JP2016038467A - Image pick-up element, focus detection device and imaging device - Google Patents

Image pick-up element, focus detection device and imaging device Download PDF

Info

Publication number
JP2016038467A
JP2016038467A JP2014161634A JP2014161634A JP2016038467A JP 2016038467 A JP2016038467 A JP 2016038467A JP 2014161634 A JP2014161634 A JP 2014161634A JP 2014161634 A JP2014161634 A JP 2014161634A JP 2016038467 A JP2016038467 A JP 2016038467A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion unit
pair
area
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014161634A
Other languages
Japanese (ja)
Inventor
宏明 高原
Hiroaki Takahara
宏明 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014161634A priority Critical patent/JP2016038467A/en
Publication of JP2016038467A publication Critical patent/JP2016038467A/en
Priority to JP2019023651A priority patent/JP6890766B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure an amount of incident light upon each of a pair of photoelectric conversion parts provided relative to one micro lens.SOLUTION: An image pick-up element has: a plurality of pixels that has a plurality of micro lenses; and a pair of photoelectric conversion units that is provided relative to the plurality of micro lenses, receives a pair of light fluxes passing through a pair of pupil areas and is two-dimensionally arrayed. In the plurality of pixels, a sum of an area of the pair of photoelectric conversion units is substantially equal, and an area of each oh the pair of photoelectric conversion units is different in accordance with an array position of the plurality of pixels.SELECTED DRAWING: Figure 3

Description

本発明は、撮像素子、焦点検出装置および撮像装置に関する。   The present invention relates to an imaging device, a focus detection device, and an imaging device.

従来から、一つのマイクロレンズに対して一対の受光素子が設けられ、マイクロレンズの光軸に対して一対の受光素子が対称となるように配列された焦点検出画素と、マイクロレンズの光軸に対して一対の受光素子が非対称となるように配置される焦点検出画素とが配列されたイメージセンサが知られている(たとえば特許文献1)。   Conventionally, a pair of light receiving elements are provided for one microlens, and the focus detection pixels arranged so that the pair of light receiving elements are symmetrical with respect to the optical axis of the microlens, and the optical axis of the microlens On the other hand, an image sensor is known in which focus detection pixels are arranged so that a pair of light receiving elements are asymmetric (for example, Patent Document 1).

特開2011―221253号公報JP 2011-221253 A

しかしながら、同一のマイクロレンズに対して配列された一対の受光素子のそれぞれに入射する光量が異なるため、何れか一方の受光素子の出力が飽和して焦点検出演算に用いることができずに焦点検出精度を維持できないという問題がある。   However, since the amount of light incident on each of the pair of light receiving elements arranged for the same microlens is different, the output of one of the light receiving elements is saturated and cannot be used for focus detection calculation. There is a problem that the accuracy cannot be maintained.

請求項1に記載の撮像素子は、複数のマイクロレンズと、複数のマイクロレンズのそれぞれに対して設けられ、結像光学系の一対の瞳領域を通過した一対の光束を受光する一対の光電変換部と、を有し、二次元状に配列された複数の画素を備え、全ての複数の画素は、一対の光電変換部の面積の合計が実質的に等しく、複数の画素の配列位置に応じて、一対の光電変換部のそれぞれの面積が異なる。
請求項7に記載の撮像素子は、複数のマイクロレンズと、複数のマイクロレンズのそれぞれに対して設けられ、二次元状に配置された複数の画素を備え、複数の画素は、一対の瞳領域を通過した一対の光束の一方を受光する光電変換部を有する第1画素と、一対の瞳領域を通過した一対の光束の他方を受光する光電変換部を有する第2画素とが交互に配置され、一対の光束の一方を受光する第1画素の光電変換部および一対の光束の他方を受光する第2画素の光電変換部の面積の合計が実質的に等しく、複数の画素の配列位置に応じて、第1画素の光電変換部の面積と第2画素の光電変換部の面積とがそれぞれ異なる。
請求項9に記載の焦点検出装置は、請求項1乃至8の何れか一項に記載の撮像素子と、一対の光電変換部から出力される信号を用いて、被写体の焦点状態を検出する検出手段とを備える。
請求項10に記載の撮像装置は、請求項1乃至8の何れか一項に記載の撮像素子と、一対の光電変換部から出力される信号を用いて、被写体の焦点状態を検出する検出手段と、一対の光電変換部から出力される信号を加算して画像信号を生成する画像生成手段とを備える。
The imaging device according to claim 1 is provided for each of the plurality of microlenses and the plurality of microlenses, and a pair of photoelectric conversions that receive a pair of light beams that have passed through a pair of pupil regions of the imaging optical system. A plurality of pixels arranged two-dimensionally, and all the plurality of pixels are substantially equal in total area of the pair of photoelectric conversion units, and are in accordance with the arrangement positions of the plurality of pixels. Thus, the areas of the pair of photoelectric conversion units are different.
The image pickup device according to claim 7 includes a plurality of microlenses and a plurality of pixels arranged in a two-dimensional manner for each of the plurality of microlenses, and the plurality of pixels includes a pair of pupil regions. The first pixel having a photoelectric conversion unit that receives one of a pair of light beams that have passed through and the second pixel having a photoelectric conversion unit that receives the other of the pair of light beams that have passed through a pair of pupil regions are alternately arranged. The sum of the areas of the photoelectric conversion unit of the first pixel that receives one of the pair of light beams and the photoelectric conversion unit of the second pixel that receives the other of the pair of light beams is substantially equal, depending on the arrangement position of the plurality of pixels Thus, the area of the photoelectric conversion unit of the first pixel is different from the area of the photoelectric conversion unit of the second pixel.
A focus detection apparatus according to a ninth aspect of the present invention is a detection for detecting a focus state of a subject using the image sensor according to any one of the first to eighth aspects and a signal output from a pair of photoelectric conversion units. Means.
According to a tenth aspect of the present invention, there is provided an imaging apparatus that detects a focus state of a subject using the imaging element according to any one of the first to eighth aspects and a signal output from a pair of photoelectric conversion units. And image generation means for adding the signals output from the pair of photoelectric conversion units to generate an image signal.

本発明によれば、複数の画素のうちの周辺付近に位置する画素においても、一対の光電変換部の一方の出力が飽和することを防ぎ、焦点検出精度の低下を抑制できる。   According to the present invention, it is possible to prevent saturation of the output of one of the pair of photoelectric conversion units even in pixels located near the periphery of the plurality of pixels, and to suppress a decrease in focus detection accuracy.

本発明の実施の形態による撮像装置の構成を説明する横断面図1 is a cross-sectional view illustrating the configuration of an imaging apparatus according to an embodiment of the present invention. 実施の形態による撮像装置の要部構成を説明するブロック図FIG. 2 is a block diagram illustrating a main configuration of an imaging apparatus according to an embodiment 実施の形態による撮像画素の配列の一例を示す図The figure which shows an example of the arrangement | sequence of the imaging pixel by embodiment 実施の形態における撮像画素の第1光電変換部および第2光電変換部の面積と、撮影レンズ系の射出瞳領域との投影関係を模式的に示す図The figure which shows typically the projection relationship of the area of the 1st photoelectric conversion part of the imaging pixel in embodiment, and the 2nd photoelectric conversion part, and the exit pupil area | region of a photographic lens system 変形例における撮像画素の配列の一例を示す図The figure which shows an example of the arrangement | sequence of the imaging pixel in a modification 変形例における撮像画素の配列の一例を示す図The figure which shows an example of the arrangement | sequence of the imaging pixel in a modification 変形例における撮像画素の配列の一例を示す図The figure which shows an example of the arrangement | sequence of the imaging pixel in a modification

図面を参照しながら、本発明の一実施の形態による撮像素子と、当該撮像素子を備える焦点検出装置および撮像装置とについて説明する。
図1は実施の形態による撮像装置であるデジタルカメラ100の構成を説明する横断面図である。なお、説明の都合上、x軸、y軸、z軸からなる座標系を図示の通りに設定する。
With reference to the drawings, an image sensor according to an embodiment of the present invention, and a focus detection apparatus and an image apparatus including the image sensor will be described.
FIG. 1 is a cross-sectional view illustrating a configuration of a digital camera 100 that is an imaging apparatus according to an embodiment. For convenience of explanation, a coordinate system including an x-axis, a y-axis, and a z-axis is set as illustrated.

デジタルカメラ100は、カメラ本体200と撮影レンズ本体300とにより構成され、撮影レンズ本体300はマウント部(不図示)を介して装着される、いわゆるミラーレスカメラである。カメラ本体200には、マウント部を介して種々の撮影光学系を有する撮影レンズ本体300が装着可能である。上記のマウント部には電気接点201、202が設けられ、カメラ本体200と撮影レンズ本体300とが結合された時には、電気接点201および202を介して電気的な接続が確立される。   The digital camera 100 includes a camera main body 200 and a photographing lens main body 300, and the photographing lens main body 300 is a so-called mirrorless camera that is mounted via a mount unit (not shown). A photographic lens body 300 having various photographic optical systems can be attached to the camera body 200 via a mount portion. The mount portion is provided with electrical contacts 201 and 202. When the camera body 200 and the photographing lens body 300 are coupled, an electrical connection is established via the electrical contacts 201 and 202.

撮影レンズ本体300は、撮影レンズ系1と、絞り2と、駆動機構3と、レンズデータ部4とを備えている。撮影レンズ系1は、被写体像を所定の予定焦点面に結像させるための光学系であり、焦点調節レンズを含む複数のレンズによって構成されている。絞り2は、撮影レンズ系1を通過する光束、すなわち入射光量を制限するために、光軸Lを中心に開口径が可変な開口を形成する。駆動機構3は、電気接点201を介してカメラ本体200側から入力したデフォーカス量を用いてレンズ駆動量を算出し、レンズ駆動量に応じて撮影レンズ系1を構成する焦点調節レンズを光軸Lの方向(z軸方向)に沿って合焦位置へ駆動する。また、駆動機構3は、カメラ本体200側からの指令に応じて絞り駆動信号を出力して、絞り2の駆動を制御する。   The photographic lens main body 300 includes a photographic lens system 1, a diaphragm 2, a drive mechanism 3, and a lens data unit 4. The photographing lens system 1 is an optical system for forming a subject image on a predetermined planned focal plane, and is composed of a plurality of lenses including a focus adjustment lens. The diaphragm 2 forms an aperture whose aperture diameter is variable around the optical axis L in order to limit the light beam passing through the photographing lens system 1, that is, the amount of incident light. The drive mechanism 3 calculates the lens drive amount using the defocus amount input from the camera body 200 side through the electrical contact 201, and moves the focus adjustment lens constituting the photographing lens system 1 according to the lens drive amount to the optical axis. Drive to the in-focus position along the L direction (z-axis direction). The drive mechanism 3 controls the drive of the diaphragm 2 by outputting a diaphragm drive signal in response to a command from the camera body 200 side.

レンズデータ部4は、たとえば不揮発性の記録媒体により構成され、撮影レンズ本体300に関連する各種のレンズ情報、たとえばレンズの焦点距離や明るさ(開放F値)等が格納されている。レンズデータ部4は電気接点202を介してカメラ本体200との間で上記のレンズ情報等を送信する。   The lens data unit 4 is configured by, for example, a non-volatile recording medium, and stores various lens information related to the photographing lens main body 300, for example, the focal length and brightness (open F value) of the lens. The lens data unit 4 transmits the above lens information and the like to and from the camera body 200 via the electrical contact 202.

カメラ本体200内部には、演算処理制御部5と、撮像素子制御回路6と、メカシャッタ7と、撮像素子8と、電子ビューファインダ(EVF)9と、接眼レンズ10とが設けられている。カメラ本体200には操作部11が設けられている。撮像素子8には、CCDやCMOS等の撮像画素がxy平面上において二次元状(行と列)に配置される。撮像素子8の撮像画素には、それぞれR(赤)、G(緑)、B(青)のカラーフィルタが設けられている。撮像素子8は、撮影レンズ系1およびメカシャッタ7を介して入射される光束を受光して被写体像を撮像して、撮像信号を撮像素子制御部6に出力する。撮像信号は、画像データ生成用の信号(画像信号)として、また、焦点検出用の信号(焦点検出用信号)として使用される。撮像素子8がカラーフィルタを通して被写体像を撮像するため、撮像素子8の撮像画素から出力される撮像信号はRGB表色系の色情報を有する。なお、撮像素子8については、詳細を後述する。   In the camera body 200, an arithmetic processing control unit 5, an image sensor control circuit 6, a mechanical shutter 7, an image sensor 8, an electronic viewfinder (EVF) 9, and an eyepiece 10 are provided. The camera body 200 is provided with an operation unit 11. In the imaging element 8, imaging pixels such as a CCD and a CMOS are two-dimensionally arranged (rows and columns) on the xy plane. The imaging pixels of the imaging device 8 are provided with R (red), G (green), and B (blue) color filters, respectively. The image sensor 8 receives a light beam incident through the photographing lens system 1 and the mechanical shutter 7 to capture a subject image, and outputs an image signal to the image sensor controller 6. The imaging signal is used as a signal for generating image data (image signal) and a signal for focus detection (focus detection signal). Since the image pickup device 8 picks up a subject image through the color filter, the image pickup signal output from the image pickup pixel of the image pickup device 8 has color information of the RGB color system. Details of the image sensor 8 will be described later.

メカシャッタ7は撮像素子8の直前に設けられ、複数の遮光羽根より成る先幕と後幕とによって構成される。メカシャッタ7は、駆動モータ(たとえばDCモータやステッピングモータ等の電動モータ)により構成される駆動機構(不図示)の駆動により走行して、撮像素子8を被写体光から遮光する。電子ビューファインダ9は、演算処理制御部5により生成された表示画像データに対応する画像の表示を行う。また、電子ビューファインダ9は、撮影条件に関連する各種情報(シャッタ速度、絞り値、ISO感度など)の表示を行う。電子ビューファインダ9に表示された画像や各種情報は、接眼レンズ10を介してユーザにより観察される。   The mechanical shutter 7 is provided immediately before the image sensor 8 and includes a front curtain and a rear curtain made up of a plurality of light shielding blades. The mechanical shutter 7 travels by driving a drive mechanism (not shown) constituted by a drive motor (for example, an electric motor such as a DC motor or a stepping motor) to shield the image sensor 8 from the subject light. The electronic viewfinder 9 displays an image corresponding to the display image data generated by the arithmetic processing control unit 5. The electronic viewfinder 9 displays various information (shutter speed, aperture value, ISO sensitivity, etc.) related to the shooting conditions. The image and various information displayed on the electronic viewfinder 9 are observed by the user through the eyepiece 10.

操作部11はユーザによって操作される種々の操作部材に対応して設けられた種々のスイッチを含み、操作部材の操作に応じた操作信号を演算処理制御部5へ出力する。操作部材は、たとえばレリーズボタンや、カメラ本体200の背面に設けられた背面モニタ(不図示)にメニュー画面を表示させるためのメニューボタンや、各種の設定等を選択操作する時に操作される十字キー、十字キーにより選択された設定等を決定するための決定ボタン、撮影モードと再生モードとの間でデジタルカメラ100の動作を切替える動作モード切替ボタン、露出モードを設定する露出モード切替ボタン等を含む。   The operation unit 11 includes various switches provided corresponding to various operation members operated by the user, and outputs an operation signal corresponding to the operation of the operation member to the arithmetic processing control unit 5. The operation member is, for example, a release button, a menu button for displaying a menu screen on a rear monitor (not shown) provided on the rear surface of the camera body 200, or a cross key operated when selecting and operating various settings. , A determination button for determining the setting selected by the cross key, an operation mode switching button for switching the operation of the digital camera 100 between the shooting mode and the playback mode, an exposure mode switching button for setting the exposure mode, and the like. .

さらに、図2に示すブロック図を用いて、デジタルカメラ100の制御系について説明する。図2に示すようにデジタルカメラ100は、A/D変換部12と、画像処理回路13と、焦点検出演算回路14と、ボディ−レンズ通信部15とを有している。演算処理制御部5は、CPU、ROM、RAMなどを有し、制御プログラムに基づいて、デジタルカメラ100の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。制御プログラムは、演算処理制御部5内の不図示の不揮発性メモリに格納されている。撮像素子駆動回路6は、演算処理制御部5によって制御され、撮像素子8およびA/D変換部12の駆動を制御して、撮像素子8に電荷蓄積および撮像信号の読み出し等を行わせる。A/D変換部12は、撮像素子8から出力されたアナログの撮像信号をデジタルに変換する。   Further, the control system of the digital camera 100 will be described with reference to the block diagram shown in FIG. As shown in FIG. 2, the digital camera 100 includes an A / D conversion unit 12, an image processing circuit 13, a focus detection calculation circuit 14, and a body-lens communication unit 15. The arithmetic processing control unit 5 includes a CPU, a ROM, a RAM, and the like, and is an arithmetic circuit that controls each component of the digital camera 100 and executes various data processing based on a control program. The control program is stored in a nonvolatile memory (not shown) in the arithmetic processing control unit 5. The image sensor driving circuit 6 is controlled by the arithmetic processing control unit 5 and controls driving of the image sensor 8 and the A / D converter 12 to cause the image sensor 8 to perform charge accumulation, image signal readout, and the like. The A / D converter 12 converts the analog imaging signal output from the imaging device 8 into digital.

画像処理回路13は、撮像素子8から出力された撮像信号を画像信号として用い、画像信号に対して種々の画像処理を施して画像データを生成した後、付加情報等を付与して画像ファイルを生成する。画像処理回路13は、生成した画像ファイルをメモリカード等の記録媒体(不図示)に記録する。画像処理回路13は、生成した画像データや記録媒体に記録されている画像データに基づいて、電子ビューファインダ9や背面モニタ(不図示)に表示するための表示画像データを生成する。   The image processing circuit 13 uses the image signal output from the image sensor 8 as an image signal, performs various image processing on the image signal to generate image data, and then adds additional information and the like to generate an image file. Generate. The image processing circuit 13 records the generated image file on a recording medium (not shown) such as a memory card. The image processing circuit 13 generates display image data to be displayed on the electronic viewfinder 9 and a rear monitor (not shown) based on the generated image data and image data recorded on the recording medium.

焦点検出演算回路14は、撮像素子8から出力された撮像信号を焦点検出用信号として使用して、公知の位相差検出方式を用いてデフォーカス量を算出する。ボディ−レンズ通信部15は、演算処理制御部5に制御され、電気接点201、202を介して撮影レンズ本体300内の駆動機構3やレンズデータ部4と通信を行い、カメラ情報(デフォーカス量や絞り値など)の送信やレンズ情報の受信を行う。   The focus detection calculation circuit 14 uses the imaging signal output from the imaging device 8 as a focus detection signal and calculates a defocus amount using a known phase difference detection method. The body-lens communication unit 15 is controlled by the arithmetic processing control unit 5 and communicates with the drive mechanism 3 and the lens data unit 4 in the photographic lens main body 300 via the electrical contacts 201 and 202 to obtain camera information (defocus amount). And aperture value) and lens information are received.

次に、本実施の形態における撮像素子8について詳細に説明する。
図3(a)は撮像素子8の中心部を含む一部の領域を模式的に示す平面図であり、図3(b)は撮像素子8の中心付近に設けられた1つの撮像画素80の断面を模式的に示す図であり、図3(c)は撮像素子8の周辺部に設けられた1つの撮像画素80の断面を模式的に示す図である。なお、図3においても、x軸、y軸、z軸からなる座標系を、図1に示す例と同様にして設定する。撮像素子8は、複数の撮像画素80が行方向(x方向)と列方向(y方向)とに二次元配列される。撮像画素80の各画素位置には、たとえばベイヤー配列の規則に従って上述したカラーフィルタ(R:赤色フィルタ、G:緑色フィルタ、B:青色フィルタ)が配置される。図3(a)においては、撮像画素80に配置されたカラーフィルタの色を、「R」、「G」または「B」と表記して模式的に表す。
Next, the image sensor 8 in the present embodiment will be described in detail.
FIG. 3A is a plan view schematically showing a partial region including the central portion of the image sensor 8, and FIG. 3B is a diagram of one image pickup pixel 80 provided near the center of the image sensor 8. FIG. 3C is a diagram schematically showing a cross section of one image pickup pixel 80 provided in the peripheral portion of the image sensor 8. Also in FIG. 3, a coordinate system including the x-axis, y-axis, and z-axis is set in the same manner as in the example shown in FIG. In the imaging element 8, a plurality of imaging pixels 80 are two-dimensionally arranged in a row direction (x direction) and a column direction (y direction). At each pixel position of the imaging pixel 80, for example, the color filters (R: red filter, G: green filter, B: blue filter) described above are arranged according to the rules of the Bayer array. In FIG. 3A, the color of the color filter arranged in the imaging pixel 80 is schematically expressed as “R”, “G”, or “B”.

撮像画素80は、マイクロレンズ81と、1つのマイクロレンズ81の下に設けられた第1光電変換部82および第2光電変換部83とによって構成される。第1光電変換部82と第2光電変換部83とは、x方向に並んで配列される。図3に示す例では、第1光電変換部82はx方向+側、第2光電変換部83はx方向−側に設けられる。第1光電変換部82および第2光電変換部83には、それぞれ撮影レンズ系1の異なる領域を介して入射された光が入射する。すなわち、焦点検出演算回路14が位相差検出演算に用いる一対の被写体光束が入射する。   The imaging pixel 80 includes a microlens 81 and a first photoelectric conversion unit 82 and a second photoelectric conversion unit 83 provided under one microlens 81. The first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 are arranged side by side in the x direction. In the example illustrated in FIG. 3, the first photoelectric conversion unit 82 is provided on the x direction + side, and the second photoelectric conversion unit 83 is provided on the x direction − side. Light incident through the different regions of the photographic lens system 1 is incident on the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83. That is, a pair of subject light beams used by the focus detection calculation circuit 14 for phase difference detection calculation are incident.

本実施の形態においては、各行において、撮像画素80が配置される位置に応じて、第1光電変換部82と第2光電変換部83との境界部84が、マイクロレンズ81の中心からずれる(図3(c)参照)。全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は実質的に同一である。換言すると、第1光電変換部82のサイズ(面積)と、第2光電変換部83のサイズ(面積)とが異なる。撮像素子8の中心列Cからx方向+側においては、マイクロレンズ81の中心に対して境界部84はx方向−側へずれ、中心列Cからx方向−側においては、マイクロレンズ81の中心に対して境界部84はx方向+側へずれる。換言すると、第1光電変換部82の面積は第2光電変換部83の面積よりも大きく、かつ、中心列Cからの距離に応じて第1光電変換部82の面積と第2光電変換部83の面積との差分が大きくなる。x方向−側においては、第2光電変換部83の面積は第1光電変換部82の面積よりも大きく、かつ、中心列Cからの距離に応じて第2光電変換部83の面積と第1光電変換部82の面積との差分が大きくなる。   In the present embodiment, in each row, the boundary portion 84 between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 is shifted from the center of the microlens 81 according to the position where the imaging pixel 80 is arranged ( (Refer FIG.3 (c)). In all the imaging pixels 80, the total value of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is substantially the same. In other words, the size (area) of the first photoelectric conversion unit 82 and the size (area) of the second photoelectric conversion unit 83 are different. On the x direction + side from the center row C of the image sensor 8, the boundary portion 84 is shifted to the x direction − side with respect to the center of the microlens 81, and from the center row C to the x direction − side, In contrast, the boundary portion 84 is shifted to the + direction in the x direction. In other words, the area of the first photoelectric conversion unit 82 is larger than the area of the second photoelectric conversion unit 83, and the area of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 according to the distance from the center column C. The difference from the area becomes larger. On the x direction − side, the area of the second photoelectric conversion unit 83 is larger than the area of the first photoelectric conversion unit 82, and the area of the second photoelectric conversion unit 83 and the first photoelectric conversion unit 83 are set according to the distance from the center column C. The difference from the area of the photoelectric conversion unit 82 increases.

マイクロレンズ81に対する境界部84のずれ量、すなわち第2光電変換部83の面積と第1光電変換部82の面積との差分は、中心列Cからの距離に応じて線形的に変化してもよいし、所定個数の撮像画素80ごとに段階的に変化してもよい。各行において、撮像素子8の中心列Cに配列される撮像画素80では、マイクロレンズ81の中心と境界部84とは実質的に一致、すなわち第1光電変換部82の面積と第2光電変換部83の面積とは等しい。上述したように、全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は実質的に同一なので、撮像画素80は、撮像素子8の中心列Cからのx方向の距離に応じて、第1光電変換部82と第2光電変換部83との面積比が異なる。   Even if the shift amount of the boundary portion 84 with respect to the microlens 81, that is, the difference between the area of the second photoelectric conversion unit 83 and the area of the first photoelectric conversion unit 82 changes linearly according to the distance from the center row C. Alternatively, it may be changed stepwise for each predetermined number of imaging pixels 80. In each row, in the imaging pixels 80 arranged in the center column C of the imaging element 8, the center of the microlens 81 and the boundary portion 84 substantially coincide, that is, the area of the first photoelectric conversion unit 82 and the second photoelectric conversion unit. The area of 83 is equal. As described above, since the total value of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is substantially the same in all the image pickup pixels 80, the image pickup pixel 80 includes the image sensor 8. The area ratio between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 differs depending on the distance in the x direction from the center column C.

図3(a)に示すように、撮像素子8の中心列Cに配列された撮像画素80aに設けられた第1光電変換部82aと第2光電変換部83aとの境界部84aはマイクロレンズ81aの中心と実質的に等しい。すなわち第1光電変換部82aと第2光電変換部83aとは面積が等しい。撮像画素80aよりもx方向+側に配列された撮像画素80bにおいては、境界部84bはマイクロレンズ81bの中心に対してx方向−側にずれている。すなわち、第1光電変換部82bの面積は第2光電変換部83bの面積よりも大きい。上述したように、全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は同一に形成されている。したがって、撮像画素80aの第1光電変換部82aの面積よりも撮像画素80bの第1光電変換部82bの面積の方が大きく、撮像画素80aの第2光電変換部83aの面積よりも撮像画素80bの第2光電変換部83bの面積の方が小さい。   As shown in FIG. 3A, a boundary portion 84a between the first photoelectric conversion unit 82a and the second photoelectric conversion unit 83a provided in the imaging pixels 80a arranged in the center column C of the imaging element 8 is a microlens 81a. Is substantially equal to the center of That is, the first photoelectric conversion unit 82a and the second photoelectric conversion unit 83a have the same area. In the imaging pixel 80b arranged on the x direction + side with respect to the imaging pixel 80a, the boundary portion 84b is shifted to the x direction − side with respect to the center of the micro lens 81b. That is, the area of the first photoelectric conversion unit 82b is larger than the area of the second photoelectric conversion unit 83b. As described above, in all the imaging pixels 80, the total value of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is formed to be the same. Therefore, the area of the first photoelectric conversion unit 82b of the imaging pixel 80b is larger than the area of the first photoelectric conversion unit 82a of the imaging pixel 80a, and the imaging pixel 80b is larger than the area of the second photoelectric conversion unit 83a of the imaging pixel 80a. The area of the second photoelectric conversion unit 83b is smaller.

撮像画素80bよりもx方向+側に配列された撮像画素80cにおいては、境界部84cのマイクロレンズ81cの中心に対するずれ量は、境界部84bのマイクロレンズ81bの中心に対するずれ量と比べて大きい。すなわち、撮像画素80がx方向+側に配置されるほど、境界部84とマイクロレンズ81の中心とのずれ量がx方向−側へ大きくなる。撮像画素80bの第1光電変換部82bの面積よりも撮像画素80cの第1光電変換部82cの面積の方が大きく、撮像画素80bの第2光電変換部83bの面積よりも撮像画素80cの第2光電変換部83cの面積の方が小さい。   In the imaging pixel 80c arranged on the + side in the x direction with respect to the imaging pixel 80b, the shift amount of the boundary portion 84c with respect to the center of the microlens 81c is larger than the shift amount of the boundary portion 84b with respect to the center of the microlens 81b. That is, as the imaging pixel 80 is arranged on the x direction + side, the amount of deviation between the boundary portion 84 and the center of the microlens 81 increases toward the x direction − side. The area of the first photoelectric conversion unit 82c of the imaging pixel 80c is larger than the area of the first photoelectric conversion unit 82b of the imaging pixel 80b, and the area of the imaging pixel 80c is larger than the area of the second photoelectric conversion unit 83b of the imaging pixel 80b. The area of the two photoelectric conversion unit 83c is smaller.

撮像画素80aよりもx方向−側に配列された撮像画素80dにおいては、境界部84dはマイクロレンズ81dの中心に対してx方向+側にずれている。すなわち第2光電変換部83dの面積は第1光電変換部82dの面積よりも大きい。したがって、撮像画素80aの第1光電変換部82aの面積よりも撮像画素80dの第1光電変換部82dの面積の方が小さく、撮像画素80aの第2光電変換部83aの面積よりも撮像画素80dの第2光電変換部83dの面積の方が大きい。撮像画素80dよりもx方向−側に配列された撮像画素80eにおいては、境界部84eはマイクロレンズ81eの中心に対するx方向+側へのずれ量は、境界部84dのマイクロレンズ81dの中心に対するx方向+側のずれ量と比べて大きい。すなわち、撮像画素80dの第2光電変換部83dの面積よりも撮像画素80eの第2光電変換部83eの面積の方が大きく、撮像画素80dの第1光電変換部82dの面積よりも撮像画素80eの第1光電変換部82eの面積の方が小さい。
なお、境界部84とマイクロレンズ81の中心との関係および第1光電変換部82の面積と第2光電変換部83の面積との関係については、詳細を後述する。
In the imaging pixel 80d arranged on the x direction minus side with respect to the imaging pixel 80a, the boundary portion 84d is shifted to the x direction plus side with respect to the center of the micro lens 81d. That is, the area of the second photoelectric conversion unit 83d is larger than the area of the first photoelectric conversion unit 82d. Therefore, the area of the first photoelectric conversion unit 82d of the imaging pixel 80d is smaller than the area of the first photoelectric conversion unit 82a of the imaging pixel 80a, and the imaging pixel 80d is smaller than the area of the second photoelectric conversion unit 83a of the imaging pixel 80a. The area of the second photoelectric conversion unit 83d is larger. In the imaging pixel 80e arranged on the x direction minus side from the imaging pixel 80d, the amount of deviation of the boundary portion 84e from the center of the micro lens 81e in the x direction plus side is x with respect to the center of the micro lens 81d in the boundary portion 84d. Larger than the deviation on the direction + side. That is, the area of the second photoelectric conversion unit 83e of the imaging pixel 80e is larger than the area of the second photoelectric conversion unit 83d of the imaging pixel 80d, and the imaging pixel 80e is larger than the area of the first photoelectric conversion unit 82d of the imaging pixel 80d. The area of the first photoelectric conversion unit 82e is smaller.
The relationship between the boundary portion 84 and the center of the microlens 81 and the relationship between the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 will be described later in detail.

撮像画素80の第1光電変換部82と第2光電変換部83とのそれぞれにおいては、y方向の長さを変化させず、x方向の長さを変化させることによって、第1光電変換部82および第2光電変換部83との面積比を変化させる。すなわち、x方向+側に配列された撮像画素80では、撮像素子8の中心列Cからの距離が離れる程、第1光電変換部82のx方向の長さが増加し、第2光電変換部83のx方向の長さが減少する。x方向−側に配列された撮像画素80では、撮像素子8の中心列Cからの距離が離れる程、第1光電変換部82のx方向の長さが減少し、第2光電変換部83のx方向の長さが増加する。   In each of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80, the first photoelectric conversion unit 82 is changed by changing the length in the x direction without changing the length in the y direction. And the area ratio with the 2nd photoelectric conversion part 83 is changed. That is, in the imaging pixels 80 arranged in the x direction + side, the length in the x direction of the first photoelectric conversion unit 82 increases as the distance from the center column C of the imaging element 8 increases, and the second photoelectric conversion unit. The length of 83 in the x direction decreases. In the imaging pixels 80 arranged on the x direction − side, the length of the first photoelectric conversion unit 82 in the x direction decreases as the distance from the center column C of the imaging element 8 increases, and the second photoelectric conversion unit 83 The length in the x direction increases.

撮像素子8のうち、列方向(y方向)に配列された撮像画素80においては、それぞれの第1光電変換部82および第2光電変換部83は同一の面積を有する。すなわち、たとえば撮像画素80cと同一の列に配列された撮像画素80については、第1光電変換部82cと同一の面積の第1光電変換部82と、第2光電変換部83cと同一の面積の第2光電変換部83とが設けられる。   In the image pickup pixel 80 arranged in the column direction (y direction) in the image pickup device 8, the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 have the same area. That is, for example, for the imaging pixels 80 arranged in the same column as the imaging pixel 80c, the first photoelectric conversion unit 82 having the same area as the first photoelectric conversion unit 82c and the same area as the second photoelectric conversion unit 83c. A second photoelectric conversion unit 83 is provided.

本実施の形態においては、撮像画素80の第1光電変換部82および第2光電変換部83を上述した形状にすることにより、撮像素子8の周辺領域におけるケラレの影響を低減する。以下、その原理について説明する。
図4は撮像画素80の第1光電変換部82および第2光電変換部83の面積と、撮影レンズ系1の射出瞳領域との投影関係を模式的に示す。図4(a)は撮影レンズ系1の射出瞳距離PO1と撮像画素80の射出瞳距離PO2とが実質的に等しい場合、すなわち撮影レンズ系1がミラーレスカメラであるデジタルカメラ100に適合するように設計された専用の交換レンズ等の場合を示す。図4(b)は撮影レンズ系1の射出瞳距離PO1が撮像画素80の射出瞳距離PO2と比べて長い場合、すなわち撮影レンズ系1が、たとえば一眼レフカメラ用に設計された交換レンズや、ミラーレスカメラであるデジタルカメラ100に適合するように設計された専用の交換レンズであるが長い射出瞳距離PO1が設定されている場合を示す。なお、図4(b)においては、理解を容易にすることを目的として、射出瞳距離PO1とPO2が等しい場合の撮影レンズ系1を破線により示す。また、本実施の形態においては、撮像画素80の射出瞳距離PO2は、種々の専用の交換レンズごとに異なる射出瞳距離PO1のうちの中心値と比べて短くなるように設定されている。以下の説明では、図3においてx方向+側の周辺領域に配列された撮像画素80cを例に挙げて説明を挙げる。
In the present embodiment, the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80 are configured as described above, thereby reducing the influence of vignetting in the peripheral region of the imaging element 8. Hereinafter, the principle will be described.
FIG. 4 schematically shows the projection relationship between the area of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80 and the exit pupil region of the photographing lens system 1. FIG. 4A shows a case where the exit pupil distance PO1 of the photographing lens system 1 and the exit pupil distance PO2 of the imaging pixel 80 are substantially equal, that is, to fit the digital camera 100 in which the photographing lens system 1 is a mirrorless camera. The case of a special interchangeable lens designed in Fig. 1 is shown. 4B shows a case where the exit pupil distance PO1 of the photographic lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80, that is, the photographic lens system 1 is an interchangeable lens designed for a single lens reflex camera, for example. A case where a long exit pupil distance PO1 is set is a dedicated interchangeable lens designed to be compatible with the digital camera 100 which is a mirrorless camera. In FIG. 4B, for the purpose of facilitating understanding, the taking lens system 1 when the exit pupil distances PO1 and PO2 are equal is indicated by a broken line. In the present embodiment, the exit pupil distance PO2 of the imaging pixel 80 is set to be shorter than the center value of the exit pupil distances PO1 that differ for each of the various dedicated interchangeable lenses. In the following description, the imaging pixel 80c arranged in the peripheral region on the x direction + side in FIG. 3 will be described as an example.

図4(a)に示すように、第1光電変換部82cは、被写体からの光束のうち、撮影レンズ系1の一対の射出瞳領域841および842のうち、射出瞳領域841を通過した光束851をマイクロレンズ81cを介して受光し、第2光電変換部83cは射出瞳領域842を通過した光束852をマイクロレンズ81cを介して受光する。上述したように、図4(a)は射出瞳距離PO1およびPO2が実質的に等しい場合を示しているので、光束851および852は撮影レンズ本体300の構造等によるケラレが無い、もしくはケラレが少ない状態にて第1光電変換部82cおよび第2光電変換部83cにそれぞれ入射する。   As shown in FIG. 4A, the first photoelectric conversion unit 82c has a light beam 851 that has passed through the exit pupil region 841 of the pair of exit pupil regions 841 and 842 of the photographing lens system 1 out of the light beam from the subject. Is received through the micro lens 81c, and the second photoelectric conversion unit 83c receives the light beam 852 that has passed through the exit pupil region 842 through the micro lens 81c. As described above, FIG. 4A shows a case in which the exit pupil distances PO1 and PO2 are substantially equal. Therefore, the luminous fluxes 851 and 852 have no vignetting due to the structure of the photographing lens body 300 or the like. In this state, the light enters the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c.

図4(b)に示すように、被写体からの光束852は、撮影レンズ系1の射出瞳領域842を通過し、撮像画素80cのマイクロレンズ81cを介して第2光電変換部83cに入射する。撮影レンズ系1の射出瞳距離PO1が撮像画素80の射出瞳距離PO2と比べて長いため、被写体からの光束851は一部がケラレる。すなわち光束851のうち、光束851aが撮影レンズ系1の射出瞳領域841を通過し、マイクロレンズ81cを介して第1光電変換部82cに入射し、光束851bはケラレて第1光電変換部82cに入射しない。   As shown in FIG. 4B, the light beam 852 from the subject passes through the exit pupil region 842 of the photographing lens system 1 and enters the second photoelectric conversion unit 83c through the microlens 81c of the imaging pixel 80c. Since the exit pupil distance PO1 of the photographing lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80, part of the luminous flux 851 from the subject is vignetted. That is, of the light beam 851, the light beam 851a passes through the exit pupil region 841 of the photographing lens system 1 and enters the first photoelectric conversion unit 82c via the microlens 81c, and the light beam 851b vignetts and enters the first photoelectric conversion unit 82c. Not incident.

図4(c)の撮像画素80cの平面模式図において、光束852および上記のようにケラレの影響を受けた光束851と、撮像画素80cの第1光電変換部82cおよび第2光電変換部83cとの位置関係を示す。なお、図4(c)においては、光束851bにケラレの発生がなければ第1光電変換部82cに入射したであろう領域を破線で示す。本実施の形態においては、第1光電変換部82cは、光束851aが入射する領域82c1と、光束851bがケラレなければ入射したであろう領域821c2とを有する。撮像画素80cにおいては、第1光電変換部82cの領域82c1と光束852が入射する第2光電変換部83cとが同一の面積を有するように、境界部84cのx方向−側へのずれ量が決定されている。したがって、境界部84cがマイクロレンズ81cの中心に対してx方向−側にずれることにより、入射した光束852および851aは、第1光電変換部82cおよび第2光電変換部83cにおいて、それぞれ実質的に同一面積にて受光される。   In the schematic plan view of the imaging pixel 80c in FIG. 4C, the luminous flux 852, the luminous flux 851 affected by the vignetting as described above, the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c of the imaging pixel 80c, and The positional relationship of is shown. In FIG. 4C, a region that will be incident on the first photoelectric conversion unit 82c if there is no vignetting in the light beam 851b is indicated by a broken line. In the present embodiment, the first photoelectric conversion unit 82c has a region 82c1 where the light beam 851a is incident and a region 821c2 that would be incident if the light beam 851b was not vignetted. In the imaging pixel 80c, the amount of deviation of the boundary portion 84c in the x direction − side is such that the region 82c1 of the first photoelectric conversion portion 82c and the second photoelectric conversion portion 83c on which the light beam 852 is incident have the same area. It has been decided. Therefore, when the boundary portion 84c is shifted toward the x direction − side with respect to the center of the microlens 81c, the incident light beams 852 and 851a are substantially changed in the first photoelectric conversion portion 82c and the second photoelectric conversion portion 83c, respectively. Light is received in the same area.

撮像画素80bについても撮像画素80cと同様に、境界部84bのずれ量、すなわち第1光電変換部82bと第2光電変換部83bとの面積が決定される。ただし、上述したように、撮像画素80bは、撮像画素80cよりもx方向−側に配列されるので、境界部84bのずれ量は境界部84cのずれ量と比べて小さい。すなわち、撮像画素80bの第1光電変換部82bの面積は、撮像画素80cの第1光電変換部82cの面積と比べて小さい。また、撮像素子8の中心列Cからx方向−側に配列された撮像画素8については、境界部84がマイクロレンズ81の中心に対してずれる方向、すなわち第1光電変換部82と第2光電変換部83の面積の大小関係が反対になる。   For the imaging pixel 80b, similarly to the imaging pixel 80c, the shift amount of the boundary 84b, that is, the areas of the first photoelectric conversion unit 82b and the second photoelectric conversion unit 83b are determined. However, as described above, since the imaging pixel 80b is arranged on the x direction minus side from the imaging pixel 80c, the shift amount of the boundary portion 84b is smaller than the shift amount of the boundary portion 84c. That is, the area of the first photoelectric conversion unit 82b of the imaging pixel 80b is smaller than the area of the first photoelectric conversion unit 82c of the imaging pixel 80c. In addition, with respect to the imaging pixels 8 arranged on the x direction − side from the center row C of the imaging element 8, the direction in which the boundary portion 84 is shifted from the center of the microlens 81, that is, the first photoelectric conversion unit 82 and the second photoelectric conversion unit. The area relationship of the conversion unit 83 is reversed.

図4(d)は撮像画素80cが配列される位置に撮像画素80aが配列されたと仮定した場合、すなわち境界部84がマイクロレンズ81の中心と実質的に一致する場合に、射出瞳距離PO1が射出瞳距離PO2よりも大きいとき、第1光電変換部82aおよび第2光電変換部83aにそれぞれ入射する光束851および852を模式的に示す平面図である。この場合、光束851がケラレることにより、光束851aが第1光電変換部82aは図の斜線を付した領域にて受光される。光束852は第2光電変換部83aの全領域にて受光される。このため、第1光電変換部82aからの撮像信号の出力は、第2光電変換部83aからの撮像信号の出力と比べて低下する。すなわち、第1光電変換部82cからの撮像信号が十分な出力に達する前に、第2光電変換部83cからの撮像信号の出力が飽和する。   In FIG. 4D, when it is assumed that the imaging pixel 80a is arranged at the position where the imaging pixel 80c is arranged, that is, when the boundary portion 84 substantially coincides with the center of the microlens 81, the exit pupil distance PO1 is It is a top view which shows typically the light beams 851 and 852 which inject into the 1st photoelectric conversion part 82a and the 2nd photoelectric conversion part 83a, respectively, when it is larger than the exit pupil distance PO2. In this case, vignetting of the light beam 851 causes the light beam 851a to be received by the first photoelectric conversion unit 82a in the shaded area in the figure. The light beam 852 is received by the entire region of the second photoelectric conversion unit 83a. For this reason, the output of the imaging signal from the 1st photoelectric conversion part 82a falls compared with the output of the imaging signal from the 2nd photoelectric conversion part 83a. That is, the output of the imaging signal from the second photoelectric conversion unit 83c is saturated before the imaging signal from the first photoelectric conversion unit 82c reaches a sufficient output.

これに対して本実施の形態においては、図4(c)に示す構造を有している。したがって、第1光電変換部82cからの撮像信号の出力が第2光電変換部83cからの撮像信号の出力と比較して低下することを防ぎ、第1光電変換部82cからの撮像信号が十分な出力に達する前に、第2光電変換部83cからの撮像信号の出力が飽和することを防ぐ。   On the other hand, the present embodiment has a structure shown in FIG. Therefore, it is possible to prevent the output of the imaging signal from the first photoelectric conversion unit 82c from being lowered as compared with the output of the imaging signal from the second photoelectric conversion unit 83c, and the imaging signal from the first photoelectric conversion unit 82c is sufficient. Before reaching the output, the output of the imaging signal from the second photoelectric conversion unit 83c is prevented from being saturated.

焦点検出演算回路14は、上述した構造を有する撮像画素80から出力された撮像信号を焦点検出用信号として用いて、公知の位相差検出方式を用いてデフォーカス量を算出する。焦点検出演算回路14は、第1光電変換部82からの焦点検出信号を順次並べた第1信号列{an}と、第2光電変換部83からの焦点検出信号を順次並べた第2信号列{bn}との相対的なズレ量を検出し、撮影レンズ系1の焦点調節状態、すなわちデフォーカス量を検出する。   The focus detection calculation circuit 14 uses the imaging signal output from the imaging pixel 80 having the above-described structure as a focus detection signal, and calculates a defocus amount using a known phase difference detection method. The focus detection calculation circuit 14 includes a first signal sequence {an} in which focus detection signals from the first photoelectric conversion unit 82 are sequentially arranged, and a second signal sequence in which focus detection signals from the second photoelectric conversion unit 83 are sequentially arranged. A relative shift amount with respect to {bn} is detected, and a focus adjustment state of the photographing lens system 1, that is, a defocus amount is detected.

画像処理回路13は、画像データを生成する際に、撮像画素80から出力された撮像信号を画像信号として使用する。画像処理回路13は、各撮像画素80について、第1光電変換部82から出力された撮像信号と、第2光電変換部83から出力された撮像信号とを加算して画像信号として扱う。したがって、第1光電変換部82と第2光電変換部83の面積差による影響はない。撮像画素80には、R色、G色またはB色の何れかのカラーフィルタが設けられているので、加算された画像信号は撮像画素80に設けられたカラーフィルタに応じた色情報を有する。画像処理回路13は、加算により生成した画像信号に対して種々の画像処理を施して画像データを生成し、付加情報等を付与して画像ファイルを生成する。   The image processing circuit 13 uses the imaging signal output from the imaging pixel 80 as an image signal when generating image data. For each imaging pixel 80, the image processing circuit 13 adds the imaging signal output from the first photoelectric conversion unit 82 and the imaging signal output from the second photoelectric conversion unit 83 to handle as an image signal. Therefore, there is no influence due to the area difference between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83. Since the imaging pixel 80 is provided with a color filter of any of R, G, and B colors, the added image signal has color information corresponding to the color filter provided in the imaging pixel 80. The image processing circuit 13 performs various image processing on the image signal generated by the addition to generate image data, and adds additional information and the like to generate an image file.

上述した実施の形態によれば、次の作用効果が得られる。
全ての複数の撮像画素80では、一対の第1光電変換部82と第2光電変換部83との面積の合計が実質的に等しく、複数の撮像画素80の配列位置、すなわち撮像素子8の中心付近からの距離に応じて、一対の第1光電変換部82および第2光電変換部83の面積が異なる。すなわち、撮像素子8の中央付近からの距離が増加するほど、一対の第1光電変換部82と第2光電変換部83との面積差が増加する。したがって、射出瞳距離PO1が撮像素子8の射出瞳距離PO2よりも長い撮影レンズ系1が装着された場合のように、撮像素子8の周辺部にて入射光束がケラレの影響を受けるような場合であっても、第1光電変換部82または第2光電変換部83への入射光量を確保することができる。このため、ケラレの影響を受けた光束851を第1光電変換部82が演算可能となる光量を受光するまでに、第2光電変換部83がケラレの影響を受けていない光束852を受光した第2光電変換部83の出力が飽和することを防ぎ、焦点検出精度の低下を抑制できる。
According to the embodiment described above, the following operational effects can be obtained.
In all of the plurality of imaging pixels 80, the total area of the pair of first photoelectric conversion units 82 and second photoelectric conversion units 83 is substantially equal, and the arrangement position of the plurality of imaging pixels 80, that is, the center of the imaging element 8. The areas of the pair of first photoelectric conversion units 82 and second photoelectric conversion units 83 differ depending on the distance from the vicinity. That is, as the distance from the vicinity of the center of the image sensor 8 increases, the area difference between the pair of first photoelectric conversion units 82 and second photoelectric conversion units 83 increases. Accordingly, the incident light flux is affected by vignetting at the periphery of the image sensor 8 as in the case where the photographing lens system 1 having the exit pupil distance PO1 longer than the exit pupil distance PO2 of the image sensor 8 is mounted. Even so, the amount of light incident on the first photoelectric conversion unit 82 or the second photoelectric conversion unit 83 can be secured. Therefore, the second photoelectric conversion unit 83 receives the light beam 852 that is not affected by the vignetting until the second photoelectric conversion unit 83 receives the light amount that the first photoelectric conversion unit 82 can calculate the light beam 851 that is affected by the vignetting. It is possible to prevent the output of the two photoelectric conversion unit 83 from being saturated, and to suppress a decrease in focus detection accuracy.

次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)実施の形態においては、図4に示すように撮像画素80の射出瞳距離PO2よりも撮影レンズ系1の射出瞳距離PO1が長い場合について説明したが、射出瞳距離PO1が短い撮影レンズ系1が装着された場合について説明する。この場合、光束851にはケラレは生じないが光束852にはケラレが生じる。このため、被写体からの光束851は、撮影レンズ系1の射出瞳領域841を通過し、撮像画素80cのマイクロレンズ81cを介して第1光電変換部82cに入射する。また、光束852がケラレることにより、光束852の一部が撮影レンズ系1の射出瞳領域842を通過し、マイクロレンズ81cを介して第2光電変換部83cに入射する。この場合に撮像素子8の周辺領域におけるケラレの影響を低減するためには、撮像素子80cの第1光電変換部82cの面積を第2光電変換部83cの面積と比べて大きくなるように構成すればよい。すなわち、図3(a)に示す撮像画素80cに代えて撮像画素80eを配列すればよい。
The following modifications are also within the scope of the present invention, and one or a plurality of modifications can be combined with the above-described embodiment.
(1) In the embodiment, the case where the exit pupil distance PO1 of the photographing lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80 as shown in FIG. A case where the system 1 is mounted will be described. In this case, vignetting does not occur in the light beam 851, but vignetting occurs in the light beam 852. Therefore, the light beam 851 from the subject passes through the exit pupil region 841 of the photographing lens system 1 and enters the first photoelectric conversion unit 82c via the microlens 81c of the imaging pixel 80c. Further, the vignetting of the light beam 852 causes a part of the light beam 852 to pass through the exit pupil region 842 of the photographing lens system 1 and enter the second photoelectric conversion unit 83c via the micro lens 81c. In this case, in order to reduce the influence of vignetting in the peripheral region of the image sensor 8, the area of the first photoelectric conversion unit 82c of the image sensor 80c is configured to be larger than the area of the second photoelectric conversion unit 83c. That's fine. That is, the imaging pixel 80e may be arranged in place of the imaging pixel 80c shown in FIG.

図5に、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1に対応させる場合の撮像素子8における撮像画素80の配列の例を示す。図5に示すように、撮像素子8の中心列Cからx方向+側においては、第1光電変換部82の面積は第2光電変換部83の面積よりも小さく、かつ、中心列Cからの距離に応じて第1光電変換部82の面積と第2光電変換部83の面積との差分が大きくなる。x方向−側においては、第2光電変換部83の面積は第1光電変換部82の面積よりも小さく、かつ、中心列Cからの距離に応じて第2光電変換部83の面積と第1光電変換部82の面積との差分が大きくなる。この場合も、各行において、撮像素子8の中心列Cに配列される撮像画素80では、第1光電変換部82の面積と第2光電変換部83の面積とは等しい。   FIG. 5 shows an example of the arrangement of the imaging pixels 80 in the imaging element 8 when the exit pupil distance PO1 is made to correspond to the photographing lens system 1 shorter than the exit pupil distance PO2. As shown in FIG. 5, the area of the first photoelectric conversion unit 82 is smaller than the area of the second photoelectric conversion unit 83 on the x direction + side from the center column C of the image sensor 8, and from the center column C. The difference between the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 increases according to the distance. On the x direction − side, the area of the second photoelectric conversion unit 83 is smaller than the area of the first photoelectric conversion unit 82, and the first photoelectric conversion unit 83 and the first photoelectric conversion unit 83 are arranged according to the distance from the center column C. The difference from the area of the photoelectric conversion unit 82 increases. Also in this case, the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 are equal in the imaging pixels 80 arranged in the center column C of the imaging element 8 in each row.

(2)図6に、射出瞳距離PO1が射出瞳距離PO2よりも長い撮影レンズ系1と、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1とのいずれの撮影レンズ系1に対しても対応させる場合の撮像素子8の撮像画素80の配列の例を示す。この場合、図3(a)に示す構造を有する撮像画素80が配列された行(図6の行D2、D4、D6)と、図5に示す構造を有する撮像画素80が配列された行(図6の行D1、D3、D5)とがy方向に沿って交互に配置される。したがって、射出瞳距離PO1が射出瞳距離PO2よりも長い撮影レンズ系1の場合には、行D2、D4、D6に配列された撮像画素80から出力された撮像信号を使用し、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1の場合には、行D1、D3、D5に配列された撮像画素80から出力された撮像信号を使用することにより、ケラレによる影響を低減した焦点検出を行うことが可能となる。 (2) In FIG. 6, the photographing lens system 1 is any of the photographing lens system 1 whose exit pupil distance PO1 is longer than the exit pupil distance PO2 and the photographing lens system 1 whose exit pupil distance PO1 is shorter than the exit pupil distance PO2. An example of the arrangement of the image pickup pixels 80 of the image pickup device 8 in the case of corresponding to each other is also shown. In this case, a row in which the imaging pixels 80 having the structure shown in FIG. 3A are arranged (rows D2, D4, and D6 in FIG. 6) and a row in which the imaging pixels 80 having the structure shown in FIG. Rows D1, D3, D5) in FIG. 6 are alternately arranged along the y direction. Therefore, in the case of the taking lens system 1 in which the exit pupil distance PO1 is longer than the exit pupil distance PO2, the imaging signals output from the imaging pixels 80 arranged in the rows D2, D4, and D6 are used, and the exit pupil distance PO1. In the case of the taking lens system 1 shorter than the exit pupil distance PO2, by using the image pickup signal output from the image pickup pixels 80 arranged in the rows D1, D3, D5, focus detection with reduced influence of vignetting Can be performed.

(3)撮像画素80が有する第1光電変換部82と第2光電変換部83とがx方向に並んで配列されるものに代えて、第1光電変換部82と第2光電変換部とがy方向に並んで配列されるものについても本発明の一態様に含まれる。また、撮像素子8は、第1光電変換部82と第2光電変換部83とがx方向に並んで配列された撮像画素80と、第1光電変換部82と第2光電変換部83とがy方向に並んで配列された撮像画素80とが配列されたものについても本発明の一態様に含まれる。 (3) Instead of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 included in the imaging pixel 80 being arranged side by side in the x direction, the first photoelectric conversion unit 82 and the second photoelectric conversion unit What is arranged side by side in the y direction is also included in one embodiment of the present invention. The imaging element 8 includes an imaging pixel 80 in which a first photoelectric conversion unit 82 and a second photoelectric conversion unit 83 are arranged in the x direction, and a first photoelectric conversion unit 82 and a second photoelectric conversion unit 83. An arrangement in which the imaging pixels 80 arranged in the y direction are arranged is also included in one embodiment of the present invention.

(4)図7に示すように、一対の撮像画素80の一方に第1光電変換部82が配置され、他方の撮像画素80に第2光電変換部83が配置される撮像素子8についても本発明の一態様に含まれる。この場合、撮像素子8の中心列Cに配列された一対の撮像画素80a1および80a2においては、撮像画素80a1が有する第2光電変換部83aと、撮像画素80a2が有する第1光電変換部82aとは、実質的に面積が等しい。撮像素子8の周辺部(図7においてはx方向+側)に配置された一対の撮像画素80c1および80c2においては、撮像画素80c1が有する第2光電変換部83cの面積は、撮像画素80c2が有する第1光電変換部82cの面積と比べて大きい。面積の差分は実施の形態の場合と同様に、撮像素子8の中心列Cからの距離に応じて決定される。したがって、撮像素子8が図7に示す構成を有する撮像画素80により構成される場合であっても、撮像素子8の周辺部における光束のケラレの影響を低減して入射光量を維持することができるので、焦点検出精度の低下を抑制できる。 (4) As shown in FIG. 7, the image sensor 8 in which the first photoelectric conversion unit 82 is arranged in one of the pair of imaging pixels 80 and the second photoelectric conversion unit 83 is arranged in the other imaging pixel 80 is also present. It is included in one aspect of the invention. In this case, in the pair of imaging pixels 80a1 and 80a2 arranged in the center column C of the imaging element 8, the second photoelectric conversion unit 83a included in the imaging pixel 80a1 and the first photoelectric conversion unit 82a included in the imaging pixel 80a2 , The area is substantially equal. In the pair of imaging pixels 80c1 and 80c2 arranged in the peripheral portion of the imaging element 8 (x direction + side in FIG. 7), the imaging pixel 80c2 has an area of the second photoelectric conversion unit 83c included in the imaging pixel 80c1. It is larger than the area of the first photoelectric conversion unit 82c. The area difference is determined according to the distance from the center row C of the image sensor 8 as in the case of the embodiment. Therefore, even when the imaging device 8 is configured by the imaging pixel 80 having the configuration shown in FIG. 7, it is possible to reduce the influence of vignetting on the peripheral portion of the imaging device 8 and maintain the incident light amount. Therefore, it is possible to suppress a decrease in focus detection accuracy.

本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。   As long as the characteristics of the present invention are not impaired, the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

8…撮像素子、13…画像処理回路、14…焦点検出演算回路、
80…撮像画素、81…マイクロレンズ、82…第1光電変換部、
83…第2光電変換部、100…デジタルカメラ
8 ... Image sensor, 13 ... Image processing circuit, 14 ... Focus detection arithmetic circuit,
80 ... Imaging pixels, 81 ... Microlens, 82 ... First photoelectric conversion unit,
83: Second photoelectric conversion unit, 100: Digital camera

Claims (10)

複数のマイクロレンズと、前記複数のマイクロレンズのそれぞれに対して設けられ、一対の瞳領域を通過した一対の光束を受光する一対の光電変換部と、を有し、二次元状に配列された複数の画素を備え、
前記複数の画素は、前記一対の光電変換部の面積の合計が実質的に等しく、
前記複数の画素の配列位置に応じて、前記一対の光電変換部のそれぞれの面積が異なる撮像素子。
A plurality of microlenses, and a pair of photoelectric conversion units that are provided for each of the plurality of microlenses and receive a pair of light beams that have passed through a pair of pupil regions, and are arranged in a two-dimensional manner With multiple pixels,
In the plurality of pixels, the total area of the pair of photoelectric conversion units is substantially equal,
An image sensor in which the areas of the pair of photoelectric conversion units are different depending on the arrangement position of the plurality of pixels.
請求項1に記載の撮像素子において、
前記配列位置の中央付近からの距離の増加に応じて、前記一対の光電変換部の面積差が増加する撮像素子。
The imaging device according to claim 1,
An imaging device in which an area difference between the pair of photoelectric conversion units increases as the distance from the center of the array position increases.
請求項1または2に記載の撮像素子において、
前記配列位置の中心付近から前記一対の光電変換部の並び方向における第1方向に沿った距離が増加すると一方の光電変換部に対する他方の光電変換部の面積差が増加し、前記配列位置の中心付近から前記第1方向とは逆方向である第2方向に沿った距離が増加すると、前記他方の光電変換部に対する前記一方の光電変換部の面積差が増加する撮像素子。
The image sensor according to claim 1 or 2,
When the distance along the first direction in the arrangement direction of the pair of photoelectric conversion units increases from the vicinity of the center of the array position, an area difference between the other photoelectric conversion unit with respect to one photoelectric conversion unit increases, and the center of the array position The imaging device in which an area difference between the one photoelectric conversion unit with respect to the other photoelectric conversion unit is increased when a distance along a second direction opposite to the first direction is increased from the vicinity.
請求項1乃至3の何れか一項に記載の撮像素子において、
前記二次元状に配列された前記複数の画素のうち、一の画素行における前記一対の光電変換部は、前記配列位置の中心付近から前記一対の光電変換部の並び方向における第1方向に沿った距離が増加すると一方の光電変換部に対する他方の光電変換部の面積差が増加し、前記配列位置の中心付近から前記第1方向とは逆方向である第2方向に沿った距離が増加すると、前記他方の光電変換部に対する前記一方の光電変換部の面積差が増加し、
他の画素行における前記一対の光電変換部は、前記配列位置の中心付近から前記一対の光電変換部の前記並び方向における前記第1方向に沿った距離が増加すると前記他方の光電変換部に対する前記一方の光電変換部の面積差が増加し、前記配列位置の中心付近から前記第2方向に沿った距離が増加すると、前記一方の光電変換部に対する前記他方の光電変換部の面積差が増加し、
前記一の画素行と前記他の画素行とが交互に配列される撮像素子。
The imaging device according to any one of claims 1 to 3,
Among the plurality of pixels arranged in the two-dimensional shape, the pair of photoelectric conversion units in one pixel row extends from the vicinity of the center of the arrangement position along a first direction in the arrangement direction of the pair of photoelectric conversion units. As the distance increases, the area difference between the other photoelectric conversion unit with respect to one photoelectric conversion unit increases, and the distance along the second direction, which is opposite to the first direction, increases from the vicinity of the center of the array position. , An area difference of the one photoelectric conversion unit with respect to the other photoelectric conversion unit is increased,
When the distance along the first direction in the arrangement direction of the pair of photoelectric conversion units increases from the vicinity of the center of the arrangement position, the pair of photoelectric conversion units in the other pixel rows is compared with the other photoelectric conversion unit. When the area difference of one photoelectric conversion unit increases and the distance along the second direction from the vicinity of the center of the arrangement position increases, the area difference of the other photoelectric conversion unit with respect to the one photoelectric conversion unit increases. ,
An image sensor in which the one pixel row and the other pixel row are alternately arranged.
請求項1乃至4の何れか一項に記載の撮像素子において、
前記一対の光電変換部は、並び方向に沿った方向の長さが前記配列位置の中心付近からの距離に応じて変化し、前記並び方向に直交する方向に沿った長さは前記中心付近からの距離によらず一定である撮像素子。
The imaging device according to any one of claims 1 to 4,
In the pair of photoelectric conversion units, the length in the direction along the arrangement direction changes according to the distance from the vicinity of the center of the arrangement position, and the length along the direction orthogonal to the arrangement direction from the vicinity of the center. An image sensor that is constant regardless of the distance.
請求項1乃至5の何れか一項に記載の撮像素子において、
前記一対の光電変換部の面積差は、前記配列位置の中心付近からの距離に応じて線形変化することを特徴とする撮像素子。
In the imaging device according to any one of claims 1 to 5,
The image sensor, wherein the difference in area between the pair of photoelectric conversion units linearly changes in accordance with a distance from the vicinity of the center of the arrangement position.
複数のマイクロレンズと、前記複数のマイクロレンズのそれぞれに対して設けられ、二次元状に配置された複数の画素を備え、
前記複数の画素は、一対の瞳領域を通過した一対の光束の一方を受光する光電変換部を有する第1画素と、前記一対の瞳領域を通過した一対の光束の他方を受光する光電変換部を有する第2画素とが交互に配置され、
前記一対の光束の一方を受光する前記第1画素の前記光電変換部および前記一対の光束の他方を受光する前記第2画素の前記光電変換部の面積の合計が実質的に等しく、
前記複数の画素の配列位置に応じて、前記第1画素の前記光電変換部の面積と前記第2画素の前記光電変換部の面積とがそれぞれ異なる撮像素子。
A plurality of microlenses and a plurality of pixels arranged in a two-dimensional manner provided for each of the plurality of microlenses,
The plurality of pixels include a first pixel having a photoelectric conversion unit that receives one of a pair of light beams that have passed through a pair of pupil regions, and a photoelectric conversion unit that receives the other of the pair of light beams that have passed through the pair of pupil regions. Are alternately arranged with second pixels having
The sum of the areas of the photoelectric conversion unit of the first pixel that receives one of the pair of light beams and the photoelectric conversion unit of the second pixel that receives the other of the pair of light beams is substantially equal,
An image sensor in which an area of the photoelectric conversion unit of the first pixel and an area of the photoelectric conversion unit of the second pixel are different from each other in accordance with an arrangement position of the plurality of pixels.
請求項7に記載の撮像素子において、
前記配列位置の中央付近からの距離の増加に応じて、前記第1画素の前記光電変換部と前記第2画素の前記光電変換部との面積差が増加する撮像素子。
The image pickup device according to claim 7,
The imaging device in which an area difference between the photoelectric conversion unit of the first pixel and the photoelectric conversion unit of the second pixel increases as the distance from the center of the arrangement position increases.
請求項1乃至8の何れか一項に記載の撮像素子と、
一対の光電変換部から出力される信号を用いて、被写体の焦点状態を検出する検出手段とを備える焦点検出装置。
The imaging device according to any one of claims 1 to 8,
A focus detection apparatus comprising: detection means for detecting a focus state of a subject using signals output from a pair of photoelectric conversion units.
請求項1乃至8の何れか一項に記載の撮像素子と、
一対の光電変換部から出力される信号を用いて、被写体の焦点状態を検出する検出手段と、
前記一対の光電変換部から出力される信号を加算して画像信号を生成する画像生成手段とを備える撮像装置。
The imaging device according to any one of claims 1 to 8,
Detecting means for detecting a focus state of a subject using signals output from a pair of photoelectric conversion units;
An image pickup apparatus comprising: an image generation unit that generates an image signal by adding signals output from the pair of photoelectric conversion units.
JP2014161634A 2014-08-07 2014-08-07 Image pick-up element, focus detection device and imaging device Pending JP2016038467A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014161634A JP2016038467A (en) 2014-08-07 2014-08-07 Image pick-up element, focus detection device and imaging device
JP2019023651A JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014161634A JP2016038467A (en) 2014-08-07 2014-08-07 Image pick-up element, focus detection device and imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019023651A Division JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device

Publications (1)

Publication Number Publication Date
JP2016038467A true JP2016038467A (en) 2016-03-22

Family

ID=55529582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014161634A Pending JP2016038467A (en) 2014-08-07 2014-08-07 Image pick-up element, focus detection device and imaging device

Country Status (1)

Country Link
JP (1) JP2016038467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031322A (en) * 2016-04-22 2022-02-18 株式会社ニコン Imaging element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204987A (en) * 2008-02-28 2009-09-10 Sony Corp Imaging apparatus and image pickup device
US20120268634A1 (en) * 2011-04-20 2012-10-25 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
JP2013037296A (en) * 2011-08-10 2013-02-21 Olympus Imaging Corp Image pickup apparatus and image pickup device
JP2014048459A (en) * 2012-08-31 2014-03-17 Canon Inc Distance calculation device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204987A (en) * 2008-02-28 2009-09-10 Sony Corp Imaging apparatus and image pickup device
US20120268634A1 (en) * 2011-04-20 2012-10-25 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
JP2012235444A (en) * 2011-04-20 2012-11-29 Canon Inc Image pickup device and image pickup apparatus
JP2013037296A (en) * 2011-08-10 2013-02-21 Olympus Imaging Corp Image pickup apparatus and image pickup device
JP2014048459A (en) * 2012-08-31 2014-03-17 Canon Inc Distance calculation device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022031322A (en) * 2016-04-22 2022-02-18 株式会社ニコン Imaging element
JP7476874B2 (en) 2016-04-22 2024-05-01 株式会社ニコン Image pickup element and image pickup device

Similar Documents

Publication Publication Date Title
JP5947602B2 (en) Imaging device
JP7264192B2 (en) Imaging element and imaging device
US11171169B2 (en) Image sensor, imaging device and imaging method
EP2747410A1 (en) Imaging apparatus
JP5625856B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL METHOD
JP5507761B2 (en) Imaging device
JP5204728B2 (en) Focus detection device
JP2018174542A (en) Image pickup device and image pickup apparatus
KR20150121564A (en) Imaging device and photographing apparatus
JP6561437B2 (en) Focus adjustment device and imaging device
JP6890766B2 (en) Detection device
JP2016038467A (en) Image pick-up element, focus detection device and imaging device
JP6234094B2 (en) Focus detection apparatus and imaging apparatus
JP2024022636A (en) Image sensor
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP6349624B2 (en) Image sensor and focus detection apparatus
JP7419975B2 (en) Imaging element and imaging device
JP5407567B2 (en) Imaging device and imaging element unit
JP7019442B2 (en) Image pickup device and its control method
JP2022158486A (en) Imaging element, focus detection device, and imaging device
JP5464285B2 (en) Focus detection device
JP2015102840A (en) Focus detection device
JP5649837B2 (en) Stereo imaging device
JP2014056088A (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181113