JP2021139531A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2021139531A
JP2021139531A JP2020036309A JP2020036309A JP2021139531A JP 2021139531 A JP2021139531 A JP 2021139531A JP 2020036309 A JP2020036309 A JP 2020036309A JP 2020036309 A JP2020036309 A JP 2020036309A JP 2021139531 A JP2021139531 A JP 2021139531A
Authority
JP
Japan
Prior art keywords
heat transfer
flat heat
partition member
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020036309A
Other languages
Japanese (ja)
Other versions
JP7327214B2 (en
Inventor
昇平 仲田
Shohei Nakada
昇平 仲田
慶成 前間
Yoshinari Maema
慶成 前間
孝多郎 岡
Kotaro Oka
孝多郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2020036309A priority Critical patent/JP7327214B2/en
Publication of JP2021139531A publication Critical patent/JP2021139531A/en
Application granted granted Critical
Publication of JP7327214B2 publication Critical patent/JP7327214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a heat exchanger capable of acquiring target heat exchanging capacity without depending on a flow rate of a refrigerant.SOLUTION: A heat exchanger of this invention includes a plurality of flat heat transfer tubes, and a tubular header to which ends of the flat heat transfer tubes are connected. The header includes: a first partition member partitioning a tubular body portion in a stacking direction of the plurality of the flat heat transfer tubes; and a second partition member partitioning an upper side of the tubular body portion partitioned by the first partitioning member into a circulation returning passage which is a space where the flat heat transfer tubes are connected, and a circulation going passage which is a space where the flat heat transfer tubes are not connected, and having an upper refrigerant communication port in an upper portion, and a lower refrigerant communication port in a lower portion. The upper refrigerant communication port of the second partition member is provided in a windward side of a flow direction of outside air.SELECTED DRAWING: Figure 3

Description

本発明は、熱交換器に関する。 The present invention relates to a heat exchanger.

従来、複数の流路を有する扁平伝熱管の両端が左右のヘッダにそれぞれ挿入、接続され、一方のヘッダから扁平伝熱管に冷媒の分流を行う構造を有する熱交換器が知られている。このような熱交換器を用いた空気調和機において、冷媒と外部の空気の熱交換を行う際、風上側の流路内の冷媒には多くの熱負荷がかかるため、同じ扁平伝熱管の流路でも風上側に位置する流路に風下側に位置する流路より多くの冷媒を流通させる技術が提案されている(例えば、特許文献1および2を参照)。 Conventionally, there is known a heat exchanger having a structure in which both ends of a flat heat transfer tube having a plurality of flow paths are inserted and connected to the left and right headers, respectively, and a refrigerant is diverted from one header to the flat heat transfer tube. In an air conditioner using such a heat exchanger, when heat exchange between the refrigerant and the outside air is performed, a large amount of heat load is applied to the refrigerant in the flow path on the wind side, so that the flow of the same flat heat transfer tube is applied. A technique has been proposed in which a larger amount of refrigerant is circulated in a flow path located on the leeward side than in a flow path located on the leeward side even in a road (see, for example, Patent Documents 1 and 2).

特開2006−266521号公報Japanese Unexamined Patent Publication No. 2006-266521 特開2018−100800号公報JP-A-2018-100800

上述した技術では、ヘッダ内を風上側の空間と風下側の空間に分け、風上側の空間から風下側の空間へ冷媒を流入させる。図9は、特許文献1のヘッダ60の断面図であり、(a)は冷媒の流量が少ない場合、(b)が多い場合を示している。ヘッダ60内には、扁平伝熱管63が接続される側と対向する側から延出する壁61が設けられ、壁61によりヘッダ60の内部が風上側空間62aと風下側空間62bとに仕切られている。冷媒の流量が少ない場合は、図9(a)に示すように、配管50から風上側空間62aに流入した冷媒のうち液相冷媒の多くは、壁61に到達することなく(風下側空間62bには流入せず)、扁平伝熱管63の風上側流路63aに流入する。一方、冷媒の流量が大きい場合は、図9(b)に示すように、液相冷媒は慣性力によって壁61の方向に押しやられ、壁61に衝突した後、壁61に沿って風下側空間62bに多く流入し、扁平伝熱管63の風下側流路63bに流入する。かかる場合、熱負荷の小さい風下側の扁平伝熱管の流路に流入する熱交換量の大きい液相冷媒の量が多くなり、熱負荷の大きい扁平伝熱管の風上側の流路に流入する熱交換量の小さい気相冷媒の量が多くなってしまい、目標とする熱交換器の熱交換能力が得られないことがあった。 In the above-mentioned technique, the inside of the header is divided into a space on the leeward side and a space on the leeward side, and the refrigerant flows from the space on the leeward side to the space on the leeward side. 9A and 9B are cross-sectional views of the header 60 of Patent Document 1, in which FIG. 9A shows a case where the flow rate of the refrigerant is small and FIG. 9B shows a case where the flow rate of the refrigerant is large. Inside the header 60, a wall 61 extending from the side facing the side to which the flat heat transfer tube 63 is connected is provided, and the inside of the header 60 is divided into a leeward space 62a and a leeward space 62b by the wall 61. ing. When the flow rate of the refrigerant is small, as shown in FIG. 9A, most of the liquid phase refrigerants among the refrigerants flowing into the leeward space 62a from the pipe 50 do not reach the wall 61 (leeward space 62b). It flows into the windward flow path 63a of the flat heat transfer tube 63. On the other hand, when the flow rate of the refrigerant is large, as shown in FIG. 9B, the liquid phase refrigerant is pushed toward the wall 61 by the inertial force, collides with the wall 61, and then is leeward along the wall 61. A large amount flows into 62b, and then flows into the leeward flow path 63b of the flat heat transfer tube 63. In such a case, the amount of the liquid phase refrigerant having a large amount of heat exchange flowing into the flow path of the flat heat transfer tube on the leeward side with a small heat load increases, and the heat flowing into the flow path on the wind side of the flat heat transfer tube having a large heat load increases. In some cases, the amount of gas phase refrigerant with a small exchange amount becomes large, and the target heat exchange capacity of the heat exchanger cannot be obtained.

本発明は、上記に鑑みてなされたものであって、冷媒の流量によらず目標とする熱交換能力が得られる熱交換器を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a heat exchanger capable of obtaining a target heat exchange capacity regardless of the flow rate of the refrigerant.

上述した課題を解決し、目的を達成するために、本発明に係る熱交換器は、幅広な面が対向するように積層された複数の扁平伝熱管と、前記複数の扁平伝熱管の端部が接続され、前記複数の扁平伝熱管に冷媒を分流する管状のヘッダと、を備え、前記ヘッダは、管状の本体部を前記複数の扁平伝熱管の積層方向に並ぶ二つの空間に区画する第1の仕切り部材と、前記第1の仕切り部材により区画された前記管状の本体部の上部側の空間を前記複数の扁平伝熱管が接続される側の空間である循環復路と前記複数の扁平伝熱管が接続されない側の空間である循環往路に区画し、上部に上部連通口、下部に下部連通口が設けられる第2の仕切り部材と、を有し、管状の本体部が前記第1の仕切り部材により区画された下部側の空間は、冷媒流入部であり、管状の本体部が前記第1の仕切り部材により区画された上部側の空間において、前記第1の仕切り部材には、前記循環往路に冷媒を流入する冷媒流入口が設けられ、前記第2の仕切り部材の上部冷媒連通口は、前記複数の扁平伝熱管の幅方向の一方側に設けられ、当該一方側が外部の空気の流れ方向の風上側とする。 In order to solve the above-mentioned problems and achieve the object, the heat exchanger according to the present invention has a plurality of flat heat transfer tubes laminated so that wide surfaces face each other, and end portions of the plurality of flat heat transfer tubes. A tubular header that divides the refrigerant into the plurality of flat heat transfer tubes, and the header divides the tubular main body into two spaces arranged in the stacking direction of the plurality of flat heat transfer tubes. The circulation return path and the plurality of flat transmissions, which are the spaces on the upper side of the tubular main body portion partitioned by the partition member 1 and the first partition member, on the side to which the plurality of flat heat transfer tubes are connected. It is divided into a circulation outward path, which is a space on the side where the heat pipe is not connected, and has a second partition member having an upper communication port at the upper part and a lower communication port at the lower part, and the tubular main body portion is the first partition. The space on the lower side partitioned by the members is a refrigerant inflow portion, and in the space on the upper side in which the tubular main body portion is partitioned by the first partition member, the first partition member has the circulation outward path. A refrigerant inflow port for flowing a refrigerant is provided in the second partition member, and an upper refrigerant communication port of the second partition member is provided on one side in the width direction of the plurality of flat heat transfer tubes, and the one side is in the flow direction of external air. The wind side of.

本発明によれば、冷媒の流量によらず目標とする熱交換能力を得ることができる。 According to the present invention, a target heat exchange capacity can be obtained regardless of the flow rate of the refrigerant.

図1は、本発明の実施の形態1に係る熱交換器が適用される空気調和機の構成を説明する図である。FIG. 1 is a diagram illustrating a configuration of an air conditioner to which the heat exchanger according to the first embodiment of the present invention is applied. 図2は、本発明の実施の形態1に係る熱交換器を説明する図であって、(a)は熱交換器の平面図、(b)は熱交換器の正面図である。2A and 2B are views for explaining the heat exchanger according to the first embodiment of the present invention, in which FIG. 2A is a plan view of the heat exchanger and FIG. 2B is a front view of the heat exchanger. 図3は、本発明の実施の形態1に係る熱交換器のヘッダの斜視図である。FIG. 3 is a perspective view of the header of the heat exchanger according to the first embodiment of the present invention. 図4は、図3のヘッダの(a)中間部の水平断面図、(b)上部の水平断面図、(c)下部の水平断面図である。4A and 4B are a horizontal cross-sectional view of the middle portion of the header of FIG. 3, a horizontal cross-sectional view of the upper portion, and a horizontal cross-sectional view of the lower portion of the header. 図5は、本発明の実施の形態2に係る熱交換器のヘッダの斜視図である。FIG. 5 is a perspective view of the header of the heat exchanger according to the second embodiment of the present invention. 図6は、本発明の実施の形態2に係る熱交換器のヘッダの(a)中間部の水平断面図、(b)上部の水平断面図、(c)下部の水平断面図である。FIG. 6 is a horizontal sectional view of (a) an intermediate portion, (b) an upper horizontal sectional view, and (c) a lower horizontal sectional view of the header of the heat exchanger according to the second embodiment of the present invention. 図7は、本発明の実施の形態3に係る熱交換器のヘッダの斜視図である。FIG. 7 is a perspective view of the header of the heat exchanger according to the third embodiment of the present invention. 図8は、本発明の実施の形態3に係る熱交換器のヘッダの(a)中間部の水平断面図、(b)上部の水平断面図、(c)下部の水平断面図である。FIG. 8 is a horizontal sectional view of (a) an intermediate portion, (b) an upper horizontal sectional view, and (c) a lower horizontal sectional view of the header of the heat exchanger according to the third embodiment of the present invention. 図9は、従来技術のヘッダの(a)は冷媒の流量が少ない場合の断面図、(b)は流量が多い場合の断面図である。9A and 9B are a cross-sectional view of the header of the prior art when the flow rate of the refrigerant is low, and FIG. 9B is a cross-sectional view of the header when the flow rate is high.

以下、添付図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について、添付図面を参照して説明する。なお、実施の形態の説明の全体を通して同じ構成には同じ番号を付している。 Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “embodiments”) will be described with reference to the accompanying drawings. The same configuration is given the same number throughout the description of the embodiment.

[実施の形態1]
(空気調和機)
図1は、本発明の実施の形態1に係る熱交換器4および熱交換器5が適用される空気調和機1の構成を説明する図である。図1に示すように、空気調和機1は、室内機2と、室外機3とを備える。室内機2は、室内用の熱交換器4が設けられ、室外機3には、室外用の熱交換器5のほかに、圧縮機6、膨張弁7、四方弁8が設けられている。
[Embodiment 1]
(Air conditioner)
FIG. 1 is a diagram illustrating a configuration of an air conditioner 1 to which the heat exchanger 4 and the heat exchanger 5 according to the first embodiment of the present invention are applied. As shown in FIG. 1, the air conditioner 1 includes an indoor unit 2 and an outdoor unit 3. The indoor unit 2 is provided with an indoor heat exchanger 4, and the outdoor unit 3 is provided with a compressor 6, an expansion valve 7, and a four-way valve 8 in addition to the outdoor heat exchanger 5.

暖房運転時には、室外機3の圧縮機6から吐出された高温高圧のガス冷媒が四方弁8を介して凝縮器として機能する熱交換器4に流入する。暖房運転時には、図1において黒矢印で示す方向に冷媒が流れている。熱交換器4では、外部の空気と熱交換した冷媒が液化する。液化した高圧の冷媒は、膨張弁7を通過して減圧され、低温低圧の気液二相冷媒として蒸発器として機能する熱交換器5に流入する。熱交換器5では、外部の空気と熱交換した冷媒はガス化する。ガス化した低圧の冷媒は、四方弁8を介して圧縮機6に吸入される。 During the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 6 of the outdoor unit 3 flows into the heat exchanger 4 functioning as a condenser via the four-way valve 8. During the heating operation, the refrigerant is flowing in the direction indicated by the black arrow in FIG. In the heat exchanger 4, the refrigerant that has exchanged heat with the external air is liquefied. The liquefied high-pressure refrigerant passes through the expansion valve 7 and is depressurized, and flows into the heat exchanger 5 which functions as an evaporator as a low-temperature low-pressure gas-liquid two-phase refrigerant. In the heat exchanger 5, the refrigerant that has exchanged heat with the external air is gasified. The gasified low-pressure refrigerant is sucked into the compressor 6 via the four-way valve 8.

冷房運転時には、室外機3の圧縮機6から吐出された高温高圧のガス冷媒が四方弁8を介して凝縮器として機能する熱交換器5に流入する。冷房運転時には、図1において白矢印で示す方向に冷媒が流れている。熱交換器5では、外部の空気と熱交換した冷媒が液化する。液化した高圧の冷媒は、膨張弁7を通過して減圧され、低温低圧の気液二相冷媒として蒸発器として機能する熱交換器4に流入する。熱交換器4では、外部の空気と熱交換した冷媒はガス化する。ガス化した低圧の冷媒は、四方弁8を介して圧縮機6に吸入される。 During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 6 of the outdoor unit 3 flows into the heat exchanger 5 functioning as a condenser via the four-way valve 8. During the cooling operation, the refrigerant is flowing in the direction indicated by the white arrow in FIG. In the heat exchanger 5, the refrigerant that has exchanged heat with the external air is liquefied. The liquefied high-pressure refrigerant passes through the expansion valve 7 and is depressurized, and flows into the heat exchanger 4 which functions as an evaporator as a low-temperature low-pressure gas-liquid two-phase refrigerant. In the heat exchanger 4, the refrigerant that has exchanged heat with the external air is gasified. The gasified low-pressure refrigerant is sucked into the compressor 6 via the four-way valve 8.

(熱交換器)
本発明の実施の形態1に係る熱交換器は、熱交換器4および熱交換器5のいずれにも適用可能であるが、暖房運転時に蒸発器として機能する熱交換器5に適用するものとして説明する。図2は、本発明の実施の形態1に係る熱交換器5を説明する図であって、(a)は熱交換器5の平面図、(b)は熱交換器5の正面図である。
(Heat exchanger)
The heat exchanger according to the first embodiment of the present invention is applicable to both the heat exchanger 4 and the heat exchanger 5, but is applicable to the heat exchanger 5 that functions as an evaporator during the heating operation. explain. 2A and 2B are views for explaining the heat exchanger 5 according to the first embodiment of the present invention, in which FIG. 2A is a plan view of the heat exchanger 5 and FIG. 2B is a front view of the heat exchanger 5. ..

熱交換器5は、冷媒が流通する複数の扁平伝熱管11と、複数の扁平伝熱管11の端部が接続され、扁平伝熱管11に冷媒を分流する管状のヘッダ12と、複数の扁平伝熱管11の他端が接続され、扁平伝熱管11から流出した冷媒を合流する管状のヘッダ13と、扁平伝熱管11に接合される複数の平板形状のフィン14と、を備える。扁平伝熱管11は、図2(a)において矢印で示す、外部の空気の流れ方向と直交する方向に延び、断面は扁平形状をなしている。扁平伝熱管11の内部には、扁平伝熱管が伸びる方向と同じ方向に延びる複数の流路を有している。本実施例では、外部の空気が流通する方向を扁平伝熱管11の幅方向、扁平伝熱管11が延びる方向である外部の空気が流通する方向と直交する方向を扁平伝熱管11の長さ方向とする。図2(b)に示すように、扁平伝熱管11は、側面のうちの扁平面(幅広の面)が対向するように上下方向に積層され、左右の端部がヘッダ12およびヘッダ13と接続されている。また、ヘッダ12およびヘッダ13の間には、扁平伝熱管11と直交するように複数のフィン14が配置されている。膨張弁7を通過して減圧された低温低圧の気液二相冷媒は、配管15によりヘッダ12に供給され、各扁平伝熱管11に分流される。扁平伝熱管11を流通する際に、フィン14を介して空気と熱交換した気液二相冷媒はガス化してヘッダ13に流出し、ヘッダ13で合流した冷媒は、配管16、四方弁8を介して圧縮機6に吸入される。 The heat exchanger 5 includes a plurality of flat heat transfer tubes 11 through which a refrigerant flows, a tubular header 12 in which the ends of the plurality of flat heat transfer tubes 11 are connected and the refrigerant is diverted to the flat heat transfer tubes 11, and a plurality of flat heat transfer tubes. It includes a tubular header 13 to which the other end of the heat pipe 11 is connected and joins the refrigerant flowing out from the flat heat transfer tube 11, and a plurality of flat plate-shaped fins 14 joined to the flat heat transfer tube 11. The flat heat transfer tube 11 extends in a direction orthogonal to the external air flow direction indicated by an arrow in FIG. 2A, and has a flat cross section. Inside the flat heat transfer tube 11, there are a plurality of flow paths extending in the same direction as the flat heat transfer tube extends. In this embodiment, the direction in which the external air flows is the width direction of the flat heat transfer tube 11, and the direction orthogonal to the direction in which the external air flows, which is the direction in which the flat heat transfer tube 11 extends, is the length direction of the flat heat transfer tube 11. And. As shown in FIG. 2B, the flat heat transfer tubes 11 are stacked in the vertical direction so that the flat surfaces (wide surfaces) of the side surfaces face each other, and the left and right ends are connected to the header 12 and the header 13. Has been done. Further, a plurality of fins 14 are arranged between the header 12 and the header 13 so as to be orthogonal to the flat heat transfer tube 11. The low-temperature, low-pressure gas-liquid two-phase refrigerant that has passed through the expansion valve 7 and has been decompressed is supplied to the header 12 by the pipe 15 and is divided into the flat heat transfer tubes 11. When flowing through the flat heat transfer tube 11, the gas-liquid two-phase refrigerant that exchanged heat with air through the fins 14 gasified and flowed out to the header 13, and the refrigerant that merged in the header 13 passed through the pipe 16 and the four-way valve 8. It is sucked into the compressor 6 via.

(ヘッダ)
次に、本発明の実施の形態1に係るヘッダ12について、図3および図4を参照して説明する。なお、本明細書では、ヘッダ12の扁平伝熱管11側を内側、ヘッダ12の扁平伝熱管11と対向する側を外側という。また、熱交換器5は、扁平伝熱管11の長さ方向および幅方向、すなわち、扁平伝熱管11の扁平面と平行な方向が水平方向となるように配置される。更に、熱交換器5は、扁平伝熱管11の積層方向、すなわち、扁平伝熱管11の扁平面と直交する方向が鉛直方向となるように配置される。なお、熱交換器5の近傍には、図示しない送風ファンが設けられており、送風ファンは熱交換器5に外部の空気を送る。図3では、フィン14の図示を省略している。
(header)
Next, the header 12 according to the first embodiment of the present invention will be described with reference to FIGS. 3 and 4. In the present specification, the side of the header 12 facing the flat heat transfer tube 11 is referred to as the inside, and the side of the header 12 facing the flat heat transfer tube 11 is referred to as the outside. Further, the heat exchanger 5 is arranged so that the length direction and the width direction of the flat heat transfer tube 11, that is, the direction parallel to the flat surface of the flat heat transfer tube 11 is the horizontal direction. Further, the heat exchanger 5 is arranged so that the stacking direction of the flat heat transfer tubes 11, that is, the direction orthogonal to the flat plane of the flat heat transfer tubes 11 is the vertical direction. A blower fan (not shown) is provided in the vicinity of the heat exchanger 5, and the blower fan sends external air to the heat exchanger 5. In FIG. 3, the fin 14 is not shown.

ヘッダ12は、図3および図4に示すように、扁平伝熱管11の積層方向(鉛直方向)において、管状の本体部20を、積層方向に並ぶ二つの空間である上部側の空間と下部側の空間に区画する第1の仕切り部材21と、第1の仕切り部材21により区画された上部側の空間に設けられた第2の仕切り部材22を有する。第1の仕切り部材21により区画された上部側の空間は、扁平伝熱管11に接続された空間である循環復路25と、第2仕切り部材22により循環復路25と隔てられた循環往路24を有する。第1の仕切り部材21は、本体部20の水平方向の全体にわたり設けられている。第2の仕切り部材22は、本体部20の第1の仕切り部材21の上部側の空間の鉛直方向の全体にわたり設けられている。なお、熱交換器5は、他方の空間が外部の空気の上流側(風上側)、一方の空間が外部の空気の下流側(風下側)となるように配置される。第2の仕切り部材22は、扁平伝熱管11の積層方向および幅方向に平行な面の第2の仕切り部材風上面22aと、扁平伝熱管11の長さ方向および幅方向に平行な面の第2の仕切り部材風下面22bを有する。図3および図4に示すように、ヘッダ12は円筒形状のものを使用しているが、円筒形状に限定されるものではなく、内部が空洞の角柱形状等であってもよい。 As shown in FIGS. 3 and 4, in the header 12, in the stacking direction (vertical direction) of the flat heat transfer tubes 11, the tubular main body 20 is arranged in two spaces arranged in the stacking direction, that is, the upper space and the lower side. It has a first partition member 21 for partitioning the space, and a second partition member 22 provided in the space on the upper side partitioned by the first partition member 21. The space on the upper side partitioned by the first partition member 21 has a circulation return path 25 which is a space connected to the flat heat transfer tube 11 and a circulation return path 24 separated from the circulation return path 25 by the second partition member 22. .. The first partition member 21 is provided over the entire horizontal direction of the main body 20. The second partition member 22 is provided over the entire space on the upper side of the first partition member 21 of the main body 20 in the vertical direction. The heat exchanger 5 is arranged so that the other space is on the upstream side (leeward side) of the external air and one space is on the downstream side (leeward side) of the external air. The second partition member 22 includes a second partition member wind upper surface 22a having a surface parallel to the stacking direction and the width direction of the flat heat transfer tube 11, and a surface parallel to the length direction and the width direction of the flat heat transfer tube 11. It has 2 partition member wind lower surfaces 22b. As shown in FIGS. 3 and 4, the header 12 has a cylindrical shape, but the header 12 is not limited to the cylindrical shape, and may have a prismatic shape with a hollow inside.

本体部20が第1の仕切り部材21により区画された下部側の空間は、配管15を介し膨張弁7から低温低圧の気液二相冷媒が流入する冷媒流入部23である。循環往路24は、本体部20の風上側となるようにして用いられる。 The space on the lower side in which the main body portion 20 is partitioned by the first partition member 21 is a refrigerant inflow portion 23 into which a low-temperature low-pressure gas-liquid two-phase refrigerant flows from the expansion valve 7 via the pipe 15. The circulation outward path 24 is used so as to be on the windward side of the main body portion 20.

本体部20の内部において第1の仕切り部材21の風上側、かつ外側、すなわち循環往路24の底面となる第1の仕切り部材21上には、冷媒流入口26が設けられている。循環往路24には、冷媒流入口26を介して冷媒流入部23から冷媒が流入する。 A refrigerant inflow port 26 is provided on the windward side and outside of the first partition member 21 inside the main body 20, that is, on the first partition member 21 which is the bottom surface of the circulation outward path 24. Refrigerant flows into the circulation outward path 24 from the refrigerant inflow section 23 via the refrigerant inflow port 26.

第2の仕切り部材22の上部、かつ外部の空気の流れ方向の風上側、すなわち第2の仕切り部材22aの上部に、上部連通口27が設けられ、第2の仕切り部材22の下部、かつ外部の空気の流れ方向の風上側、すなわち第2の仕切り部材風上面22aの下部に、下部連通口28が設けられている。冷媒流入口26から循環往路24に流入した冷媒は、循環往路24内を上昇し、上部連通口27を介して循環復路25に流入する。循環復路25に流入した冷媒は、下降しながら循環復路25内に接続されている複数の扁平伝熱管11内に分流され、一部が下部連通口28から循環往路24内に流入する。ヘッダ12では、循環往路24、上部連通口27、循環復路25および下部連通口28により循環流を形成することにより、ヘッダ12に接続される扁平伝熱管11の配置位置の違い(上部に配置された扁平伝熱管11と下部に配置された扁平伝熱管11)による冷媒の流量の偏りを低減することができる。 An upper communication port 27 is provided above the second partition member 22 and on the windward side in the external air flow direction, that is, above the second partition member 22a, and is below the second partition member 22 and outside. A lower communication port 28 is provided on the windward side in the air flow direction of the above, that is, on the lower part of the windward upper surface 22a of the second partition member. The refrigerant that has flowed into the circulation outward path 24 from the refrigerant inflow port 26 rises in the circulation outward path 24 and flows into the circulation return path 25 through the upper communication port 27. The refrigerant flowing into the circulation return path 25 is divided into a plurality of flat heat transfer tubes 11 connected in the circulation return path 25 while descending, and a part of the refrigerant flows into the circulation outbound path 24 from the lower communication port 28. In the header 12, the difference in the arrangement position of the flat heat transfer tube 11 connected to the header 12 (arranged at the upper part) by forming a circulation flow by the circulation outward path 24, the upper communication port 27, the circulation return path 25, and the lower communication port 28. It is possible to reduce the deviation of the flow rate of the refrigerant by the flat heat transfer tube 11 and the flat heat transfer tube 11) arranged at the lower part.

第2の仕切り部材22は、循環往路24の水平方向の断面積が、循環復路25の水平方向の断面積よりも小さくなるように配置される。これにより、循環往路24中を流れる冷媒の流速は大きくなるため、冷媒が上昇しやすくなる。また、循環往路24の水平方向の断面積は、後述する下部連通口28の開口面積の和よりも大きく形成されている。これにより、冷媒の逆流(循環復路25が往路となり、循環往路24が復路となる)を防止することができ、循環流の形成が容易となる。 The second partition member 22 is arranged so that the horizontal cross-sectional area of the circulation outward path 24 is smaller than the horizontal cross-sectional area of the circulation return path 25. As a result, the flow velocity of the refrigerant flowing in the circulation outward path 24 increases, so that the refrigerant tends to rise. Further, the horizontal cross-sectional area of the circulation outward path 24 is formed to be larger than the sum of the opening areas of the lower communication port 28, which will be described later. As a result, it is possible to prevent the backflow of the refrigerant (the circulation return path 25 becomes the outward path and the circulation outward path 24 becomes the return path), and the formation of the circulation flow becomes easy.

ヘッダ12において、上部連通口27は、扁平伝熱管11の幅方向(水平方向)の一方側に設けられている。熱交換器5は、当該一方側が外部の空気の流れ方向の風上側に位置するようにして用いられる。これにより、ヘッダ12に接続されている扁平伝熱管11の風上側の流路と上部連通口27の距離は、ヘッダ12に接続されている扁平伝熱管11の風下側の流路と上部連通口27の距離より短くなる。扁平伝熱管11の風上側の流路と上部連通口27の距離が、風下側の流路と上部連通口27の距離より短くなることにより、扁平伝熱管11の風上側の流路により多くの冷媒を流入させることができ、比較的熱負荷の大きい風上側でより多くの熱交換を行うことが可能となる。 In the header 12, the upper communication port 27 is provided on one side of the flat heat transfer tube 11 in the width direction (horizontal direction). The heat exchanger 5 is used so that one side thereof is located on the windward side in the external air flow direction. As a result, the distance between the leeward flow path and the upper communication port 27 of the flat heat transfer tube 11 connected to the header 12 is the leeward flow path and the upper communication port of the flat heat transfer tube 11 connected to the header 12. It will be shorter than the distance of 27. The distance between the windward flow path of the flat heat transfer tube 11 and the upper communication port 27 is shorter than the distance between the leeward flow path and the upper communication port 27, so that the flow path on the windward side of the flat heat transfer tube 11 is increased. Refrigerant can flow in, and more heat can be exchanged on the windward side where the heat load is relatively large.

また、ヘッダ12は、下部連通口28が外部の空気の流れ方向の風上側に位置するようにして用いられる。下部連通口28が風上側に位置することにより、循環復路25の風上側で主として冷媒が循環するため、扁平伝熱管11の風上側の流路に風下側の流路と比較して多くの冷媒を流入させることができる。 Further, the header 12 is used so that the lower communication port 28 is located on the windward side in the external air flow direction. Since the lower communication port 28 is located on the windward side, the refrigerant mainly circulates on the windward side of the circulation return path 25. Can be inflowed.

本実施の形態1では、循環往路24をヘッダ12の外側かつ外部の空気の流れの風上側に設け、上部連通口27が外部の空気の流れの風上側に位置することにより、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In the first embodiment, the circulation outward path 24 is provided on the outside of the header 12 and on the windward side of the external air flow, and the upper communication port 27 is located on the windward side of the external air flow, whereby the flat heat transfer tube 11 is provided. It is possible to allow more refrigerant to flow into the inner flow path on the windward side.

実施の形態1では、下部連通口28が外部の空気の流れの風上側に位置することにより、扁平伝熱管11の風上側の流路に風下側の流路と比較して多くの冷媒を流入させることができるが、必ずしもこれに限定するものではなく、下部連通口28は、第2の仕切り部材22bの下部に設けてもよい。 In the first embodiment, since the lower communication port 28 is located on the windward side of the external air flow, a larger amount of refrigerant flows into the windward side flow path of the flat heat transfer tube 11 as compared with the leeward side flow path. However, the present invention is not limited to this, and the lower communication port 28 may be provided in the lower part of the second partition member 22b.

[実施の形態2]
図5は、本発明の実施の形態2に係る熱交換器のヘッダ12Aの斜視図である。また、実施の形態1と同様に、熱交換器5は、扁平伝熱管11の長さ方向および幅方向、すなわち、扁平伝熱管11の扁平面と平行な方向が水平方向となるように配置される。更に、熱交換器5は、扁平伝熱管11の積層方向、すなわち、扁平伝熱管11の扁平面と直交する方向が鉛直方向となるように配置される。なお、熱交換器5の近傍には、図示しない送風ファンが設けられており、送風ファンは熱交換器5に外部の空気を送る。図6は、本発明の実施の形態2に係る熱交換器のヘッダ12Aの(a)は中間部の水平断面図、(b)は上部の水平断面図、(c)は下部の水平断面図である。
[Embodiment 2]
FIG. 5 is a perspective view of the header 12A of the heat exchanger according to the second embodiment of the present invention. Further, similarly to the first embodiment, the heat exchanger 5 is arranged so that the length direction and the width direction of the flat heat transfer tube 11, that is, the direction parallel to the flat surface of the flat heat transfer tube 11 is the horizontal direction. NS. Further, the heat exchanger 5 is arranged so that the stacking direction of the flat heat transfer tubes 11, that is, the direction orthogonal to the flat plane of the flat heat transfer tubes 11 is the vertical direction. A blower fan (not shown) is provided in the vicinity of the heat exchanger 5, and the blower fan sends external air to the heat exchanger 5. 6A and 6B are a horizontal sectional view of an intermediate portion, FIG. 6B is a horizontal sectional view of an upper portion, and FIG. 6C is a horizontal sectional view of a lower portion of the header 12A of the heat exchanger according to the second embodiment of the present invention. Is.

ヘッダ12Aにおいて、第1の仕切り部材21により区画された上部側の空間に設けられた第2の仕切り部材22Aは、扁平伝熱管11の積層方向および幅方向に平行な面の第2の仕切り部材風下面22aと、扁平伝熱管11の積層方向および長さ方向に平行な面の第2の仕切り部材風上面22bを有する。なお、熱交換器5は、他方側が外部の空気の上流側(風上側)、一方側が外部の空気の下流側(風下側)となるように配置される。 In the header 12A, the second partition member 22A provided in the space on the upper side partitioned by the first partition member 21 is a second partition member having a surface parallel to the stacking direction and the width direction of the flat heat transfer tube 11. It has a wind lower surface 22a and a second partition member wind upper surface 22b having a surface parallel to the stacking direction and the length direction of the flat heat transfer tube 11. The heat exchanger 5 is arranged so that the other side is on the upstream side (leeward side) of the external air and one side is on the downstream side (leeward side) of the external air.

本体部20の内部において、第1の仕切り部材21により区画された上部側の空間は、扁平伝熱管11に接続された空間である循環復路25Aと、第2仕切り部材22Aにより循環復路25Aと隔てられた循環往路24Aを有する。循環往路24Aは、本体部20の風下側、かつ外側に設けられている。 Inside the main body 20, the space on the upper side partitioned by the first partition member 21 is separated from the circulation return path 25A, which is a space connected to the flat heat transfer tube 11, and the circulation return path 25A by the second partition member 22A. It has a circular outbound route 24A. The circulation outward path 24A is provided on the leeward side and outside of the main body 20.

第2の仕切り部材22Aの上部、かつ扁平伝熱管11の幅方向(水平方向)の一方側、すなわち第2の仕切り部材風上面22bの上部に、上部連通口27Aが設けられ、第2の仕切り部材22の下部、かつ外部の空気の流れ方向の風上側、すなわち第2の仕切り部材風上面22bの下部に、下部連通口28Aが設けられている。冷媒流入口26から循環往路24Aに流入した冷媒は、循環往路24A内を上昇し、上部連通口27Aを介して循環復路25Aに流入する。循環復路25Aに流入した冷媒は、下降しながら循環復路25A内に接続されている複数の扁平伝熱管11内に分流され、一部が下部連通口28Aから循環往路24A内に流入する。ヘッダ12Aでは、循環往路24A、上部連通口27A、循環復路25Aおよび下部連通口28Aにより循環流を形成することにより、ヘッダ12Aに接続される扁平伝熱管11の配置位置の違い(上部に配置された扁平伝熱管11と下部に配置された扁平伝熱管11)による冷媒の流量の偏りを低減することができる。 An upper communication port 27A is provided above the second partition member 22A and on one side of the flat heat transfer tube 11 in the width direction (horizontal direction), that is, above the second partition member windward surface 22b, and the second partition is provided. A lower communication port 28A is provided in the lower part of the member 22, and on the windward side in the external air flow direction, that is, on the lower part of the windward upper surface 22b of the second partition member. The refrigerant that has flowed into the circulation outward path 24A from the refrigerant inflow port 26 rises in the circulation outward path 24A and flows into the circulation return path 25A through the upper communication port 27A. The refrigerant flowing into the circulation return path 25A is divided into a plurality of flat heat transfer tubes 11 connected in the circulation return path 25A while descending, and a part of the refrigerant flows into the circulation outbound path 24A from the lower communication port 28A. In the header 12A, a difference in the arrangement position of the flat heat transfer tube 11 connected to the header 12A (arranged at the upper part) by forming a circulation flow by the circulation outward path 24A, the upper communication port 27A, the circulation return path 25A, and the lower communication port 28A. It is possible to reduce the deviation of the flow rate of the refrigerant by the flat heat transfer tube 11 and the flat heat transfer tube 11) arranged at the lower part.

ヘッダ12Aでは、実施の形態1と同様に、循環往路24Aの水平方向の断面積は、循環復路25Aの水平方向の断面積よりも小さくなるよう第2の仕切り部材22Aを配置している。これにより、循環往路24A中で冷媒が上昇しやすくなる。また、循環往路24Aの水平方向の断面積は、後述する下部連通口28Aの開口面積の和よりも大きく形成されている。これにより、冷媒の逆流(循環復路25Aが往路となり、循環往路24Aが復路となる)を防止することができ、循環流の形成が容易となる。 In the header 12A, as in the first embodiment, the second partition member 22A is arranged so that the horizontal cross-sectional area of the circulation outward path 24A is smaller than the horizontal cross-sectional area of the circulation return path 25A. As a result, the refrigerant tends to rise in the circulation outward path 24A. Further, the horizontal cross-sectional area of the circulation outward path 24A is formed to be larger than the sum of the opening areas of the lower communication port 28A, which will be described later. As a result, it is possible to prevent the backflow of the refrigerant (the circulation return path 25A becomes the outward path and the circulation outward path 24A becomes the return path), and the formation of the circulation flow becomes easy.

ヘッダ12Aにおいて、上部連通口27Aを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)に設けている。これにより、ヘッダ12Aに接続されている扁平伝熱管11の風上側の流路と上部連通口27Aの距離は、ヘッダ12Aに接続されている扁平伝熱管11の風下側の流路と上部連通口27Aの距離より短くなる。風上側の流路と上部連通口27Aの距離および風下側の流路と上部連通口27Aの距離は、実施の形態1より大きくなるものの、上部連通口27Aからの扁平伝熱管11の流路への急激な流れ込みを防止でき、扁平伝熱管11の風上側の流路により多くの冷媒を分流することができる。 In the header 12A, the upper communication port 27A is provided on one side (horizontal direction) of the flat heat transfer tube 11 (on the windward side in the external air flow direction). As a result, the distance between the leeward flow path and the upper communication port 27A of the flat heat transfer tube 11 connected to the header 12A is the leeward flow path and the upper communication port of the flat heat transfer tube 11 connected to the header 12A. It will be shorter than the distance of 27A. Although the distance between the leeward flow path and the upper communication port 27A and the distance between the leeward flow path and the upper communication port 27A are larger than those in the first embodiment, the distance from the upper communication port 27A to the flow path of the flat heat transfer tube 11 A large amount of refrigerant can be diverted to the windward flow path of the flat heat transfer tube 11.

また、ヘッダ12Aは、下部連通口28Aを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)に設けている。下部連通口28Aを風上側に設けることにより、循環復路25Aの風上側で主として冷媒が循環するため、扁平伝熱管11の風上側の流路に風下側の流路と比較して多くの冷媒を流入させることができる。 Further, the header 12A is provided with a lower communication port 28A on one side (horizontal direction) of the flat heat transfer tube 11 in the width direction (windward side in the external air flow direction). By providing the lower communication port 28A on the windward side, the refrigerant mainly circulates on the windward side of the circulation return path 25A. It can be inflowed.

本実施の形態2では、循環往路24Aをヘッダ12Aの外側かつ扁平伝熱管11の幅方向(水平方向)の他方側(外部の空気の流れの風下側)に設け、上部連通口27Aを外部の空気の流れの風上側に設けることにより、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In the second embodiment, the circulation outward path 24A is provided on the outside of the header 12A and on the other side (leeward side of the external air flow) in the width direction (horizontal direction) of the flat heat transfer tube 11, and the upper communication port 27A is provided on the outside. By providing it on the windward side of the air flow, it is possible to allow a larger amount of refrigerant to flow into the windward flow path in the flat heat transfer tube 11.

実施の形態2では、下部連通口28Aも扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れの風上側)に設けることにより、扁平伝熱管11の風上側の流路に風下側の流路と比較して多くの冷媒を流入させることができるが、必ずしもこれに限定するものではなく、下部連通口28Aは、第2の仕切り部材風下面22aの下部に設けてもよい。 In the second embodiment, the lower communication port 28A is also provided on one side (the windward side of the external air flow) in the width direction (horizontal direction) of the flat heat transfer tube 11, so that the flow path on the windward side of the flat heat transfer tube 11 is provided. Although a larger amount of refrigerant can flow into the flow path on the leeward side, the flow is not necessarily limited to this, and the lower communication port 28A may be provided below the windward lower surface 22a of the second partition member. good.

[実施の形態3]
図7は、本発明の実施の形態3に係る熱交換器のヘッダ12Bの斜視図である。また、実施の形態1と同様に、熱交換器5は、扁平伝熱管11の長さ方向および幅方向、すなわち、扁平伝熱管11の扁平面と平行な方向が水平方向となるように配置される。更に、熱交換器5は、扁平伝熱管11の積層方向、すなわち、扁平伝熱管11の扁平面と直交する方向が鉛直方向となるように配置される。なお、熱交換器5の近傍には、図示しない送風ファンが設けられており、送風ファンは熱交換器5に外部の空気を送る。図8は、本発明の実施の形態3に係る熱交換器のヘッダ12Bの(a)は中間部の水平断面図、(b)は上部の水平断面図、(c)は下部の水平断面図である。
[Embodiment 3]
FIG. 7 is a perspective view of the header 12B of the heat exchanger according to the third embodiment of the present invention. Further, similarly to the first embodiment, the heat exchanger 5 is arranged so that the length direction and the width direction of the flat heat transfer tube 11, that is, the direction parallel to the flat surface of the flat heat transfer tube 11 is the horizontal direction. NS. Further, the heat exchanger 5 is arranged so that the stacking direction of the flat heat transfer tubes 11, that is, the direction orthogonal to the flat plane of the flat heat transfer tubes 11 is the vertical direction. A blower fan (not shown) is provided in the vicinity of the heat exchanger 5, and the blower fan sends external air to the heat exchanger 5. 8A and 8B are a horizontal sectional view of an intermediate portion, FIG. 8B is a horizontal sectional view of an upper portion, and FIG. 8C is a horizontal sectional view of a lower portion of the header 12B of the heat exchanger according to the third embodiment of the present invention. Is.

ヘッダ12Bにおいて、第1の仕切り部材21により区画された上部側の空間に設けられた第2の仕切り部材22Bは、互いに直交するように配置される第2の仕切り部材風下面22cおよび第2の仕切り部材風上面22dから構成され、本体部20の第1の仕切り部材21の上部側の鉛直方向の全体にわたり設けられている。 In the header 12B, the second partition member 22B provided in the space on the upper side partitioned by the first partition member 21 is the second partition member wind lower surface 22c and the second partition member 22c arranged so as to be orthogonal to each other. It is composed of a partition member wind upper surface 22d, and is provided over the entire vertical direction on the upper side of the first partition member 21 of the main body portion 20.

本体部20の内部において、第1の仕切り部材21により区画された上部側の空間は、扁平伝熱管11に接続された空間である循環復路25Bと、第2仕切り部材22Bにより循環復路25Bと隔てられた循環往路24Bを有する。循環往路24Bは、本体部20の外側に設けられている。 Inside the main body 20, the space on the upper side partitioned by the first partition member 21 is separated from the circulation return path 25B by the second partition member 22B and the circulation return path 25B which is a space connected to the flat heat transfer tube 11. It has a circular outbound route 24B. The circulation outward path 24B is provided on the outside of the main body portion 20.

第2の仕切り部材22Bの上部、かつ扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)、すなわち第2の仕切り部材風上面22dの上部に、上部連通口27Bが設けられ、第2の仕切り部材22の下部、かつ扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)、すなわち第2の仕切り部材風上面22dの下部に、下部連通口28Bが設けられている。冷媒流入口26から循環往路24Bに流入した冷媒は、循環往路24B内を上昇し、上部連通口27Bを介して循環復路25Bに流入する。循環復路25Bに流入した冷媒は、下降しながら循環復路25B内に接続されている複数の扁平伝熱管11内に分流され、一部が下部連通口28Bから循環往路24B内に流入する。ヘッダ12Bでは、循環往路24B、上部連通口27B、循環復路25Bおよび下部連通口28Bにより循環流を形成することにより、ヘッダ12Bに接続される扁平伝熱管11の配置位置の違い(上部に配置された扁平伝熱管11と下部に配置された扁平伝熱管11)による冷媒の流量の偏りを低減することができる。 The upper part of the second partition member 22B and one side in the width direction (horizontal direction) of the flat heat transfer tube 11 (the wind side in the external air flow direction), that is, the upper part of the second partition member wind upper surface 22d. The communication port 27B is provided, and the lower part of the second partition member 22 and one side in the width direction (horizontal direction) of the flat heat transfer tube 11 (the wind side in the external air flow direction), that is, the wind of the second partition member. A lower communication port 28B is provided below the upper surface 22d. The refrigerant that has flowed into the circulation outward path 24B from the refrigerant inflow port 26 rises in the circulation outward path 24B and flows into the circulation return path 25B through the upper communication port 27B. The refrigerant flowing into the circulation return path 25B is divided into a plurality of flat heat transfer tubes 11 connected in the circulation return path 25B while descending, and a part of the refrigerant flows into the circulation outbound path 24B from the lower communication port 28B. In the header 12B, a difference in the arrangement position of the flat heat transfer tube 11 connected to the header 12B (arranged at the upper part) by forming a circulation flow by the circulation outward path 24B, the upper communication port 27B, the circulation return path 25B, and the lower communication port 28B. It is possible to reduce the deviation of the flow rate of the refrigerant by the flat heat transfer tube 11 and the flat heat transfer tube 11) arranged at the lower part.

ヘッダ12Bでは、実施の形態1と同様に、循環往路24Bの水平方向の断面積は、循環復路25Bの水平方向の断面積よりも小さくなるよう第2の仕切り部材22Bを配置している。これにより、循環往路24B中で冷媒が上昇しやすくなる。また、循環往路24Bの水平方向の断面積は、後述する下部連通口28Bの開口面積の和よりも大きく形成されている。これにより、冷媒の逆流(循環復路25Bが往路となり、循環往路24Bが復路となる)を防止することができ、循環流の形成が容易となる。 In the header 12B, as in the first embodiment, the second partition member 22B is arranged so that the horizontal cross-sectional area of the circulation outward path 24B is smaller than the horizontal cross-sectional area of the circulation return path 25B. As a result, the refrigerant tends to rise in the circulation outward path 24B. Further, the horizontal cross-sectional area of the circulation outward path 24B is formed to be larger than the sum of the opening areas of the lower communication port 28B, which will be described later. As a result, it is possible to prevent the backflow of the refrigerant (the circulation return path 25B becomes the outward path and the circulation outward path 24B becomes the return path), and the formation of the circulation flow becomes easy.

ヘッダ12Bにおいて、上部連通口27Bを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)に設けている。これにより、ヘッダ12Bに接続されている扁平伝熱管11の風上側の流路と上部連通口27Bの距離は、ヘッダ12Bに接続されている扁平伝熱管11の風下側の流路と上部連通口27Bの距離より短くなる。風上側の流路と上部連通口27Bの距離および風下側の流路と上部連通口27Bの距離は、実施の形態1より大きくなるものの、上部連通口27Bからの扁平伝熱管11の流路への急激な流れ込みを防止でき、扁平伝熱管11の風上側の流路により多くの冷媒を分流することができる。 In the header 12B, the upper communication port 27B is provided on one side of the flat heat transfer tube 11 in the width direction (horizontal direction) (on the windward side in the external air flow direction). As a result, the distance between the leeward flow path and the upper communication port 27B of the flat heat transfer tube 11 connected to the header 12B is the leeward flow path and the upper communication port of the flat heat transfer tube 11 connected to the header 12B. It will be shorter than the distance of 27B. Although the distance between the windward upper flow path and the upper communication port 27B and the distance between the leeward side flow path and the upper communication port 27B are larger than those in the first embodiment, the distance from the upper communication port 27B to the flat heat transfer tube 11 flow path is increased. A large amount of refrigerant can be diverted to the windward flow path of the flat heat transfer tube 11.

また、ヘッダ12Bは、下部連通口28Bを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れ方向の風上側)に設けている。下部連通口28Bを風上側に設けることにより、循環復路25Bの風上側で主として冷媒が循環するため、扁平伝熱管11の風上側の流路に風下側の流路と比較して多くの冷媒を流入させることができる。 Further, the header 12B is provided with a lower communication port 28B on one side (horizontal direction) of the flat heat transfer tube 11 in the width direction (windward side in the external air flow direction). By providing the lower communication port 28B on the windward side, the refrigerant mainly circulates on the windward side of the circulation return path 25B. It can be inflowed.

本実施の形態3では、循環往路24Bをヘッダ12Bの外側に設け、上部連通口27Bを扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れの風上側)に設けることにより、扁平伝熱管11内の風上側の流路により多くの冷媒を流入させることが可能となる。 In the third embodiment, the circulation outward path 24B is provided outside the header 12B, and the upper communication port 27B is provided on one side (windward side of the external air flow) in the width direction (horizontal direction) of the flat heat transfer tube 11. As a result, more refrigerant can flow into the windward flow path in the flat heat transfer tube 11.

実施の形態3では、下部連通口28Bも扁平伝熱管11の幅方向(水平方向)の一方側(外部の空気の流れの風上側)に設けることにより、扁平伝熱管11の風上側の流路に風下側の流路と比較して多くの冷媒を流入させることができるが、必ずしもこれに限定するものではなく、下部連通口28Bは、第2の仕切り部材風下面22cの下部に設けてもよい。 In the third embodiment, the lower communication port 28B is also provided on one side (the windward side of the external air flow) in the width direction (horizontal direction) of the flat heat transfer tube 11, so that the flow path on the windward side of the flat heat transfer tube 11 is provided. Although a larger amount of refrigerant can flow into the flow path on the leeward side, the flow is not necessarily limited to this, and the lower communication port 28B may be provided below the windward lower surface 22c of the second partition member. good.

以上、本発明の実施の形態について説明したが、本発明はこれに限定されるものではなく、ここでは記載していない様々な実施の形態等を含み得るものである。 Although the embodiments of the present invention have been described above, the present invention is not limited to this, and may include various embodiments not described here.

1 空気調和機
2 室内機
3 室外機
4、5 熱交換器
6 圧縮機
7 膨張弁
8 四方弁
11 扁平伝熱管
12、13 ヘッダ
14 フィン
15、16 配管
20 本体部
21 第1の仕切り部材
22、22A、22B 第2の仕切り部材
23 冷媒流入部
24、24A、24B 循環往路
25、25A、25B 循環復路
26 冷媒流入口
27、27A、27B 上部連通口
28、28A、28B 下部連通口
1 Air conditioner 2 Indoor unit 3 Outdoor unit 4, 5 Heat exchanger 6 Compressor 7 Expansion valve 8 Four-way valve 11 Flat heat transfer tube 12, 13 Header 14 Fin 15, 16 Piping 20 Main body 21 First partition member 22, 22A, 22B Second partition member 23 Refrigerant inflow section 24, 24A, 24B Circulation outward path 25, 25A, 25B Circulation return path 26 Refrigerant inflow port 27, 27A, 27B Upper communication port 28, 28A, 28B Lower communication port

Claims (6)

幅広な面が対向するように積層された複数の扁平伝熱管と、
前記複数の扁平伝熱管の端部が接続され、前記複数の扁平伝熱管に冷媒を分流する管状のヘッダと、を備え、
前記ヘッダは、
管状の本体部を前記複数の扁平伝熱管の積層方向に並ぶ二つの空間に区画する第1の仕切り部材と、
前記第1の仕切り部材により区画された前記管状の本体部の上部側の空間を、前記複数の扁平伝熱管が接続される側の空間である循環復路と前記複数の扁平伝熱管が接続されない側の空間である循環往路に区画し、上部に上部連通口、下部に下部連通口が設けられる第2の仕切り部材と、を有し、
管状の本体部が前記第1の仕切り部材により区画された下部側の空間は、冷媒流入部であり、
前記第1の仕切り部材には、前記循環往路に冷媒を流入する冷媒流入口が設けられ、
前記第2の仕切り部材の上部連通口は、前記複数の扁平伝熱管の幅方向の一方側に設けられ、当該一方側が外部の空気の流れ方向の風上側とする熱交換器。
Multiple flat heat transfer tubes stacked so that their wide surfaces face each other,
The end portions of the plurality of flat heat transfer tubes are connected to each other, and a tubular header for distributing a refrigerant to the plurality of flat heat transfer tubes is provided.
The header is
A first partition member for partitioning a tubular main body into two spaces arranged in a stacking direction of the plurality of flat heat transfer tubes, and a first partition member.
The space on the upper side of the tubular main body portion partitioned by the first partition member is the space on the side where the plurality of flat heat transfer tubes are connected to the circulation return path and the side where the plurality of flat heat transfer tubes are not connected. It has a second partition member, which is divided into a circulation outward path, which is a space of the above, and has an upper communication port at the upper part and a lower communication port at the lower part.
The space on the lower side in which the tubular main body portion is partitioned by the first partition member is a refrigerant inflow portion.
The first partition member is provided with a refrigerant inflow port for flowing a refrigerant into the circulation outward path.
A heat exchanger in which the upper communication port of the second partition member is provided on one side in the width direction of the plurality of flat heat transfer tubes, and the one side is on the windward side in the external air flow direction.
前記下部連通口は、外部の空気の流れの風上側に設けられている請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the lower communication port is provided on the windward side of an external air flow. 前記循環往路の水平方向の断面積は、前記循環復路の水平方向の断面積より小さい請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the horizontal cross-sectional area of the circulation outward path is smaller than the horizontal cross-sectional area of the circulation return path. 前記循環往路の水平方向の断面積は、前記下部連通口の面積の和より小さい請求項2または3に記載の熱交換器。 The heat exchanger according to claim 2 or 3, wherein the horizontal cross-sectional area of the circulation outward path is smaller than the sum of the areas of the lower communication ports. 前記循環往路は、外部の空気の流れの風上側に設けられている請求項1〜4のいずれか一つに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the circulation outward path is provided on the windward side of an external air flow. 前記循環往路は、外部の空気の流れの風下側に設けられている請求項1〜4のいずれか一つに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein the circulation outward path is provided on the leeward side of an external air flow.
JP2020036309A 2020-03-03 2020-03-03 Heat exchanger Active JP7327214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036309A JP7327214B2 (en) 2020-03-03 2020-03-03 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036309A JP7327214B2 (en) 2020-03-03 2020-03-03 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2021139531A true JP2021139531A (en) 2021-09-16
JP7327214B2 JP7327214B2 (en) 2023-08-16

Family

ID=77668216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036309A Active JP7327214B2 (en) 2020-03-03 2020-03-03 Heat exchanger

Country Status (1)

Country Link
JP (1) JP7327214B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041876A (en) * 2007-08-10 2009-02-26 Gac Corp Heat exchanger
JP2014037899A (en) * 2012-08-10 2014-02-27 Daikin Ind Ltd Heat exchanger
JP2015127619A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger and air conditioning device
JP2019056544A (en) * 2017-03-29 2019-04-11 ダイキン工業株式会社 Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041876A (en) * 2007-08-10 2009-02-26 Gac Corp Heat exchanger
JP2014037899A (en) * 2012-08-10 2014-02-27 Daikin Ind Ltd Heat exchanger
JP2015127619A (en) * 2013-12-27 2015-07-09 ダイキン工業株式会社 Heat exchanger and air conditioning device
JP2019056544A (en) * 2017-03-29 2019-04-11 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP7327214B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP5071597B2 (en) Heat exchanger and air conditioner
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
JP6202451B2 (en) Heat exchanger and air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
JP6145189B1 (en) Heat exchanger and air conditioner
US20160216014A1 (en) Heat exchanger and air conditioner
JP6419882B2 (en) Air conditioner
JP6927352B1 (en) Heat exchanger
WO2018116929A1 (en) Heat exchanger and air conditioner
JP4178472B2 (en) Heat exchanger and air conditioner
JP6927353B1 (en) Heat exchanger
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP2012163313A (en) Heat exchanger, and air conditioner
JP5716496B2 (en) Heat exchanger and air conditioner
WO2021192937A1 (en) Heat exchanger
JP6639690B2 (en) Heat exchanger and refrigeration cycle device
JP2021143775A (en) Heat exchanger
JP2021139531A (en) Heat exchanger
JP2021139532A (en) Heat exchanger
JP2021139530A (en) Heat exchanger
JP2020148346A (en) Heat exchanger and air conditioner
JP2020165578A (en) Heat exchanger flow divider
JP6537868B2 (en) Heat exchanger
WO2023281731A1 (en) Heat exchanger and air conditioner
JP2018105606A (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R151 Written notification of patent or utility model registration

Ref document number: 7327214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151