数の方向における精度の高い焦点検出を実現することができる。   As described above, in one embodiment, focus detection pixels 320, 330,... Having photoelectric conversion units 12, 13 that convert an optical image formed by a light beam coming from the interchangeable lens 202 into an electrical signal. Are densely arranged two-dimensionally, the array of focus detection pixels 320, 330,... Is composed of a plurality of partial arrays, and the shortest adjacent focus detection pixels belonging to each partial array The inter-pixel distance is the shortest inter-pixel distance after the shortest adjacent pixel distance in the dense focus detection pixel array, and the focus detection pixels belonging to the same partial array are the exit pupils of the interchangeable lens 202. 1 have photoelectric conversion units 12 and 13 that receive light beams passing through a pair of regions arranged in one of the alignment directions of the focus detection pixels in the partial arrays. Out pixels 320 and 330, the photoelectric conversion portions 12 and 13 of ... are constituted as the direction of arrangement of the pair of regions of the exit pupil of the interchangeable lens 202 through which light beams received are different. Thereby, it is possible to realize focus detection with high accuracy in a plurality of directions with an equivalent performance at an arbitrary position on the photographing screen of the interchangeable lens 202.

《その他の変形例》
上述した一実施の形態では、各部分配列における焦点検出用画素の間隔(画素間距離)が、稠密に配列された複数の焦点検出用画素の間隔の内の2番目に短い間隔となる方向に沿って、複数の焦点検出用画素を配列する例を示したが、3番目あるいは4番目に短い間隔となる方向に沿って焦点検出用画素を配列してもよい。
<< Other modifications >>
In the embodiment described above, the focus detection pixel interval (inter-pixel distance) in each partial array is set to the second shortest interval among the densely arranged focus detection pixel intervals. Although an example in which a plurality of focus detection pixels are arranged along the line is shown, the focus detection pixels may be arranged along the direction of the third or fourth shortest interval.

上述した一実施の形態では、焦点検出素子の焦点検出用画素の配列面が撮影画面より小さな領域をカバーする例を示したが、撮影画面と焦点検出用画素の配列面の大小関係はこれに限定されるものではなく、適宜状況に応じて両者を等しくしたり、撮影画面より焦点検出用画素の配列面を大きくしてもよい。   In the above-described embodiment, the example in which the focus detection pixel array plane of the focus detection element covers an area smaller than the shooting screen is shown. However, the magnitude relationship between the shooting screen and the focus detection pixel array plane is shown here. The present invention is not limited, and the two may be made equal to each other according to the situation, or the focus detection pixel array surface may be made larger than the shooting screen.

上述した一実施の形態では、焦点検出用画素の受光面サイズを撮像用画素の受光面サイズより大きくした例を示したが、焦点検出用画素の受光面サイズと撮像用画素の受光面サイズの大小関係はこれに限定されるものではなく、適宜状況に応じて両者を等しくしたり、焦点検出用画素の受光面サイズを撮像用画素の受光面サイズより小さくしてもよい。   In the above-described embodiment, the example in which the light receiving surface size of the focus detection pixel is larger than the light receiving surface size of the imaging pixel is shown. However, the light receiving surface size of the focus detection pixel and the light receiving surface size of the imaging pixel are The magnitude relationship is not limited to this, and both may be made equal according to the situation, or the light receiving surface size of the focus detection pixel may be made smaller than the light receiving surface size of the imaging pixel.

上述した一実施の形態では、ハーフミラーを用いて撮影光路を2分割するとともに、透過光路に撮像素子を配置し、反射光路に焦点検出素子を配置した例を示したが、焦点検出素子と撮像素子の配置を反対にしてもよい。   In the above-described embodiment, an example in which the imaging optical path is divided into two using a half mirror, an imaging element is arranged in the transmission optical path, and a focus detection element is arranged in the reflection optical path has been described. The arrangement of elements may be reversed.

上述した一実施の形態では、固定のハーフミラーを用いて撮影光路を2分割するとともに、分割された各光路に撮像素子と焦点検出素子を配置し、焦点検出動作と撮像動作を同時に行うことができる構成としたが、クイックリターンミラーを光路中に出し入れすることによって光路を切り換え、切り換えられた各光路に撮像素子と焦点検出素子を配置し、焦点検出動作と撮像動作を時分割で行うように構成してもよい。   In the above-described embodiment, the imaging optical path is divided into two using a fixed half mirror, and an imaging element and a focus detection element are arranged in each of the divided optical paths so that the focus detection operation and the imaging operation are performed simultaneously. The optical path is switched by putting the quick return mirror into and out of the optical path, and an image sensor and a focus detection element are arranged in each switched optical path so that the focus detection operation and the imaging operation are performed in a time-sharing manner. It may be configured.

上述した一実施の形態では、焦点検出素子のデータは画像データとして用いられていないが、輝度信号として撮像素子の画像データと合成することによって、ダイナミックレンジを拡大するようにしてもよい。   In the above-described embodiment, the data of the focus detection element is not used as image data. However, the dynamic range may be expanded by combining the data with the image data of the imaging element as a luminance signal.

上述した一実施の形態では、焦点検出素子のデータは焦点検出のみに用いられているが、撮像素子の露光制御のための測光用データとして用いることもできる。これにより測光センサーを省略することができる。   In the embodiment described above, the data of the focus detection element is used only for focus detection, but it can also be used as photometric data for exposure control of the image sensor. Thereby, the photometric sensor can be omitted.

上述した一実施の形態では、焦点検出素子のデータは焦点検出のみに用いられているが、撮像素子の画像ブレ検出のためのブレ検出用データとして用いることもできる。これにより画像ブレ検出専用の画像センサーを省略することができる。   In the embodiment described above, the data of the focus detection element is used only for focus detection, but it can also be used as blur detection data for image blur detection of the image sensor. Thereby, an image sensor dedicated to image blur detection can be omitted.

上述した一実施の形態では、焦点検出素子のデータは像ズレ検出に用いられているが、コントラスト検出に用いることもできる。   In the embodiment described above, the data of the focus detection element is used for image shift detection, but it can also be used for contrast detection.

上述した一実施の形態では、焦点検出素子の焦点検出用画素の分光感度は図11に示すように白色に近いものとしたが、焦点検出用画素の感度を図10に示す分光感度の内の1つとしてもよい。また、異なる分光感度を有する焦点検出用画素を1つの焦点検出素子の中に共存させるようにしてもよい。   In the above-described embodiment, the spectral sensitivity of the focus detection pixel of the focus detection element is close to white as shown in FIG. 11, but the sensitivity of the focus detection pixel is within the spectral sensitivity shown in FIG. One may be used. Further, focus detection pixels having different spectral sensitivities may coexist in one focus detection element.

上述した一実施の形態では、焦点検出用画素によって設定される測距瞳(図14に示す距離d0)の距離は単一である例を示したが、異なる測距瞳距離を有する焦点検出用画素を1つの焦点検出素子の中に共存させてもよい。   In the above-described embodiment, the distance detection pupil (distance d0 shown in FIG. 14) set by the focus detection pixels has a single distance. However, for focus detection having different distance detection pupil distances. Pixels may coexist in one focus detection element.

上述した一実施の形態では、撮像用画素の画像データは焦点検出には用いられていないが、コントラスト検出方式の焦点検出として用いるとともに、焦点検出素子による焦点検出結果とコントラスト方式による焦点検出結果を併用するようにしてもよい。   In the embodiment described above, the image data of the imaging pixels is not used for focus detection, but is used for focus detection of the contrast detection method, and the focus detection result by the focus detection element and the focus detection result by the contrast method are used. You may make it use together.

上述した一実施の形態では、ハーフミラー222により波長依存がないように光束を分割しているが、分光ミラーにより光束を分割することもできる。例えば赤外光成分と可視光成分に分光するミラーとし、可視光成分を撮像素子で受光し、赤外光成分を焦点検出素子で受光するとともに、焦点検出素子による焦点検出結果を赤外光の収差量に応じて補正することにより、可視光の焦点検出結果に修正して用いることができる。このようにすれば、撮像素子が受光する可視光の光量がハーフミラーによって減少することを防止できる。   In the above-described embodiment, the light beam is divided by the half mirror 222 so as not to depend on the wavelength, but the light beam can also be divided by the spectroscopic mirror. For example, a mirror that divides into an infrared light component and a visible light component is received. By correcting according to the amount of aberration, the focus detection result of visible light can be corrected and used. In this way, it is possible to prevent the amount of visible light received by the image sensor from being reduced by the half mirror.

上述した一実施の形態では光分割プリズム223により光束を分割しているが、薄板ガラスを用いたハーフミラーやペリクルハーフミラーを用いることもできる。   In the above-described embodiment, the light beam is split by the light splitting prism 223. However, a half mirror using a thin glass plate or a pellicle half mirror may be used.

上述した一実施の形態において、ハーフミラー222は多層膜によって形成してもよいし、偏光ミラー(例えば図1の紙面に平行な偏光成分を反射し、紙面に垂直な偏光成分を透過する)として形成してもよい。   In the embodiment described above, the half mirror 222 may be formed of a multilayer film, or as a polarizing mirror (for example, a polarization component parallel to the paper surface of FIG. 1 is reflected and a polarization component perpendicular to the paper surface is transmitted). It may be formed.

上述した一実施の形態では、焦点調節のために交換レンズ側に内蔵されたレンズを光軸方向に移動しているが、カメラボディ内の光分割プリズム223と焦点検出素子と撮像素子をユニット化し、このユニットを光軸方向に移動してもよいし、レンズの光軸方向の移動により焦点の粗調整を行い、ユニットの移動により焦点の微調整を行うようにしてもよい。   In the embodiment described above, the lens built in the interchangeable lens side is moved in the optical axis direction for focus adjustment. However, the light splitting prism 223, the focus detection element, and the image sensor in the camera body are unitized. The unit may be moved in the optical axis direction, or the focal point may be roughly adjusted by moving the lens in the optical axis direction, and the focal point may be finely adjusted by moving the unit.

本発明はマイクロレンズを用いた瞳分割型位相差検出方式の焦点検出用画素を有する焦点検出素子に限定されず、他の方式の瞳分割型位相差検出方式の焦点検出用画素を有する焦点検出素子にも適用することができる。例えば偏光を利用した瞳分割型位相差検出方式の焦点検出用画素を備えた焦点検出素子にも適用可能である。   The present invention is not limited to a focus detection element having focus detection pixels of a pupil division type phase difference detection method using a microlens, and focus detection having focus detection pixels of another type of pupil division type phase difference detection method. It can also be applied to elements. For example, the present invention can be applied to a focus detection element including focus detection pixels of a pupil division type phase difference detection method using polarized light.

上述した一実施の形態における焦点検出素子は、CCDイメージセンサーであってもよいし、CMOSイメージセンサーであってもよい。   The focus detection element in the above-described embodiment may be a CCD image sensor or a CMOS image sensor.

本発明に係わる撮像装置は、カメラボディに交換レンズが装着されたデジタルスチルカメラに限定されず、レンズ一体型のデジタルスチルカメラやビデオカメラにも適用することができる。さらに、携帯電話などに内蔵される小型カメラモジュールや監視カメラにも適用することができる。あるいは、カメラ以外の焦点検出装置や測距装置やステレオ測距装置にも適用することができる。   The imaging apparatus according to the present invention is not limited to a digital still camera in which an interchangeable lens is mounted on a camera body, and can also be applied to a lens-integrated digital still camera or video camera. Furthermore, the present invention can be applied to a small camera module or a surveillance camera built in a mobile phone or the like. Alternatively, the present invention can be applied to a focus detection device other than a camera, a distance measuring device, or a stereo distance measuring device.

一実施の形態の撮像装置(カメラ)の構成を示す横断面図1 is a cross-sectional view illustrating a configuration of an imaging apparatus (camera) according to an embodiment. 交換レンズの撮影画面における撮像用画素と焦点検出用画素の配列範囲を示す図The figure which shows the arrangement | sequence range of the pixel for imaging and the pixel for focus detection in the imaging | photography screen of an interchangeable lens 撮像素子の部分拡大図Partial enlargement of the image sensor 焦点検出素子の一部の領域(図2に示す領域C)を拡大した図The figure which expanded the one part area | region (area | region C shown in FIG. 2) of a focus detection element. 図4に示す焦点検出素子を構成する焦点検出用画素の一方の部分配列を示す図The figure which shows one partial arrangement | sequence of the pixel for a focus detection which comprises the focus detection element shown in FIG. 図4に示す焦点検出素子を構成する焦点検出用画素の他方の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for focus detection which comprises the focus detection element shown in FIG. 稠密正方格子状に配列における画素間距離を示す図The figure which shows the distance between the pixels in the arrangement in the dense square lattice form 撮像素子の撮像用画素配列の内の単位配列部を拡大した図The figure which expanded the unit arrangement part in the pixel arrangement for image pick-ups of an image sensor 焦点検出用画素の拡大図Enlarged view of focus detection pixels 撮像用画素の分光特性を示す図Diagram showing spectral characteristics of imaging pixels 焦点検出用画素の分光特性を示す図The figure which shows the spectral characteristic of the pixel for focus detection 撮像用画素の横断面図Cross-sectional view of imaging pixels 焦点検出用画素の横断面図Cross section of focus detection pixel マイクロレンズを用いた瞳分割方式による焦点検出方法を説明する図The figure explaining the focus detection method by the pupil division method using a micro lens 撮像素子の撮像用画素と射出瞳の関係を説明する図The figure explaining the relationship between the imaging pixel of an image sensor, and an exit pupil 射出瞳面における測距瞳の正面図Front view of ranging pupil on exit pupil plane 図1に示すカメラ(撮像装置)の動作を示すフローチャートFlowchart showing the operation of the camera (imaging device) shown in FIG. 像ズレ検出演算処理(相関演算処理)の詳細を説明する図The figure explaining the detail of image shift detection calculation processing (correlation calculation processing) 変形例の焦点検出素子の一部の領域を拡大した図The figure which expanded some fields of the focus detection element of a modification 図19に示す焦点検出素子の焦点検出用画素の部分配列を示す図The figure which shows the partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 図19に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 他の変形例の焦点検出素子の一部の領域を拡大した図The figure which expanded the one part area | region of the focus detection element of another modification. 図22に示す焦点検出素子の焦点検出用画素の部分配列を示す図The figure which shows the partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 図22に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 他の変形例の焦点検出素子の一部の領域を拡大した図The figure which expanded the one part area | region of the focus detection element of another modification. 図25に示す焦点検出素子の焦点検出用画素の部分配列を示す図The figure which shows the partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 図25に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 他の変形例の焦点検出素子の一部の領域を拡大した図The figure which expanded the one part area | region of the focus detection element of another modification. 図28に示す焦点検出素子の焦点検出用画素の部分配列を示す図The figure which shows the partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 図28に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for focus detection of the focus detection element shown in FIG. 図28に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for focus detection of the focus detection element shown in FIG. 稠密六方格子状に配列における画素間距離を示す図Diagram showing the distance between pixels in a dense hexagonal lattice arrangement 他の変形例の焦点検出素子の一部の領域を拡大した図The figure which expanded the one part area | region of the focus detection element of another modification. 図33に示す焦点検出素子の焦点検出用画素の部分配列を示す図The figure which shows the partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 図33に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG. 図33に示す焦点検出素子の焦点検出用画素の他の部分配列を示す図The figure which shows the other partial arrangement | sequence of the pixel for a focus detection of the focus detection element shown in FIG.

符号の説明Explanation of symbols

12、13 光電変換部
202 交換レンズ
203 カメラボディ
206 レンズ駆動制御回路
214 ボディ駆動制御回路
220 撮像素子
221、221A〜221E 焦点検出素子
223 光分割プリズム
320、330、340、350、360a、260b、270a、270b、380a、380b、410、420、430、440a、440b、450a、450b、460a、460b 焦点検出用画素
12, 13 Photoelectric conversion unit 202 Interchangeable lens 203 Camera body 206 Lens drive control circuit 214 Body drive control circuit 220 Image sensor 221, 221A-221E Focus detection element 223 Light splitting prisms 320, 330, 340, 350, 360a, 260b, 270a 270b, 380a, 380b, 410, 420, 430, 440a, 440b, 450a, 450b, 460a, 460b Focus detection pixels

Claims (11)

結像光学系からの光を受光する複数の焦点検出用画素が2次元状に稠密に配列された焦点検出素子であって、
前記複数の焦点検出用画素は、前記稠密な配列の方向とは異なる第1方向に沿って配列された前記焦点検出用画素からなる第1焦点検出用画素配列と、前記稠密な配列の方向および前記第1方向のいずれとも異なる第2方向に沿って配列された前記焦点検出用画素からなる第2焦点検出用画素配列とを構成するとともに、前記第1焦点検出用画素配列および前記第2焦点検出用画素配列のそれぞれに対応する前記焦点検出用画素を、前記稠密な配列の方向に不連続に配置したことを特徴とする焦点検出素子。
A focus detection element in which a plurality of focus detection pixels that receive light from the imaging optical system are two-dimensionally densely arranged,
The plurality of focus detection pixels include a first focus detection pixel array composed of the focus detection pixels arrayed along a first direction different from the dense array direction, the dense array direction, and A second focus detection pixel array including the focus detection pixels arranged along a second direction different from any of the first directions, and the first focus detection pixel array and the second focus. The focus detection element, wherein the focus detection pixels corresponding to each of the detection pixel arrays are discontinuously arranged in the direction of the dense array.
請求項1に記載の焦点検出素子において、
前記第1方向および前記第2方向は、前記第1焦点検出用画素配列および前記第2焦点検出用画素配列における前記焦点検出用画素の間隔が、稠密に配列された前記複数の焦点検出用画素の間隔のうち2番目に短い間隔となる方向であることを特徴とする焦点検出素子。
The focus detection element according to claim 1,
The plurality of focus detection pixels in which the intervals between the focus detection pixels in the first focus detection pixel array and the second focus detection pixel array are densely arranged in the first direction and the second direction. A focus detection element having a direction that is the second shortest of the intervals.
請求項1または請求項2に記載の焦点検出素子において、
前記焦点検出用画素は、前記結像光学系の射出瞳上の異なる領域を通る光束を受光する1対の光電変換部を有し、
前記第1焦点検出用画素配列および前記第2焦点検出用画素配列のそれぞれに属する前記焦点検出用画素の前記1対の光電変換部は、前記第1方向または前記第2方向に沿って並んでいることを特徴とする焦点検出素子。
The focus detection element according to claim 1 or 2,
The focus detection pixel has a pair of photoelectric conversion units that receive light beams passing through different regions on the exit pupil of the imaging optical system,
The pair of photoelectric conversion units of the focus detection pixels belonging to each of the first focus detection pixel array and the second focus detection pixel array are arranged along the first direction or the second direction. A focus detection element.
請求項1または請求項2に記載の焦点検出素子において、
前記第1焦点検出用画素配列および前記第2焦点検出用画素配列のそれぞれは、前記結像光学系の射出瞳上の異なる領域の一方を通る光束を受光する光電変換部を有する第1焦点検出用画素と、前記異なる領域の他方を通る光束を受光する光電変換部を有する第2焦点検出用画素とが、前記第1方向または前記第2方向に沿って交互に配列されることを特徴とする焦点検出素子。
The focus detection element according to claim 1 or 2,
Each of the first focus detection pixel array and the second focus detection pixel array includes a photoelectric conversion unit that receives a light beam passing through one of different regions on the exit pupil of the imaging optical system. And second focus detection pixels having a photoelectric conversion unit that receives a light beam passing through the other of the different regions are alternately arranged along the first direction or the second direction. Focus detection element.
請求項1〜4のいずれか1項に記載の焦点検出素子において、
前記焦点検出用画素は正方格子状に稠密に配列されていることを特徴とする焦点検出素子。
In the focus detection element according to any one of claims 1 to 4,
The focus detection element, wherein the focus detection pixels are densely arranged in a square lattice pattern.
請求項1〜4のいずれか1項に記載の焦点検出素子において、
前記焦点検出用画素は六方格子状に稠密に配列されていることを特徴とする焦点検出素子。
In the focus detection element according to any one of claims 1 to 4,
The focus detection element, wherein the focus detection pixels are densely arranged in a hexagonal lattice pattern.
請求項1〜6のいずれか1項に記載の焦点検出素子と、
前記第1焦点検出用画素配列および前記第2焦点検出用画素配列に属する前記焦点検出用画素の前記光電変換部から出力される信号に基づいて、前記結像光学系の焦点調節状態を演算する焦点検出演算手段とを備えることを特徴とする焦点検出装置。
The focus detection element according to any one of claims 1 to 6,
Based on signals output from the photoelectric conversion units of the focus detection pixels belonging to the first focus detection pixel array and the second focus detection pixel array, a focus adjustment state of the imaging optical system is calculated. A focus detection apparatus comprising a focus detection calculation unit.
請求項7に記載の焦点検出装置と、
前記焦点検出演算手段により演算された焦点調節状態に基づいて前記結像光学系の焦点調節を行う焦点調節手段と、
前記結像光学系からの光を受光する複数の撮像用画素が2次元状に稠密に配列された撮像素子とを備えることを特徴とする撮像装置。
A focus detection apparatus according to claim 7;
Focus adjusting means for adjusting the focus of the imaging optical system based on the focus adjustment state calculated by the focus detection calculating means;
An imaging apparatus comprising: an imaging device in which a plurality of imaging pixels that receive light from the imaging optical system are densely arranged two-dimensionally.
請求項8に記載の撮像装置において、
前記結像光学系からの光を前記焦点検出素子と前記撮像素子の少なくとも一方へ導く光路選択手段を備えることを特徴とする撮像装置。
The imaging device according to claim 8,
An imaging apparatus comprising: an optical path selection unit that guides light from the imaging optical system to at least one of the focus detection element and the imaging element.
請求項9に記載の撮像装置において、
前記光路選択手段は、前記結像光学系からの光を前記焦点検出素子と前記撮像素子の両方へ導く光束分割手段であることを特徴とする撮像装置。
The imaging device according to claim 9,
The imaging apparatus according to claim 1, wherein the optical path selection means is a light beam splitting means for guiding light from the imaging optical system to both the focus detection element and the imaging element.
請求項8に記載の撮像装置において、
前記焦点検出用画素は前記撮像用画素よりも大きくしたことを特徴とする撮像装置。
The imaging device according to claim 8,
The imaging apparatus, wherein the focus detection pixel is larger than the imaging pixel.
JP2007047529A 2007-02-27 2007-02-27 Focus detection apparatus and imaging apparatus Expired - Fee Related JP4826507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047529A JP4826507B2 (en) 2007-02-27 2007-02-27 Focus detection apparatus and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047529A JP4826507B2 (en) 2007-02-27 2007-02-27 Focus detection apparatus and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2008211631A true JP2008211631A (en) 2008-09-11
JP4826507B2 JP4826507B2 (en) 2011-11-30

Family

ID=39787550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047529A Expired - Fee Related JP4826507B2 (en) 2007-02-27 2007-02-27 Focus detection apparatus and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4826507B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005105A1 (en) * 2008-07-09 2010-01-14 Canon Kabushiki Kaisha Image-capturing apparatus
WO2010005104A1 (en) * 2008-07-09 2010-01-14 Canon Kabushiki Kaisha Image-capturing apparatus
JP2010154493A (en) * 2008-11-21 2010-07-08 Sony Corp Image pickup device
JP2010160314A (en) * 2009-01-08 2010-07-22 Sony Corp Imaging element and imaging apparatus
JP2011223264A (en) * 2010-04-08 2011-11-04 Nikon Corp Imaging device and imaging apparatus
JP2012027080A (en) * 2010-07-20 2012-02-09 Canon Inc Imaging apparatus
WO2012026292A1 (en) * 2010-08-24 2012-03-01 富士フイルム株式会社 Solid-state imaging device
CN102547109A (en) * 2010-12-10 2012-07-04 索尼公司 Imaging device and imaging apparatus
JP2013218204A (en) * 2012-04-11 2013-10-24 Nikon Corp Focus detection device and imaging device
CN103907188A (en) * 2011-09-14 2014-07-02 株式会社尼康 Imaging element, imaging device, and image processing device
JP2014122957A (en) * 2012-12-20 2014-07-03 Canon Inc Imaging device
US20160269619A1 (en) * 2010-04-08 2016-09-15 Sony Corporation Image pickup apparatus, solid-state image pickup element, and image pickup method
US9473688B2 (en) 2012-12-20 2016-10-18 Canon Kabushiki Kaisha Image pickup apparatus comprising a plurality of imaging sensors and image processing units

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314062A (en) * 2001-04-18 2002-10-25 Canon Inc Solid-state image sensing device and image sensing system
JP2003248166A (en) * 2002-02-26 2003-09-05 Canon Inc Imaging device, focusing method, control program and storage medium
JP2006173975A (en) * 2004-12-15 2006-06-29 Canon Inc Layout structure of camera
JP2006208495A (en) * 2005-01-25 2006-08-10 Canon Inc Focus detector
JP2007065330A (en) * 2005-08-31 2007-03-15 Canon Inc Camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314062A (en) * 2001-04-18 2002-10-25 Canon Inc Solid-state image sensing device and image sensing system
JP2003248166A (en) * 2002-02-26 2003-09-05 Canon Inc Imaging device, focusing method, control program and storage medium
JP2006173975A (en) * 2004-12-15 2006-06-29 Canon Inc Layout structure of camera
JP2006208495A (en) * 2005-01-25 2006-08-10 Canon Inc Focus detector
JP2007065330A (en) * 2005-08-31 2007-03-15 Canon Inc Camera

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005105A1 (en) * 2008-07-09 2010-01-14 Canon Kabushiki Kaisha Image-capturing apparatus
WO2010005104A1 (en) * 2008-07-09 2010-01-14 Canon Kabushiki Kaisha Image-capturing apparatus
US8754976B2 (en) 2008-07-09 2014-06-17 Canon Kabushiki Kaisha Image-capturing apparatus including image sensor utilizing pairs of focus detection pixels
US8681261B2 (en) 2008-07-09 2014-03-25 Canon Kabushiki Kaisha Image-capturing apparatus having image sensor utilizing focus detection pixel pairs
JP2010154493A (en) * 2008-11-21 2010-07-08 Sony Corp Image pickup device
JP2010160314A (en) * 2009-01-08 2010-07-22 Sony Corp Imaging element and imaging apparatus
JP2011223264A (en) * 2010-04-08 2011-11-04 Nikon Corp Imaging device and imaging apparatus
US20160269619A1 (en) * 2010-04-08 2016-09-15 Sony Corporation Image pickup apparatus, solid-state image pickup element, and image pickup method
JP2012027080A (en) * 2010-07-20 2012-02-09 Canon Inc Imaging apparatus
JPWO2012026292A1 (en) * 2010-08-24 2013-10-28 富士フイルム株式会社 Solid-state imaging device
CN103081457A (en) * 2010-08-24 2013-05-01 富士胶片株式会社 Solid-state imaging device
JP5513623B2 (en) * 2010-08-24 2014-06-04 富士フイルム株式会社 Solid-state imaging device
US8772892B2 (en) 2010-08-24 2014-07-08 Fujifilm Corporation Solid state imaging device
WO2012026292A1 (en) * 2010-08-24 2012-03-01 富士フイルム株式会社 Solid-state imaging device
CN102547109A (en) * 2010-12-10 2012-07-04 索尼公司 Imaging device and imaging apparatus
CN103907188A (en) * 2011-09-14 2014-07-02 株式会社尼康 Imaging element, imaging device, and image processing device
JPWO2013038598A1 (en) * 2011-09-14 2015-03-23 株式会社ニコン Image pickup device, image pickup apparatus, and image processing apparatus
US9414046B2 (en) 2011-09-14 2016-08-09 Nikon Corporation Image sensor, imaging device and image processing device
JP2013218204A (en) * 2012-04-11 2013-10-24 Nikon Corp Focus detection device and imaging device
JP2014122957A (en) * 2012-12-20 2014-07-03 Canon Inc Imaging device
US9473688B2 (en) 2012-12-20 2016-10-18 Canon Kabushiki Kaisha Image pickup apparatus comprising a plurality of imaging sensors and image processing units
US9848119B2 (en) 2012-12-20 2017-12-19 Canon Kabushiki Kaisha Image pickup apparatus comprising image sensors and a light beam splitter

Also Published As

Publication number Publication date
JP4826507B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4826507B2 (en) Focus detection apparatus and imaging apparatus
JP5012495B2 (en) IMAGING ELEMENT, FOCUS DETECTION DEVICE, FOCUS ADJUSTMENT DEVICE, AND IMAGING DEVICE
JP4952060B2 (en) Imaging device
JP5458475B2 (en) Focus detection apparatus and imaging apparatus
JP4992481B2 (en) Focus detection apparatus and imaging apparatus
JP4961993B2 (en) Imaging device, focus detection device, and imaging device
JP5157400B2 (en) Imaging device
JP4867566B2 (en) Imaging device, focus detection device, and imaging device
JP5045007B2 (en) Imaging device
JP4983271B2 (en) Imaging device
JP2007279312A (en) Imaging element, image sensor and imaging apparatus
WO2005081020A1 (en) Optical device and beam splitter
JP2008040087A (en) Imaging device, imaging apparatus and focus detecting device
JP4858179B2 (en) Focus detection apparatus and imaging apparatus
JP5067148B2 (en) Imaging device, focus detection device, and imaging device
JP2009075407A (en) Imaging apparatus
WO2002099498A1 (en) Device for determining focused state of taking lens
JP5381472B2 (en) Imaging device
JP5278123B2 (en) Imaging device
JP2006071741A (en) Focus detecting device
JP5338112B2 (en) Correlation calculation device, focus detection device, and imaging device
JP2010091848A (en) Focus detecting apparatus and imaging apparatus
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5589799B2 (en) Imaging device
JP5399627B2 (en) Focus detection device, focus adjustment device, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4826507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees