JP2021139793A - 流体取扱装置、分散液製造セット、および分散液の製造方法 - Google Patents

流体取扱装置、分散液製造セット、および分散液の製造方法 Download PDF

Info

Publication number
JP2021139793A
JP2021139793A JP2020038741A JP2020038741A JP2021139793A JP 2021139793 A JP2021139793 A JP 2021139793A JP 2020038741 A JP2020038741 A JP 2020038741A JP 2020038741 A JP2020038741 A JP 2020038741A JP 2021139793 A JP2021139793 A JP 2021139793A
Authority
JP
Japan
Prior art keywords
sample
flow path
dispersion liquid
fluid handling
dispersion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020038741A
Other languages
English (en)
Inventor
誠一郎 鈴木
Seiichiro Suzuki
誠一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2020038741A priority Critical patent/JP2021139793A/ja
Priority to CN202110201305.9A priority patent/CN113358454A/zh
Priority to US17/190,466 priority patent/US11933705B2/en
Publication of JP2021139793A publication Critical patent/JP2021139793A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0493Specific techniques used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/383Diluting, dispersing or mixing samples collecting and diluting in a flow of liquid

Abstract

【課題】サンプルを含む液滴が分散媒に分散された分散液を、確実に生成可能な流体取扱装置を提供すること。【解決手段】流体取扱装置は、サンプルを流動させるためのサンプル流路と、分散媒を流動させるための分散媒流路と、前記サンプル流路および前記分散媒流路に接続され、前記サンプルを前記分散媒によって分断して、前記サンプルの液滴が前記分散媒に分散された分散液を生成するための分散液生成部と、前記分散液生成部に接続された、前記分散液を流動させるための分散液流路と、を有し、前記分散液流路の内壁の一部の、水に対する接触角をX°とし、前記サンプルについて、25℃で落急式粘度計にて測定される粘度をY(mPa・s)としたとき、前記Xおよび前記Yが下記式を満たす。Y≦0.0436X−1.2563【選択図】図1

Description

本発明は、流体取扱装置、分散液製造セット、および分散液の製造方法に関する。
臨床検査や食物検査、環境検査等では、細胞や、タンパク質、核酸などの微量な被分析物の高精度な分析が要求されることがある。微量な被分析物の分析を行う手法の一つとして、被分析物を含む液体から、直径が0.1〜1000μmの液滴を生成し、これを観察したり分析したりする手法がある。
当該液滴を作製する手法として、各種方法が提案されている。例えば、特許文献1では、マイクロチャネル内の第1流路を流れる連続相(分散媒)に、第1流路に接続された第2流路からサンプル等を導入し、連続相の剪断力によって、サンプルを液滴に分断する方法が記載されている。
国際公開第2002/068104号
しかしながら、特許文献1のような方法において、流路を構成する材料と、サンプルとの親和性が高いと、分断された液滴(サンプル)が、流路の壁面に付着することがある。
このような液滴が流路の壁面に付着していると、後から生成した液滴が、先に生成した液滴に連結し、流路の壁面に付着した液滴が徐々に大きくなる。そして、次々と液滴が結合することにより、サンプルが層流となって、流路内を移動する。つまり、サンプルの分断が適切に行われなくなり、分散液の生成が困難となる。また特に、サンプルの粘度が高い場合には、このような現象が生じやすい。
本発明は、上記課題を鑑みてなされたものである。具体的には、サンプルを含む液滴が分散媒に分散された分散液を、確実に生成可能な流体取扱装置や、これを含む分散液製造セット、および分散液の製造方法の提供を目的とする。
上記の課題を解決するため、本発明は、以下の流体取扱装置を提供する。
サンプルを流動させるためのサンプル流路と、分散媒を流動させるための分散媒流路と、前記サンプル流路および前記分散媒流路に接続され、前記サンプルを前記分散媒によって分断して、前記サンプルの液滴が前記分散媒に分散された分散液を生成するための分散液生成部と、前記分散液生成部に接続された、前記分散液を流動させるための分散液流路と、を有し、前記分散液流路の内壁の一部の、水に対する接触角をX(°)とし、前記サンプルについて、25℃で落急式粘度計にて測定される粘度をY(mPa・s)としたとき、前記Xおよび前記YがY≦0.0436X−1.2563を満たす、流体取扱装置。
本発明は、以下の分散液製造セットを提供する。
流体取扱装置と、前記流体取扱装置に流動させるための、極性溶媒を含むサンプルと、前記流体取扱装置に流動させるための、非極性溶媒を含む分散媒と、を含む、分散液製造セット。
本発明は、以下の分散液の製造方法を提供する。
上記の流体取扱装置の前記サンプル流路に、極性溶媒を含み、かつ25℃で落急式粘度計にて測定される粘度が1.5〜3.5mPa・sであるサンプルを流動させる工程と、前記サンプルを流動させる工程と略同時に、前記流体取扱装置の前記分散媒流路に、非極性溶媒を含む分散媒を流動させる工程と、を有する、分散液の製造方法。
本発明に係る流体取扱装置や、これを含む分散液の製造セット、さらにはこれを用いた分散液の製造方法によれば、サンプルを含む液滴が分散媒に分散された分散液を確実に生成可能である。
図1は、本発明の一実施形態に係る流体取扱装置の平面図である。 図2は、図1に示すA−A線での断面図である。 図3は、図1に示す流体取扱装置の底面図である。 図4は、図1に示す流体取扱装置の基板の平面図である。 図5は、本発明の一実施形態に係る流体取扱装置の分散液生成部に、サンプルおよび分散媒を流動させたときの図であり、図4において破線で示す領域の部分拡大図である。
以下、流体取扱装置やこれを含む分散液製造セット、当該流体取扱装置を用いた分散液の製造方法について、具体的な実施形態に基づき、詳しく説明する。ただし、流体取扱装置や分散液製造セット、分散液の製造方法は、以下の実施形態に限定されない。
本発明の一実施形態に係る流体取扱装置100の平面図を図1に示し、図1におけるA−A線での断面図を図2に示し、当該流体取扱装置100の底面図を図3に示す。図2に示すように、本実施形態の流体取扱装置100は、基板11と、これを覆うフィルム12とから構成される。図4に、流体取扱装置100からフィルム12を取り外したときの基板11の平面図を示す。
ここで、本実施形態の流体取扱装置100は、サンプルを含む液滴が分散媒に分散された分散液を生成するための構成を有する。ただし、当該流体取扱装置100は、当該分散液を作製するための構成だけでなく、当該分散液の作製後、分散液を保管したりする構成を有していてもよく、サンプル中の成分を観察したり検査したりするための構成等を有していてもよい。
また、本実施形態の流体取扱装置100によって生成する分散液中の液滴の大きさは特に制限されないが、その粒径は0.1μm以上1000μm以下が好ましく、5μm以上200μm以下がより好ましい。
なお、本実施形態の流体取扱装置100は特に、サンプルが極性溶媒を含む液体(例えば水溶液または水分散液等)であり、かつ分散媒がサンプルと相溶しない無極性溶媒の液体(例えばオイル等)である場合に、非常に有用である。以下、本実施形態の流体取扱装置100について、詳しく説明する。
本実施の形態の流体取扱装置100は、図2に示すように、溝や凹部、貫通孔等を有する基板11と、当該基板11を覆うように基板11に貼り合わせられた平板状のフィルム12と、から構成される。
図4に示すように、基板11には、サンプル導入部用貫通孔110a、サンプル流路用溝111a、分散媒導入部用貫通孔120a、分散媒流路用溝121a、分散液生成部用凹部130a、分散液流路用溝131a、および分散液回収部用貫通孔140aが形成されている。
サンプル流路111は、サンプルを流動させるための領域であり、一端がサンプル導入部110に接続され、他端が後述の分散液生成部130に接続された流路である。本実施形態では、基板11に配置されたサンプル流路用溝111aと、フィルム12と、に囲まれた領域がサンプル流路111となる。サンプル流路111(サンプル流路用溝111a)の幅や深さは、サンプル導入部110から導入されたサンプルを分散液生成部130側に流動させることが可能であれば、特に制限されない。
また、サンプル流路111の断面の形状は、特に制限されず、半円状や矩形状、円形状等、いずれの形状であってもよい。なお、本明細書において「流路の断面」とは、流路の流れ方向に直交する向きの断面を意味する。
サンプル導入部110は、流体取扱装置100内にサンプルを導入するための構造である。本実施形態では、基板11に配置されたサンプル導入部用貫通孔110aと、フィルム12と、に囲まれた領域がサンプル導入部110となる。本実施形態において、サンプル導入部用貫通孔110aは、基板11に設けられた円柱状の貫通孔であるが、当該形状に制限されず、例えばチューブやシリンジ等と接続するための構造等を有していてもよい。また、サンプル導入部110(サンプル導入部用貫通孔110a)の開口径はサンプルを導入可能であれば特に制限されない。
なお、本実施形態の流体取扱装置100では、1つのサンプル導入部110と、当該サンプル導入部110に接続された直線状のサンプル流路111と、を有する。ただし、流体取扱装置100は、サンプル流路111がその上流側(サンプル導入部110側)で複数に分岐していてもよい。また、流体取扱装置100は、複数のサンプル導入部110を有していてもよい。例えば、複数に分岐したサンプル流路111の上流端が、異なるサンプル導入部110に接続されている場合、各サンプル導入部110から、サンプル流路111内に異なる成分を導入することができる。そして、サンプル流路111内で複数の成分を混合したり反応させたりすることも可能となる。
分散媒流路121は、分散媒を流動させるための領域であり、一端が分散媒導入部120に接続され、他端が後述の分散液生成部130に接続された流路である。本実施の形態では、基板11に配置された分散媒流路用溝121aと、フィルム12と、に囲まれた領域が分散媒流路121となる。分散媒流路121(分散媒流路用溝121a)の幅や深さは、分散媒導入部120から導入された分散媒を分散液生成部130側に流動させることが可能であれば制限されない。また、分散媒流路121の断面の形状も特に制限されず、半円状や矩形状、円形状等、いずれの形状であってもよい。
分散媒導入部120は、流体取扱装置100内に分散媒を導入するための構造である。本実施の形態では、基板11に配置された分散媒導入部用貫通孔120aとフィルム12とに囲まれた領域が、分散媒導入部用貫通孔120aとなる。なお、本実施の形態において、分散媒導入部用貫通孔120aは、基板11に設けられた円柱状の貫通孔であるが、当該形状に制限されない。分散媒導入部120(分散媒導入部用貫通孔120a)は、チューブやシリンジ等と接続するための構造等を有していてもよい。また、分散媒導入部120(分散媒導入部用貫通孔120a)の開口径は分散媒を導入可能であれば特に制限されない。
なお、本実施形態の流体取扱装置100では、2つの分散媒流路121の上流端に1つの分散媒導入部120が配置されている。ただし、流体取扱装置100は、分散媒導入部120を複数有していてもよく、例えば、各分散媒流路121の上流端に、それぞれ分散媒導入部120が配置されていてもよい。
一方、分散液生成部130は、上記サンプル流路111および分散媒流路121にそれぞれ接続された領域であり、当該分散液生成部130の下流側は、分散液流路131に接続されている。本実施形態では、基板11に配置された分散液生成部用凹部130aと、フィルム12と、に囲まれた領域が分散液生成部130となる。流体取扱装置100にサンプル13および分散媒14を流動させたときの、分散液生成部130近傍の部分拡大図(図4において破線で示す領域の部分拡大図)を図5に示す。
当該分散液生成部130では、サンプル流路111から流入するサンプル13を、分散媒流路121から流入する分散媒14によって分断する。本実施の形態では、サンプル流路111から分散液生成部130に流入するサンプル13の流れと、分散媒流路121から分散液生成部130に流入する分散媒14の流れとが、略直交するように、サンプル流路111の開口部(下流端)、および2つの分散媒流路121の開口部(下流端)が配置されている。そのため、サンプル13に対して、分散媒14による剪断力が両側から加わり、サンプル13が容易に液滴状に分断される。ただし、分散媒14によってサンプル13を十分に分断可能であれば、当該分散液生成部130内でサンプル13と分散媒14がなす角度は略直角に制限されず、任意の角度とすることができる。
なお、分散液生成部130におけるサンプル流路111の開口部の大きさは、液滴の大きさに影響を及ぼしやすい。一般に、液滴の直径は、サンプル流路111の開口部の径と略同じになる。したがって、サンプル流路111の開口部の大きさ(深さおよび幅)は、液滴の所望の直径と同様とすることが好ましい。
また、分散液生成部130における分散媒流路121の開口部の大きさも、液滴の大きさ、数、生成歩留まり等に影響を及ぼしやすい。したがって、分散媒流路121の開口部の大きさ(深さおよび幅)は、所望の液滴の密度やサンプルの粘度等に応じて適宜選択される。
一方、分散液流路131は、分散液生成部130および分散液回収部140と接続され、サンプルを含む液滴が分散媒に分散された分散液を分散液回収部140側に流動させる流路である。本実施形態では、基板11に配置された分散液流路用溝131aと、フィルム12と、に囲まれた領域が分散液流路131となる。
分散液流路131の断面の大きさ(深さおよび幅)は、液滴の移動を妨げないようにするため、液滴の大きさより大きいことが好ましく、例えばサンプル流路111の分散液生成部130側の開口部の大きさ(深さおよび幅)以上に設定されていることが好ましい。分散液流路131の断面の形状は特に制限されず、半円状や矩形状、円形状等、いずれの形状であってもよい。
また、分散液回収部140は、分散液流路131に接続されており、液滴を含む分散液を回収するための取出口である。本実施形態では、分散液回収部140が、基板11に形成された分散液回収部用貫通孔140aと、当該分散液回収部用貫通孔140aの一方の開口部を塞ぐフィルム12とによって構成される。分散液回収部140(分散液回収部用貫通孔140a)の構造は、液滴を含む分散液を回収することができれば特に制限されない。本実施形態では、分散液回収部140(分散液回収部用貫通孔140a)の形状が円柱形状であるが、チューブやシリンジ等と接続するための構造等を有していてもよい。また、分散液回収部140(分散液回収部用貫通孔140a)の開口径は分散液を回収可能であれば特に制限されない。
ここで、本実施形態の流体取扱装置100では、上記分散液流路131の内壁の一部の、水に対する接触角をX(°)とし、流体取扱装置100に流すサンプル13のサンプルについて、25℃で落急式粘度計にて(ヘップラーの落球原理に基づく方法で)測定される粘度をY(mPa・s)としたとき、前記Xおよび前記Yが、式Y≦0.0436X−1.2563を満たす。水に対する接触角とは、25℃において、JIS3257の静滴法に基づく方法により測定される値である。さらに、分散液流路131の内壁の少なくとも一部の領域の、水に対する接触角Xは、Y≦0.0436X−1.4741を満たすことがより好ましい。分散液流路131の内壁の一部の、水に対する接触角Xと、サンプルの粘度Yとが、上記式を満たすと、分散液生成部130で生成された液滴が分散液流路131の内壁に付着し難くなる。
なお、分散液流路131の内壁全ての、水に対する接触角Xと、サンプルの粘度Yとが、上記式を満たしてもよいが、分散液流路131の内壁の一部領域のみ(例えば分散液流路131の断面の一部のみ、もしくは分散液流路131を平面視したときの一部のみ)の水に対する接触角Xと、サンプルの粘度Yとが、上記式を満たしてもよい。
ただし、分散液流路131を平面視したとき、上記式を満たす領域が、分散液生成部130近傍に形成されていることが特に好ましい。分散液生成部130の近傍において、分散液流路131の内壁の水に対する接触角Xと、サンプルの粘度Yとが上記式を満たすと、液滴が当該領域に溜まり難くなる。
例えば、後述の実施例2のように、フィルム12として、酸変性ポリプロピレンエラストマーからなるフィルム(フィルム12の水に対する接触角Xfが98°)を使用し、基板11として、ポリプロピレンからなる基板(水に対する接触角Xbが103°)を使用し、サンプルの粘度Yを2.88mPa・sとすると分散液流路131を囲む全ての面の接触角が、上記範囲を満たす。これにより、サンプルを含む液滴が分散液流路131内で滞留することなく流動する。
ここで、分散液流路131の内壁の少なくとも一部の水に対する接触角Xと、サンプルの粘度Yとが、上記式を満たすようにする方法は特に制限されず、例えばフィルム12の水に対する接触角Xfが上記式を満たすように調整してもよく、基板11の水に対する接触角Xbが、上記式を満たすように調整してもよい。また、基板11またはフィルム12の所望の位置(分散液流路131に対応する位置)に、水に対する接触角Xlが上記式を満たす層(以下、「撥水層」とも称する)を形成してもよい。また、これらを組み合わせてもよい。
式Y≦0.0436Xf−1.2563を満たすことが可能なフィルム12や、式Y≦0.0436Xb−1.2563を満たすことが可能な基板11を構成する材料の例には、シクロオレフィンコポリマー(COC)、ポリプロピレン(PP)、フッ素樹脂(FEP)、ポリテトラフルオロエチレン樹脂(PTFE)、ポリジメチルシロキサン(PDMS)、エラストマー等が含まれる。エラストマーは、熱可塑性エラストマーであってもよく、熱硬化性エラストマー樹脂であってもよい。熱硬化性エラストマーの例には、ポリウレタン系エラストマー、ポリシリコーン系エラストマー等が含まれる。熱可塑性エラストマーの例には、スチレン系エラストマー、オレフィン系エラストマー、ポリエステル系エラストマー等が含まれる。オレフィン系エラストマーの具体例には、ポリプロピレン系エラストマーが含まれ、その例には、三菱ケミカル社製のZELAS(同社の登録商標)が含まれる。ポリエステル系エラストマーの例には、東洋紡社製ペルプレン(同社の登録商標)、東レ・デュポン社製ハイトレル(同社の登録商標)等が含まれる。フィルム12や基板11は、これらを一種のみ含んでいてもよく、二種以上含んでいてもよい。
また、式Y≦0.0436Xl−1.2563を満たすことが可能な撥水層の材料の例には、フッ素、クロロジメチルシラン、シリコーン(ケイ素)等が含まれる。撥水層の形成方法は特に制限されず、例えば基板11やフィルム12全体に、当該材料を含む組成物をロール塗布、浸漬塗布、スプレー塗布等の各種塗布方法によって塗布してもよい。また、撥水層を形成する方法には、CVD法(化学気相成長法)や、蒸着法、溶液コート法等も含まれる。一方、フィルム12や基板11の所望の領域(例えば基板11の分散液流路用溝131a)のみに、当該材料を含む組成物を印刷したり付着させたりしてもよい。また、公知の方法により基板11およびフィルム12を貼り合わせた後、サンプル導入部110または分散媒導入部120等から分散液回収部140に向けて上記材料を含む液体を流動させ、必要に応じて乾燥または硬化させて、分散液流路131に撥水層を形成してもよい。
なお、分散液流路131の内壁の少なくとも一部の水に対する接触角X(Xb、Xf、またはXl)は、具体的には95°以上が好ましく、95〜115°がより好ましい。接触角X(Xb、Xf、またはXl)が上記範囲であると、比較的粘度の高いサンプルを使用したとしても、上記式を満たしやすくなる。
なお、上記撥水層を形成する場合、基板11の水に対する接触角Xbや、フィルム12の水に対する接触角Xfは、上記式を満たさなくてもよい。同様に、基板11およびフィルム12のうち、いずれか一方の水に対する接触角XbまたはXfが上記式を満たす場合、他方の水に対する接触角は、上記式を満たさなくてもよい。このようなフィルム12や基板11を構成する材料の例には、ポリエチレンテレフタレート等のポリエステル;ポリカーボネート;ポリメタクリル酸メチル等のアクリル樹脂;ポリ塩化ビニル;ポリエチレン、ポリプロピレン、およびシクロオレフィン樹脂等のポリオレフィン;ポリエーテル;ポリスチレン;シリコーン樹脂;ならびに上記以外のエラストマー等の樹脂材料等が含まれる。
また、基板11やフィルム12の成形方法は特に制限されず、公知の成型方法によって成形することができる。また、基板11およびフィルム12を貼り合わせる方法も特に制限されず、例えば熱融着してもよく、接着剤等を介して貼り合わせてもよい。
なお、上記流体取扱装置は、前記流体取扱装置に流動させるための極性溶媒を含むサンプルと、流体取扱装置に流動させるための非極性溶媒を含む分散媒と、ともに、分散液製造セットとして流通されてもよい。
(分散液の製造方法)
次に、本実施の形態に係る流体取扱装置100を用いた、分散液の製造方法(流体取扱方法)について説明する。
まず、サンプル導入部110にサンプルを導入し、これと略同時に分散媒導入部120に分散媒(例えばオイル)を導入する。
上記サンプルは、例えば、液滴として選別したい液体、または、液滴内に封入して選別したい被選別物を含む液体である。サンプルの例には、細胞、タンパク質、または核酸等を含む液体が含まれる。また、サンプルは、上記の細胞、タンパク質、または核酸等などの被選別物を分散させるための溶媒(好ましくは極性溶媒)をさらに含んでいてもよい。また、サンプルの25℃で落急式粘度計(ヘップラーの落球原理に基づく方法)にて測定される粘度は、1.5〜3.5mPa・sであることが好ましく、1.8〜2.9mPa・sであることがより好ましい。
また、分散媒は、サンプルとの相溶性が低く、分散液生成部130においてサンプル流路111を流れるサンプルを分断することができれば特に制限されないが、非極性溶媒を含むことが好ましい。
サンプルをサンプル導入部110に導入する際には、サンプル導入部110に圧力をかけてもよい。これにより、一定の流速でサンプルを、サンプル流路111内に導入できる。また同様に、分散媒を分散媒導入部120に導入する際、分散媒導入部120に圧力をかけてもよい。これにより、一定の流速で分散媒を、分散媒流路121内に導入できる。なお、サンプル導入部110や分散媒導入部120に圧力をかける代わりに、分散液回収部140側から吸引してもよい。
サンプル流路111にサンプル13を導入し、分散媒流路121に分散媒14を導入すると、図5に示すように、分散液生成部130において、サンプル13が、分散媒14によって分断される。そして、サンプル13の周囲が分散媒14で囲まれ、サンプルの液滴が分散媒中に分散した分散液が生成される。その後、液滴(サンプル)を含む分散液は、分散液流路131を流れ、分散液回収部140で回収される。
(効果)
本実施形態に係る流体取扱装置100では、分散液流路131の内壁の少なくとも一部の水に対する接触角Xと、サンプル13の粘度Yとが、所定の式を満たす。そのため、サンプル13の液滴が分散液流路131の内壁に付着し難い。またさらに、分散液流路131の内壁の接触角が比較的高く、オイル等の非極性溶媒を含む分散媒14と親和性が高い。したがって、分散液流路131の内壁が分散媒14によって覆われやすくなることでも、サンプル13の液滴が分散液流路131の内壁に付着し難くなる。その結果、分散液流路131内で液滴が滞留し難く、スムーズに分散液回収部140側に流動する。つまり、本実施形態に係る流体取扱装置100によれば、サンプルを含む液滴が分散媒に分散された分散液を確実に生成可能となる。
本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。
[比較例1]
図1に示す形状の流体取扱装置100を作成した。具体的には、シクロオレフィンコポリマー(COC)を用い、サンプル導入部用貫通孔110a、サンプル流路用溝111a、分散媒導入部用貫通孔120a、分散媒流路用溝121a、分散液生成部用凹部130a、分散液流路用溝131a、および分散液回収部用貫通孔140aを有する基板11を作製した。一方、シクロオレフィンコポリマー(COC)からなるフィルムを準備し、これをフィルム12とした。そして、基板11の溝や貫通孔を覆うようにフィルム12配置し、これらを熱圧着させた。当該流体取扱装置100では、分散液流路131が、シクロオレフィンコポリマー(COC)からなる基板11およびフィルム12に囲まれており、分散液流路131の全ての領域において、水との接触角が86°であった。なお、基板11およびフィルム12の水との接触角は、JIS3257の静滴法に準拠して測定した。
そして、当該流体取扱装置100に、サンプル導入部110からサンプル(ビーズ、界面活性剤入りの水溶液、25℃、落急式粘度計で測定される粘度:2.88mPa・s)を導入した。また、当該流体取扱装置の分散媒導入部120から分散媒(フッ素系不活性液体)を導入した。
そして、分散液生成部130でサンプルが分断され、かつ分散液流路131内を滞留することなく、分散液を生成できたか否かを以下の基準で評価した。結果を表1に示す。
〇:分散液(サンプルを含む液滴)が滞留なく、生成できた
×:サンプルを含む液滴が分散液流路131内に付着してしまい、サンプルが層流となった
[実施例1]
比較例1と同様に、シクロオレフィンコポリマー(COC)からなる基板11およびフィルム12を準備し、これらを熱圧着させた。そして、サンプル導入部110および分散媒導入部120からそれぞれ、フロロサーフ(フロロテクノロジー社製)を導入し、分散液回収部140から回収した。フロロサーフを流動させてから1分後、サンプル導入部110および分散媒導入部120に空気を導入し、サンプル流路111、分散媒流路121、分散液生成部130、および分散液流路131内に付着した、余剰のフロロサーフを除去した。その後、24時間静置し、内部を乾燥させて、流体取扱装置100を得た。当該流体取扱装置100では、分散液流路131内の水との接触角がいずれも、104°であった。水との接触角は、比較例1と同様に測定した。
その後、比較例1と同様に、サンプルおよび分散媒を導入し、当該流体取扱装置100によって分散液を生成できたか評価した。結果を表1に示す。
[実施例2]
基板11の材料をポリプロピレン(PP)とし、フィルム12の材料をZELAS(三菱ケミカル社製、ZELASは同社の登録商標)とした以外は、比較例1と同様に流体取扱装置100を作成した。当該流体取扱装置100では、分散液流路131内のフィルム12の水との接触角が、98°であり、基板11側(分散液流路用溝131a)の水との接触角が、103°であった。水との接触角は、比較例1と同様に測定した。
その後、比較例1と同様に、サンプルおよび分散媒を導入し、当該流体取扱装置100によって分散液を生成できたか評価した。結果を表1に示す。
[結果]
Figure 2021139793
上記表1に示されるように、分散液流路131内の水との接触角Xと、サンプルの25℃、落急式粘度計にて測定される粘度Y(2.88mPa・s)とが、Y≦0.0436X−1.2563を満たす場合に、分散液を安定して生成できた(実施例1および2)。一方で、当該式を満たさない場合には、分散液を生成する際に、サンプルが層流となってしまい、液滴を十分に生成できなかった(比較例1)。
本発明の流体取扱装置等は、例えば、臨床検査や食物検査、環境検査等に適用可能である。
11 基板
12 フィルム
13 サンプル
14 分散媒
100 流体取扱装置
110 サンプル導入部
110a サンプル導入部用貫通孔
111 サンプル流路
111a サンプル流路用溝
120 分散媒導入部
120a 分散媒導入部用貫通孔
121 分散媒流路
121a 分散媒流路用溝
130 分散液生成部
130a 分散液生成部用凹部
131 分散液流路
131a 分散液流路用溝
140 分散液回収部
140a 分散液回収用貫通孔

Claims (7)

  1. サンプルを流動させるためのサンプル流路と、
    分散媒を流動させるための分散媒流路と、
    前記サンプル流路および前記分散媒流路に接続され、前記サンプルを前記分散媒によって分断して、前記サンプルの液滴が前記分散媒に分散された分散液を生成するための分散液生成部と、
    前記分散液生成部に接続された、前記分散液を流動させるための分散液流路と、
    を有し、
    前記分散液流路の内壁の一部の、水に対する接触角をX(°)とし、前記サンプルについて、25℃で落急式粘度計にて測定される粘度をY(mPa・s)としたとき、前記Xおよび前記Yが
    Y≦0.0436X−1.2563
    を満たす、流体取扱装置。
  2. サンプル流路用溝と、分散媒流路用溝と、分散液生成部用凹部と、分散液流路用溝と、を有する基板、および
    前記基板を覆うフィルム、
    を有し、
    前記サンプル流路用溝と前記フィルムとに囲まれた領域が、前記サンプル流路であり、
    前記分散媒流路用溝と前記フィルムとに囲まれた領域が、前記分散媒流路である、
    前記分散液生成部用凹部と前記フィルムとに囲まれた領域が前記分散液生成部であり、
    前記分散液流路用溝と前記フィルムとに囲まれた領域が、前記分散液流路である、
    請求項1に記載の流体取扱装置。
  3. 前記フィルムの水に対する接触角をXf(°)としたとき、前記Xfおよび前記Yが、
    Y≦0.0436Xf−1.2563
    を満たす、請求項2に記載の流体取扱装置。
  4. 前記基板の水に対する接触角をXb(°)としたとき、前記Xbおよび前記Yが、
    Y≦0.0436Xb−1.2563
    を満たす、請求項2または3に記載の流体取扱装置。
  5. 前記分散液流路用溝の一部に撥水層をさらに有し、
    前記撥水層の水に対する接触角をXl(°)としたとき、前記Xlおよび前記Yが
    Y≦0.0436Xl−1.2563
    を満たす、請求項2〜4のいずれか一項に記載の流体取扱装置。
  6. 請求項1〜5のいずれか一項に記載の流体取扱装置と、
    前記流体取扱装置に流動させるための、極性溶媒を含むサンプルと、
    前記流体取扱装置に流動させるための、非極性溶媒を含む分散媒と、
    を含む、
    分散液製造セット。
  7. 請求項1〜5のいずれか一項に記載の流体取扱装置の前記サンプル流路に、極性溶媒を含み、かつ25℃で落急式粘度計にて測定される粘度が1.5〜3.5mPa・sであるサンプルを流動させる工程と、
    前記サンプルを流動させる工程と略同時に、前記流体取扱装置の前記分散媒流路に、非極性溶媒を含む分散媒を流動させる工程と、
    を有する、
    分散液の製造方法。
JP2020038741A 2020-03-06 2020-03-06 流体取扱装置、分散液製造セット、および分散液の製造方法 Pending JP2021139793A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020038741A JP2021139793A (ja) 2020-03-06 2020-03-06 流体取扱装置、分散液製造セット、および分散液の製造方法
CN202110201305.9A CN113358454A (zh) 2020-03-06 2021-02-23 流体处理装置、分散液制造套件及分散液的制造方法
US17/190,466 US11933705B2 (en) 2020-03-06 2021-03-03 Fluid handling device, dispersion liquid production set, and method for producing dispersion liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020038741A JP2021139793A (ja) 2020-03-06 2020-03-06 流体取扱装置、分散液製造セット、および分散液の製造方法

Publications (1)

Publication Number Publication Date
JP2021139793A true JP2021139793A (ja) 2021-09-16

Family

ID=77524680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020038741A Pending JP2021139793A (ja) 2020-03-06 2020-03-06 流体取扱装置、分散液製造セット、および分散液の製造方法

Country Status (3)

Country Link
US (1) US11933705B2 (ja)
JP (1) JP2021139793A (ja)
CN (1) CN113358454A (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746766B2 (ja) 2001-02-23 2006-02-15 独立行政法人科学技術振興機構 エマルションの製造方法およびその装置
JP5118714B2 (ja) * 2010-03-10 2013-01-16 エムエス・ソリューションズ株式会社 マイクロ流体デバイス

Also Published As

Publication number Publication date
US11933705B2 (en) 2024-03-19
US20210278324A1 (en) 2021-09-09
CN113358454A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
Fallahi et al. Flexible microfluidics: Fundamentals, recent developments, and applications
Hochstetter et al. Deterministic lateral displacement: Challenges and perspectives
US11123729B2 (en) Directing motion of droplets using differential wetting
JP6461905B2 (ja) 高速オンデマンド型マイクロ流体液滴生成及び操作
JP5841937B2 (ja) 流体注入
JP2009524825A (ja) 流体ドロップレットの合体
De Jong et al. Climbing droplets driven by mechanowetting on transverse waves
JP2019512378A (ja) 粒子分離装置及び粒子分離方法
Yuan et al. Ultrasonic tweezer for multifunctional droplet manipulation
KR100726339B1 (ko) 미세입자 정렬분리용 미세유체칩 및 이를 이용한 미세입자분리방법
Katre et al. An experimental investigation of evaporation of ethanol–water droplets laden with alumina nanoparticles on a critically inclined heated substrate
Pompano et al. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip
Roy et al. Re-entrant cavities enhance resilience to the Cassie-to-Wenzel state transition on superhydrophobic surfaces during electrowetting
US20050045539A1 (en) Control device and method for controlling liquid droplets
Wang et al. Manipulation of a nonconductive droplet in an aqueous fluid with AC electric fields: Droplet dewetting, oscillation, and detachment
Wang et al. Electrowetting-on-dielectric based economical digital microfluidic chip on flexible substrate by inkjet printing
JP2021139793A (ja) 流体取扱装置、分散液製造セット、および分散液の製造方法
WO2018003856A1 (ja) 液滴アレイ形成用のマイクロウェルプレート及び液滴アレイの製造方法
Xu et al. A numerical study of micro-droplet spreading behaviors on wettability-confined tracks using a three-dimensional phase-field lattice Boltzmann model
JP7395387B2 (ja) 流体取扱装置、流体取扱システムおよび液滴含有液の製造方法
JP2021139707A (ja) 流体取扱装置
US10183294B2 (en) Fluid handling device
JP2021139791A (ja) 流体取扱装置、流体取扱システムおよび液滴含有液の製造方法
US11213816B2 (en) Method for fabricating an apparatus comprising at least one microfluidic channel and an apparatus comprising a microfluidic channel
Marin Quintero Dynamic Response of Droplets to Single Wave Electrowetting Perturbation